
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture
Technical Reference Manual (TRM) PSoC 62 MCU

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture
Technical Reference Manual (TRM)

PSoC 62 MCU

Document No. 002-20730 Rev. *J

December 5, 2023

Cypress Semiconductor
An Infineon Technologies Company

198 Champion Court
San Jose, CA 95134-1709

www.cypress.com
www.infineon.com

http://www.cypress.com
http://www.infineon.com

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 2

Copyrights

© Cypress Semiconductor Corporation, 2018-2023. This document is the property of Cypress Semiconductor Corporation, an
Infineon Technologies company, and its affiliates (“Cypress”). This document, including any software or firmware included or
referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as
specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your
organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents
that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software
solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the
Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress
hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access
to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS
PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK,
VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively,
“Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in
these materials may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document
without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly
design, program, and test the functionality and safety of any application made of this information and any resulting product.
“High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical
Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause,
directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole
or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a
Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates,
and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages,
and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage
arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published
data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii)
Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk
Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and
ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other
countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as
property of their respective owners.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 3

Content Overview

Section A: Overview 18

1. Introduction ... 20

2. Getting Started .. 24

3. Document Organization and Conventions ... 25

Section B: CPU Subsystem 29
4. CPU Subsystem (CPUSS) ... 31

5. SRAM Controller ... 38

6. Inter-Processor Communication ... 40

7. Fault Monitoring .. 48

8. Interrupts .. 55

9. Protection Units ... 70

10. DMA Controller .. 85

11. Cryptographic Function Block (Crypto) ... 95

12. Program and Debug Interface .. 136

13. Nonvolatile Memory ... 146

14. Boot Code ... 173

15. eFuse Memory .. 189

16. Device Security ... 191

Section C: System Resources Subsystem (SRSS) 196
17. Power Supply and Monitoring .. 197

18. Device Power Modes ... 204

19. Backup System ... 214

20. Clocking System.. 221

21. Reset System .. 236

22. I/O System .. 240

23. Watchdog Timer .. 262

24. Trigger Multiplexer Block ... 273

25. Profiler .. 278

Section D: Digital Subsystem 284

26. Serial Communications Block (SCB) .. 286

27. Serial Memory Interface (SMIF) ... 343

28. Timer, Counter, and PWM (TCPWM) .. 360

29. Inter-IC Sound Bus .. 397

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 4

Content Overview

30. PDM-PCM Converter ... 409

31. Universal Serial Bus (USB) Device Mode ... 418

32. Universal Serial Bus (USB) Host .. 434

33. LCD Direct Drive ... 451

34. Universal Digital Blocks (UDB) ... 464

Section E: Analog Subsystem 507

35. Analog Reference Block .. 509

36. Low-Power Comparator ... 513

37. Continuous Time Block mini (CTBm) .. 518

38. Continuous Time DAC ... 525

39. SAR ADC .. 538

40. Temperature Sensor .. 557

41. Analog Routing .. 561

42. CapSense ... 565

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 5

Contents

Section A: Overview 18

1. Introduction 20
1.1 Features..20
1.2 Architecture...22

2. Getting Started 24

2.1 PSoC 6 MCU Resources ..24

3. Document Organization and Conventions 25

3.1 Major Sections ..25
3.2 Documentation Conventions...25

3.2.1 Register Conventions...25
3.2.2 Numeric Naming ..25
3.2.3 Units of Measure..26
3.2.4 Acronyms and Initializations ..26

Section B: CPU Subsystem 29

4. CPU Subsystem (CPUSS) 31
4.1 Features..31
4.2 Architecture...32

4.2.1 Address and Memory Maps ...33
4.3 Registers...34
4.4 Operating Modes and Privilege Levels ...36
4.5 Instruction Set...37

5. SRAM Controller 38

5.1 Features..38
5.2 Architecture...38
5.3 Wait States ...39

6. Inter-Processor Communication 40

6.1 Features..41
6.2 Architecture...41

6.2.1 IPC Channel...41
6.2.2 IPC Interrupt...42
6.2.3 IPC Channels and Interrupts..42

6.3 Implementing Locks..43
6.4 Message Passing ...43
6.5 Typical Usage Models ..45

6.5.1 Full Duplex Communication ...45
6.5.2 Half Duplex with Independent Event Handling...46
6.5.3 Half Duplex with Shared Event Handling ...46

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 6

Contents

7. Fault Monitoring 48

7.1 Features..48
7.2 Architecture...49

7.2.1 Fault Report ...49
7.2.2 Signaling Interface ...51
7.2.3 Monitoring ..51
7.2.4 Low-power Mode Operation...52
7.2.5 Using a Fault Structure ..52
7.2.6 CPU Exceptions Versus Fault Monitoring ..52

7.3 Fault Sources..53
7.4 Register List..54

8. Interrupts 55
8.1 Features..55
8.2 Architecture...56
8.3 Interrupts and Exceptions - Operation ..57

8.3.1 Interrupt/Exception Handling..57
8.3.2 Level and Pulse Interrupts ...57
8.3.3 Exception Vector Table ..58

8.4 Exception Sources..59
8.4.1 Reset Exception...59
8.4.2 Non-Maskable Interrupt Exception...59
8.4.3 HardFault Exception ..60
8.4.4 Memory Management Fault Exception ..60
8.4.5 Bus Fault Exception ...60
8.4.6 Usage Fault Exception...60
8.4.7 Supervisor Call (SVCall) Exception ...61
8.4.8 PendSupervisory (PendSV) Exception ..61
8.4.9 System Tick (SysTick) Exception ...61

8.5 Interrupt Sources ..61
8.6 Interrupt/Exception Priority ...66
8.7 Enabling and Disabling Interrupts...66
8.8 Interrupt/Exception States ..67

8.8.1 Pending Interrupts/Exceptions ...67
8.9 Stack Usage for Interrupts/Exceptions ...68
8.10 Interrupts and Low-Power Modes...68
8.11 Interrupt/Exception – Initialization/ Configuration ...68
8.12 Register List..69

9. Protection Units 70
9.1 Architecture...70
9.2 PSoC 6 Protection Architecture ..71
9.3 Register Architecture ..73

9.3.1 Protection Structure and Attributes ..73
9.4 Bus Master Protection Attributes ..76
9.5 Protection Context ..76
9.6 Protection Context 0 ...77
9.7 Protection Structure ..78

9.7.1 Protection Violation ..78
9.7.2 MPU...78
9.7.3 SMPU...78
9.7.4 PPU..79
9.7.5 Protection of Protection Structures ..80

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 7

Contents

9.7.6 Protection Structure Types...81

10. DMA Controller 85

10.1 Features..85
10.2 Architecture...86
10.3 Channels...86

10.3.1 Channel Interrupts ...87
10.4 Descriptors..88

10.4.1 Address Configuration ...89
10.4.2 Transfer Size..91
10.4.3 Descriptor Chaining ...91

10.5 DMA Controller ...92
10.5.1 Trigger Selection..92
10.5.2 Pending Triggers..92
10.5.3 Output Triggers ..92
10.5.4 Status registers ..93
10.5.5 DMA Performance..93

11. Cryptographic Function Block (Crypto) 95

11.1 Features..95
11.2 Architecture...96
11.3 Instruction Controller...96

11.3.1 Instructions...97
11.3.2 Instruction Operands..97
11.3.3 Load and Store FIFO Instructions..97
11.3.4 Register Buffer Instructions..99

11.4 Hash Algorithms ...103
11.4.1 SHA1 and SHA2 ..103
11.4.2 SHA3..105

11.5 DES and TDES...106
11.6 AES...108
11.7 CRC ..110
11.8 PRNG ...112
11.9 TRNG..113
11.10 Vector Unit ..119

11.10.1 VU Register File...120
11.10.2 Stack ..121
11.10.3 Memory Operands ...122
11.10.4 Datapath ..122
11.10.5 Status Register ..122
11.10.6 Instructions...123
11.10.7 Instruction Set ..124

12. Program and Debug Interface 136
12.1 Features..136
12.2 Architecture...136

12.2.1 Debug Access Port (DAP)..138
12.2.2 ROM Tables ...138
12.2.3 Trace..138
12.2.4 Embedded Cross Triggering ..139

12.3 Serial Wire Debug (SWD) Interface..139
12.3.1 SWD Timing Details ...140
12.3.2 ACK Details..140

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 8

Contents

12.3.3 Turnaround (Trn) Period Details ..141
12.4 JTAG Interface..141
12.5 Programming the PSoC 6 MCU..144

12.5.1 SWD Port Acquisition...144
12.5.2 SWD Programming Mode Entry...144
12.5.3 SWD Programming Routine Executions ..144

12.6 Registers...145

13. Nonvolatile Memory 146

13.1 Flash Memory ...146
13.1.1 Features...146
13.1.2 Configuration..146
13.1.3 Flash Geometry ...147
13.1.4 Flash Controller..148
13.1.5 Read While Write (RWW) Support...149

13.2 Flash Memory Programming ..149
13.2.1 Features...149
13.2.2 Architecture..149

13.3 System Call Implementation ...150
13.3.1 System Call via CM0+ or CM4...150
13.3.2 System Call via DAP..151
13.3.3 Exiting from a System Call...151
13.3.4 SRAM Usage ...151

13.4 SROM API Library ..152
13.5 System Calls...153

13.5.1 Cypress ID ...153
13.5.2 Blow eFuse Bit ...155
13.5.3 Read eFuse Byte ...156
13.5.4 Write Row ..157
13.5.5 Program Row...158
13.5.6 Erase All...160
13.5.7 Checksum..161
13.5.8 Compute Hash ...162
13.5.9 ConfigureRegionBulk ...163
13.5.10 DirectExecute...164
13.5.11 Erase Sector ..164
13.5.12 Soft Reset ..165
13.5.13 Erase Row ...166
13.5.14 Erase Subsector ..167
13.5.15 GenerateHash..168
13.5.16 ReadUniqueID ...169
13.5.17 CheckFactoryHash ..169
13.5.18 TransitionToRMA..170
13.5.19 ReadFuseByteMargin ..171

13.6 System Call Status ...172

14. Boot Code 173

14.1 Features..173
14.2 ROM Boot ...173

14.2.1 Data Integrity Checks...173
14.2.2 Life-cycle Stages and Protection States ..176
14.2.3 Secure Boot in ROM Boot..179
14.2.4 Protection Setting...179

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 9

Contents

14.2.5 SWD/JTAG Repurposing ...180
14.2.6 Waking up from Hibernate ...180
14.2.7 Disable Watchdog Timer..180
14.2.8 ROM Boot Flow Chart..180

14.3 Flash Boot...182
14.3.1 Overview..182
14.3.2 Features of Flash Boot...182
14.3.3 Using Flash Boot..182
14.3.4 Flash Boot Layout ..182
14.3.5 Flash Boot Flow Chart ...183

15. eFuse Memory 189

15.1 Features..189
15.2 Architecture...189

16. Device Security 191

16.1 Features..191
16.2 Architecture...191

16.2.1 Life Cycle Stages and Protection States..191
16.2.2 Flash Security ..195
16.2.3 Hardware-Based Encryption ..195

Section C: System Resources Subsystem (SRSS) 196

17. Power Supply and Monitoring 197

17.1 Features..197
17.2 Architecture...198
17.3 Power Supply..199

17.3.1 Regulators Summary ...199
17.3.2 Power Pins and Rails...201
17.3.3 Power Sequencing Requirements ...201
17.3.4 Backup Domain..201
17.3.5 Power Supply Sources...201

17.4 Voltage Monitoring..201
17.4.1 Power-On-Reset (POR) ...201
17.4.2 Brownout-Detect (BOD) ...202
17.4.3 Low-Voltage-Detect (LVD) ...202
17.4.4 Over-Voltage Protection (OVP)..203

17.5 Register List ...203

18. Device Power Modes 204

18.1 Features..204
18.2 Architecture...204

18.2.1 CPU Power Modes ..206
18.2.2 System Power Modes ..206
18.2.3 System Deep Sleep Mode ...206
18.2.4 System Hibernate Mode ..207
18.2.5 Other Operation Modes ...207

18.3 Power Mode Transitions ...208
18.3.1 Power-up Transitions ...209
18.3.2 Power Mode Transitions ..209
18.3.3 Wakeup Transitions ...211

18.4 Summary ..212
18.5 Register List..213

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 10

Contents

19. Backup System 214

19.1 Features..214
19.2 Architecture...215
19.3 Power Supply..215
19.4 Clocking ..216

19.4.1 WCO with External Clock/Sine Wave Input ...216
19.4.2 Calibration..216

19.5 Reset ..217
19.6 Real-Time Clock ...217

19.6.1 Reading RTC User Registers ..217
19.6.2 Writing to RTC User Registers...217

19.7 Alarm Feature ...218
19.8 PMIC Control ..219
19.9 Backup Registers..220
19.10 Register List..220

20. Clocking System 221

20.1 Features..221
20.2 Architecture...222
20.3 Clock Sources...223

20.3.1 Internal Main Oscillator (IMO) ..223
20.3.2 External Crystal Oscillator (ECO) ..223
20.3.3 External Clock (EXTCLK) ..223
20.3.4 Internal Low-speed Oscillator (ILO) ...223
20.3.5 Precision Internal Low-speed Oscillator (PILO) ...224
20.3.6 Watch Crystal Oscillator (WCO)...224

20.4 Clock Generation ..224
20.4.1 Phase-Locked Loop (PLL) ...224
20.4.2 Frequency Lock Loop (FLL)...225

20.5 Clock Trees...230
20.5.1 Path Clocks..230
20.5.2 High-Frequency Root Clocks ...230
20.5.3 Low-Frequency Clock ..231
20.5.4 Timer Clock..231
20.5.5 Group Clocks (clk_sys) ..231
20.5.6 Backup Clock (clk_bak) ...231

20.6 CLK_HF[0] Distribution ...232
20.6.1 CLK_FAST...232
20.6.2 CLK_PERI..232
20.6.3 CLK_SLOW ...232

20.7 Peripheral Clock Dividers ...232
20.7.1 Fractional Clock Dividers ...232
20.7.2 Peripheral Clock Divider Configuration ..232

20.8 Clock Calibration Counters ...235

21. Reset System 236
21.1 Features..236
21.2 Architecture...236

21.2.1 Power-on Reset ...237
21.2.2 Brownout Reset ...237
21.2.3 Watchdog Timer Reset ..237
21.2.4 Software Initiated Reset...238
21.2.5 External Reset ...238

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 11

Contents

21.2.6 Logic Protection Fault Reset..238
21.2.7 Clock-Supervision Logic Reset ..238
21.2.8 Hibernate Wakeup Reset ...238

21.3 Identifying Reset Sources...238
21.4 Register List..239

22. I/O System 240

22.1 Features..240
22.2 Architecture...241

22.2.1 I/O Cell Architecture ...242
22.2.2 Digital Input Buffer ...243
22.2.3 Digital Output Driver...243

22.3 High-Speed I/O Matrix ..246
22.4 I/O State on Power Up..248
22.5 Behavior in Low-Power Modes ...248
22.6 Input and Output Synchronization ..248
22.7 Interrupt ..248
22.8 Peripheral Connections ..250

22.8.1 Firmware-Controlled GPIO ..250
22.8.2 Analog I/O ..250
22.8.3 LCD Drive ..250
22.8.4 CapSense ..250

22.9 Smart I/O ...251
22.9.1 Overview..251
22.9.2 Block Components...251
22.9.3 Routing...258
22.9.4 Operation ...260

22.10 Registers...261

23. Watchdog Timer 262

23.1 Features..262
23.2 Architecture...262
23.3 Free-running WDT ..263

23.3.1 Overview..263
23.3.2 Watchdog Reset ..265
23.3.3 Watchdog Interrupt ..265

23.4 Multi-Counter WDTs ...266
23.4.1 Overview..266
23.4.2 Enabling and Disabling WDT...269
23.4.3 Watchdog Cascade Options ..270
23.4.4 MCDWT Reset...271
23.4.5 MCWDT Interrupt...271

23.5 Reset Cause Detection...272
23.6 Register List..272

24. Trigger Multiplexer Block 273
24.1 Features..273
24.2 Architecture...273

24.2.1 Trigger Multiplexer Group ..274
24.2.2 Trigger Multiplexer Block Architecture..274
24.2.3 Trigger Multiplexer Routing..275
24.2.4 Software Triggers...275

24.3 PSoC 6 MCU Trigger Multiplexer Block..276

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 12

Contents

24.4 Register List ...276

25. Profiler 278

25.1 Features..278
25.2 Architecture...279

25.2.1 Profiler Design ...279
25.2.2 Available Monitoring Sources ..280
25.2.3 Reference Clocks...280

25.3 Using the Profiler ..281
25.3.1 Enable or Disable the Profiler ..281
25.3.2 Configure and Enable a Counter ...282
25.3.3 Start and Stop Profiling ..282
25.3.4 Handle Counter Overflow...282
25.3.5 Get the Results ..283
25.3.6 Exit Gracefully..283

Section D: Digital Subsystem 284

26. Serial Communications Block (SCB) 286
26.1 Features..286
26.2 Architecture...287

26.2.1 Buffer Modes..287
26.2.2 Clocking Modes ...287

26.3 Serial Peripheral Interface (SPI) ...288
26.3.1 Features...288
26.3.2 General Description ...289
26.3.3 SPI Modes of Operation...290
26.3.4 SPI Buffer Modes...295
26.3.5 Clocking and Oversampling ...300
26.3.6 Enabling and Initializing SPI ..302
26.3.7 I/O Pad Connection..303
26.3.8 SPI Registers ...305

26.4 UART..306
26.4.1 Features...306
26.4.2 General Description ...306
26.4.3 UART Modes of Operation...306
26.4.4 Clocking and Oversampling ...316
26.4.5 Enabling and Initializing the UART ..316
26.4.6 I/O Pad Connection..317
26.4.7 UART Registers ...319

26.5 Inter Integrated Circuit (I2C) ...320
26.5.1 Features...320
26.5.2 General Description ...320
26.5.3 External Electrical Connections ...321
26.5.4 Terms and Definitions ..322
26.5.5 I2C Modes of Operation...322
26.5.6 I2C Buffer Modes ...324
26.5.7 Clocking and Oversampling ...328
26.5.8 Enabling and Initializing the I2C...331
26.5.9 I/O Pad Connections..332
26.5.10 I2C Registers ...333

26.6 SCB Interrupts ..334
26.6.1 SPI Interrupts ...335
26.6.2 UART Interrupts ...337

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 13

Contents

26.6.3 I2C Interrupts ...341

27. Serial Memory Interface (SMIF) 343

27.1 Features..343
27.2 Architecture...343

27.2.1 Tx and Rx FIFOs..345
27.2.2 Command Mode ..346
27.2.3 XIP Mode ...346
27.2.4 Cache...347
27.2.5 Arbitration...347
27.2.6 Deselect Delay...348
27.2.7 Cryptography ...348

27.3 Memory Device Signal Interface...349
27.3.1 Specifying Memory Devices...349
27.3.2 Connecting SPI Memory Devices ..350
27.3.3 SPI Data Transfer ..355
27.3.4 Example of Setting up SMIF ..356

27.4 Triggers...358
27.5 Interrupts...359
27.6 Sleep Operation..359
27.7 Performance ...359

28. Timer, Counter, and PWM (TCPWM) 360

28.1 Features..360
28.2 Architecture...361

28.2.1 Enabling and Disabling Counters in a TCPWM Block ...361
28.2.2 Clocking ...361
28.2.3 Trigger Inputs...362
28.2.4 Trigger Outputs ..364
28.2.5 Interrupts..364
28.2.6 PWM Outputs...365
28.2.7 Power Modes ...365

28.3 Operation Modes ..366
28.3.1 Timer Mode..367
28.3.2 Capture Mode ..373
28.3.3 Quadrature Decoder Mode ..376
28.3.4 Pulse Width Modulation Mode ...380
28.3.5 Pulse Width Modulation with Dead Time Mode ...390
28.3.6 Pulse Width Modulation Pseudo-Random Mode (PWM_PR)393

28.4 TCPWM Registers ..396

29. Inter-IC Sound Bus 397
29.1 Features..397
29.2 Architecture...398
29.3 Digital Audio Interface Formats ..398

29.3.1 Standard I2S Format..398
29.3.2 Left Justified (LJ) Format ...401
29.3.3 Time Division Multiplexed (TDM) Format...401

29.4 Clocking Polarity and Delay Options ..402
29.5 Interfacing with Audio Codecs ..403
29.6 Clocking Features...403
29.7 FIFO Buffer and DMA Support ...405
29.8 Interrupt Support...407

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 14

Contents

29.9 Watchdog Timer ...408

30. PDM-PCM Converter 409

30.1 Features..409
30.2 Architecture...410

30.2.1 Enable/Disable Converter ..410
30.2.2 Clocking Features ..410
30.2.3 Over-Sampling Ratio..411
30.2.4 Mono/Stereo Microphone Support ...411
30.2.5 Hardware FIFO Buffers and DMA Controller Support..413
30.2.6 Interrupt Support ..414
30.2.7 Digital Volume Gain ...415
30.2.8 Smooth Gain Transition ...415
30.2.9 Soft Mute..415
30.2.10 Word Length and Sign Bit Extension ...415
30.2.11 High-Pass Filter ...415
30.2.12 Enable/Disable Streaming ...416
30.2.13 Power Modes ...416

30.3 Operating Procedure ..416
30.3.1 Initial Configuration ..416
30.3.2 Interrupt Service Routine (ISR) Configuration ...416
30.3.3 Enabling / Disabling Streaming..417

31. Universal Serial Bus (USB) Device Mode 418

31.1 Features..418
31.2 Architecture...419

31.2.1 USB Physical Layer (USB PHY) ..419
31.2.2 Serial Interface Engine (SIE) ...419
31.2.3 Arbiter ..419

31.3 Operation ..420
31.3.1 USB Clocking Scheme...420
31.3.2 USB PHY ...420
31.3.3 Endpoints ...421
31.3.4 Transfer Types ...421
31.3.5 Interrupt Sources ...421
31.3.6 DMA Support..423

31.4 Logical Transfer Modes ..424
31.4.1 Manual Memory Management with No DMA Access ...426
31.4.2 Manual Memory Management with DMA Access...426
31.4.3 Automatic DMA Mode ..428
31.4.4 Control Endpoint Logical Transfer..430

31.5 USB Power Modes ...432
31.6 USB Device Registers ..432

32. Universal Serial Bus (USB) Host 434
32.1 Features..434
32.2 Architecture...435

32.2.1 USB Physical Layer (USB PHY) ...435
32.2.2 Clock Control Block..435
32.2.3 Interrupt Control Block ...435
32.2.4 Endpoint n (n=1, 2) ..435
32.2.5 DMA Request (DREQ) Control ..435

32.3 USB Host Operations ...436

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 15

Contents

32.3.1 Detecting Device Connection...436
32.3.2 Obtaining Transfer Speed of the USB Device..436
32.3.3 USB Bus Reset ..437
32.3.4 USB Packets..438
32.3.5 Retry Function..442
32.3.6 Error Status..442
32.3.7 End of Packet (EOP)..443
32.3.8 Interrupt Sources ...443
32.3.9 DMA Transfer Function ..445
32.3.10 Suspend and Resume Operations...449
32.3.11 Device Disconnection ..449

32.4 USB Host Registers..450

33. LCD Direct Drive 451

33.1 Features..451
33.2 Architecture...451

33.2.1 LCD Segment Drive Overview ...451
33.2.2 Drive Modes...452
33.2.3 Recommended Usage of Drive Modes ..461
33.2.4 Digital Contrast Control..461

33.3 PSoC 6 MCU Segment LCD Direct Drive...462
33.3.1 High-Speed and Low-Speed Master Generators...462
33.3.2 Multiplexer and LCD Pin Logic...463
33.3.3 Display Data Registers ..463

33.4 Register List ...463

34. Universal Digital Blocks (UDB) 464

34.1 Features..464
34.2 Architecture...464

34.2.1 Programmable Logic Device (PLD) ...465
34.2.2 Datapath ..467
34.2.3 Status and Control Module ..486
34.2.4 Reset and Clock Control Module ...493
34.2.5 UDB Addressing...502
34.2.6 System Bus Access Coherency ...502

34.3 Port Adapter Block..503
34.3.1 PA Data Input Logic ...503
34.3.2 PA Port Pin Clock Multiplexer Logic...504
34.3.3 PA Data Output Logic...504
34.3.4 PA Output Enable Logic ...505
34.3.5 PA Clock Multiplexer ..506
34.3.6 PA Reset Multiplexer..506

Section E: Analog Subsystem 507

35. Analog Reference Block 509
35.1 Features..509
35.2 Architecture...510

35.2.1 Bandgap Reference Block ...511
35.2.2 VREF Reference Voltage Selection Multiplexer Options511
35.2.3 Zero Dependency To Absolute Temperature Current Generator (IZTAT).............511
35.2.4 Startup Modes..512
35.2.5 Low-Power Modes ...512

35.3 Registers...512

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 16

Contents

36. Low-Power Comparator 513

36.1 Features..513
36.2 Architecture...514

36.2.1 Input Configuration...514
36.2.2 Output and Interrupt Configuration ..514
36.2.3 Power Mode and Speed Configuration ..515
36.2.4 Hysteresis ..516
36.2.5 Wakeup from Low-Power Modes...517
36.2.6 Comparator Clock ..517

36.3 Register List ...517

37. Continuous Time Block mini (CTBm) 518
37.1 Features..518
37.2 Architecture...519

37.2.1 Power Mode and Output Strength Configuration ...519
37.2.2 Charge Pump...520
37.2.3 Reference Currents..521
37.2.4 Compensation Trim Bits...521
37.2.5 Switching Matrix...521
37.2.6 Sample and Hold ...522
37.2.7 Comparator Mode..522
37.2.8 Deep Sleep Operation ...523
37.2.9 Using CTBm Opamp..523

37.3 Register List..524

38. Continuous Time DAC 525
38.1 Features..525
38.2 Architecture...526

38.2.1 CTDAC Core..527
38.2.2 CTDAC Control Interface ...532
38.2.3 Deglitch Operation ...535
38.2.4 Using CTDAC ..536

38.3 Register List..537

39. SAR ADC 538

39.1 Features..538
39.2 Architecture...539

39.2.1 SAR ADC Core ..540
39.2.2 SARMUX..545
39.2.3 SARREF ..551
39.2.4 SARSEQ..552
39.2.5 SAR Interrupts ...553
39.2.6 Trigger..555
39.2.7 SAR ADC Status ..555

39.3 Registers...556

40. Temperature Sensor 557

40.1 Features..557
40.2 Architecture...557
40.3 SAR ADC Configuration for Measurement ...559
40.4 Algorithm...559
40.5 Registers...560

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 17

Contents

41. Analog Routing 561

41.1 Features..561
41.2 Architecture...562

41.2.1 AMUXBUS Splitting ...563
41.3 Register List..564

42. CapSense 565

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 18

Section A: Overview

This section encompasses the following chapters:

■ Introduction chapter on page 20

■ Getting Started chapter on page 24

■ Document Organization and Conventions chapter on page 25

Document Revision History

Revision Issue Date Description of Change

** 08/18/2017 Initial version of PSoC 62 for public release

*A 10/04/2017
Updated CTDAC chapter diagrams. Minor update to the Backup System and USB Device Mode chap-
ters.

*B 02/08/2018 Minor text and image edits throughout the document

*C 02/23/2018
Reorganized content for consistency. Minor updates to Nonvolatile Memory Programming and Watchdog
Timer chapters

*D 04/27/2018
Major rewrite to the Device Security chapter. Minor edits to Backup System, Clocking, Nonvolatile Mem-
ory Programming, and Interrupts chapters.

*E 09/30/2019

Modified title

Updated USB Device Registers and updated Figure 31-2

Added a note on vector tables in Address and Memory Maps

Added SRAM Usage and updated System Calls

Updated power mode names

Added reference to VSSR in Table 17-1

Updated Backup Registers

Added Enabling and Disabling the FLL and updated the EXTCLK clock range in the Clocking
System chapter on page 221

Added note on WDT lock status in the Watchdog Timer chapter on page 262

Added note in Slew Rate Control

Multiple updates to the Timer, Counter, and PWM (TCPWM) chapter on page 360

Added External Electrical Connections

Deleted the Chip Operational Mode chapter

Renamed all instances of energy profiler as “profiler”

Updated Protection Units, Clocking System, and Interrupts chapters based on review comments

*F 04/08/2020
Updated the Trigger Multiplexer Block, Timer, Counter, and PWM (TCPWM), I/O System, Inter-Processor
Communication, DMA Controller, CPU Subsystem (CPUSS), Nonvolatile Memory, and Clocking System
chapters as part of the PSoC 6 collateral review effort

*G 07/03/2020

Added the SRAM Controller chapter.

Aligned the Introduction section with the datasheet.

Updates throughout the document to address review comments.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 19

Overview

*H 05/11/2023
Fixed typos: Sflash to SFlash, AUXflash and EE emulation to AUXFlash.

Updated PSoC 6 Programming Specification weblink.

*I 09/06/2023
Updated Table 14-3.

Updated Authenticate App? (7) and Life Cycle Stages and Protection States sections.

*J 12/05/2023

Added a footnote in CPU Subsystem (CPUSS).

Added text after Table 14-2.

Added USB peripheral mode in Table 18-5.

Revision Issue Date Description of Change

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 20

1. Introduction

The PSoC™ MCU is a scalable and reconfigurable platform architecture that supports a family of programmable embedded
system controllers with Arm® Cortex® CPUs (single and multi-core). The PSoC 62 product family, based on the PSoC 6 MCU
platform, is a combination of a dual-core microcontroller with built-in programmable peripherals. It incorporates integrated
low-power flash technology, digital programmable logic, high-performance analog-to-digital and digital-to-analog conversion,
low-power comparators, touch sensing, serial memory interface with encryption, and standard communication and timing
peripherals.

1.1 Features
32-bit Dual CPU Subsystem

■ 150-MHz Arm® Cortex®-M4F (CM4) CPU with single-cycle multiply, floating point, and memory protection unit (MPU)

■ 100-MHz Cortex-M0+ (CM0+) CPU with single-cycle multiply and MPU

■ User-selectable core logic operation at either 1.1 V or 0.9 V

■ Active CPU current slope with 1.1-V core operation

■ Active CPU current slope with 0.9-V core operation

■ Two DMA controllers with 16 channels each

Memory Subsystem

■ 1-MB application flash, 32-KB auxiliary flash (AUXFlash), and 32-KB supervisory flash (SFlash); read-while-write (RWW)
support. Two 8-KB flash caches, one for each CPU

■ 288-KB SRAM with power and data retention control

■ One-time-programmable (OTP) 1-Kb eFuse array

Low-Power 1.7-V to 3.6-V Operation

■ Six power modes for fine-grained power management

■ Deep Sleep mode with SRAM retention

■ On-chip Single-In Multiple Out (SIMO) DC-DC Buck converter

■ Backup domain and real-time clock

Flexible Clocking Options

■ On-chip crystal oscillators

■ Phase-locked loop (PLL) for multiplying clock frequency

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 21

Introduction

■ Internal main oscillator (IMO)

■ Ultra-low-power internal low-speed oscillator (ILO)

■ Frequency locked loop (FLL) for multiplying IMO frequency

Quad-SPI (QSPI)/Serial Memory Interface (SMIF)

■ Execute-In-Place (XIP) from external Quad SPI Flash

■ On-the-fly encryption and decryption

■ 4-KB cache for greater XIP performance with lower power

■ Supports single, dual, quad, dual-quad, and octal interfaces

Serial Communication

■ Nine run-time configurable serial communication blocks (SCBs)

❐ Eight SCBs: configurable as SPI, I2C, or UARTs

❐ One Deep Sleep SCB: configurable as SPI or I2C

■ USB full-speed device interface

Audio Subsystem

■ Two PDM channels and one I2S channel with TDM mode

Timing and Pulse-Width Modulation

■ Thirty-two timer/counter pulse-width modulators (TCPWMs)

■ Center-aligned, Edge, and Pseudo-random modes

■ Comparator-based triggering of Kill signals

Programmable Analog

■ 12-bit 1-Msps SAR ADC with differential and single-ended modes and 16-channel sequencer with result averaging

■ One 12-bit voltage mode DAC

■ Two low-power comparators available in Deep Sleep and Hibernate modes

■ Two opamps with low-operation modes

■ Built-in temp sensor connected to ADC

Up to 100 Programmable GPIOs

■ Two Smart I/O ports (16 I/Os) enable Boolean operations on GPIO pins; available during system Deep Sleep

■ Programmable drive modes, strengths, and slew rates

■ Six overvoltage-tolerant (OVT) pins

LCD

■ LCD segment direct block support up to 61 segments and up to 8 commons

■ Operates in Active, Sleep, and Deep Sleep modes

Capacitive Sensing

■ CapSense Sigma-Delta (CSD) provides best-in-class SNR, liquid tolerance, and proximity sensing

■ Enables dynamic usage of both self and mutual sensing

■ Automatic hardware tuning (SmartSense™)

Security Built into Platform Architecture

■ ROM-based root of trust via uninterruptible Secure Boot

■ Step-wise authentication of execution images

■ Secure execution of code in execute-only mode for protected routines

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 22

Introduction

■ All Debug and Test ingress paths can be disabled

■ Up to eight Protection Contexts

Cryptography Accelerators

■ Hardware acceleration for symmetric and asymmetric cryptographic methods and hash functions

■ True Random Number Generator (TRNG) function

Programmable Digital

■ 12 programmable logic blocks, each with 8 Macrocells and an 8-bit data path (called universal digital blocks or UDBs)

■ Usable as drag-and-drop Boolean primitives (gates, registers), or as Verilog programmable blocks

■ Cypress-provided peripheral component library using UDBs to implement functions such as Communication peripherals

(for example, LIN, UART, SPI, I2C, S/PDIF, and other protocols), Waveform Generators, Pseudo-Random Sequence
(PRS) generation, and many other functions.

Profiler

■ Eight counters provide event or duration monitoring of on-chip resources

1.2 Architecture

Figure 1-1 shows the major components of the PSoC 62 architecture.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 23

Introduction

Figure 1-1. PSoC 6 MCU Architecture Block Diagram

The block diagram shows the device subsystems and gives a simplified view of their interconnections. The color-code shows
the lowest power mode where the particular block is still functional (for example, LP comparator is functional in Deep Sleep
and Hibernate modes).

PSoC 62 MCU
CY8C62x6, CY8C62x7

CPU Subsystem

Audio Subsystem

SCB

Programmable Analog

SAR ADC 12 bit

S
A

R
M

U
X

DAC 12 bit

2x Opamp

Temperature Sensor

Programmable Digital: 12x UDB

D
S

I

I/O
 S

u
b

sy
s

te
m

:
U

p
to

 1
0

0
G

P
IO

s
(i

nc
lu

d
in

g
 6

 O
V

T
),

 1
24

-B
G

A
 P

ac
ka

ge
B

ou
nd

a
ry

 S
ca

n
2x

 S
m

ar
t I

/O
 P

o
rt

s

USB
PHY

S
ys

te
m

 In
te

rc
on

n
ec

t (
M

u
lti

 L
ay

er
 A

H
B

,
IP

C
, M

P
U

/S
M

P
U

)

Cortex M4F CPU
150/50 MHz, 1.1/0.9 V
SWJ, ETM, ITM, CTI

Cortex M0+ CPU
100/25 MHz, 1.1/0.9 V

SWJ, MTB, CTI

2x DMA
Controller

Crypto
DES/TDES, AES, SHA,
CRC, TRNG, RSA/ECC

Accelerator

Flash
1024 KB + 32 KB + 32 KB
8 KB cache for each CPU

SRAM
288 KB

ROM
128 KB

P
er

ip
he

ra
l I

nt
e

rc
on

ne
ct

 (
M

M
IO

, P
P

U
)

P
er

ip
he

ra
l c

lo
ck

 (
P

C
LK

)System Resources

Power Clocks

POR

LVD

BOD

OVP

Buck Regulator

WCORTC

IMO

WDT

2x PLL

ECO

ILO

FLL

2x MCWDT

Backup Regs

XRES Reset

PMIC Control

PILO

System
Hibernate Mode

Backup
Domain

System
DeepSleep Mode

System LP/ULP Mode
CPUs Active/Sleep

Color Key:
Power Modes and

Domains

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 24

2. Getting Started

2.1 PSoC 6 MCU Resources

This chapter provides the complete list of PSoC 6 MCU resources that helps you get started with the device and design your
applications with them. If you are new to PSoC, Cypress provides a wealth of data at www.cypress.com to help you to select
the right PSoC device and quickly and effectively integrate it into your design.

The following is an abbreviated list of PSoC 6 MCU resources:

■ Overview: PSoC Portfolio, PSoC 6 MCU webpage

■ Product Selectors: See the PSoC 6 MCU Product Selector Guide to choose a part that suits your application. In addition,
ModusToolbox includes a similar device selection tool to select devices for ModusToolbox projects.

■ Datasheets describe and provide electrical specifications for each device family.

■ Application Notes and Code Examples cover a broad range of topics, from basic to advanced level. Many of the
application notes include code examples, which can be opened from ModusToolbox.

■ Technical Reference Manuals (TRMs) provide detailed descriptions of the architecture and registers in each device family.

■ CapSense Design Guide: Learn how to design capacitive touch-sensing applications with PSoC devices.

■ Development Tools

❐ ModusToolbox is a free integrated design environment (IDE). It enables you to design hardware and firmware systems
concurrently with PSoC devices.

❐ PSoC 6 Kits offer an easy-to-use, inexpensive platform that enables prototyping of wide variety of designs including
IoT applications requiring Wi-Fi/Bluetooth/Bluetooth LE using the PSoC 6 MCU at its center.

■ Additional Resources: Visit the PSoC 6 MCU webpage for additional resources such as IBIS, BSDL models, CAD Library
Files, and Programming Specifications.

■ Technical Support

❐ Forum: See if your question is already answered by fellow developers of the PSoC 6 community.

❐ Cypress support: Visit our support page or contact a local sales representative.

http://www.cypress.com
http://www.cypress.com/psoc
https://www.infineon.com/AN85951
http://www.cypress.com/search/psg/114026#/
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A574&f%5b2%5d=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/microcontrollers-mcus-kits#psoc6
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A583&f%5b2%5d=field_related_products%3A114026
http://www.cypress.com/products/modustoolbox-integrated-design-environment-ide
https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/products/modustoolbox-software-environment
http://www.cypress.com/psoc6
http://www.cypress.com/support
http://www.cypress.com/about-us/sales-offices
http://www.cypress.com/psoc6
https://community.cypress.com/community/product-forums/MCU/psoc-6

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 25

3. Document Organization and Conventions

This document includes the following sections:

■ Section B: CPU Subsystem on page 29

■ Section C: System Resources Subsystem (SRSS) on page 196

■ Section D: Digital Subsystem on page 284

■ Section E: Analog Subsystem on page 507

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

■ Section – Presents the top-level architecture, how to get started, and conventions and overview information of the
product.

■ Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed
implementation and use information for some aspect of the integrated circuit.

■ Glossary – Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are
presented in bold, italic font throughout.

■ Registers Technical Reference Manual – Supplies all device register details summarized in the technical reference
manual. This is an additional document.

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

■ The first is the use of italics when referencing a document title or file name.

■ The second is the use of bold italics when referencing a term described in the Glossary of this document.

■ The third is the use of Times New Roman font, distinguishing equation examples.

■ The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
3Ah) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b or 01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 26

Document Organization and Conventions

3.2.3 Units of Measure

This table lists the units of measure used in this document.

3.2.4 Acronyms and Initializations

This table lists the acronyms and initializations used in this
document

Table 3-1. Units of Measure

Abbreviation Unit of Measure

bps bits per second

°C degrees Celsius

dB decibels

dBm decibels-milliwatts

fF femtofarads

G Giga

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

 sigma: one standard deviation

V volts

Table 3-2. Acronyms and Initializations

Acronym Definition

ABUS analog output bus

AC alternating current

ADC analog-to-digital converter

ADV advertising

AES Advanced Encryption Standard

AHB
AMBA (advanced microcontroller bus architecture)
high-performance bus, an Arm data transfer bus

API application programming interface

APOR analog power-on reset

BC broadcast clock

BCD binary coded decimal

BESL best effort service latency

BOD brownout detect

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CI carry in

CIC cascaded integrator comb

CMAC cipher-based message authentication code

CMP compare

CO carry out

COM LCD common signal

CPHA clock phase

CPOL clock polarity

CPU central processing unit

CPUSS CPU subsystem

CRC cyclic redundancy check

CSD CapSense sigma delta

CSX CapSense cross-point

CT cipher text

CTB continuous time block

CTBm continuous time block mini

CTI cross triggering interface

CTM cross triggering matrix

ESR equivalent series resistance

DAC digital-to-analog converter

DAP debug access port

DC direct current

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 27

Document Organization and Conventions

DES Data Encryption Standard

DFF D flip-flop

DI digital or data input

DL drive level

DMA direct memory access

DMIPS Dhrystone million instructions per second

DNL differential nonlinearity

DO digital or data output

DSI digital system interconnect

DSP digital signal processing

DSM Deep Sleep mode

DU data unit

DW data wire

ECO external crystal oscillator

EEPROM
electrically erasable programmable read only
memory

EMIF external memory interface

ETM embedded trace macrocell

FB feedback

FIFO first in first out

FPU floating point unit

FSR full scale range

GAP generic access profile

GATT generic attribute profile

GFSK Gaussian frequency-shift keying

GPIO general-purpose I/O

HCI host-controller interface

HFCLK high-frequency clock

HMAC hashed message authentication code

HPF high-pass filter

HSIOM high-speed I/O matrix

I2C inter-integrated circuit

I2S inter-IC sound

IDE integrated development environment

ILO internal low-speed oscillator

ITO indium tin oxide

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

IOW I/O write

IPC inter-processor communication

IPTAT proportional to absolute temperature

Table 3-2. Acronyms and Initializations (continued)

Acronym Definition

IRES initial power on reset

IRA interrupt request acknowledge

IRK identity resolution key

IRQ interrupt request

ISA instruction set architecture

ISR interrupt service routine

ITM instrumentation trace macrocell

IVR interrupt vector read

IZTAT zero dependency to absolute temperature

JWT JSON web token

L2CAP logical link control and adaptation protocol

LCD liquid crystal display

LFCLK low-frequency clock

LFSR linear feedback shift register

LIN local interconnect network

LJ left justified

LL link layer

LNA low-noise amplifier

LP system low-power mode

LPCOMP Low-Power comparator

LPM link power management

LR link register

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MAC message authentication code

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

MPU memory protection unit

MSb most significant bit

MSB most significant byte

MSP main stack pointer

MTB micro trace buffer

NI next instant

NMI non-maskable interrupt

NVIC nested vectored interrupt controller

OE output enable

OSR over-sampling ratio

OVP over-voltage protection

PA power amplifier

Table 3-2. Acronyms and Initializations (continued)

Acronym Definition

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 28

Document Organization and Conventions

PC program counter

PCB printed circuit board

PCH program counter high

PCL program counter low

PD power down

PDU protocol data unit

PGA programmable gain amplifier

PHY physical layer

PLD programmable logic device

PM power management

PMA PSoC memory arbiter

POR power-on reset

PPOR precision power-on reset

PPU peripheral protection units

PRNG pseudo random number generator

PRS pseudo random sequence

PSA Platform Security Architecture

PSoC Programmable System-on-Chip

PSP process stack pointer

PSR program status register

PSRR power supply rejection ratio

PSSDC power system sleep duty cycle

PWM pulse width modulator

RAM random-access memory

RETI return from interrupt

RF radio frequency

RNG random number generator

ROM read only memory

ROT root of trust

RPA resolvable private address

RMS root mean square

RW read/write

SAR successive approximation register

SARSEQ SAR sequencer

SEG LCD segment signal

SE0 single-ended zero

SC switched capacitor

SCB serial communication block

SHA-256 Secure Hash Algorithm

SIE serial interface engine

SIMO single input multiple output

SIO special I/O

SNR signal-to-noise ratio

Table 3-2. Acronyms and Initializations (continued)

Acronym Definition

SMPU shared memory protection units

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SRSS system resources subsystem

SSADC single slope ADC

SSC supervisory system call

SVCall supervisor call

SYSCLK system clock

SWD single wire debug

SWV serial wire viewer

TAR turn-around time

TC terminal count

TCPWM timer, counter, PWM

TD transaction descriptors

TDM time division multiplexed

TFF toggle flip-flop

TIA trans-impedance amplifier

TPIU trace port interface unit

TRM technical reference manual

TRNG True random number generator

UART universal asynchronous receiver/transmitter

ULB system ultra low-power mode

UDB universal digital block

USB universal serial bus

USBIO USB I/O

VTOR vector table offset register

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

WIC wakeup interrupt controller

XRES external reset

XRES_N external reset, active low

Table 3-2. Acronyms and Initializations (continued)

Acronym Definition

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 29

Section B: CPU Subsystem

This section encompasses the following chapters:

■ CPU Subsystem (CPUSS) chapter on page 31

■ SRAM Controller chapter on page 38

■ Inter-Processor Communication chapter on page 40

■ Fault Monitoring chapter on page 48

■ Interrupts chapter on page 55

■ Protection Units chapter on page 70

■ DMA Controller chapter on page 85

■ Cryptographic Function Block (Crypto) chapter on page 95

■ Program and Debug Interface chapter on page 136

■ Nonvolatile Memory chapter on page 146

■ Boot Code chapter on page 173

■ eFuse Memory chapter on page 189

■ Device Security chapter on page 191

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 30

CPU Subsystem

Top Level Architecture

Figure 3-1. CPU System Block Diagram

System
Hibernate Mode

Backup
Domain

System
DeepSleep Mode

System LP/ULP Mode
CPUs Active/Sleep

Color Key:
Power Modes and

Domains

CPU Subsystem

S
ys

te
m

 In
te

rc
on

n
ec

t (
M

u
lti

 L
ay

er
 A

H
B

,
IP

C
, M

P
U

/S
M

P
U

)

Cortex M4F CPU
150/50 MHz, 1.1/0.9 V
SWJ, ETM, ITM, CTI

Cortex M0+ CPU
100/25 MHz, 1.1/0.9 V

SWJ, MTB, CTI

2x DMA
Controller

Crypto
DES/TDES, AES, SHA,
CRC, TRNG, RSA/ECC

Accelerator

Flash
1024 KB + 32 KB + 32 KB
8 KB cache for each CPU

SRAM
288 KB

ROM
128 KB

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 31

4. CPU Subsystem (CPUSS)

The CPU subsystem is based on dual 32-bit Arm Cortex CPUs, as Figure 4-1 shows. The Cortex-M4 is the main CPU. It is
designed for short interrupt response time, high code density, and high 32-bit throughput while maintaining a strict cost and
power consumption budget. A secondary Cortex-M0+ CPU implements security, safety, and protection features.

This section provides only an overview of the Arm Cortex CPUs in PSoC 6 MCUs. For details, see the Arm documentation
sets for Cortex-M4 and Cortex-M0+.

Some PSoC 6 MCU parts have only one CPU. See the device datasheet for details.

4.1 Features

The PSoC 6 MCU Arm Cortex CPUs have the following features:

■ Cortex-M4 has a floating-point unit (FPU) that supports single-cycle digital signal processing (DSP) instructions, and a
memory protection unit (MPU). Cortex-M0+ has an MPU.

■ Both CPUs have 8-KB instruction caches with four-way set associativity.

■ Maximum clock frequency of 150 MHz for the Cortex-M4 and 100 MHz for the Cortex-M0+1.

■ The Cortex-M4 implements a version of the Thumb instruction set based on Thumb-2 technology (defined in the Armv7-M
Architecture Reference Manual). The Cortex-M0+ supports the Armv6-M Thumb instruction set (defined in the Armv6-M
Architecture Reference Manual). See “Instruction Set” on page 37.

■ Both CPUs have nested vectored interrupt controllers (NVIC) for rapid and deterministic interrupt response. For details,
see the Interrupts chapter on page 55

■ Both CPUs have extensive debug support. For details, see the Program and Debug Interface chapter on page 136.

❐ SWJ: combined serial wire debug (SWD) and Joint Test Action Group (JTAG) ports

❐ Serial wire viewer (SWV): provides real-time trace information through the serial wire output (SWO) interface

❐ Breakpoints

❐ Watchpoints

❐ Trace: Cortex-M4: embedded trace macrocell (ETM). Cortex-M0+: 4-KB micro trace buffer (MTB)

■ Inter-processor communication (IPC) hardware – see the Inter-Processor Communication chapter on page 40.

1. For CM4 speeds above 100 MHz, CM0+ and bus peripherals are limited to half the speed of CM4. Therefore, for CM4 running at 150 MHz, CM0+ and
peripherals are limited to 75 MHz in system low-power (LP) mode. In system ultra-low-power (ULP) mode, CPU speeds are limited to 50 MHz and 25 MHz
respectively. See Device Power Modes chapter on page 204.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m4/index.html#cortexm4
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/BABGHFIB.html
http://infocenter.arm.com/help/topic/com.arm.doc.100166_0001_00_en/ric1417175910246.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/BEHGGEIC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/CIHIGCIF.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m0plus/index.html
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 32

CPU Subsystem (CPUSS)

4.2 Architecture

Figure 4-1. CPU Subsystem Block Diagram

Each CPU is a 32-bit processor with its own 32-bit datapath and a 32-bit memory interface. Each CPU has its own set of 32-
bit registers. They support a wide variety of instructions in the Thumb instruction set. They support two operating modes (see
“Operating Modes and Privilege Levels” on page 36).

The Cortex-M4 instruction set includes:

■ Signed and unsigned, 32×32  32-bit and 32×32  64-bit, multiply and multiply-accumulate, all single-cycle

■ Signed and unsigned 32-bit divides that take two to 12 cycles

■ DSP instructions, including single instruction multiple data (SIMD) instructions

■ Complex memory-load and store access

■ Complex bit manipulation; see the bitfield instructions in Table 4-6

The Cortex-M4 FPU has its own set of registers and instructions. It is compliant with the ANSI/IEEE Std 754-2008, IEEE
Standard for Binary Floating-Point Arithmetic.

The Cortex-M0+ has a single cycle 32x32  32-bit signed multiplication instruction.

System
Hibernate Mode

Backup
Domain

System
DeepSleep Mode

System LP/ULP Mode
CPUs Active/Sleep

Color Key:
Power Modes and

Domains

CPU Subsystem

S
ys

te
m

 In
te

rc
on

n
ec

t (
M

u
lti

 L
ay

er
 A

H
B

,
IP

C
, M

P
U

/S
M

P
U

)

Cortex M4F CPU
150/50 MHz, 1.1/0.9 V
SWJ, ETM, ITM, CTI

Cortex M0+ CPU
100/25 MHz, 1.1/0.9 V

SWJ, MTB, CTI

2x DMA
Controller

Crypto
DES/TDES, AES, SHA,
CRC, TRNG, RSA/ECC

Accelerator

Flash
1024 KB + 32 KB + 32 KB
8 KB cache for each CPU

SRAM
288 KB

ROM
128 KB

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 33

CPU Subsystem (CPUSS)

4.2.1 Address and Memory Maps

Both CPUs have a fixed address map, with shared access to memory and peripherals. The 32-bit (4 GB) address space is
divided into the regions shown in Table 4-1. Note that code can be executed from the code and SRAM regions.

The device memory map shown in Table 4-2 applies to both CPUs. That is, the CPUs share access to all PSoC 6 MCU
memory and peripheral registers.

SRAM is located in the code region for both CPUs (see Table 4-1). This facilitates executing code out of SRAM. There is no
physical memory located in the CPUs’ SRAM region.

Note: The CPUSS_CM0_VECTOR_TABLE_BASE and CPUSS_CM4_VECTOR_TABLE_BASE registers determine the
location of the vector table for each CPU. A number of LS bits in each register are set to 0. As a result, there are restrictions
on the location of vector tables – they must be on a 256-byte boundary for CM0+ and a 1024-byte boundary for CM4.

4.2.1.1 Wait State Lookup Tables

The wait state lookup tables show the wait states for Flash, SRAM, and ROM based on the Clk_HF0 frequency and the
current power mode. SRAM and ROM have two domains for the wait states – fast clock domain (Clk_Fast) and slow clock
domain (Clk_Slow); both domains are based off Clk_HF0. The following tables show the wait states for the slow clock
domain. All wait states for the fast clock domain are zero. For more information on clocking see the Clocking System chapter
on page 221.

Table 4-1. Address Map for Cortex-M4 and Cortex-M0+

Address Range Region Name Use

0x0000 0000 – 0x1FFF FFFF Code
Program code region. You can also put data here. It includes the exception vector
table, which starts at address 0.

0x2000 0000 – 0x3FFF FFFF SRAM Data region. This region is not supported in PSoC 6.

0x4000 0000 – 0x5FFF FFFF Peripheral
All peripheral registers. Code cannot be executed from this region. Note that the
Cortex-M4 bit-band in this region is not supported in PSoC 6.

0x6000 0000 – 0x9FFF FFFF External RAM Not used

0xA000 0000 – 0xDFFF FFFF External Device Not used

0xE000 0000 – 0xE00F FFFF
Private Peripheral

Bus (PPB)
Provides access to peripheral registers within the CPU core.

0xE010 0000 – 0xFFFF FFFF Device Device-specific system registers.

Table 4-2. PSoC 6 Memory Map

Address Range Name Comments

0x0000 0000 – 0x0002 0000 SROM 128 Kbytes

0x0800 0000 – 0x0804 8400 SRAM Up to 288 Kbytes

0x1000 0000 – 0x1010 0000 User Application Flash Up to 1 Mbyte

0x1600 0000 – 0x1600 8000 Supervisory Flash (SFlash) 32K for secure access

0x1800 0000 – 0x0800 0000 External memory 128 Mbyte execute-in-place (XIP) region

Ultra-Low Power
Mode

Clk_HF0 (MHz)

Clk_HF0 25 25 < Clk_HF0  100 100 < Clk_HF0

ROM/SRAM
True 0 1 1

False 0 0 1

Ultra-Low Power
Mode

Clk_HF0 (MHz)

Flash

True
Clk_HF0  16 16 < Clk_HF0  33 33 < Clk_HF0

0 1 2

False
Clk_HF0  29 29 < Clk_HF0  58 58 < Clk_HF0  87 87 < Clk_HF0  120 120 < Clk_HF0  150

0 1 2 3 4

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 34

CPU Subsystem (CPUSS)

4.3 Registers

Both CPUs have sixteen 32-bit registers, as Table 4-3 shows. See the Arm documentation for details.

■ R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be accessed
by a subset of the instructions.

■ R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL
register indicates the stack pointer to use – Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

■ R14 – Link register. Stores the return program counter during function calls.

■ R15 – Program counter. This register can be written to control program flow.

Table 4-3. Cortex-M4 and Cortex-M0+ Registers

Name Typea

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Reset Value Description

R0 – R12 RW Undefined R0–R12 are 32-bit general-purpose registers for data operations.

MSP (R13)

PSP (R13)

RW [0x0000 0000]

The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
indicates the stack pointer to use:

0 = Main stack pointer (MSP). This is the reset value.

1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from the vector address.

LR (R14) RW See noteb

b. LR reset value is 0xFFFF FFFF in Cortex-M4, undefined in Cortex-M0+.

The link register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions.

PC (R15) RW [0x0000 0004]
The program counter (PC) is register R15. It contains the current program address. On reset,
the processor loads the PC with the value from the vector address plus 0x0000 0004. Bit[0]
of the value is loaded into the EPSR T-bit (see Table 4-4) at reset; it must always be 1.

PSR RW Undefined

The program status register (PSR) combines:
Application Program Status Register (APSR).
Execution Program Status Register (EPSR).
Interrupt Program Status Register (IPSR).

APSR RW Undefined
The APSR contains the current state of the condition flags from previous instruction
executions.

EPSR RO 0x0100 0000

On reset, the EPSR Thumb state bit is loaded with the value bit[0] of the register
[0x0000 0004]. It must always be 1.

In Cortex-M4, other bits in this register control the state of interrupt-continuable instructions
and the if-then (IT) instruction.

IPSR RO 0 The IPSR contains the current exception number.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0

The CONTROL register controls:

- The privilege level in Thread mode; see 4.4 Operating Modes and Privilege Levels.

- The currently active stack pointer, MSP or PSP.

- Cortex-M4 only: whether to preserve the floating-point state when processing an exception.

FAULTMASK RW 0 Cortex-M4 only. Bit 0 = 1 prevents the activation of all exceptions except NMI.

BASEPRI RW 0
Cortex-M4 only. When set to a nonzero value, prevents processing any exception with a
priority greater than or equal to the value.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 35

CPU Subsystem (CPUSS)

The Cortex-M4 floating-point unit (FPU) also has the following registers:

■ Thirty-two 32-bit single-precision registers, S0 to S31. These registers can also be addressed as sixteen 64-bit double-
precision registers, D0 to D15.

■ Five FPU control and status registers:

❐ CPACR – Coprocessor Access Control Register

❐ FPCCR – Floating-point Context Control Register

❐ FPCAR – Floating-point Context Address Register

❐ FPSCR – Floating-point Status Control Register

❐ FPDSCR – Floating-point Default Status Control Register

For more information on how these registers are used, see the Arm Cortex-M4 documentation.

Use the MSR and MRS instructions to access the PSR, PRIMASK, CONTROL, FAULTMASK, and BASEPRI registers.
Table 4-4 and Table 4-5 show how the PSR bits are assigned.

Table 4-4. Cortex-M4 PSR Bit Assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

27 APSR Q DSP overflow and saturation flag

26 – 25 EPSR IC/IT Control interrupt-continuable and IT instructions

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0
results in a HardFault exception.

23 – 20 – – Reserved

19 – 16 APSR GE Greater than or equal flags, for the SEL instruction

15 – 10 EPSR IC/TI Control interrupt-continuable and IT instructions

9 – – Reserved

8 – 0 IPSR ISR_NUMBER

Exception number of current ISR:

0 = thread mode

1 = reserved

2 = NMI

3 = HardFault

4 = MemManage

5 = BusFault

6 = UsageFault

7 – 10 = reserved

11 = SVCall

12 = reserved for debug

13 = reserved

14 = PendSV

15 = SysTick (see “System Tick (SysTick) Exception” on page 61)

16 = IRQ0

…

255 = IRQ240

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 36

CPU Subsystem (CPUSS)

4.4 Operating Modes and Privilege Levels

Both CPUs support two operating modes and two privilege levels:

■ Operating Modes:

❐ Thread Mode – used to execute application software. The processor enters Thread mode when it comes out of reset.

❐ Handler Mode – used to handle exceptions. The processor returns to Thread mode when it has finished all exception
processing.

■ Privilege Levels:

❐ Unprivileged – the software has limited access to the MSR and MRS instructions, and cannot use the CPSID and
CPSIE instructions. It cannot access the system timer, NVIC, or system control block. It may have restricted access to
memory or peripherals.

❐ Privileged – the software can use all the instructions and has access to all resources.

In Thread mode, the CONTROL register controls whether software execution is privileged or unprivileged. In Handler mode,
software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level. Unprivileged software can use the
SVC instruction to transfer control to privileged software.

In Handler mode, the MSP is always used. The exception entry and return mechanisms automatically update the CONTROL
register, which may change whether MSP/PSP is used.

In Thread mode, use the MSR instruction to set the stack pointer bit in the CONTROL register. When changing the stack
pointer, use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the ISB execute
using the new stack pointer.

Table 4-5. Cortex-M0+ PSR Bit Assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

27 – 25 – – Reserved

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0 results in
a HardFault exception.

23 – 6 – – Reserved

5 – 0 IPSR
Exception
Number

Exception number of current ISR:

0 = thread mode

1 = reserved

2 = NMI

3 = HardFault

4 – 10 = reserved

11 = SVCall

12, 13 = reserved

14 = PendSV

15 = SysTick

16 = IRQ0

…

47 = IRQ31

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 37

CPU Subsystem (CPUSS)

4.5 Instruction Set

Both CPUs implement subsets of the Thumb instruction set, as Table 4-6 shows. The table does not show the large number
of variants and conditions of the instructions. For details, see one of the Arm Cortex Generic User Guides or Technical
Reference Manuals.

An instruction operand can be a register, a constant, or another instruction-specific parameter. Instructions act on the
operands and often store the result in a destination register. Many instructions have restrictions on using the PC or SP for the
operands or destination register. See the Arm documentation for details.

Table 4-6. Instruction Set Summary – Cortex-M4 and Cortex-M0+

Functional Group Cortex-M4 Cortex-M0+ Brief List of Instruction Mnemonics

Memory access ✔ ✔ LDR, STR, ADR, PUSH, POP

General data processing ✔ ✔

Cortex-M0+: ADD, ADC, AND, ASR, BICS, CMN, CMP, EOR, LSL, LSR, MOV,
MVNS, ORR, REV, ROR, RSB, SBC, SUB, SXT, UXT, TST

Cortex-M4 has all of the above plus: CLZ, ORN, RRX, SADD, SAS, SSA, SSUB,
TEQ, UADD, UAS, USA, USUB

Multiply and divide ✔ MUL only
MLA, MLS, MUL, SDIV, SMLA, SMLS, SMMLA, SMMLS, SMUA, SMUL, SMUS,
UDIV, UMAAL, UMLAL, UMULL

Saturating ✔ –
SSAT, USAT, QADD, QSUB, QASX, QSAX, QDADD, QDSUB, UQADD, UQASX,
UQSAX, UQSUB

Packing and unpacking ✔ – PKH, SXT, SXTA, UXT, UXTA

Bitfield ✔ – BFC, BFI, SBFX, UBFX

Branch and control ✔ ✔
Cortex-M0+: B{cc}, BL, BLX, BX

Cortex-M4 has all of the above plus: CBNZ, CBZ, IT, TB

Miscellaneous ✔ ✔
CPSID, CPSIE, DMB, DSB, ISB, MRS, MSR, NOP, SEV, SVC, WFE, WFI

Cortex-M4 has all of the above plus BKPT

Floating-point ✔ –
VABS, VADD, VCMP, VCVT, VDIV, VFMA, VFNMA, VFMS, VFNMS, VLD, VLMA,
VLMS, VMOV, VMRS, VMSR, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VPOP,
VPUSH, VSQRT, VST, VSUB

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 38

5. SRAM Controller

This chapter explains the PSoC 6 MCU SRAM Controller, its features, architecture, and wait states. The SRAM controller
enables the CPU to read and write parts of the PSoC 6 SRAM.

5.1 Features

The CPUSS has up to three identical SRAM controllers; see the device datasheet for details.

The SRAM controller has the following features:

■ Consists of two AHB-Lite interfaces:

❐ An AHB-Lite bus interface on clk_fast that connects to the fast bus infrastructure

❐ An AHB-Lite bus interface on clk_slow that connects to the slow bus infrastructure

■ Supports programmable number of clk_hf wait states

■ Supports 8-, 16-, and 32-bit accesses

5.2 Architecture

The design has two AHB-Lite interfaces that connect to the AHB-Lite infrastructure. Each AHB-Lite interface is connected to
a synchronization component that translates between the interface clock (either clk_fast or clk_slow) and the high-frequency
clock (clk_hf).

Arbitration is performed on the AHB-Lite transfers from the two ports (AHB-Lite interface). Arbitration uses device-wide bus
master specific arbitration priorities. Therefore, although two AHB-Lite interfaces are provided, only one AHB-Lite transfer is
accepted by the port arbitration component.

The AHB-Lite transfers are the origin for all SRAM accesses; that is, the write buffer and SRAM repair requests result from
AHB-Lite transfers. The SRAM controller differentiates between the following three types of AHB-Lite transfers:

■ AHB-Lite read transfers

■ 32-bit AHB-Lite write transfers

■ 8-bit and 16-bit AHB-Lite write transfers (also referred to as partial AHB-Lite write transfers)

Each type is described in more detail here.

AHB-Lite read transfers. An AHB-Lite read transfer is translated into an SRAM read access. If the read address matches
in the write buffer, the SRAM has stale data and the write data provides the requested read data (this functionality is provided
by the read merge component).

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 39

SRAM Controller

32-bit AHB-Lite write transfers. A 32-bit AHB-Lite write
transfer is translated into an SRAM write access. If the write
address matches in the write buffer, the matching write
buffer entries have stale data and these entries are
invalidated.

Partial AHB-Lite write transfers. A partial AHB-Lite write
transfer is translated into an SRAM read access and an
SRAM write access. The SRAM read access is the direct
result of the partial write transfer and the SRAM write
access is the result of a write buffer request. A partial write
transfer requires an SRAM read access to retrieve the
“missing” data bytes from the SRAM. If the read address
matches in the write buffer, the SRAM has stale data and
the write data provides the requested read data (this
functionality is provided by the read merge component). The
requested read data is merged with the partial write data to
provide a complete 32-bit data word (this functionality is
provided by the write merge component). The address and
the merged write data are written to the write buffer. A future
write buffer request results in an SRAM write access with
the merged write data.

Only the partial AHB-Lite write transfers use the write buffer.

Write buffer. The write buffer is a temporary holding
station for future SRAM write accesses.

The buffer allows SRAM write accesses to be postponed.
This allows for more performance critical AHB-Lite requests
to “overtake” write buffer requests. Memory consistency is
guaranteed by matching the SRAM access address with the
write buffer entries' addresses: a “matching” SRAM read
access uses the read merge component and a matching
SRAM write access invalidates the matching write buffer
entries.

When the write buffer is full, an entry needs to be freed to
accommodate future partial AHB-Lite write transfers.
Therefore, a full write buffer raises the priority of the write
buffer request path.

The write buffer is constructed as a FIFO with four entries
(the order in which entries are written is the same as the
order in which entries are read). Each entry consists of:

■ A valid field

■ An invalidated field

■ A word address

■ A 32-bit data word

Note that the merged write data written to the write buffer
is always a 32-bit data word. Therefore, no byte mask is
required.

When the write buffer is written (an entry is added): the entry
valid field is set to ‘1’ and the invalidated field is set to ‘0’.

When the write buffer is read (an entry is removed): the
entry valid field is set to ‘0’. If the entry invalidate field is ‘1’,
the write buffer request path is selected for an SRAM write

access. If the entry valid field is ‘0’, no SRAM access is
performed.

On an SRAM read access, a matching entry provides write
buffer merge data for the read merge component.

On an SRAM write access resulting from a 32-bit AHB-Lite
write transfer, a matching entry invalidated field is set to ‘1’.

The state of the write buffer is reflected by
RAMi_STATUS.WB_EMPTY. The write buffer is not retained
in Deep Sleep power mode. Therefore, when transitioning to
system Deep Sleep power mode, the write buffer should be
empty. Note that this requirement is typically met, because a
transition to Deep Sleep power mode also requires that
there are no outstanding AHB-Lite transfers. If there are no
outstanding AHB-Lite transfers, the write buffer gets SRAM
access.

5.3 Wait States

The programmable wait states represent the number of
clk_hf cycles for a read path through the SRAM memory to
flipflops in either the fast domain (CM4 CPU) or slow domain
(such as CM0+ CPU, DataWire, and DMA controller).

As the wait states are represented in clk_hf cycles, the wait
states do not have to be reprogrammed when the fast clock
domain frequency (clk_fast) or slow clock domain frequency
(clk_slow) is changed. However, it may be necessary to
reprogram the wait states when the high-frequency clock
domain (clk_hf) is changed. This means the required
number of wait states is a function of the clk_hf frequency.

The fast clock domain is timing closed at a higher frequency
than the slow clock domain. Therefore, the read path
through the SRAM memory to flipflops in the fast domain is
faster than the read path through the SRAM memory to
flipflops in the slow domain. In other words, the required
number of “fast” wait states (RAMi_CTL.FAST_WS) should
be less than or equal to the required number of “slow” wait
states (RAMi_CTL.SLOW_WS).

The SRAM controller also has internal SRAM read paths.
These paths are to flipflops in the SRAM controller in the
high-frequency clock domain (clk_hf). For these SRAM
accesses (for example, an SRAM read access to support a
partial AHB-Lite write transfer), the fast wait states are used.
This is because the maximum fast domain frequency
(clk_fast) equals the high-frequency domain frequency
(clk_hf).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 40

6. Inter-Processor Communication

Inter-processor communication (IPC) provides the functionality for multiple processors to communicate and synchronize their
activities. IPC hardware is implemented using two register structures.

■ IPC Channel: Communication and synchronization between processors is achieved using this structure.

■ IPC Interrupt: Each interrupt structure configures an interrupt line, which can be triggered by a ‘notify’ or ‘release’ event of
any IPC channel.

The Channel and Interrupt structures are independent and have no correlation to each other as shown in Figure 6-1. This
allows for building varying models of interface shown in Typical Usage Models on page 45.

Figure 6-1. IPC Register Architecture

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

IPC Channel 0 Structure

Acquire
Notify

Release
Data register(s)

Status

System bus

IPC Channel 1 Structure

IPC Channel N
Structure

Notify and
Release Events
to IPC interrupt

structures

IPC Interrupt 0
Structure

Notify events from
IPCChannel 0-N

IPC Interrupt 1
Structure

IPC Interrupt N
Structure

To
interrupt
controller

Release events for
IPC channels 0-N

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 41

Inter-Processor Communication

6.1 Features

The features of IPC are as follows:

■ Implements locks for mutual exclusion between processors

■ Allows sending messages between processors

■ Supports up to 16 channels for communication

■ Supports up to 16 interrupts, which can be triggered using notify or release events from the channels

6.2 Architecture

6.2.1 IPC Channel

An IPC channel is implemented as five hardware registers, as shown in Figure 6-2. The IPC channel registers are accessible
to all the processors in the system.

■ IPC_STRUCTx_ACQUIRE: This register determines the lock feature of the IPC. The IPC channel is acquired by reading
this register. If the SUCCESS field returns a ‘1’, the read acquired the lock.

If the SUCCESS field returns a ‘0’, the read did not acquire the lock.

Note that a single read access performs two functions:

❐ The attempt to acquire a lock.

❐ Return the result of the acquisition attempt (SUCCESS field).

The atomicity of these two functions is essential in a CPU with multiple tasks that can preempt each other.

The register also has bitfields that provide information about the processor that acquired it. When acquired, this register is
released by writing any value into the IPC_STRUCTx_RELEASE register. If the register was already in an acquired state
another attempt to read the register will not be able to acquire it.

■ IPC_STRUCTx_NOTIFY: This register is used to generate an IPC notify event. Each bit in this register corresponds to an
IPC interrupt structure. The notify event generated from an IPC channel can trigger any or multiple interrupt structures.

■ IPC_STRUCTx_RELEASE: Any write to this register will release the IPC channel. This register also has a bit that
corresponds to each IPC interrupt structure. The release event generated from an IPC channel can trigger any or multiple
interrupt structures. To only release the IPC channel and not generate an interrupt, you can write a zero into the IPC
release register.

■ IPC_STRUCTx_DATA: This is a 32-bit register meant to hold data. It can be considered as the shared data memory for
the channel. Typically, this register will hold messages that need to be communicated between processors. If the
messages are larger than the 32-bit size, place a pointer in the IPC_STRUCTx_DATA register.

■ IPC_STRUCTx_LOCK_STATUS: This register provides the instantaneous lock status for the IPC channel. The register
provides details if the channel is acquired. If acquired, it provides the processor’s ID, protection context, and other details.
The reading of lock status provides only an instantaneous status, which can be changed in the next cycle based on the
activity of other processors on the channel.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 42

Inter-Processor Communication

Figure 6-2. IPC Channel Structure

6.2.2 IPC Interrupt

Each IPC interrupt line in the system has a corresponding IPC interrupt structure. An IPC interrupt can be triggered by a notify
or a release event from any of the IPC channels in the system. You can choose to mask any of the sources of these events
using the IPC interrupt registers. Figure 6-3 shows the registers in an IPC Interrupt structure.

IPC_INTR_STRUCTx_INTR: This register provides the instantaneous status of the interrupt sources. Note that there are 16
notify and 16 release event bits in this register. These are the notify and release events corresponding to the 16 IPC
channels. When a notify event is triggered in the IPC channel 0, the corresponding Notify0 bit is activated in the interrupt
registers. A write of ‘1’ to a bit will clear the interrupt.

IPC_INTR_STRUCTx_INTR_MASK: The bit in this register masks the interrupt sources. Only the interrupt sources with their
masks enabled can trigger the interrupt.

IPC_INTR_STRUCTx_INTR_SET: A write of ‘1’ into this register will set the interrupt.

IPC_INTR_STRUCTx_INTR_MASKED: This register provides the instantaneous value of the interrupts after they are
masked. The value in this register is (IPC_INTR_STRUCTx_INTR AND IPC_INTR_STRUCTx_INTR_MASK).

Figure 6-3. IPC Interrupt Structure

6.2.3 IPC Channels and Interrupts

The IPC block has a set of IPC interrupts associated with it. Each IPC interrupt register structure corresponds to an IPC
interrupt line. This interrupt can trigger an interrupt on any of the processors in the system. The interrupt routing for
processors are dependent on the device architecture.

Each IPC channel has a release and notify register, which can drive events on any of the IPC interrupts. An illustration of this
relation between the IPC channels and the IPC interrupt structure is shown in Figure 6-4.

IPC_ACQUIRE

M
S

[3
:0

]

S
U

C
C

E
S

S

031

IPC_RELEASE 03
1

031 IPC_NOTIFY

03
1 IPC_DATA

IN
T

R
_

N
O

T
0

IN
T

R
_

N
O

T
1

IN
T

R
_

R
E

L
0

IN
T

R
_

R
E

L
1

D
A

T
A

[3
1

:0
]

IN
T

R
_

N
O

T
1

4

IN
T

R
_

N
O

T
1

5

IN
T

R
_

N
O

T
1

2

IN
T

R
_

N
O

T
1

3

IN
T

R
_

N
O

T
1

0

IN
T

R
_

N
O

T
1

1

IN
T

R
_

N
O

T
8

IN
T

R
_

N
O

T
9

IN
T

R
_

N
O

T
6

IN
T

R
_

N
O

T
7

IN
T

R
_

N
O

T
4

IN
T

R
_

N
O

T
5

IN
T

R
_

N
O

T
2

IN
T

R
_

N
O

T
3

IN
T

R
_

R
E

L
1

4

IN
T

R
_

R
E

L
1

5

IN
T

R
_

R
E

L
1

2

IN
T

R
_

R
E

L
1

3

IN
T

R
_

R
E

L
1

0

IN
T

R
_

R
E

L
1

1

IN
T

R
_

R
E

L
8

IN
T

R
_

R
E

L
9

IN
T

R
_

R
E

L
6

IN
T

R
_

R
E

L
7

IN
T

R
_

R
E

L
4

IN
T

R
_

R
E

L
5

IN
T

R
_

R
E

L
2

IN
T

R
_

R
E

L
3

A
C

Q
U

IR
E

D

P
C

[3
:0

]

PN
S

IPC_LOCK_STATUS

M
S

[3
:0

]

03
1

P
C

[3
:0

]

PN
S

A
C

Q
U

IR
E

D

03
1

R
E

L
E

A
S

E
0

R
E

L
E

A
S

E
1

R
E

L
E

A
S

E
1

4

R
E

L
E

A
S

E
1

5

R
E

L
E

A
S

E
1

2

R
E

L
E

A
S

E
1

3

R
E

L
E

A
S

E
1

0

R
E

L
E

A
S

E
1

1

R
E

L
E

A
S

E
8

R
E

L
E

A
S

E
9

R
E

L
E

A
S

E
6

R
E

L
E

A
S

E
7

R
E

L
E

A
S

E
4

R
E

L
E

A
S

E
5

R
E

L
E

A
S

E
2

R
E

L
E

A
S

E
3

N
O

T
IF

Y
0

N
O

T
IF

Y
1

N
O

T
IF

Y
1

4

N
O

T
IF

Y
1

5

N
O

T
IF

Y
1

2

N
O

T
IF

Y
1

3

N
O

T
IF

Y
1

0

N
O

T
IF

Y
1

1

N
O

T
IF

Y
8

N
O

T
IF

Y
9

N
O

T
IF

Y
6

N
O

T
IF

Y
7

N
O

T
IF

Y
4

N
O

T
IF

Y
5

N
O

T
IF

Y
2

N
O

T
IF

Y
3

03
1

R
E

L
E

A
S

E
0

R
E

L
E

A
S

E
1

R
E

LE
A

S
E

1
4

R
E

LE
A

S
E

1
5

R
E

LE
A

S
E

1
2

R
E

LE
A

S
E

1
3

R
E

L
E

A
S

E
1

0

R
E

L
E

A
S

E
1

1

R
E

L
E

A
S

E
8

R
E

L
E

A
S

E
9

R
E

L
E

A
S

E
6

R
E

L
E

A
S

E
7

R
E

L
E

A
S

E
4

R
E

L
E

A
S

E
5

R
E

L
E

A
S

E
2

R
E

L
E

A
S

E
3

IPC_INTR_STRUCTx_INTR_SET

N
O

T
IF

Y
0

N
O

T
IF

Y
1

N
O

T
IF

Y
1

4

N
O

T
IF

Y
1

5

N
O

T
IF

Y
1

2

N
O

T
IF

Y
1

3

N
O

T
IF

Y
1

0

N
O

T
IF

Y
1

1

N
O

T
IF

Y
8

N
O

T
IF

Y
9

N
O

T
IF

Y
6

N
O

T
IF

Y
7

N
O

T
IF

Y
4

N
O

T
IF

Y
5

N
O

T
IF

Y
2

N
O

T
IF

Y
3

03
1

R
E

L
E

A
S

E
0

R
E

L
E

A
S

E
1

R
E

L
E

A
S

E
1

4

R
E

L
E

A
S

E
1

5

R
E

L
E

A
S

E
1

2

R
E

L
E

A
S

E
1

3

R
E

L
E

A
S

E
1

0

R
E

L
E

A
S

E
1

1

R
E

L
E

A
S

E
8

R
E

L
E

A
S

E
9

R
E

L
E

A
S

E
6

R
E

L
E

A
S

E
7

R
E

L
E

A
S

E
4

R
E

L
E

A
S

E
5

R
E

L
E

A
S

E
2

R
E

L
E

A
S

E
3

N
O

T
IF

Y
0

N
O

T
IF

Y
1

N
O

T
IF

Y
1

4

N
O

T
IF

Y
1

5

N
O

T
IF

Y
1

2

N
O

T
IF

Y
1

3

N
O

T
IF

Y
1

0

N
O

T
IF

Y
1

1

N
O

T
IF

Y
8

N
O

T
IF

Y
9

N
O

T
IF

Y
6

N
O

T
IF

Y
7

N
O

T
IF

Y
4

N
O

T
IF

Y
5

N
O

T
IF

Y
2

N
O

T
IF

Y
3

03
1

R
E

L
E

A
S

E
0

R
E

L
E

A
S

E
1

R
E

L
E

A
S

E
1

4

R
E

L
E

A
S

E
1

5

R
E

L
E

A
S

E
1

2

R
E

L
E

A
S

E
1

3

R
E

L
E

A
S

E
1

0

R
E

L
E

A
S

E
1

1

R
E

L
E

A
S

E
8

R
E

L
E

A
S

E
9

R
E

L
E

A
S

E
6

R
E

L
E

A
S

E
7

R
E

L
E

A
S

E
4

R
E

L
E

A
S

E
5

R
E

L
E

A
S

E
2

R
E

L
E

A
S

E
3

IPC_INTR_STRUCTx_INTR_MASKED

N
O

T
IF

Y
0

N
O

T
IF

Y
1

N
O

T
IF

Y
1

4

N
O

T
IF

Y
1

5

N
O

T
IF

Y
1

2

N
O

T
IF

Y
1

3

N
O

T
IF

Y
1

0

N
O

T
IF

Y
1

1

N
O

T
IF

Y
8

N
O

T
IF

Y
9

N
O

T
IF

Y
6

N
O

T
IF

Y
7

N
O

T
IF

Y
4

N
O

T
IF

Y
5

N
O

T
IF

Y
2

N
O

T
IF

Y
3

IPC_INTR_STRUCTx_INTR IPC_INTR_STRUCTx_INTR_MASK

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 43

Inter-Processor Communication

Figure 6-4. IPC Channels and Interrupts

6.3 Implementing Locks

The IPC channels can be used to implement locks. Locks
are typically used in multi-core systems to implement some
form of mutually exclusive access to a shared resource.
When multiple processors share a resource, the processors
are capable of acquiring and releasing the IPC channel. So
the processor can assume an IPC channel as a lock. The
semantics of this code is that access to the shared resource
is gated by the processor’s ownership of the channel. So the
processors will need to acquire the IPC channel before they
access the shared resource.

A failure to acquire the IPC channel signifies a lock on the
shared resource because another processor has control of
it. Note that the IPC channel will not enforce which
processor acquires or releases the channel. All processors
can acquire or release the IPC channel and the semantics of
the code must make sure that the processor that acquires
the channel is the one that releases it.

6.4 Message Passing

IPC channels can be used to communicate messages
between processors. In this use case, the channel is used in
conjunction with the interrupt structures. The IPC channel is
used to lock the access to the data register. The IPC
channel is acquired by the sender and used to populate the
message. The receiver reads the message and then
releases the channel. Thus, between the sender putting
data into the channel and receiver reading it, the channel is
locked for all other task access. The sender uses a notify
event on the receiver’s IPC interrupt to denote a send
operation. The receiver acts on this interrupt and reads the
data from the data register. After the reception is complete,
the receiver releases the channel and can also generate a
release event to the senders IPC interrupt. Note that the
action of locking the channel does not, in hardware, restrict
access to the data register. This is a semantic that should be
enforced by software.

Figure 6-5 portrays an example of a sender (Processor A)
sending data to a receiver (Processor B). IPC interrupt A is

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR 0

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR 1

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR 2

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR 3

INTR 0

INTR 1

INTR 3

INTR 2

Release

INTR 0

INTR 1

INTR 3

INTR 2

Notify

IPC 0

INTR 0

INTR 1

INTR 3

INTR 2

Release

INTR 0

INTR 1

INTR 3

INTR 2

Notify

IPC 1

INTR 0

INTR 1

INTR 3

INTR 2

Release

INTR 0

INTR 1

INTR 3

INTR 2

Notify

IPC N

INTR N INTR N INTR N INTR N INTR N INTR N

Interrupt to
processors

Interrupt to
processors

Interrupt to
processors

Interrupt to
processors

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 44

Inter-Processor Communication

configured to interrupt Processor A. IPC interrupt B is
configured to interrupt Processor B.

1. The sender will attempt to acquire the IPC channel by
reading the IPC_STRUCTx_ACQUIRE register. If the
channel was acquired, the sender has ownership of the
channel for data transmission. This also changes the
status of the channel and its corresponding
IPC_STRUCTx_LOCK_STATUS register. If the channel
was not acquired, the processor should wait until the
channel is free for acquisition. This can be done by
polling the IPC channel’s
IPC_STRUCTx_LOCK_STATUS register.

2. After the IPC channel is acquired, the sender has control
of the channel for communication and places the 32-bit
message data in the IPC_STRUCTx_DATA register.

3. Now that the message is placed in the IPC channel, the
sender generates a notify event on the receiver’s
interrupt line. It does this by setting the corresponding bit
in the IPC channel’s IPC_STRUCTx_NOTIFY register.
This event creates a notify event at IPC interrupt B
(IPC_INTR_STRUCTx_INTR). If the IPC channel’s
notify event was enabled by setting the mask bit

(IPC_INTR_STRUCTx_INTR_MASK [31:23]) in the IPC
interrupt B, this will generate an interrupt in the receiver.

4. When it receives IPC interrupt B, the receiver can poll
the IPC_INTR_STRUCTx_INTR_MASKED register to
understand which IPC channel had triggered the notify
event. Based on this, the receiver identifies the channel
to read and reads from the IPC channel’s
IPC_STRUCTx_DATA register. The receiver has now
received the data sent by the sender. It needs to release
the channel so that other processors/processes can use
it.

5. The receiver releases the channel. It also optionally
generates a release event on the sender’s IPC interrupt
A. This will generate a release event interrupt on the
sender if the corresponding channel release event was
masked.

On receiving the release interrupt, the sender can act on the
event based on the application requirement. It can either try
to reacquire the channel for further transmission or go on to
other tasks because the transmission is complete.

Figure 6-5. Sending Messages using IPC

In the previous example, the size of the data being transmitted was just 32 bits. Larger messages can be sent as pointers.
The sender can allocate a larger message structure in memory and pass the pointer in the 32-bit data register. Figure 6-6
shows the usage. Note that the user code must implement the synchronization of the message read process.

■ The implementation can stall the channel until the receiver has used up all the data in the message packet and the
message packet can be rewritten. This is wasteful because it will stall other inter-process communications as the number
of IPC channels is limited.

■ The receiver can release the channel as soon as it receives the pointer to the message packet. It implements the
synchronization logic in the message packet as a flag, which the sender sets on write complete and receiver clears on a
read complete.

IPC Channel

Acquire

Notify

Release

Data

Status

Sender
(Processor A)

Receiver
(Processor B)

(1)

(2)

(3)

IPC
interrupt B

(3)(3)

IPC
interrupt A

(4)

(5)(5)

(1) (5)

Hardware action

User action

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 45

Inter-Processor Communication

Figure 6-6. Communicating Larger Messages

6.5 Typical Usage Models

The unique channel and interrupt architecture of the PSoC 6 IPC allows for a range of usage models for multicore
communication. Some of these are listed here as an example. Note that the communication models possible based on the
IPC architecture are not restricted to the ones listed in this document. Also note that, this document only provides a high-level
usage model and does not go into details of data management in the communication. This will need to be determined based
on the specific application use case.

6.5.1 Full Duplex Communication

In this usage model, an IPC channel is used according to the direction of communication between cores. For managing
events an IPC interrupt is used per core. In a dual core system this will translate to what is shown in Figure 6-7.

In this example, the IPC channel X is dedicated to data communication from Core 0 to Core 1 and IPC channel Y is for data
communication from Core 1 to core 0. The IPC interrupt X will signal events on Core 1. Hence its interrupt output is connected
to Core 1's system interrupts. The events are triggered by writing into the IPC interrupts register structure over the system
bus. Similarly, IPC interrupt Y is dedicated to Core 0.

Figure 6-7. Full Duplex IPC for Dual Core Communication

Message
Packet

 IPC

Data Register

Sender ReceiverPointer
Interrupt

ReadWrite

Release

Core 1Core 0

IPC Channel X

IPC Channel Y

IPC
Interrupt X

IPC
Interrupt Y

System Interrupt

System
Interrupt

Data transfer/register updates over system bus

Digital signals such as triggers or interrupts

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 46

Inter-Processor Communication

6.5.2 Half Duplex with Independent Event Handling

In this case only one IPC channel is used to set up the transfer between the two cores. This means that only one side controls
data transfer at a time. The channels Lock register must be used to avoid contention of the one shared IPC channel. Two
independent events are supported due to the two IPC interrupt structures being used. This model is shown in Figure 6-8.

Figure 6-8. Half Duplex with Independent Event Handling

6.5.3 Half Duplex with Shared Event Handling

In this model both the IPC channel and interrupt are shared between the two cores. Since the interrupt is also shared, the
access to the interrupt registers must be managed using the IPC lock of the channel. As shown in Figure 6-9, the IPC
interrupt will be set up to trigger interrupts in both cores. Hence the individual core interrupts should have logic in its ISR to
check which core is in control of the IPC and determine if the message and event was for that core.

Core 1Core 0

IPC
Interrupt X

IPC
Interrupt Y

System Interrupt

System
Interrupt

Data transfer/register updates over system bus

Digital signals such as triggers or interrupts

IPC Channel X

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 47

Inter-Processor Communication

Figure 6-9. Half Duplex with Shared Event Handling

Note: Some IPC channel and interrupt structures are reserved as part of the SROM code. Refer to the SROM architecture
and API in Flash Memory Programming on page 149 for a list IPC channels and interrupts being used by this API.

Core 1Core 0

IPC
Interrupt

X

System Interrupt

System Interrupt

Data transfer/register updates over system bus

Digital signals such as triggers or interrupts

IPC Channel X

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 48

7. Fault Monitoring

Fault monitoring allows you to monitor various faults generated within the device and take actions based on the fault reported.
The fault structures present in the PSoC 6 MCU monitor access violation faults at protection units (MPU, SMPU, or PPU) and
flash controller bus error/fault. In addition to reporting faults, the fault structures in PSoC 6 MCUs provide a mechanism to log
data from the fault sources and optionally perform soft reset.

The PSoC 6 MCU family supports two centralized fault report/monitoring structures that monitor faults generated within the
device. Each fault report structure can monitor and report faults from up to 96 sources.

7.1 Features

Each PSoC 6 MCU fault report structure supports:

■ Monitoring protection unit access violation faults and flash controller bus errors

■ Four 32-bit data registers to record fault information

■ Soft reset on fault detection while retaining the fault information

■ Interrupt on fault detection

■ Trigger output to DMA for fault data transfer

■ Fault detected output to a pin for external fault handling

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 49

Fault Monitoring

7.2 Architecture

Figure 7-1. Fault Report Structure

The PSoC 6 MCU family uses centralized fault report structures. This centralized nature allows for a system wide handling of
faults simplifying firmware development. Only a single fault interrupt handler is required to monitor multiple faults. The fault
report structure provides the fault source and additional fault specific information through a single set of registers; no iterative
search for the fault source and fault information is required.

The fault structure can be configured to capture one or more faults as listed in Table 7-2. When a fault structure is configured
to capture a specific fault, an occurrence of that fault will be recorded as a pending fault. If the fault structure has finished
processing all other faults or if there are no other pending faults, the fault data will be captured into the fault structure
registers. In addition, a successful capture can trigger an interrupt and be processed by either Cortex-M4 or Cortex-M0+
depending on the application requirement.

It should be noted that each fault structure is capable of capturing only one fault at a time and as long as that fault is not
serviced, subsequent faults will not be captured by the fault structure. In addition to capturing faults, the fault structure can
optionally perform a soft reset while retaining the fault information. This reset results in RESET_ACT_FAULT reset cause in
the SRSS_RES_CAUSE register.

7.2.1 Fault Report

The PSoC 6 MCU family supports two fault report structures. Each fault report structure has a dedicated set of control and
status registers. Each fault report structure captures a single fault. The captured fault information includes:

■ Fault validity bit that indicates a fault is captured (VALID bit [31] of the FAULT_STRUCTx_STATUS register). This bit is set
whenever a fault is captured. The bit should be cleared after processing the fault information. New faults are captured only
when this bit is ‘0’.

■ Fault index, as shown in Table 7-2, identifies the fault source (IDX bits [6:0] of FAULT_STRUCTx_STATUS)

■ Additional fault information describing fault specifics (FAULT_STRUCTx_DATA0 through FAULT_STRUCTx_DATA3
registers). This additional information is fault source specific. For example, an MPU protection violation provides

Fault report
Structure[1] FAULT_PENDING0

Fault report
Structure[0]

Fault report Structure [x]

INTR_FAULT

FAULT_STATUS

INTR_FAULT_SET

INTR_FAULT_MASKED

FAULT_CTL

INTR_FAULT_MASK

FAULT_DATA0

...

FAULT_DATA3

FAULT_PENDING1

FAULT_PENDING2

FAULT_MASK0

FAULT_MASK1

FAULT_MASK2

interrupt_fault[x]

tr_fault[x]

fault_out[x]

fault_reset_req[x]

Fault source 0

ذ up to 96 ... Pending faults

Retained during
soft reset

Fault source 95

Single structure,
used by all fault

report structures.

Fault Data

Fault Data

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 50

Fault Monitoring

information on the violating bus address, the bus master identifier, and bus access control information in only two
FAULT_DATA registers. The details of the fault information for various faults is explained in Table 7-1.

Table 7-1. Fault Information

Fault Source Fault Information

MPU/SMPU violation

DATA0[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.

DATA1[15:12]: Protection context identifier.

DATA1[31]: '0' MPU violation; '1': SMPU violation.

Master interface PPU violation

DATA0[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.

DATA1[15:12]: Protection context identifier.

DATA1[31]: '0': PPU violation, '1': peripheral bus error.

Peripheral group PPU violation

DATA0[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.

DATA1[15:12]: Protection context identifier.

DATA1[31:30]: ‘0’: PPU violation, ‘1’: timeout detected, ‘2’: peripheral bus error.

Flash controller bus error

FAULT_DATA0[31:0]: Violating address.

FAULT_DATA1[31]: '0': FLASH macro interface bus error; '1': memory hole.

FAULT_DATA1[15:12]: Protection context identifier.

FAULT_DATA1[11:8]: Master identifier.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 51

Fault Monitoring

7.2.2 Signaling Interface

In addition to captured fault information, each fault report
structure supports a signaling interface to notify the system
about the captured fault. The interface of fault report
structure ‘x’ supports the following:

■ A fault interrupt (interrupt_fault[x]). Use the
FAULT_STRUCTx_INTR,
FAULT_STRUCTx_INTR_SET,
FAULT_STRUCTx_INTR_MASK and
FAULT_STRUCTx_INTR_MASKED registers to monitor,
set, and mask the FAULT_STRUCTURE[x]’s interrupt.
Only a single interrupt cause is available, which
indicates that a fault is detected. The fault report
registers can be read in the interrupt handler to deduce
the fault. The FAULT bit [0] of the
FAULT_STRUCTx_INTR_MASK register provides a
mask/enable for the interrupt. The FAULT bit [0] of the
FAULT_STRUCTx_INTR register is set to ‘1’ when a
fault is captured. Setting this bit in firmware clears the
interrupt.

■ A DMA trigger (tr_fault[x]). The fault structure generates
a DMA trigger when VALID bit [31] of the
FAULT_STRUCTx_STATUS register is set. To enable
the trigger, set the TR_EN bit [0] of the
FAULT_STRUCTx_CTL register. The trigger can be
connected to a DMA controller, which can transfer
captured fault information from the fault report structure
to memory and can clear the VALID bit [31] of the

FAULT_STRUCTx_STATUS register. See the Trigger
Multiplexer Block chapter on page 273 for more details.

■ A chip output signal (fault_out[x]). The fault structure
generates an output signal, which is set when VALID bit
[31] of the FAULT_STRUCTx_STATUS register is set.
This signal can be routed out of the device through the
HSIOM (refer to the device datasheet). The output signal
is enabled by setting the OUT_EN bit [1] of the
FAULT_STRUCTx_CTL register. The output signal can
be used to communicate non-recoverable faults to off-
chip components (possibly resulting in a reset of the
chip).

■ A fault reset request signal (fault_reset_req[x]). The fault
structure generates a soft reset when VALID bit [31] of
the FAULT_STRUCTx_STATUS register is set. The
reset capability is enabled by setting RESET_REQ_EN
bit [2] of FAULT_STRUCTx_CTL. The reset request
performs a soft reset. This reset is captured as
RESET_ACT_FAULT in the SRSS_RES_CAUSE
register. The fault information in
FAULT_STRUCTx_STATUS and
FAULT_STRUCTx_DATA registers is retained through
this reset.

Because the device has a single fault_reset_req signal, the
individual fault_reset_req[x] signals from the fault structures
are combined into a single fault_reset_req signal as shown
in Figure 7-2.

Figure 7-2. Fault Reset Request

7.2.3 Monitoring

A central structure, which is shared by all fault report
structures, keeps track of all pending faults in the system.
The FAULT_STRUCTx_PENDINGx registers reflect what
fault sources are pending and provide a single pending bit
for up to 96 fault sources. The registers are mirrored in all
the fault report structures; that is, they read the same value
in all fault structures. The bit indexing in the registers follow
the fault index captured in Table 7-2. For instance, bit [0] of
FAULT_STRUCTx_PENDING0 captures a CM0+ MPU/
SMPU violation and bit [1] of
FAULT_STRUCTx_PENDING1 captures a peripheral
group#1 PPU violation.

The pending faults are faults that are not yet captured by a
fault structure. When a pending fault is captured by a fault
structure, the associated pending bit is cleared to ‘0’.

Each fault report structure is selective in the faults it
captures. The FAULT_STRUCTx_MASK0,

FAULT_STRUCTx_MASK1, FAULT_STRUCTx_MASK2
registers of a fault structure decide the pending faults that it
captures. These faults are referred to as “enabled” faults.
The FAULT_STRUCTx_MASK registers are unique to each
fault structure. This allows for the following:

■ One fault report structure is used to capture recoverable
faults and one fault report structure is used to capture
non-recoverable faults. The former can be used to
generate a fault interrupt and the latter can be used to
activate a chip output signal and/or activate a reset
request.

■ Two fault report structures are used to capture the same
faults. The first fault is captured by the structure with the
lower index (for example, fault structure 0) and the
second fault is captured by the structure with the higher
index (for example, fault structure 1). Note that both
structures cannot capture the same fault at the same
time. As soon as a fault is captured, the pending bit is
cleared and the other structure will not be aware of the

fault_reset_req[0]

fault_reset_req[1]
fault_reset_req
(to device soft reset line)

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 52

Fault Monitoring

fault. Fault structure 0 has precedence over fault
structure 1.

The fault structure captures “enabled” faults only when
VALID bit [31] of FAULT_STRUCTx_STATUS register is ‘0’.
When a fault is captured, hardware sets the VALID bit [31] of
the FAULT_STRUCTx_STATUS register. In addition,
hardware clears the associated pending bit to ‘0’. When a
fault structure is processed, firmware or a DMA transfer
should clear the VALID bit [31] of the
FAULT_STRUCTx_STATUS register. Note that fault
capturing does not consider FAULT bit [0] of
FAULT_STRUCTx_INTR register and firmware should clear
the bit after servicing the interrupt, if the interrupt is enabled.

7.2.4 Low-power Mode Operation

The fault report structure functionality is available in Active
and Sleep (and their LP counterparts) power modes only.
The interfaces between the fault sources and fault report
structures are reset in the Deep Sleep power mode.
Because the fault report structure is an active functionality,
pending faults (in the FAULT_STRUCTx_PENDING
registers) are not retained when transitioning to Deep Sleep
power mode. The fault structure’s registers can be
partitioned based on the reset domain and their retention
capability as follows:

■ Active reset domain: FAULT_STRUCTx_PENDING,
FAULT_STRUCTx_INTR,
FAULT_STRUCTx_INTR_SET, and
FAULT_STRUCTx_INTR_MASKED registers. These
registers are not retained in Deep Sleep power mode.

■ Deep Sleep reset domain: FAULT_STRUCTx_CTL,
FAULT_STRUCTx_MASK, and
FAULT_STRUCTx_INTR_MASK registers. These
registers are retained in Deep Sleep power mode but
any system reset will reset these registers to the default
state.

■ Hard reset domain: FAULT_STRUCTx_STATUS and
FAULT_STRUCTx_DATA registers. These registers are
retained through soft resets (detectable in
SRSS_RES_CAUSE registers). However, hard resets
such as XRES/POR/BOD will reset the registers.

7.2.5 Using a Fault Structure

Follow these steps to configure and use a fault structure:

1. Identify the faults from Table 7-2 to be monitored in the
system.

2. For firmware fault handling through interrupts

a. Set the FAULT bit [0] of the FAULT_STRUCTx_IN-
TR_MASK register.

b. Set the FAULT bit [0] of the FAULT_STRUCTx_INTR
register to clear any pending interrupt.

c. Enable the FAULTx interrupt to the CPU by configur-
ing the appropriate ISER register. Refer to the
Interrupts chapter on page 55.

3. For fault handling through DMA

a. Set the TR_EN bit [0] of the FAULT_STRUCTx_CTL
register.

b. Route the tr_fault[x] signal to the trigger input DMA
controller. Refer to the Trigger Multiplexer
Block chapter on page 273.

c. Configure and enable the DMA controller to transfer
FAULT_STRUCTx_STATUS and FAULT_STRUCTx-
_DATA registers to memory and write back ‘0’ to
FAULT_STRUCTx_STATUS register after the trans-
fer is complete. Refer to the DMA Controller chapter
on page 85.

4. For fault handling outside the device

a. Set the OUT_EN bit [1] of FAULT_STRUCTx_CTL
register.

b. Route the fault_out[x] signal to a pin through HSIOM.
Refer to the device datasheet.

c. Use the signal externally for processing the fault –
generate external reset, power cycle, or log fault
information.

5. Set the RESET_REQ_EN bit [2] of the FAULT_-
STRUCTx_CTL register, if a soft reset is required on any
fault detection in the structure.

6. Clear VALID bit [31] of the FAULT_STRUCTx_STATUS
register to clear any fault captured.

7. Set the fault index bits in the FAULT_STRUCTx_MASK
registers for faults that need to be captured by the fault
structure as explained in 7.2.3 Monitoring.

7.2.6 CPU Exceptions Versus Fault
Monitoring

Some faults captured in Table 7-2 also result in bus errors or
CPU exceptions (Cortex-M4 Bus/Usage/Memory/Hard
faults). The faults can be communicated in two ways:

■ As a bus error to the master of the faulting bus transfer.
This will result in Bus, Usage, Memory, or Hard fault
exceptions in the CPU.

■ As a fault in a fault report structure. This fault can be
communicated as a fault interrupt to any processor in the
system. This allows fault handling on a processor that is
not the master of the faulting bus transfer. It is useful for
faults that cause the master of the faulting transfer to
become unresponsive or unreliable.

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 53

Fault Monitoring

7.3 Fault Sources

The fault sources can vary between device families. Table 7-2 provides the list of fault sources available in PSoC 6 MCUs.

Table 7-2. Fault Sources

Fault Index Source Description

0 cpuss.mpu_vio[0] CM0+ MPU/SMPU violation

1 cpuss.mpu_vio[1] CRYPTO MPU/SMPU violation

2 cpuss.mpu_vio[2] DW0 MPU/SMPU violation

3 cpuss.mpu_vio[3] DW1 MPU/SMPU violation

4 to 13 Reserved

14 cpuss.mpu_vio[14] CM4 MPU/SMPU violation (I/D bus)

15 Reserved

16 cpuss.mpu_vio[16] CM4 MPU/SMPU violation (system bus)

17 to 27 Reserved

28 peri.ms_vio[0] CM0+ peripheral master interface PPU violation

29 peri.ms_vio[1] CM4 peripheral master interface PPU violation

30 peri.ms_vio[2] DW0 peripheral master interface PPU violation

31 peri.ms_vio[3] DW1 peripheral master interface PPU violation

32 peri.group_vio[0]
Peripheral group #0 (peripheral clock dividers, trigger mux and so on) PPU violation

Register address range: 0x40000000 to 0x400FFFFF

33 peri.group_vio[1]
Peripheral group #1 (Crypto block) PPU violation

Register address range: 0x40100000 to 0x401FFFFF

34 peri.group_vio[2]
Peripheral group #2 (CPUSS, SRSS, eFuse, and profiler) PPU violation

Register address range: 0x40200000 to 0x402FFFFF

35 peri.group_vio[3]
Peripheral group #3 (IOSS, UDB, LPCOMP, CSD, TCPWM, LCD) PPU violation

Register address range: 0x40300000 to 0x403FFFFF

36 peri.group_vio[4]
Peripheral group #4 (SMIF) PPU violation

Register address range: 0x40400000 to 0x404FFFFF

37 Reserved

38 peri.group_vio[6]
Peripheral group #6 (SCB) PPU violation

Register address range: 0x40600000 to 0x406FFFFF

39 Reserved

40 Reserved

41 peri.group_vio[9]
Peripheral group #9 (PASS) PPU violation

Register address range: 0x41000000 to 0x41FFFFFF

42 peri.group_vio[10]
Peripheral group #10 (audio subsystem) PPU violation

Register address range: 0x42A00000 to 0x42AFFFFF

43 to 49 Reserved

50 cpuss.flashc_main_bus_err Flash controller bus error

51 to 95 Reserved

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 54

Fault Monitoring

7.4 Register List

Name Description

FAULT_STRUCTx_CTL Fault control register for enabling DMA trigger, fault output, and fault reset signals

FAULT_STRUCTx_STATUS Fault status register that stores the validity and fault index of the currently captured fault

FAULT_STRUCTx_DATA0 Fault data register 0 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA1 Fault data register 1 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA2 Fault data register 2 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA3 Fault data register 3 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_PENDING0 Fault pending register 0 that stores pending (not captured) faults with fault index from 0 to 31

FAULT_STRUCTx_PENDING1 Fault pending register 1 that stores pending (not captured) faults with fault index from 32 to 63

FAULT_STRUCTx_PENDING2 Fault pending register 2 that stores pending (not captured) faults with fault index from 64 to 95

FAULT_STRUCTx_MASK0
Fault mask register 0 that enables the capture of pending faults with fault index from 0 to 31 by the
fault structure

FAULT_STRUCTx_MASK1
Fault mask register 1 that enables the capture of pending faults with fault index from 32 to 63 by the
fault structure

FAULT_STRUCTx_MASK2
Fault mask register 2 that enables the capture of pending faults with fault index from 64 to 95 by the
fault structure

FAULT_STRUCTx_INTR Fault interrupt register that stores the unmasked status of the fault structure's interrupt

FAULT_STRUCTx_INTR_SET Fault interrupt set register used to set the fault structure's interrupt through firmware

FAULT_STRUCTx_INTR_MASK Fault interrupt mask register that masks fault interrupt

FAULT_STRUCTx_INTR_MASKED Fault interrupt register that stores the masked status of the fault structure's interrupt

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 55

8. Interrupts

The PSoC 6 MCU family supports interrupts and CPU exceptions on both Cortex-M4 and Cortex-M0+ cores. Any condition
that halts normal execution of instructions is treated as an exception by the CPU. Thus an interrupt request is treated as an
exception. However, in the context of this chapter, interrupts refer to those events generated by peripherals external to the
CPU such as timers, serial communication block, and port pin signals; exceptions refer to those events that are generated by
the CPU such as memory access faults and internal system timer events. Both interrupts and exceptions result in the current
program flow being stopped and the exception handler or interrupt service routine (ISR) being executed by the CPU. Both
Cortex-M4 and Cortex-M0+ cores provide their own unified exception vector table for both interrupt handlers/ISR and
exception handlers.

8.1 Features

The PSoC 6 MCU supports the following interrupt features:

■ Supports 147 system interrupts

❐ Up to 147 Cortex-M4 interrupts

❐ Up to 32 Cortex-M0+ interrupts

❐ Up to 41 interrupt sources capable of waking the device from Deep Sleep power mode

■ Nested vectored interrupt controller (NVIC) integrated with each CPU core, yielding low interrupt latency

■ Wakeup interrupt controller (WIC) enabling interrupt detection (CPU wakeup) in Deep Sleep power mode

■ Vector table may be placed in either flash or SRAM

■ Configurable priority levels (eight levels for Cortex-M4 and four levels for Cortex-M0+) for each interrupt

■ Level-triggered and pulse-triggered interrupt signals

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

Interrupts

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 56

8.2 Architecture

Figure 8-1. PSoC 6 MCU Interrupts Block Diagram

Cortex M0+
Processor core

NVIC

M0+ processor

IRQ1

IRQ7

IRQ31

147
Interrupt sources

(Peripherals)

INT Source 1

INT Source 2

INT Source 0

147

147

147

M0+ Interrupt
multiplexers

240:1

IRQ0
147

Cortex M4
Processor core

NVIC

M4 processor

IRQ1

IRQ40

IRQ146

IRQ0

147

IRQn can be
connected to any one
of the 147 (max 240)

interrupt sources

IRQn is connected
to INT source n

Register control

M0+ interrupt settings
Enable / Disable Interrupt

Set Priority
Mask Interrupt
Set NMI source
Software trigger

M4 interrupt settings
Enable / Disable Interrupt

Set Priority
Mask Interrupt
Set NMI source
Software Trigger

Select Interrupt Source

INT Source 146

32x8

System Wakeup
M0+ Wakeup

M4 Wakeup

PSoC 6 Interrupt Architecture

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Wakeup Interrupt
Controller (WIC)

Wakeup Interrupt
Controller (WIC)

8 (IRQ0 – IRQ7)

41 (IRQ0 – IRQ40)

Available in Deep Sleep

Wakeup

Wakeup

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 57

Interrupts

Figure 8-1 shows the PSoC 6 MCU interrupt architecture.
The PSoC 6 MCU has 147 system interrupts that are
generated by various peripherals. These interrupt signals
are processed by the NVIC of the individual core. In the
Cortex-M4 core, the system interrupt source ‘n’ is directly
connected to IRQn. For Cortex-M0+, which has only 32
IRQs, the interrupt source connected to a particular IRQn is
configurable and any of the 147 system interrupts can be
connected to any of the IRQn. The NVIC takes care of
enabling/disabling individual interrupt IRQs, priority
resolution, and communication with the CPU core. The other
exceptions such as NMI and hard faults are not shown in
Figure 8-1 because they are part of CPU core generated
events, unlike interrupts, which are generated by peripherals
external to the CPU.

In addition to the NVIC, the PSoC 6 MCU supports wakeup
interrupt controllers (WIC) and multiple synchronization
blocks. The WIC provides detection of Deep Sleep
interrupts in the Deep Sleep CPU power mode. Each CPU
can individually be in Deep Sleep mode; the device is said
to be in Deep Sleep mode only when both the CPUs are in
Deep Sleep mode. Refer to the Device Power
Modes chapter on page 204 for details. The Cortex-M4 WIC
block supports up to 41 interrupts that can wake up the CPU
from Deep Sleep power mode. The Cortex-M0+ WIC block
supports up to eight interrupts. The device exits Deep Sleep
mode (System Wakeup signal in Figure 8-1) as soon as one
CPU wakes up. The synchronization blocks synchronize the
interrupts to the CPU clock frequency as the peripheral
interrupts can be asynchronous to the CPU clock frequency.

8.3 Interrupts and Exceptions -
Operation

8.3.1 Interrupt/Exception Handling

The following sequence of events occurs when an interrupt
or exception event is triggered:

1. Assuming that all the interrupt and exception signals are
initially low (idle or inactive state) and the processor is
executing the main code, a rising edge on any one of the
signals is registered by the NVIC, if the interrupt or
exception is enabled to be serviced by the CPU. The
signal is now in a pending state waiting to be serviced by
the CPU.

2. On detecting the signal from the NVIC, the CPU stores
its current context by pushing the contents of the CPU
registers onto the stack.

3. The CPU also receives the exception number of the
triggered interrupt from the NVIC. All interrupts and
exceptions have a unique exception number, as given in
Table 8-1. By using this exception number, the CPU
fetches the address of the specific exception handler
from the vector table.

4. The CPU then branches to this address and executes
the exception handler that follows.

5. Upon completion of the exception handler, the CPU
registers are restored to their original state using stack
pop operations; the CPU resumes the main code
execution.

Figure 8-2. Interrupt Handling When Triggered

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the
highest priority interrupt to the CPU. Thus, a higher priority
interrupt can block the execution of a lower priority ISR at
any time.

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception
number, which is used by the CPU to execute the
appropriate exception handler.

8.3.2 Level and Pulse Interrupts

Both CM0+ and CM4 NVICs support level and pulse signals
on the interrupt lines (IRQn). The classification of an
interrupt as level or pulse is based on the interrupt source.

Rising Edge on Interrupt Line is
registered by the NVIC

CPU detects the request signal
from NVIC and stores its

current context by pushing
contents onto the stack

CPU receives exception
number of triggered interrupt

and fetches the address of the
specific exception handle from

vector table.

CPU branches to the received
address and executes

exception handler

CPU registers are restored
using stack upon completion of

exception handler.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 58

Interrupts

Figure 8-3. Level Interrupts

Figure 8-4. Pulse Interrupts

Figure 8-3 and Figure 8-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal
is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts:

1. On a rising edge event of the interrupt signal, the NVIC
registers the interrupt request. The interrupt is now in the
pending state, which means the interrupt requests have
not yet been serviced by the CPU.

2. The NVIC then sends the exception number along with
the interrupt request signal to the CPU. When the CPU
starts executing the ISR, the pending state of the
interrupt is cleared.

3. For pulse interrupts, when the ISR is being executed by
the CPU, one or more rising edges of the interrupt signal
are logged as a single pending request. The pending
interrupt is serviced again after the current ISR
execution is complete (see Figure 8-4 for pulse
interrupts).

4. For level interrupts, if the interrupt signal is still high after
completing the ISR, it will be pending and the ISR is
executed again. Figure 8-3 illustrates this for level
triggered interrupts, where the ISR is executed as long
as the interrupt signal is high.

8.3.3 Exception Vector Table

The exception vector tables (Table 8-1 and Table 8-2) store the entry point addresses for all exception handlers in Cortex-
M0+ and Cortex-M4 cores. The CPU fetches the appropriate address based on the exception number.

IRQn

CPU
Execution

State main
ISR ISR

main
ISR

main

IRQn is still high

IRQn

CPU
Execution

State
main

ISR
main

ISR
main

ISR

Table 8-1. M0+ Exception Vector Table

Exception Number Exception Exception Priority Vector Address

– Initial Stack Pointer Value Not applicable (NA) Start_Address = 0x0000 or CM0P_SCS_VTORa

a. Start Address = 0x0000 on reset and is later modified by firmware by updating the CM0P_SCS_VTOR register.

1 Reset –3, the highest priority Start_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Start_Address + 0x08

3 HardFault –1 Start_Address + 0x0C

4-10 Reserved NA Start_Address + 0x10 to Start_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0 – 3) Start_Address + 0x2C

12-13 Reserved NA Start_Address + 0x30 to Start_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0 – 3) Start_Address + 0x38

15 System Timer (SysTick) Configurable (0 – 3) Start_Address + 0x3C

16 External Interrupt (IRQ0) Configurable (0 – 3) Start_Address + 0x40

… … Configurable (0 – 3) …

47 External Interrupt (IRQ31) Configurable (0 – 3) Start_Address + 0xBC

Table 8-2. Cortex-M4 Exception Vector Table

Exception Number Exception Exception Priority Vector Address

– Initial stack pointer value – Start_Address = 0x0000 or CM4_SCS_VTORa

1 Reset –3, highest priority Start _Address + 0x0004

2 Non Maskable Interrupt (NMI) –2 Start _Address + 0x0008

3 Hard fault –1 Start _Address + 0x000C

4 Memory management fault Configurable (0 – 7) Start _Address + 0x0010

5 Bus fault Configurable (0 – 7) Start _Address + 0x0014

6 Usage fault Configurable (0 – 7) Start _Address + 0x0018

7–10 Reserved – –

11 Supervisory call (SVCall) Configurable (0 – 7) Start _Address + 0x002C

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 59

Interrupts

In Table 8-1 and Table 8-2, the first word (4 bytes) is not
marked as exception number zero. This is because the first
word in the exception table is used to initialize the main
stack pointer (MSP) value on device reset; it is not
considered as an exception. In the PSoC 6 MCU, both the
vector tables can be configured to be located either in flash
memory or SRAM. The vector table offset register (VTOR)
present as part of Cortex-M0+ and Cortex-M4 system
control space registers configures the vector table offset
from the base address (0x0000). The CM0P_SCS_VTOR
register sets the vector offset address for the CM0+ core
and CM4_SCS_VTOR sets the offset for the M4 core. The
VTOR value determines whether the vector table is in flash
memory (0x10000000 to 0x10100000) or SRAM
(0x08000000 to 0x08048000). Note that the VTOR registers
can be updated only in privilege CPU mode. The advantage
of moving the vector table to SRAM is that the exception
handler addresses can be dynamically changed by
modifying the SRAM vector table contents. However, the
nonvolatile flash memory vector table must be modified by a
flash memory write.

The exception sources (exception numbers 1 to 15) are
explained in 8.4 Exception Sources. The exceptions marked
as Reserved in Table 8-1 are not used, although they have
addresses reserved for them in the vector table. The
interrupt sources (exception numbers 16 to 162) are
explained in 8.5 Interrupt Sources.

8.4 Exception Sources

This section explains the different exception sources listed
in Table 8-1 and Table 8-2 (exception numbers 1 to 15).

8.4.1 Reset Exception

Device reset is treated as an exception in PSoC 6 MCUs.
Reset exception is always enabled with a fixed priority of –3,
the highest priority exception in both the cores. When the
device boots up, only the Cortex-M0+ core is available. The
CM0+ core executes the ROM boot code and can enable
Cortex-M4 core from the application code. The reset
exception of the CM0+ core is tied to the device reset or
startup. When the Cortex-M0+ core releases the Cortex-M4
reset, the M4 reset exception is executed. A device reset

can occur due to multiple reasons, such as power-on-reset
(POR), external reset signal on XRES pin, or watchdog
reset. When the device is reset, the initial boot code for
configuring the device is executed by the Cortex-M0+ out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the Cortex-M0+ code
execution jumps to flash memory. Flash memory address
0x10000004 (Exception#1 in Table 8-1) stores the location
of the startup code in flash memory. The CPU starts
executing code out of this address. Note that the reset
exception address in the SRAM vector table will never be
used because the device comes out of reset with the flash
vector table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is de-asserted. Note that the
reset exception flow for Cortex-M4 is the same as Cortex-
M0+. However, Cortex-M4 execution begins only after
CM0+ core de-asserts the M4 reset.

8.4.2 Non-Maskable Interrupt Exception

Non-maskable interrupt (NMI) is the highest priority
exception next to reset. It is always enabled with a fixed
priority of –2. Both the cores have their own NMI exception.
There are three ways to trigger an NMI exception in a CPU
core:

■ NMI exception from a system interrupt: Both Cortex-
M0+ and Cortex-M4 provide an option to trigger an NMI
exception using one of the 147 system interrupts. The
NMI exception triggered due to the interrupt will execute
the NMI handler pointed to by the active vector table.
The CPUSS_CMx_NMI_CTL register selects the
interrupt source that triggers the NMI from hardware.
NMI is triggered when any of the four interrupts are
triggered; that is, the interrupts are logically ORed. See
Figure 8-5.

12–13 Reserved – –

14 Pend Supervisory (PendSV) Configurable (0 – 7) Start _Address + 0x0038

15 System Tick timer (SysTick) Configurable (0 – 7) Start _Address + 0x003C

16 External interrupt (IRQ0) Configurable (0 – 7) Start _Address + 0x0040

…. …. …. ….

182 External interrupt (IRQ145) Configurable (0 – 7) Start _Address + 0x0284

183 External interrupt (IRQ146) Configurable (0 – 7) Start _Address + 0x0288

a. Start Address = 0x0000 on reset and is later modified by firmware by updating CM4_SCS_VTOR register.

Table 8-2. Cortex-M4 Exception Vector Table (continued)

Exception Number Exception Exception Priority Vector Address

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 60

Interrupts

Figure 8-5. NMI Trigger

■ NMI exception by setting NMIPENDSET bit (user NMI
exception): An NMI exception can be triggered in
software by setting the NMIPENDSET bit in the interrupt
control state registers (CM0P_SCS_ICSR and
CM4_SCS_ICSR). Setting this bit will execute the NMI
handler pointed to by the active vector table in the
respective CPU cores.

■ System Call NMI exception: This exception is used for
nonvolatile programming and other system call
operations such as flash write operation and flash
checksum operation. Inter processor communication
(IPC) mechanism is used to implement a system call in
PSoC 6 MCUs. A dedicated IPC mailbox is associated
with each core (M0+ and M4) and the debug access port
(DAP) to trigger a system call. The CPU or DAP
acquires this dedicated mailbox, writes the system call
opcode and argument to the mailbox, and notifies a
dedicated IPC structure. Typically, the argument is a
pointer to a structure in SRAM. This results in an NMI
interrupt in the CM0+ core. Note that all the system calls
are serviced by Cortex-M0+ core. A Cortex-M0+ NMI
exception triggered by this method executes the NMI
exception handler code that resides in SROM. Note that
the NMI exception handler address is automatically
initialized to the system call API located in SROM (at
0x0000000D) by the boot code. The value should be
retained during vector table relocations; otherwise, no
system call will be executed. The NMI handler code in
SROM is not read/write accessible because it contains
nonvolatile programming routines that cannot be
modified by the user. The result of the system call is
passed through the same IPC mechanism. For details,
refer to the Inter-Processor Communication chapter on
page 40.

8.4.3 HardFault Exception

Both CM0+ and CM4 cores support HardFault exception.
HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority. A
HardFault exception is a catch-all exception for different

types of fault conditions, which include executing an
undefined instruction and accessing an invalid memory
addresses. The CPU does not provide fault status
information to the HardFault exception handler, but it does
permit the handler to perform an exception return and
continue execution in cases where software has the ability
to recover from the fault situation.

8.4.4 Memory Management Fault
Exception

A memory management fault is an exception that occurs
because of a memory protection-related fault. The fixed
memory protection constraints determine this fault, for both
instruction and data memory transactions. This fault is
always used to abort instruction accesses to Execute Never
(XN) memory regions. The memory management fault is
only supported by the M4 core. The priority of the exception
is configurable from 0 (highest) to 7 (lowest).

8.4.5 Bus Fault Exception
A Bus Fault is an exception that occurs because of a
memory-related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in
the memory system. The bus fault is supported only by the
M4 core. The priority of the exception is configurable from 0
(highest) to 7 (lowest).

8.4.6 Usage Fault Exception

A Usage Fault is an exception that occurs because of a fault
related to instruction execution. This includes:

■ an undefined instruction

■ an illegal unaligned access

■ invalid state on instruction execution

■ an error on exception return

The following can cause a usage fault when the core is
configured to report them:

■ an unaligned address on word and halfword memory
access

■ division by zero

System interrupt
sources

n <= 1023
(device

dependent)

INT Source 1

INT Source 2

INT Source 0

INT Source n-1

0

1

2

3

n

n

n

n

CPUSS_CM4_NMI_CTLx
Or

CPUSS_CM0P_NMI_CTLx

CM4 NMI
Or

CM0+ NMI

10

0

1023

1023

1023

1023

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 61

Interrupts

The usage fault is supported only by the M4 core. The
priority of the exception is configurable from 0 (highest) to 7
(lowest).

8.4.7 Supervisor Call (SVCall) Exception

Both CM0+ and CM4 cores support SVCall exception.
Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue an
SVCall that requires privileged access to the system.

The priority of an SVCall exception can be configured to a
value between 0 and 3 for CM0+ and 0 to 7 for CM4 core by
writing to the bitfields PRI_11 of the System Handler Priority
Register 2 (CM0P_SCS_SHPR2 and CM4_SCS_SHPR2).
When the SVC instruction is executed, the SVCall exception
enters the pending state and waits to be serviced by the
CPU. The SVCALLPENDED bit in the System Handler
Control and State Register (CM0P_SCS_SHCSR and
CM4_SCS_SHCSR) can be used to check or modify the
pending status of the SVCall exception.

8.4.8 PendSupervisory (PendSV)
Exception

Both CM0+ and CM4 cores support PendSV exception.
PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable similar to
SVCall. The PendSV exception is triggered by setting the
PENDSVSET bit in the Interrupt Control State Register
(CM0P_SCS_ICSR and CM4_SCS_ICSR). On setting this
bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the
PENDSVCLR bit in the Interrupt Control State Register. The
priority of a PendSV exception can be configured to a value
between 0 and 3 for CM0+ and 0 to 7 for M4 by writing to the
bitfields PRI_14 of the System Handler Priority Register 3.
See the Armv6-M Architecture Reference Manual for more
details.

8.4.9 System Tick (SysTick) Exception

Both CM0+ and CM4 cores in PSoC 6 MCUs support a
system timer, referred to as SysTick, as part of their internal
architecture. SysTick provides a simple, 24-bit decrementing
counter for various timekeeping purposes such as an RTOS
tick timer, high-speed alarm timer, or simple counter. The
SysTick timer can be configured to generate an interrupt
when its count value reaches zero, which is referred to as a
SysTick exception. The exception is enabled by setting the
TICKINT bit in the SysTick Control and Status Register
(CM0P_SCS_SYST_CSR and CM4_SCS_SYST_CSR).

The priority of a SysTick exception can be configured to a
value between 0 and 3 for CM0+ and 0 to 7 for M4 by writing
to the bitfields PRI_15 of the System Handler Priority
Register 3 (SHPR3). The SysTick exception can always be
generated in software at any instant by writing a one to the
PENDSTSET bit in the Interrupt Control State Register.
Similarly, the pending state of the SysTick exception can be
cleared by writing a one to the PENDSTCLR bit in the
Interrupt Control State Register.

8.5 Interrupt Sources

The PSoC 6 MCU supports 147 interrupts from peripherals.
The source of each interrupt is listed in Table 8-3. These
system interrupts are mapped directly to Cortex-M4 core
(IRQ0 to IRQ146 or exception 16 to 162). For Cortex-M0+
core, any of the 147 interrupts can be routed to the available
32 interrupts (IRQ0 to IRQ31 or exception 16 to 47). The
CPUSS_CM0_INT_CTLx registers are used to make this
interrupt selection in CM0+.

The interrupts include standard interrupts from the on-chip
peripherals such as TCPWM, serial communication block,
CSD block, watchdog, ADC, and so on. The interrupt
generated is usually the logical OR of the different
peripheral states. The peripheral interrupt status register
should be read in the ISR to detect which condition
generated the interrupt. These interrupts are usually level
interrupts. The appropriate interrupt registers should be
cleared in the ISR to deassert the interrupt. Usually a write
'1' is required to clear the registers. If the interrupt register is
not cleared in the ISR, the interrupt will remain asserted and
the ISR will be executed continuously. See the I/O
System chapter on page 240 for details on GPIO interrupts.

As seen from Table 8-3, 41 interrupts (IRQ0 to IRQ40) are
capable of waking up the device from Deep Sleep power
mode. For Cortex-M4, IRQ0 to IRQ40 directly map to these
sources. However, in the Cortex-M0+, only the first eight
IRQ lines support Deep Sleep wakeup. This means the 41
Deep Sleep wakeup-capable interrupts can be connected to
the first eight IRQ lines of Cortex-M0+, if such a wakeup is
desired. Therefore, reserve and use the first eight IRQ lines
of Cortex-M0+ for Deep Sleep wakeup-capable sources.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 62

Interrupts

Table 8-3. List of PSoC 6 MCU Interrupt Sources

System Interrupt
Cortex M4 Exception

Number
Power Mode Interrupt Source

NMI 2 Active Any of the below 147 IRQ source

IRQ0 16 Deep Sleep GPIO Interrupt - Port 0

IRQ1 17 Deep Sleep GPIO Interrupt - Port 1

IRQ2 18 Deep Sleep GPIO Interrupt - Port 2

IRQ3 19 Deep Sleep GPIO Interrupt - Port 3

IRQ4 20 Deep Sleep GPIO Interrupt - Port 4

IRQ5 21 Deep Sleep GPIO Interrupt - Port 5

IRQ6 22 Deep Sleep GPIO Interrupt - Port 6

IRQ7 23 Deep Sleep GPIO Interrupt - Port 7

IRQ8 24 Deep Sleep GPIO Interrupt - Port 8

IRQ9 25 Deep Sleep GPIO Interrupt - Port 9

IRQ10 26 Deep Sleep GPIO Interrupt - Port 10

IRQ11 27 Deep Sleep GPIO Interrupt - Port 11

IRQ12 28 Deep Sleep GPIO Interrupt - Port 12

IRQ13 29 Deep Sleep GPIO Interrupt - Port 13

IRQ14 30 Deep Sleep GPIO Interrupt - Port 14

IRQ15 31 Deep Sleep GPIO All Ports

IRQ16 32 Deep Sleep GPIO Supply Detect Interrupt

IRQ17 33 Deep Sleep Low-Power Comparator Interrupt

IRQ18 34 Deep Sleep Serial Communication Block #8 Interrupt

IRQ19 35 Deep Sleep Multi-Counter Watchdog Timer (MCWDT0) Interrupt

IRQ20 36 Reserved

IRQ21 37 Deep Sleep Real-Time-Clock (Backup domain) Interrupt

IRQ22 38 Deep Sleep LVD and WDT Interrupt

IRQ23 39 Deep Sleep Continuous Time block (CTBm) Interrupt

IRQ24 40 Deep Sleep

IRQ25 41 Deep Sleep CPUSS Inter Process Communication Interrupt #0

IRQ26 42 Deep Sleep CPUSS Inter Process Communication Interrupt #1

IRQ27 43 Deep Sleep CPUSS Inter Process Communication Interrupt #2

IRQ28 44 Deep Sleep CPUSS Inter Process Communication Interrupt #3

IRQ29 45 Deep Sleep CPUSS Inter Process Communication Interrupt #4

IRQ30 46 Deep Sleep CPUSS Inter Process Communication Interrupt #5

IRQ31 47 Deep Sleep CPUSS Inter Process Communication Interrupt #6

IRQ32 47 Deep Sleep CPUSS Inter Process Communication Interrupt #7

IRQ33 48 Deep Sleep CPUSS Inter Process Communication Interrupt #8

IRQ34 49 Deep Sleep CPUSS Inter Process Communication Interrupt #9

IRQ35 50 Deep Sleep CPUSS Inter Process Communication Interrupt #10

IRQ36 51 Deep Sleep CPUSS Inter Process Communication Interrupt #11

IRQ37 52 Deep Sleep CPUSS Inter Process Communication Interrupt #12

IRQ38 53 Deep Sleep CPUSS Inter Process Communication Interrupt #13

IRQ39 54 Deep Sleep CPUSS Inter Process Communication Interrupt #14

IRQ40 55 Deep Sleep CPUSS Inter Process Communication Interrupt #15

IRQ41 56 Deep Sleep CPUSS Inter Process Communication Interrupt #16

IRQ42 57 Active Serial Communication Block #0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 63

Interrupts

IRQ43 58 Active Serial Communication Block #1

IRQ44 59 Active Serial Communication Block #2

IRQ45 60 Active Serial Communication Block #3

IRQ46 61 Active Serial Communication Block #4

IRQ47 62 Active Serial Communication Block #5

IRQ48 63 Active Serial Communication Block #6

IRQ49 64 Active Serial Communication Block #7

IRQ50 65 Active CapSense interrupt

IRQ51 66 Active CPUSS DataWire #0, Channel #0

IRQ52 67 Active CPUSS DataWire #0, Channel #1

IRQ53 68 Active CPUSS DataWire #0, Channel #2

IRQ54 69 Active CPUSS DataWire #0, Channel #3

IRQ55 70 Active CPUSS DataWire #0, Channel #4

IRQ56 71 Active CPUSS DataWire #0, Channel #5

IRQ57 72 Active CPUSS DataWire #0, Channel #6

IRQ58 73 Active CPUSS DataWire #0, Channel #7

IRQ59 74 Active CPUSS DataWire #0, Channel #8

IRQ60 75 Active CPUSS DataWire #0, Channel #9

IRQ61 76 Active CPUSS DataWire #0, Channel #10

IRQ62 77 Active CPUSS DataWire #0, Channel #11

IRQ63 78 Active CPUSS DataWire #0, Channel #12

IRQ64 79 Active CPUSS DataWire #0, Channel #13

IRQ65 80 Active CPUSS DataWire #0, Channel #14

IRQ66 81 Active CPUSS DataWire #0, Channel #15

IRQ67 82 Active CPUSS DataWire #1, Channel #0

IRQ68 83 Active CPUSS DataWire #1, Channel #1

IRQ69 84 Active CPUSS DataWire #1, Channel #2

IRQ70 85 Active CPUSS DataWire #1, Channel #3

IRQ71 86 Active CPUSS DataWire #1, Channel #4

IRQ72 87 Active CPUSS DataWire #1, Channel #5

IRQ73 88 Active CPUSS DataWire #1, Channel #6

IRQ74 89 Active CPUSS DataWire #1, Channel #7

IRQ75 90 Active CPUSS DataWire #1, Channel #8

IRQ76 91 Active CPUSS DataWire #1, Channel #9

IRQ77 92 Active CPUSS DataWire #1, Channel #10

IRQ78 93 Active CPUSS DataWire #1, Channel #11

IRQ79 94 Active CPUSS DataWire #1, Channel #12

IRQ80 95 Active CPUSS DataWire #1, Channel #13

IRQ81 96 Active CPUSS DataWire #1, Channel #14

IRQ82 97 Active CPUSS DataWire #1, Channel #15

IRQ83 98 Active CPUSS Fault Structure Interrupt #0

IRQ84 99 Active CPUSS Fault Structure Interrupt #1

IRQ85 100 Active Crypto Accelerator Interrupt

IRQ86 101 Active Flash Macro Interrupt

Table 8-3. List of PSoC 6 MCU Interrupt Sources (continued)

System Interrupt
Cortex M4 Exception

Number
Power Mode Interrupt Source

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 64

Interrupts

IRQ87 102 Active Cortex-M0+ CTI #0

IRQ88 103 Active Cortex-M0+ CTI #1

IRQ89 104 Active Cortex-M4 CTI #0

IRQ90 105 Active Cortex-M4 CTI #1

IRQ91 106 Active TCPWM #0 (32-bit), Counter #0

IRQ92 107 Active TCPWM #0 (32-bit), Counter #1

IRQ93 108 Active TCPWM #0 (32-bit), Counter #2

IRQ94 109 Active TCPWM #0 (32-bit), Counter #3

IRQ95 110 Active TCPWM #0 (32-bit), Counter #4

IRQ96 111 Active TCPWM #0 (32-bit), Counter #5

IRQ97 112 Active TCPWM #0 (32-bit), Counter #6

IRQ98 113 Active TCPWM #0 (32-bit), Counter #7

IRQ99 114 Active TCPWM #1 (16-bit), Counter #0

IRQ100 115 Active TCPWM #1 (16-bit), Counter #1

IRQ101 116 Active TCPWM #1 (16-bit), Counter #2

IRQ102 117 Active TCPWM #1 (16-bit), Counter #3

IRQ103 118 Active TCPWM #1 (16-bit), Counter #4

IRQ104 119 Active TCPWM #1 (16-bit), Counter #5

IRQ105 120 Active TCPWM #1 (16-bit), Counter #6

IRQ106 121 Active TCPWM #1 (16-bit), Counter #7

IRQ107 122 Active TCPWM #1 (16-bit), Counter #8

IRQ108 123 Active TCPWM #1 (16-bit), Counter #9

IRQ109 124 Active TCPWM #1 (16-bit), Counter #10

IRQ110 125 Active TCPWM #1 (16-bit), Counter #11

IRQ111 126 Active TCPWM #1 (16-bit), Counter #12

IRQ112 127 Active TCPWM #1 (16-bit), Counter #13

IRQ113 128 Active TCPWM #1 (16-bit), Counter #14

IRQ114 129 Active TCPWM #1 (16-bit), Counter #15

IRQ115 130 Active TCPWM #1 (16-bit), Counter #16

IRQ116 131 Active TCPWM #1 (16-bit), Counter #17

IRQ117 132 Active TCPWM #1 (16-bit), Counter #18

IRQ118 133 Active TCPWM #1 (16-bit), Counter #19

IRQ119 134 Active TCPWM #1 (16-bit), Counter #20

IRQ120 135 Active TCPWM #1 (16-bit), Counter #21

IRQ121 136 Active TCPWM #1 (16-bit), Counter #22

IRQ122 137 Active TCPWM #1 (16-bit), Counter #23

IRQ123 138 Active UDB Interrupt #0

IRQ124 139 Active UDB Interrupt #1

IRQ125 140 Active UDB Interrupt #2

IRQ126 141 Active UDB Interrupt #3

IRQ127 142 Active UDB Interrupt #4

IRQ128 143 Active UDB Interrupt #5

IRQ129 144 Active UDB Interrupt #6

IRQ130 145 Active UDB Interrupt #7

Table 8-3. List of PSoC 6 MCU Interrupt Sources (continued)

System Interrupt
Cortex M4 Exception

Number
Power Mode Interrupt Source

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 65

Interrupts

IRQ131 146 Active UDB Interrupt #8

IRQ132 147 Active UDB Interrupt #9

IRQ133 148 Active UDB Interrupt #10

IRQ134 149 Active UDB Interrupt #11

IRQ135 150 Active UDB Interrupt #12

IRQ136 151 Active UDB Interrupt #13

IRQ137 152 Active UDB Interrupt #14

IRQ138 153 Active UDB Interrupt #15

IRQ139 154 Active SAR ADC Interrupt

IRQ140 155 Active I2S Audio Interrupt

IRQ141 156 Active PDM/PCM Audio Interrupt

IRQ142 157 Active Profiler Interrupt

IRQ143 158 Active Serial Memory Interface Interrupt

IRQ144 159 Active USB Interrupt (High)

IRQ145 160 Active USB Interrupt (Medium)

IRQ146 161 Active USB Interrupt (Low)

IRQ147 162 Active CTDAC Interrupt

Table 8-3. List of PSoC 6 MCU Interrupt Sources (continued)

System Interrupt
Cortex M4 Exception

Number
Power Mode Interrupt Source

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 66

Interrupts

8.6 Interrupt/Exception Priority

Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. Both M4 and M0+ cores in PSoC 6 MCUs provide
flexibility in choosing priority values for different exceptions.
All exceptions other than Reset, NMI, and HardFault can be
assigned a configurable priority level. The Reset, NMI, and
HardFault exceptions have a fixed priority of –3, –2, and –1,
respectively. In PSoC 6 MCUs, lower priority numbers
represent higher priorities. This means that the Reset, NMI,
and HardFault exceptions have the highest priorities. The
other exceptions can be assigned a configurable priority
level between 0 and 3 for Cortex-M0+ and 0 to 7 for Cortex-
M4.

Both M0+ and M4 support nested exceptions in which a
higher priority exception can obstruct (interrupt) the
currently active exception handler. This pre-emption does
not happen if the incoming exception priority is the same as
or lower than the active exception. The CPU resumes
execution of the lower priority exception handler after
servicing the higher priority exception. The CM0+ core in the
PSoC 6 MCU allows nesting of up to four exceptions; the
CM4 core allows up to eight exceptions. When the CPU
receives two or more exceptions requests of the same
priority, the lowest exception number is serviced first.

The registers to configure the priority of exception numbers
1 to 15 are explained in Exception Sources on page 59.

The priority of the 32 CM0+ and 147 CM4 interrupts can be
configured by writing to the respective Interrupt Priority
registers (CM0P_SCS_IPR and CM4_SCS_IPR). This is a
group of eight (CM0+) and 60 (CM4) 32-bit registers with
each register storing the priority values of four interrupts, as
given in Table 8-4 and Table 8-5.

8.7 Enabling and Disabling
Interrupts

The NVICs of both CM0+ andCM4 core provide registers to
individually enable and disable the interrupts in software. If
an interrupt is not enabled, the NVIC will not process the
interrupt requests on that interrupt line. The Interrupt Set-
Enable Register (CM0P_SCS_ISER and CM4_SCS_ISER)
and the Interrupt Clear-Enable Register (CM0P_SCS_ICER
and CM4_SCS_ICER) are used to enable and disable the
interrupts respectively. These registers are 32-bit wide and
each bit corresponds to the same numbered interrupt in
CM0+. For CM4 core, there are eight ISER/ICER registers.
These registers can also be read in software to get the
enable status of the interrupts. Table 8-6 shows the register
access properties for these two registers. Note that writing
zero to these registers has no effect.

The ISER and ICER registers are applicable only for the
interrupts. These registers cannot be used to enable or
disable the exception numbers 1 to 15. The 15 exceptions
have their own support for enabling and disabling, as
explained in Exception Sources on page 59.

The PRIMASK register in the CPUs (both CM0+ and CM4)
can be used as a global exception enable register to mask
all the configurable priority exceptions irrespective of
whether they are enabled. Configurable priority exceptions
include all the exceptions except Reset, NMI, and HardFault
listed in Table 8-1. When the PM bit (bit 0) in the PRIMASK
register is set, none of the configurable priority exceptions
can be serviced by the CPU, though they can be in the
pending state waiting to be serviced by the CPU after the
PM bit is cleared.

Table 8-4. Interrupt Priority Register Bit Definitions for
Cortex-M0+ (CM0P_SCS_IPR)

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.

Table 8-5. Interrupt Priority Register Bit definitions for
Cortex-M4 (CM4_SCS_IPR)

Bits Name Description

7:5 PRI_N0 Priority of interrupt number N

15:13 PRI_N1 Priority of interrupt number N+1

23:21 PRI_N2 Priority of interrupt number N+2

31:29 PRI_N3 Priority of interrupt number N+3

Table 8-6. Interrupt Enable/Disable Registers

Register Operation Bit Value Comment

Interrupt Set
Enable Register

Write
1 To enable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear
Enable Register

Write
1 To disable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 67

Interrupts

8.8 Interrupt/Exception States
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0P_SCS_ICSR and CM4_SCS_ICSR) contains status bits describing the various
exceptions states.

■ The VECTACTIVE bits ([8:0]) in the ICSR store the exception number for the current executing exception. This value is
zero if the CPU does not execute any exception handler (CPU is in thread mode). Note that the value in VECTACTIVE
bitfields is the same as the value in bits [8:0] of the Interrupt Program Status Register (IPSR), which is also used to store
the active exception number.

■ The VECTPENDING bits ([20:12]) in the ICSR store the exception number of the highest priority pending exception. This
value is zero if there are no pending exceptions.

■ The ISRPENDING bit (bit 22) in the ICSR indicates if a NVIC generated interrupt is in a pending state.

8.8.1 Pending Interrupts/Exceptions

When a peripheral generates an interrupt request signal to the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts executing the corresponding exception handler routine, the
exception is changed from the pending state to the active state. The NVIC allows software pending of the 32 (CM0+) or 147
(CM4) interrupt lines by providing separate register bits for setting and clearing the pending states of the interrupts. The
Interrupt Set-Pending register (CM0P_SCS_ISPR and CM4_SCS_ISPR) and the Interrupt Clear-Pending register
(CM0P_SCS_ICPR and CM4_SCS_ICPR) are used to set and clear the pending status of the interrupt lines. These registers
are 32 bits wide, and each bit corresponds to the same numbered interrupt. In the case of CM4, there are eight sets of such
registers to accommodate all 147 interrupts. Table 8-8 shows the register access properties for these two registers. Note that
writing zero to these registers has no effect.

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the ISER register.

Note that the ISPR and ICPR registers are used only for the
peripheral interrupts. These registers cannot be used for
pending the exception numbers 1 to 15. These 15
exceptions have their own support for pending, as explained
in Exception Sources on page 59.

Table 8-7. Exception States

Exception State Meaning

Inactive
The exception is not active and not pending. Either the exception is disabled or the enabled exception has not been
triggered.

Pending The exception request has been received by the CPU/NVIC and the exception is waiting to be serviced by the CPU.

Active
An exception that is being serviced by the CPU but whose exception handler execution is not yet complete. A high-
priority exception can interrupt the execution of lower priority exception. In this case, both the exceptions are in the
active state.

Active and Pending
The exception is being serviced by the processor and there is a pending request from the same source during its
exception handler execution.

Table 8-8. Interrupt Set Pending/Clear Pending Registers

Register Operation Bit Value Comment

Interrupt Set-Pending Register
(ISPR)

Write
1 To put an interrupt to pending state

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-Pending Register
(ICPR)

Write
1 To clear a pending interrupt

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 68

Interrupts

8.9 Stack Usage for Interrupts/
Exceptions

When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and R0. Both
Cortex-M4 and Cortex-M0+ have two stack pointers - MSP
and PSP. Only one of the stack pointers can be active at a
time. When in thread mode, the Active Stack Pointer bit in
the Control register is used to define the current active stack
pointer. When in handler mode, the MSP is always used as
the stack pointer. The stack pointer always grows
downwards and points to the address that has the last
pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the
control register to store the general-purpose register
contents. After the stack push operations, the CPU enters
handler mode to execute the exception handler. When
another higher priority exception occurs while executing the
current exception, the MSP is used for stack push/pop
operations, because the CPU is already in handler mode.
See the CPU Subsystem (CPUSS) chapter on page 31 for
details.

8.10 Interrupts and Low-Power
Modes

The PSoC 6 MCU family allows device (CPU) wakeup from
low-power modes when certain peripheral interrupt requests
are generated. The Wakeup Interrupt Controller (WIC) block
generates a wakeup signal that causes the CPU to enter
Active mode when one or more wakeup sources generate
an interrupt signal. After entering Active mode, the ISR of
the peripheral interrupt is executed.

The Wait For Interrupt (WFI) or Wait For Event (WFE)
instruction, executed by the CPU, triggers the transition into
Sleep, and Deep Sleep modes. Both the WFI and WFE
instructions are capable of waking up on interrupts.
However, the WFE requires the interrupts to be unmasked in
the CPU’s Priority Mask register. Refer to the PRIMASK
register definition on the Arm website. In addition, the WFE
instruction puts the CPU to sleep based on the status of an
event bit and wakes up from an event signal, typically sent
by the other CPU. WFI does not require PRIMASK
unmasking and can wake up the CPU from any pending
interrupt masked to the NVIC or WIC. However, WFI cannot
wake up the CPU from event signals from other CPUs. The
sequence of entering the different low-power modes is
detailed in the Device Power Modes chapter on page 204.

Chip low-power modes have two categories of interrupt
sources:

■ Interrupt sources that are available in the Active, Sleep,
and Deep Sleep modes (watchdog timer interrupt, RTC,
GPIO interrupts, and Low-Power comparators)

■ Interrupt sources that are available only in the Active and
Sleep modes

When using the WFE instruction in CM4, make sure to call
the WFE instruction twice to properly enter and exit Sleep/
Deep Sleep modes. This behavior comes from the event
register implementation in Arm v7 architecture used in
Cortex-M4. According to the ARM V7 architecture reference
manual (Section B1.5.18 Wait For Event and Send Event):

■ A reset clears the event register.

■ Any WFE wakeup event, or the execution of an
exception return instruction, sets the event register.

■ A WFE instruction clears the event register.

■ Software cannot read or write the value of the event
register directly.

Therefore, the first WFE instruction puts CM4 to sleep and
second WFE clears the event register after a WFE wakeup,
which sets the event register. So the next WFE will put the
core to sleep.

Note that this behavior is not present in Arm v6 architecture
used in Cortex-M0+. Therefore, in CM0+ only one WFE
instruction is sufficient to successfully enter or exit Sleep
and Deep Sleep modes.

8.11 Interrupt/Exception –
Initialization/ Configuration

This section covers the different steps involved in initializing
and configuring exceptions in the PSoC 6 MCU.

1. Configuring the Exception Vector Table Location: The
first step in using exceptions is to configure the vector
table location as required - either in flash memory or
SRAM. This configuration is done as described in
Exception Vector Table on page 58.

The vector table should be available in SRAM if the
application must change the vector addresses
dynamically. If the table is located in flash, then a flash
write operation is required to modify the vector table
contents. The ModusToolbox IDE uses the vector table
in SRAM by default.

2. Configuring Individual Exceptions: The next step is to
configure individual exceptions required in an
application, as explained in earlier sections.

a. Configure the exception or interrupt source; this
includes setting up the interrupt generation
conditions. The register configuration depends on
the specific exception required. Refer to the
respective peripheral chapter to know more about
the interrupt configuration supported by them.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/CHDBIBGJ.html#BABCHBFJ

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 69

Interrupts

b. Define the exception handler function and write the
address of the function to the exception vector table.
Table 8-1 gives the exception vector table format; the
exception handler address should be written to the
appropriate exception number entry in the table.

c. Set up the exception priority, as explained in
Interrupt/Exception Priority on page 66.

d. Enable the exception, as explained in Enabling and
Disabling Interrupts on page 66.

8.12 Register List

Table 8-9. Register List

Register Name Description

CPUSS_CM0_NMI_CTL Cortex-M0+ NMI control register

CPUSS_CM0_INT_CTL0 Cortex-M0+ interrupt control 0 register

CPUSS_CM0_INT_CTL1 Cortex-M0+ interrupt control 1 register

CPUSS_CM0_INT_CTL2 Cortex-M0+ interrupt control 2

CPUSS_CM0_INT_CTL3 Cortex-M0+ interrupt control 3

CPUSS_CM0_INT_CTL4 Cortex-M0+ interrupt control 4

CPUSS_CM0_INT_CTL5 Cortex-M0+ interrupt control 5

CPUSS_CM0_INT_CTL6 Cortex-M0+ interrupt control 6

CPUSS_CM0_INT_CTL7 Cortex-M0+ interrupt control 7

CPUSS_CM4_NMI_CTL Cortex-M4 NMI control register

SYSTEM_CM0P_SCS_ISER Cortex-M0+ interrupt set-enable register

SYSTEM_CM0P_SCS_ICER Cortex-M0+ interrupt clear enable register

SYSTEM_CM0P_SCS_ISPR Cortex-M0+ interrupt set-pending register

SYSTEM_CM0P_SCS_ICPR Cortex-M0+ interrupt clear-pending register

SYSTEM_CM0P_SCS_IPR Cortex-M0+ interrupt priority register

SYSTEM_CM0P_SCS_ICSR Cortex-M0+ interrupt control state register

SYSTEM_CM0P_SCS_VTOR Cortex-M0+ vector table offset register

SYSTEM_CM0P_SCS_AIRCR Cortex-M0+ application interrupt and reset control register

SYSTEM_CM0P_SCS_SHPR2 Cortex-M0+ system handler priority register 2

SYSTEM_CM0P_SCS_SHPR3 Cortex-M0+ system handler priority register 3

SYSTEM_CM0P_SCS_SHCSR Cortex-M0+ system handler control and state register

SYSTEM_CM4_SCS_ISER Cortex-M4 interrupt set-enable register

SYSTEM_CM4_SCS_ICER Cortex-M4 interrupt clear enable register

SYSTEM_CM4_SCS_ISPR Cortex-M4 interrupt set-pending register

SYSTEM_CM4_SCS_ICPR Cortex-M4 interrupt clear-pending register

SYSTEM_CM4_SCS_IPR Cortex-M4 interrupt priority registers

SYSTEM_CM4_SCS_ICSR Cortex-M4 interrupt control state register

SYSTEM_CM4_SCS_VTOR Cortex-M4 vector table offset register

SYSTEM_CM4_SCS_AIRCR Cortex-M4 application interrupt and reset control register

SYSTEM_CM4_SCS_SHPR2 Cortex-M4 system handler priority register 2

SYSTEM_CM4_SCS_SHPR3 Cortex-M4 system handler priority register 3

SYSTEM_CM4_SCS_SHCSR Cortex-M4 system handler control and state register

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 70

9. Protection Units

Protection units are implemented in the PSoC 6 MCU to enforce security based on different operations. A protection unit
allows or restricts bus transfers. The rules are enforced based on specific properties of a transfer. The rules that determine
protection are implemented in protection structures (a register structure). A protection structure defines the protected address
space and the protection attributes. The hardware that evaluates these protection structures, to restrict or permit access, is
the protection unit. The PSoC device has different types of protection units such as MPU, SMPU, and PPU. Each have a
distinct set of protection structures, which helps define different protection regions and their attributes.

9.1 Architecture

Figure 9-1 shows a conceptual view of implementation of the PSoC protection system.

Figure 9-1. Conceptual View of PSoC Protection System

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

Protection
Unit

Flash
Memory

SRAM
External
Memory

Peripheral
Memory

PSoC 6 Memory Map

CPU1 CPU2
Test

Controller
DMA

Protection
Structures

Bus Masters

Sets rules to
check against

Memory
Region

Protection
Attribute

Bus Master’s
Protection
Attribute

Bus Master’s
Protection
Attribute

Bus Master’s
Protection
Attribute

Bus Master’s
Protection
Attribute

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 71

Protection Units

The functioning of a secure system is based on the
following:

■ Bus masters: This term refers to the bus masters in the
architecture. In a PSoC 6 device, an example of a bus
master is a Cortex-M core, DMA, or a test controller.

■ Protection units: Protection units are the hardware
engines that enforce the protection defined by protection
structures. There are three types of protection units,
acting at different levels of memory access with different
precedence and priority of protection – MPU, SMPU,
and PPU.

■ Protection structure: A protection structure is a register
structure in memory that sets up the rules based on
which each protection unit will evaluate a transfer. Each
protection unit associates itself to multiple protection
structures. The protection structure associated with a
protection unit are evaluated in the order starting with
the protection structure with the largest index. For
example, if there are 16 protection structures associated
with a protection unit, then the evaluation of a transfer
starts from protection structure 15 and counts down.
Physically a protection structure is a register structure in
the memory map that defines a protection rule. Each
protection structure constitutes the following:

❐ Defines a memory region on which the rule is
applied. It designates what the bus transfer needs to
be evaluated against this protection structure.

- Base address

- Size of memory block

❐ A set of protection attributes

- R/W/X

- User/privilege

- Secure/non Secure

- Protection context

■ Protection attributes: These are properties based on
which a transfer is evaluated. There are multiple
protection attributes. The set of protection attributes
available for a protection structure depends on the
protection unit it is associated with. Protection attributes
appear in two places:

❐ Protection structures: Protection attributes associ-
ated with a protection structure set the rules for
access based on these attributes.

❐ Bus master's protection attribute: Each bus master
has its own access attributes, which define the bus
master's access privileges. Some of these attributes,
such as secure/non-secure, are set for a master.
Other attributes such as protection context and user/
privilege attribute are dynamic attributes, which
change based on bus master's context and state.

In summary, a PSoC 6 device has protection units that act
as a gate for any access to the PSoC memory map. The
rules for protection are set by the protection structures.

Each bus master is qualified by its own protection attribute.
For every bus transfer, the protection unit compares the bus
master's protection attribute and accessed address against
the rules set in the protection structures and decides on
providing or denying access.

9.2 PSoC 6 Protection
Architecture

When there is a memory (SRAM/flash/peripheral) access by
a bus master, the access is evaluated by a protection unit
against the protection attributes set in protection structures
for the memory location being accessed. If the bus master’s
protection attributes satisfy the protection attributes set in
the protection structures, then access is allowed by the
protection unit. If there is an access restriction, a fault
condition is triggered and a bus error occurs. Thus
protection units secure bus transfer address range either in
memory locations (SRAM/flash) or peripheral registers.
From an architectural perspective, there is no difference
between memory protection and peripheral protection.
However, from an implementation perspective, separate
memory and peripheral protection is provided.

Two types of protection units, memory protection units
(MPU) and shared memory protection units (SMPU), are
provided in the CPU subsystem (CPUSS) to protect memory
locations. A separate protection unit type is provided for
peripheral protection (PPU) in the PERI:

■ A bus master may have a dedicated MPU. In a CPU bus
master, the MPU is typically implemented as part of the
CPU and is under control of the OS/kernel. In a non-
CPU bus master, the MPU is typically implemented as
part of the bus infrastructure and under control of the
OS/kernel of the CPU that “owns or uses” the bus
master. If a CPU switches tasks or if a non-CPU
switches ownership, the MPU settings are typically
updated by OS/kernel software. The different MPU types
are:

❐ An MPU that is implemented as part of the CPU. This
type is found in the Arm CM0+ and CM4 CPUs.

❐ An MPU that is implemented as part of the bus infra-
structure. This type is found in bus masters such as
crypto and test controller. The definition of this MPU
type follows the Arm MPU definition (in terms of
memory region and access attribute definition) to
ensure a consistent software interface.

■ SMPUs are intended for implementing protection in a
situation with multiple bus masters. These protection
units implement a concept called Protection Context. A
protection context is a pseudo state of a bus master,
which can be used to determine access attributes across
multiple masters. The protection context is a protection
attribute not specific to a bus master.The SMPUs can
distinguish between different protection contexts; they
can also distinguish secure from non-secure accesses.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 72

Protection Units

This allows for an effective protection in a multi-core
scenario.

■ PPUs are protection units provided in the PERI register
space for peripheral protection. The PPU attributes are
similar to the SMPU, except that they are intended for
protecting the peripheral space. Refer to the registers
TRM for details. The PPUs are intended to distinguish
between different protection contexts and to distinguish
secure from non-secure accesses and user mode
accesses from privileged mode accesses. There are two
types of PPU structures.

❐ Fixed PPUs implement protection for fixed address
regions that typically correspond to a specific periph-
eral

❐ Programmable PPUs allows the user to program the
address region to be protected

The platform’s DMA controller does not have an MPU.
Instead, a DMA controller channel inherits the access
control attributes of the bus transfer that programmed the
channel.

The definition of SMPU and PPU follows the MPU definition
and adds the capability to distinguish accesses from
different protection contexts (the MPU does not include
support for a protection context). If security is required, the
SMPU and possibly PPUs MMIO registers must be
controlled by a secure CPU that enforces system-wide
protection.

Figure 9-2 gives an overview of the location of MPUs,
SMPUs, and PPUs in the system. Note that a peripheral
group PPU needs to provide access control only to the
peripherals within a peripheral group (group of peripherals
with a shared bus infrastructure).

As mentioned, the MPU, SMPU, and PPU protection
functionality follows the Arm MPU definition:

■ Multiple protection structures are supported.

■ Each structure specifies an address range in the unified
memory architecture and access attributes. An address
range can be as small as 32 bytes.

A protection violation is caused by a mismatch between a
bus master’s access attributes and the protection structure
and access attributes for the memory region configured in
the protection structure.

A bus transfer that violates a protection structure results in a
bus error.

For AXI transfers, the complete address range is matched. If
a transfer references multiple 32-byte regions (the smallest
protection structure address range is 32 bytes), multiple
cycles are required for matching – one cycle per 32-byte
region.

Protection violations are captured in the fault report
structure to allow for failure analysis. The fault report
structures can generate an interrupt to indicate the

occurrence of a fault. This is useful if the violating bus
master cannot resolve the bus error by itself, but requires
another CPU bus master to resolve the bus error on its
behalf.

For a buffered mode of transfer
(CPUSS_BUFF_CTL[WRITE_BUFF]), the behavior during
protection violation is different. When
CPUSS_BUFF_CTL[WRITE_BUFF] is set to ‘1’, the write
transfers on the bus are buffered. So the transfer is first
acknowledged when the buffer receives the transfer. A
protection violation will be only evaluated when the actual
write happens at the destination register. This leads to the
write transfer not generating a bus error for buffered mode.
However, a fault will be registered as soon as the transfer
tries to write the destination location. Therefore, for buffered
writes, the user must verify the fault structure to make sure
no violations have occurred.

A protection violation results in a bus error and the bus
transfer will not reach its target. An MPU or SMPU violation
that targets a peripheral will not reach the associated
protection evaluation (PPU). In other words, MPU and
SMPU have a higher priority over PPU.

Protection unit addresses the following:

■ Security requirements. This includes prevention of
malicious attacks to access secure memory or
peripherals. For example, a non-secure master should
not be able to access key information in a secure
memory region.

■ Safety requirements. This includes detection of
accidental (non-malicious) software errors and random
hardware errors. Enabling failure analysis is important
so the root cause of a safety violation can be
investigated. For example, analyzing a flash memory
failure on a device that is returned from the field should
be possible.

To address security requirements, the Cortex M0+ is used
as a ‘secure CPU’. This CPU is considered a trusted entity.
Any access by the CPU tagged as “secure” will be called
“secure access”.

http://www.cypress.com/trm220777
http://www.cypress.com/trm220777
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 73

Protection Units

Figure 9-2. PSoC 6 Protection Architecture

The different types of protection units cater to different use cases for protection.

9.3 Register Architecture

The protection architecture has different conceptual pieces and different sets of registers correspond to each of these
concepts.

9.3.1 Protection Structure and Attributes

The MPU, SMPU, and PPU protection structure definition follows the Arm definition. Each protection structure is defined by:

■ An address region

■ Access control attributes

A protection structure is always aligned on a 32-byte boundary in the memory space. Two registers define a protection
structure: ADDR (address register) and ATT (attribute register). This structure alignment and organization allow
straightforward protection of the protection structures by the protection scheme. This is discussed later in this chapter.

Address region: The address region is defined by:

■ The base address of a region as specified by ADDR.ADDR.

■ The size of a region as specified by ATT.REGION_SIZE.

■ Individual disables for eight subregions within the region, as specified by ADDR.SUBREGION_DISABLE.

Table 9-1. Protection Use Cases

Protection Unit Type Use

Arm MPU
Used to protect memory between tasks within in a single Arm core. A task in one of the Arm cores can
protect its memory from access by another task in the same core.

MPU
Same as the Arm MPU, but for other bus masters such as the test controller or crypto, which do not have a
built-in MPU in their block IP.

SMPU Used to protect memory addresses that are shared between multiple bus masters.

Fixed PPU protection
structures

These protect specific peripheral memory space. The protection structures have a preprogrammed memory
region and can be used only to protect the peripheral it was intended for.

Programmable PPU
protection structures

These protect the peripheral space but the memory region is not fixed. So users can easily program it to
protect any space in the peripheral memory region.

CM0+
 Arm MPU

CM4
 Arm MPU

Crypto
DMA

(DataWire)

MPU

SMPU

AHB

PPU

GPIO

PPU

Fixed
Function
Blocks

PPU

Programmable
Analog and Digital

Blocks

MPU: Memory Protection Unit
SMPU: Shared Memory Protection Unit
PPU: Peripheral Protection Unit

Bus Masters

Flash SRAM

Test
Controller

MPU

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 74

Protection Units

The REGION_SIZE field specifies the size of a region. The region size is a power of 2 in the range of [256 B, 4 GB]. The base
address ADDR specifies the start of the region, which must be aligned to the region size. A region is partitioned into eight
equally sized sub-regions. The SUBREGION_DISABLE field specifies individual enables for the sub-regions within a region.
For example, a REGION_SIZE of “0x08” specifies a region size of 512 bytes. If the start address is 0x1000:5400 (512-byte
aligned), the region ranges from 0x1000:5400 to 0x1000:55ff. This region is partitioned into the following eight 64-byte
subregions:

subregion 0 from 0x1000:5400 to 0x1000:543f

subregion 1 from 0x1000:5440 to 0x1000:547f

…

subregion 7 from 0x1000:55c0 to 0x1000:55ff.

If the SUBREGION_DISABLE is 0x82 (bitfields 1 and 7 are ‘1’), subregions 1 and 7 are disabled; subregions 0, 2, 3, 4, 5, and
6 are enabled.

In addition, an ATT.ENABLED field specifies whether the region is enabled. Only enabled regions participate in the protection
“matching” process. Matching identifies if a bus transfer address is contained within an enabled subregion
(SUBREGION_DISABLE) of an enabled region (ENABLED).

Protection attributes: The protection attributes specify access control to the region (shared by all subregions within the
region). Access control is performed by comparing against a bus master's protection attributes of the bus master performing
the transfer. The following access control fields are supported:

■ Control for read accesses in user mode (ATT.UR field).

■ Control for write accesses in user mode (ATT.UW field).

■ Control for execute accesses in user mode (ATT.UX field).

■ Control for read accesses in privileged mode (ATT.PR field).

■ Control for write accesses in privileged mode (ATT.PW field).

■ Control for execute accesses in privileged mode (ATT.PX field).

■ Control for secure access (ATT.NS field).

■ Control for individual protection contexts (ATT.PC_MASK[15:0], with MASK[0] always constant at 1). This protection
context control field is present only for the SMPU and PPU.

The execute and read access control attributes are orthogonal. Execute transfers are typically read transfers. To allow
execute and read transfers in user mode, both ATT.UR and ATT.UX must be set to ‘1’. To allow data and read transfers in user
mode, only ATT.UR must be set to ‘1’. In addition, the ATT.PC_MATCH control field is supported, which controls “matching”
and “access evaluation” processes. This control field is present only for the SMPU and PPU protection structures.

For example, only protection context 2 can access a specific address range. These accesses are restricted to read and write
secure accesses in privileged mode. The access control fields are programmed as follows:

■ ATT.UR is 0: read accesses in user mode not allowed.

■ ATT.UW is 0: write accesses in user mode not allowed.

■ ATT.UX is 0: execute accesses in user mode not allowed.

■ ATT.PR is 1: read accesses in privileged mode allowed.

■ ATT.PW is 1: write accesses in privileged mode allowed.

■ ATT.PX is 0: execute accesses in privileged mode not allowed.

■ ATT.NS is 0: secure access required.

■ ATT.PC_MASK is 0x0005: protection context 1 and 3 accesses enabled (all other protection contexts are disabled).

■ ATT.PC_MATCH is 0: the PC_MASK field is used for access evaluation. Three separate access evaluation subprocesses
are distinguished:

❐ A subprocess that evaluates the access based on read/write, execute, and user/privileged access attributes.

❐ A subprocess that evaluates the access based on the secure/non-secure attribute.

❐ A subprocess that evaluates the access based on the protection context index (used only by the SMPU and PPU
when ATT.PC_MATCH is 0).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 75

Protection Units

If all access evaluations are successful, access is allowed. If any process evaluation is unsuccessful, access is not allowed.
Matching the bus transfer address and access evaluation of the bus transfer (based on access attributes) are two
independent processes:

■ Matching process. For each protection structure, the process identifies whether a transfer address is contained within the
address range. This identifies the “matching” regions.

■ Access evaluation process. For each protection structure, the process evaluates the bus transfer access attributes
against the access control attributes.

A protection unit typically has multiple protection structures and evaluates the protection structures in decreasing order. The
first matching structure provides the access control attributes for the evaluation of the transfer's access attributes. In other
words, higher-indexed structures take precedence over lower-indexed structures.

The following pseudo code illustrates the process.
match = 0;
for (i = n-1; i >= 0; i--)// n: number of protection regions
 if (Match (“transfer address”, “protection context”
 “MMIO registers ADDR and ATT of protection structure i”)) {
 match = 1; break;
 }
|

if (match)
 AccessEvaluate (“transfer access attributes”, “protection context”
 “MMIO register ATT of protection structure i”);
else
 “access allowed”

Notes:

■ If no protection structure provides a match, the access is allowed.

■ If multiple protection structures provide a match, the access control attributes for the access evaluation are provided by
the protection structure with the highest index.

An example of using the PC_MATCH feature is as follows. Two SMPU structures are configured to protect the same address
range:

■ Case 1: SMPU#2: PC = 3, PC_MATCH = 0 SMPU#1: PC = 2, PC_MATCH = 0

To access the master of protection context 2, SMPU#2 has the highest index and address match, but attributes do not
match; therefore, access is restricted. The SMPU#1 is not evaluated because the PC_MATCH is 0.

■ Case 2: SMPU#2: PC = 3, PC_MATCH = 1 SMPU#1: PC = 2, PC_MATCH = 0

The SMPU#2 address matches but PC does not match and is skipped because PC_MATCH is 1. SMPU#1 is evaluated
and the address and attributes match; therefore, access is allowed.

As mentioned, the protection unit evaluates the protection structures in decreasing order. From a security requirements
perspective, this is of importance: a non-secure protection context must not be able to add protection structures that have a
higher index than the protection structures that provide secure access. The protection structure with a higher index can be
programmed to allow non-secure accesses. Therefore, in a secure system, the higher programmable protection structures
are protected to only allow restricted accesses

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 76

Protection Units

9.4 Bus Master Protection Attributes

The protection structures set up the rules for different memory regions and their access attributes. The bus master’s own
protection attributes are used by the protection units to regulate access, based on rules set by the protection structures. Not
all bus masters provide all protection attributes that are associated with a bus transfer. Some examples are:

■ None of the bus masters has a native protection context attribute. This must be set dynamically based on the task being
executed by the bus master.

■ The Arm Cortex M4 and Arm Cortex M0+ CPUs provide a user/privilege attribute, but do not provide a secure/non-secure
attribute natively. This must be set at a system level.

To ensure system-wide restricted access, missing attributes are provided by register fields. These fields may be set during the
boot process or by the secure CPU.

■ The SMPU MS_CTL.PC_MASK[] and MPU MS_CTL.PC[] register fields provide protection context functionality.

■ The SMPU MS_CTL.P register field provides the user/privileged attribute for those masters that do not provide their own
attribute.

■ The SMPU MS_CTL.NS register provides the secure/non-secure attribute for those masters that do not provide their own
attribute.

■ Masters that do not provide an execute attribute have the execute attribute set to ‘0’.

The DMA controller channels inherit the access control attributes of the bus transfers that configured the DMA channel.

■ All the bus masters in the system have SMPU and MPU MS_CTL registers associated with them.

■ The MPU MS_CTL.PC_SAVED field (and associated protection context 0 functionality, which is discussed later in the
chapter) is only present for the CM0+ master.

■ The SMPU MS_CTL.P, MS_CTL.NS, and MS_CTL.PC_MASK fields are not present for the DMA. The bus transfer
attributes are provided through “inheritance”: the bus transfer attributes are from the master that owns the DMA channel
that initiated the bus transfer.

■ The MPU MS_CTL register is not present for the DMA masters. The protection context (PC) bus transfer attribute is
provided through inheritance.

9.5 Protection Context

Each bus master has a MPU MS_CTL.PC[3:0] protection context field. This protection context is used as the protection
context attribute for all bus transfers that are initiated by the master. The SMPUs and PPUs allow or restrict bus transfers
based on the protection context attribute.

Multiple masters can share a protection context. For example, a CPU and a crypto controlled by the CPU may share a
protection context (the CPU and crypto PC[] fields are the same). Therefore, the CPU and crypto share the SMPU and PPU
access restrictions.

A bus master protection context is changed by reprogramming the master’s PC[] field. Changing a protection context is
required for CPU bus masters that may transition between multiple tasks, each catering to different protection contexts. As
the protection context allows or restricts bus transfers, changes to the protection context should be controlled and should not
compromise security. Furthermore, changes to the protection context should incur limited CPU overhead to allow for frequent
protection context changes. Consider a case in which a CPU executes two software stacks with different protection contexts.
To this end, each bus master has an SMPU MS_CTL.PC_MASK[15:0] protection context mask field that identifies what
protection contexts can be programmed for the bus master:

■ The protection context field MS_CTL.PC[3:0]. This register is controlled by the associated bus master and has the same
access restrictions as the bus master’s MPU registers.

■ The protection context mask field MS_CTL.PC_MASK[15:0]. This register is controlled by the secure CPU and has the
same access restrictions as the SMPU registers.

The PC_MASK[] field is a “hot-one” field that specifies whether the PC[] field can be programmed with a specific protection
context. Consider an attempt to program PC[] to ‘3’:

■ If PC_MASK[3] is ‘1’, PC[] is set to “3”.

■ If PC_MASK[3] is ‘0’, PC[] is not changed.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 77

Protection Units

9.6 Protection Context 0

Protection context 0 has dedicated functionality not available to the user. In a system that requires protection, a “root of trust”
must be established. In the PSoC 6 MCU, the Arm CM0+ CPU is intended to be used as the “secure CPU” that executes both
Cypress code and customer code.

■ The Cypress code for the secure CPU, either in ROM or in flash, is considered trustworthy. The Cypress ROM code can
be considered as the root of trust, and is used to authenticate Cypress flash code. Cypress code can be used to provide
flash programming, secure provisioning, or other Cypress proprietary functionality.

■ The customer code for the secure CPU is programmed in flash. Therefore, Cypress has no control over this code. It
cannot be assumed that this code is trustworthy and is not compromising Cypress-trusted code.

As both Cypress-trusted code and customer untrusted code are executed on the same CPU, the general protection scheme
based on master specific protection contexts, which is completely software-controlled, does not suffice to distinguish the two
different types of code. For example, a scheme that relies on separate protection contexts for the two different types of code
relies on cooperation, which is something that cannot be relied upon if the customer code is untrusted: nothing prevents
customer code from taking the protection context of Cypress code.

Hardware support is provided to control the secure CPU protection context. This support assigns special meaning to
protection context 0. Well-defined entry into Cypress-trusted code in ROM changes the protection context to 0. Protection
context 0 provides unlimited (unprotected) access to all memory regions and peripherals. The protection context is changed
to 0 under the following two conditions:

■ A secure CPU reset. This results in the execution of the reset exception handler. The vector address is provided from
ROM address 0x0000:0004. As this is a ROM address, this address can be trusted. If the vector address is also in ROM,
the handler’s entry point can be trusted.

Note that after a secure CPU reset, all interrupts are disabled and CPU execution is deterministic (fully determined by the
reset exception handler).

■ A secure CPU exception/interrupt handler entry. The handler vector address is provided by the vector table with base
address VECTOR_TABLE_BASE. After a secure CPU reset, this VECTOR_TABLE_BASE is 0x0000:00000 and the
handler vector address is related to this base. As this is a ROM address, this address can be trusted. However, the CPU
can relocate VECTOR_TABLE_BASE to an SRAM address for example, and the handler vector addresses can be
programmed to any value. The programmed value may result in customer-provided handler code. As a result, the
handler’s entry point cannot be trusted. Fortunately, it is possible to detect whether the vector address from the vector
table is different from a specific address. The protection context is only changed to 0 if the secure CPU vector handler
address is the same as the specific vector address CM0_PC0_HANDLER. Note that the customer code can relocate the
vector table, but a change to protection context 0 requires that the vector address is not modified and still equal to
CM0_PC0_HANDLER.

Protection context 0 identifies Cypress-trusted code and provides unlimited access:

■ The protection structures are not applied; no protection structure match will “hit” on a protection context 0 address. The
user/privileged and secure/non-secure transfer attributes have no protection functionality for protection context 0.

■ Hardware changes the protection context to 0 and Cypress-trusted software is responsible for re-establishing the
protection context that applied before the Cypress-trusted code is entered. To this end, the secure CPU has two protection
context fields in its MS_CTL register (hardware changes both fields):

❐ A PC[3:0] field, which specifies the current protection context.

❐ A PC_SAVED[3:0] field, which specifies the protection context that applied when the protection context was changed
to 0.

The Cypress-trusted exception handler is responsible for updating the MS_PC field when leaving the Cypress-trusted code.
For all n, PROT_MPUn_MS_CTL.PC and PROT_MPUn_MS_CTL.PC_SAVED are set to ‘1’. Also for all n, bit 0 of
PROT_SMPU_MSn_CTL.PC_MASK is set to ‘1’ to allow PC to have a value of 1.

The Cypress-trusted exception handler is responsible for re-establishing the MS_PC field with the MS_PC_SAVED field when
leaving the Cypress-trusted code.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 78

Protection Units

9.7 Protection Structure

9.7.1 Protection Violation

If an MPU, SMPU, or PPU detects a not-allowed transfer, the bus transfer results in a bus error. The bus transfer does not
reach its target memory location or peripheral register. In addition, information on the violating bus transfer is communicated
to the fault report structure.

9.7.2 MPU

The MPUs are situated in the CPUSS and are associated to a single master. An MPU distinguishes user and privileged
accesses from a single bus master. However, the capability exists to perform access control on the secure/non-secure
attribute.

As an MPU is associated to a single master, the MPU protection structures do not provide protection context control
attributes.

Figure 9-3. MPU Functionality

9.7.3 SMPU

The SMPU is situated in the CPUSS and is shared by all bus masters. The SMPU distinguishes between different protection
contexts and distinguishes secure from non-secure accesses. However, the capability exists to perform access control on the
user/privileged mode attribute.

Figure 9-4. SMPU Functionality

Note that a single set of SMPU region structures provides the same protection information to all SMPUs in the systems.

ATT 03
1

U
R

U
WU
X

P
R

P
WP
X

N
S

E
N

A
B

LE
D

R
E

G
IO

N
_

S
IZ

E

ADDR 031

S
U

B
R

E
G

IO
N

_
D

IS
A

B
L

E

A
D

D
R

[2
3

:0
]

MPU protection
structures

MPU protection
structure 0

...

tr
an

sf
er

 a
dd

re
ss

tr
an

sf
er

 a
cc

es
s

a
ttr

ib
ut

es

Memory
protection
unit (MPU)

fault_req
fault_ack

fault_data

Interface to fault
structures

Two MMIO registers
per protection structure

Protection structures
are 32 B aligned

No protection
context attributes

MPU protection
structure 1

MPU protection
structure 2

Shared
memory

protection
unit (SMPU)

Shared
memory

protection
unit (SMPU)

ATT 03
1

U
R

U
WU
X

P
R

P
WP
X

N
S

P
C

_
M

A
S

K
[1

5:
1]

E
N

A
B

LE
D

R
E

G
IO

N
_

S
IZ

E

ADDR 031

S
U

B
R

E
G

IO
N

_
D

IS
A

B
LE

A
D

D
R

[2
3

:0
]

SMPU protection
structures

...

tr
an

sf
er

 a
dd

re
ss

tr
an

sf
er

 a
cc

es
s

at
tr

ib
ut

es

Shared
memory

protection
unit (SMPU)

fault_req
fault_ack

fault_data

Interface to fault
structures

Two MMIO registers
per protection structure

Protection structures
(pairs) are 64 B aligned

Shared SMPU protection structures
for all SMPUs in the system

P
C

_M
A

T
C

H

SMPU protection
structure pair 0

SMPU protection
structure pair 1

SMPU protection
structure pair 2

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 79

Protection Units

9.7.4 PPU

■ The PPUs are situated in the PERI block and are associated with a peripheral group (a group of peripherals with a shared
AHB-Lite bus infrastructure). A PPU is shared by all bus masters. The PPU distinguishes between different protection
contexts; it also distinguishes secure from non-secure accesses and user mode from privileged mode accesses.

Figure 9-5. PPU Functionality

There are two types of PPU structures: fixed and programmable.

■ The fixed PPU structures protect fixed areas of memory and hence a specific predetermined peripheral region. In other
words, the ADDR, SUBREGION_DISABLE, and REGION_SIZE fields are fixed for a specific device. Refer to the
registers TRM for a definition of fixed PPUs and the address regions they protect. Their protection attributes are
configurable. Fixed PPUs protect peripheral regions in three levels. The PPU_GR structures protect at the MMIO level.
The PPU_SL structures protect each slave in each MMIO. The PPU_RG structures protect each instance of a block in the
slave. For example, IPC channels in IPC are protected by PPU_RG structures while the entire IPC block is protected by
PPU_SL register.

■ The programmable PPU structures can have
configurable protection attributes and address regions.
These are similar to SMPU structures but are intended
to be used with the peripheral register space. These
protection structures are typically used to protect
registers in a specific block, which are not covered by
the resolution of fixed PPU structures.

Note that the memory regions of the fixed master
structures, fixed slave structures, and programmable
master structures are fixed by hardware and are
mutually exclusive; that is, they do not overlap. The
memory regions of the programmable slave structure
are software-programmable and can potentially overlap.
Therefore, it is important to assign priority to the
protection structure matching process. The order in
which these are evaluated are as follows:

❐ The fixed master structures are evaluated in
decreasing order.

❐ The fixed slave structures are evaluated in decreas-
ing order.

❐ The programmable master structures are evaluated
in decreasing order.

❐ The programmable slave structures are evaluated in
decreasing order.

The programmable slave structures are evaluated last.
These structures are software-programmable and can
potentially overlap (overlapping should not allow

software to circumvent the protection as provided by the
fixed protection structure pairs).

Each peripheral group has a dedicated PPU. The
protection information is provided by peripheral group
MMIO registers. A peripheral group PPU uses fixed
protection structure pairs for two purposes.

❐ Fixed protection structure pairs protect peripherals
(one pair for each peripheral). The master structure
protects the MMIO registers of the pair (the memory
region encompasses the MMIO registers of the pair’s
master structure and slave structure). The slave
structure protects the peripheral (the memory region
encompasses the peripheral address region).

❐ Fixed protection structure pairs protect specific
peripheral subregions (one pair for each subregion).
The master structure protects the MMIO registers of
the pair. The slave structure protects the peripheral
subregion. These pairs can be used to protect, for
example, individual DW channels in the DW periph-
eral or individual IPC structures in the IPC periph-
eral.

Note that the memory regions of the fixed peripheral
master structures, fixed peripheral slave structures, and
fixed peripheral subregion master structures are fixed by
hardware and are mutually exclusive; that is, they do not
overlap. The memory regions of the fixed peripheral
subregion slave structures are fixed by hardware and
typically are a subset of a peripheral address region, and

ATT 03
1

U
R

U
W

U
X

 =

P
R

P
W

P
X

 =

N
S

P
C

_
M

A
S

K
[1

5
:1

]

E
N

A
B

L
E

D

R
E

G
IO

N
_

S
IZ

E

ADDR 031

S
U

B
R

E
G

IO
N

_
D

IS
A

B
LE

A
D

D
R

[2
3

:0
]

PPU protection
structures

...

tr
a

ns
fe

r
a

dd
re

ss

tr
a

ns
fe

r
a

cc
e

ss

a
tt

rib
ut

e
s

Peripheral
protection
unit (PPU)

fault_req
fault_ack

fault_data

Interface to fault
structures

Two MMIO registers
per protection structure

Protection structures
(pairs) are 64 B aligned

P
C

_M
A

T
C

H

PPU protection
structure pair 0

PPU protection
structure pair 1

PPU protection
structure pair 2

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 80

Protection Units

therefore overlap with a fixed peripheral slave structure.
Therefore, it is important to assign priority to how the
protection structure matching process:

❐ The fixed peripheral subregion master structures are
evaluated in decreasing order.

❐ The fixed peripheral subregion slave structures are
evaluated in decreasing order.

❐ The fixed peripheral master structures are evaluated
in decreasing order.

❐ The fixed peripheral slave structures are evaluated in
decreasing order.

It is important to evaluate the fixed peripheral subregion
master structures first. This allows software to assign
different protection for a subregion of a peripheral.

9.7.5 Protection of Protection Structures

The MPU, SMPU, and PPU-based protection architecture is
consistent and provides the flexibility to implement different
system-wide protection schemes. Protection structures can
be set once at boot time or can be changed dynamically
during device execution. For example, a CPU RTOS can
change the CPU’s MPU settings; a secure CPU can change
the SMPU and PPUs settings. But such a system will be left
insecure if there is no way to protect the protection
structures themselves. There must be a way to restrict
access to the protection structures.

The protection of protection structures is achieved using
another protection structure. For this reason, protection
structures are defined in pairs of master and slave. We refer
to the slave and master protection structures as a protection
pair. Note that the address range of the master protection
structure is known, that is, it is constant.

The first (slave) protection structure protects the resource
and the second (master) protection structure protects the
protection (address range of the second protection structure
includes both the master and slave protection structures).

The protection architecture is flexible enough to allow for
variations:

■ Exclusive peripheral ownership can be shared by more
than two protection contexts.

■ The ability to change ownership is under control of a
single protection context, and exclusive or non-exclusive
peripheral ownership is shared by multiple protection
contexts.

Note that in secure systems, typically a single secure CPU
is used. In these systems, the ability to change ownership is
assigned to the secure CPU at boot time and not
dynamically changed. Therefore, you must assign the
secure CPU its own, dedicated protection context.

Both PPU and SMPU is intended to distinguish between
different protection contexts and to distinguish secure from
non-secure accesses. Therefore, both PPU and SMPU

protection use protection structure pairs. In the SMPU, the
slave protection structure provides SMPU protection
information and the master protection structure provides
PPU protection information (the master and slave protection
structures are registers).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 81

Protection Units

9.7.6 Protection Structure Types

Different protection structure types are used because some
resources, such as peripheral registers, have a fixed
address range. Protection of protection structures requires
pairs of neighboring protection structures.

Three types of protection structures with a consistent
register interface are described here:

■ Programmable protection structures. These are 32-byte
protection structures with a programmable address
range. These structures are used by the MPUs.

■ Fixed protection structure pairs. These are 64-byte
master/slave protection structure pairs, consisting of two
32-byte protection structures. These structures are used
by the PPUs. Both structures have a fixed, constant
address region. The master structure has the UX and PX
attributes as constant ‘0’ (execution is never allowed)
and the UR and PR attributes as constant ‘1’ (reading is
always allowed). The slave structure has the UX and PX
attributes as constant ‘1’.

■ Programmable protection structure pairs. These are 64-
byte master/slave protection structure pairs, consisting
of two 32-byte protection structures. These structures
are used by the PPU and SMPU. The master structure
has a fixed, constant address region. The slave structure

has a programmable address region. The master
structure has the UX and PX attributes as constant ‘0’
(execution is never allowed) and the UR and PR
attributes as constant ‘1’ (reading is always allowed).
The PPU slave structure has the UX and PX attributes
as constant ‘1’. The SMPU slave structure has
programmable UX and PX attributes.

Note that the master protection structure in a protection
structure pair is required only to address security
requirements. The distinction between the three protection
structure types is an implementation optimization. From an
architectural perspective, all PPU protection structures are
the same, with the exception that for some protection
structures the address range is fixed and not programmable.

As mentioned earlier, a protection unit evaluates the
protection regions in decreasing protection structure index
order. The protection structures are evaluated in the
following order:

■ Fixed protection structures for specific peripherals or
peripheral register address ranges.

■ Programmable protection structures.

In other words, fixed structures take precedence over
programmable structures.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 82

Protection Units

Figure 9-6. Fixed Protection Structure Pair

ATT 031

U
R

U
W

U
X

 =

P
R

P
W

P
X

 =

N
S

P
C

_M
A

S
K

[1
5:

1]

E
N

A
B

LE
D

C
on

st
an

t
R

E
G

IO
N

_
S

IZ
E

ADDR 031

P
C

_
M

A
T

C
H

Slave structure

ATT 031

U
R

 =

U
W

U
X

 =

P
R

 =

P
W

P
X

 =

N
S

P
C

_M
A

S
K

[1
5

:1
]

E
N

A
B

LE
D

C
on

st
an

t
R

E
G

IO
N

_
S

IZ
E

031

Constant
SUBREGION_DISABLE

Constant ADDR[23:0], encompassing master and
slave protection structures

P
C

_M
A

T
C

H

Master structure

PPU, fixed protection structure pair

Constant
SUBREGION_DISABLE

Constant ADDR[23:0], encompassing peripheral
slave MMIO registers

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 83

Protection Units

Figure 9-7. Programmable Protection Structure Pair

ATT 031

U
R

U
W

U
X

 =

P
R

P
W

P
X

 =

N
S

P
C

_
M

A
S

K
[1

5
:1

]

E
N

A
B

L
E

D

R
E

G
IO

N
_

S
IZ

E

ADDR 03
1

S
U

B
R

E
G

IO
N

_
D

IS
A

B
L

E

A
D

D
R

[2
3

:0
]

P
C

_
M

A
T

C
H

Slave structure

ATT 03
1

U
R

 =

U
W

U
X

 =

P
R

 =

P
W

P
X

 =

N
S

P
C

_
M

A
S

K
[1

5
:1

]

E
N

A
B

L
E

D

C
o

n
st

a
n

t
R

E
G

IO
N

_
S

IZ
E

03
1

Constant
SUBREGION_DISABLE

Constant ADDR[23:0], encompassing master and
slave protection structures

P
C

_
M

A
T

C
H

Master structure

PPU, programmable protection structure pair

ATT 03
1

U
R

U
W

U
X

P
R

P
WP
X

N
S

P
C

_
M

A
S

K
[1

5
:1

]

E
N

A
B

LE
D

R
E

G
IO

N
_

S
IZ

E

ADDR 03
1

S
U

B
R

E
G

IO
N

_
D

IS
A

B
L

E

A
D

D
R

[2
3

:0
]

P
C

_
M

A
T

C
H

Slave structure

ATT 03
1

U
R

 =

U
W

U
X

 =

P
R

 =

P
W

P
X

 =

N
S

P
C

_
M

A
S

K
[1

5
:1

]

E
N

A
B

L
E

D

C
o

n
st

a
n

t
R

E
G

IO
N

_
S

IZ
E

03
1

Constant
SUBREGION_DISABLE

Constant ADDR[23:0], encompassing master and
slave protection structures

P
C

_
M

A
T

C
H

Master structure

SMPU, programmable protection structure pair

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 84

Protection Units

Note: By default, both CPUs (CM0+ and CM4) are in protection context 0 when they come out of reset. In protection context
0, the master is able to access all memory regardless of its protection settings. The master’s protection context will need to be
changed from protection context 0 to make any protection structure configuration effective. Multiple protection structures may
be preconfigured as part of the boot code, which sets up a secure environment at boot time. See the Boot Code chapter on
page 173 for details of these configurations.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 85

10. DMA Controller

The DMA transfers data to and from memory, peripherals, and registers. These transfers occur independent from the CPU.
The DMA can be configured to perform multiple independent data transfers. All data transfers are managed by a channel.
There can be up to 32 channels in the DMA. The number of channels in the DMA controller can vary with devices. Refer to
the device datasheet for the number of channels supported in the device. A channel has an associated priority; channels are
arbitrated according to their priority.

10.1 Features

The DMA controller has the following features:

■ Supports up to 32 channels per DMA controller; see the device datasheet for details

■ Supports multiple DMA controller instances in a device

■ Four levels of priority for each channel

■ Descriptors are defined in memory and referenced to the respective channels

■ Supports single, 1D, or 2D transfer modes for a descriptor

■ Supports transfer of up to 65536 data elements per descriptor

■ Configurable source and destination address increments

■ Supports 8-bit, 16-bit, and 32-bit data widths at both source and destination

■ Configurable input trigger behavior for each descriptor

■ Configurable interrupt generation in each descriptor

■ Configurable output trigger generation for each descriptor

■ Descriptors can be chained to other descriptors in memory

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 86

DMA Controller

10.2 Architecture

Figure 10-1. DMA Controller

A data transfer is initiated by an input trigger. This trigger
may originate from the source peripheral of the transfer, the
destination peripheral of the transfer, CPU software, or from
another peripheral. Triggers provide Active/Sleep
functionality and are not available in Deep Sleep and
Hibernate power modes.

The data transfer details are specified by a descriptor.
Among other things, this descriptor specifies:

■ The source and destination address locations and the
size of the transfer.

■ The actions of a channel; for example, generation of
output triggers and interrupts. See the Interrupts chapter
on page 55 for more details.

■ Data transfer types can be single, 1D, or 2D as defined
in the descriptor structure. These types define the
address sequences generated for source and
destination. 1D and 2D transfers are used for “scatter
gather” and other useful transfer operations.

10.3 Channels

The DMA controller supports multiple independent data
transfers that are managed by a channel. Each channel

connects to a specific system trigger through a trigger
multiplexer that is outside the DMA controller.

Channel priority: A channel is assigned a priority
(CHi_CTL.PRIO) between 0 and 3, with 0 being the highest
priority and 3 being the lowest priority. Channels with the
same priority constitute a priority group. Priority decoding
determines the highest priority pending channel, which is
determined as follows.

■ The highest priority group with pending channels is
identified first.

■ Within this priority group, round-robin arbitration is
applied.

Channel state: At any given time, one channel actively
performs a data transfer. This channel is called the active
channel. A channel can be in one of four channel states.
The active channel in a DW controller can be determined by
reading the DWx_STATUS[ACTIVE] and
DWx.STATUS[CH_IDX].

Pending state of a channel is determined by reading the
DW_CH_STRUCT_CH_STATUS[PENDING] associated
with that channel. If a channel is enabled and is not in the
Pending or Active state, then it is considered blocked.

Trigger
Multiplexer

System
Triggers

Pending
triggers

Priority
Decoder

Data Transfer Engine
(active request)

Bus slave
interface

Bus master
interface

DMA
registers

DescriptorsDescriptorsDescriptors

Memory

DMA

Trigger out

Interrupt

Table 10-1. Channel States

Channel State Description

Disabled The channel is disabled by setting CHi_CTL.ENABLED to ‘0’. The channel trigger is ignored in this state.

Blocked The channel is enabled and is waiting for a trigger to initiate a data transfer.

Pending
The channel is enabled and has received an active trigger. In this state, the channel is ready to initiate a data transfer but
waiting for it to be scheduled.

Active
The channel is enabled, has received an active trigger and has been scheduled. It is actively performing data transfers. If
there are multiple channels pending, the highest priority pending channel is scheduled.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 87

DMA Controller

The data transfer associated with a trigger is made up of
one or more ‘atomic transfers’ or ‘single transfers’; see
Table 10-2 for a better understanding. A single trigger could
be configured to transfer multiple “single transfers”.

A channel can be marked preemptable
(CHi_CTL.PREEMPTABLE). If preemptable, and there is a
higher priority pending channel, then that higher priority
channel can preempt the current channel between single
transfers. If a channel is preempted, the existing single
transfer is completed; the current channel goes to pending
state and the higher priority channel is serviced. On
completion of the higher priority channel's transfer, the
pending channel is resumed. Note that preemption has an
impact on the data transfer rates of the channel being
preempted. Refer to “DMA Performance” on page 93 for
these performance implications.

A channel has two access control attributes that are used by
the shared memory protection units (SMPUs) and peripheral
protection units (PPUs) for access control. These fields are
typically inherited from the master that modified the
channel’s control register.

■ The Privileged Mode (CHi_CTL.P) attribute can be set to
privileged or user.

■ The Non-secure (CHi_CTL.NS) attribute can be set to
secure or non-secure.

A descriptor associated with each channel describes the
data transfer. The descriptor is stored in memory and
CHi_CURR_PTR provides the descriptor address
associated with channel “i” and Chi_IDX provides the
current X and Y indices into the descriptor.

A channel’s descriptor state is encoded as part of the
channel’s register state. The following registers provide a
channel’s descriptor state:

■ CH_CTL. This register provides generic channel control
information.

■ CH_CURR_PTR. This register provides the address of
the memory location where the current descriptor is
located. The user firmware must initialize this register. If
the descriptors are chained, the DMA hardware
automatically sets this register to the next descriptor
pointer.

■ CH_IDX. This register provides the current X and Y
indices of the channel into the current descriptor. User
firmware must initialize this register. DMA hardware sets
the X and Y indices to 0, when advancing from the
current descriptor to the next descriptor in a descriptor
list.

Note that channel state is retained in Deep Sleep power
mode.

10.3.1 Channel Interrupts

Every DMA channel has an interrupt line associated with it.
The INTR_TYPE parameter in the descriptor determines the

event that will trigger the interrupt for the channel. In
addition each DMA channel has INTR, INTR_SET,
INTR_MASK, and INTR_MASKED registers to control their
respective interrupt lines. INTR_MASK can be used to mask
the interrupt from the DMA channel. The INTR and
INTR_SET can be used to clear and set the interrupt,
respectively, for debug purposes.

The DW_CH_STRUCT_CH_STATUS[INTR_CAUSE] field
provides the user a means to determine the cause of the
interrupt being generated. The following are different values
for this register:

■ 0: No interrupt generated

■ 1: Interrupt based on transfer completion configured
based on INTR_TYPE field in the descriptor

■ 2: Source bus error

■ 3: Destination bus error

■ 4: Misaligned source address

■ 5: Misaligned destination address

■ 6: Current descriptor pointer is null

■ 7: Active channel is in disabled state

■ 8: Descriptor bus error

■ 9-15: Not used.

For error related interrupt causes (INTR_CAUSE is 2, 3,...,
8), the channel is disabled (hardware sets
CH_CTL.ENABLED to ‘0’).

The bus errors are typically caused by incompatible
accesses to the addresses in question. This may be due to
those addresses being protected or having read or write
restrictions. Source and destination bus errors can also
occur due to mismatch in data sizes (see “Transfer Size” on
page 91).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 88

DMA Controller

10.4 Descriptors

The data transfer between a source and destination in a channel is configured using a descriptor. Descriptors are stored in
memory. The descriptor pointer is specified in the DMA channel registers. The DMA controller does not modify the descriptor
and treats it as read only. A descriptor is a set of up to six 32-bit registers that contain the configuration for the transfer in the
associated channel. There are three types of descriptors.

Single Transfer:

The following pseudo code illustrates a single transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
DST_ADDR[0] = (t_DATA_SIZE) SRC_ADDR[0];

1D Transfer:

The following pseudo code illustrates a 1D transfer. Note that the 1D transfer is represented by a loop with each iteration
executing a single transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE

Table 10-2. Descriptor Types

Descriptor Type Description

Single transfer

Transfers a single data element

1D transfer

Performs a one-dimensional “for loop”. This transfer is made up of X number of single transfers

2D transfer

Performs a two-dimensional “for loop”. This transfer is made up of Y number of 1D transfers

A B

A

A+1

A+2

A+X-1

B

B+1

B+2

B+ X-1

A

A+1

A+2

A+X-1

B

B+1

B+2

B+X-1

A+X

A+X+1

A+X+2

A+2X-1

B+X

B+X+1

B+X+2

B+2X-1

A+(X*Y)-1 B+X*Y-1

1st 1D transfer

2nd 1D transfer

Yth 1D transfer

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 89

DMA Controller

for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
DST_ADDR[X_IDX * DST_X_INCR] =
 (t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR];
}

2D Transfer:

The following pseudo code illustrates a 2D transfer. Note that the 2D transfer is represented by a loop with each iteration
executing an inner loop, which is the 1D transfer.
// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA_SIZE is the type associated with the DATA_SIZE
for (Y_IDX = 0; Y_IDX <= Y_COUNT; Y_IDX++) {
 for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
DST_ADDR[X_IDX * DST_X_INCR + Y_IDX * DST_Y_INCR] =
 (t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR + Y_IDX * SRC_Y_INCR];
 }
}

The parameters in the descriptor help configure the different aspects of the transfers explained.

Figure 10-2 shows the structure of a descriptor.

Figure 10-2. Descriptor Structure

10.4.1 Address Configuration

Source and Destination Address: The source and
destination addresses are set in the respective registers in
the descriptor. These set the base addresses for the source
and destination location for the transfer. In case the
descriptor is configured to transfer a single element, this
field holds the source/destination address of the data
element. If the descriptor is configured to transfer multiple
elements with source address or destination address or both
in an incremental mode, this field will hold the address of the
first element that is transferred.

DESCR_TYPE: This field configures whether the descriptor
has a single, 1D, or 2D type.

Trigger input type, TR_IN_TYPE: This field determines
how the DMA engine responds to input trigger signal. This
field can be configured for one of the following modes:

■ Type 0: A trigger results in execution of a single transfer.
Regardless of the DESCR_TYPE setting, a trigger input
will trigger only a single element transfer. For example,
in a 1D transfer, the DMA will transfer only one data
element in every trigger.

■ Type 1: A trigger results in the execution of a single 1D
transfer. If the DESCR_TYPE was set to single transfer,
the trigger signal will trigger the single transfer specified
by the descriptor. For a DESCR_TYPE set to 1D
transfer, the trigger signal will trigger the entire 1D
transfer configured in the descriptor. For a 2D transfer,

Descriptor

Source Address
DESCR_SRC

Destination Address
DESCR_DST

X Size
SRC_X_INR DST_X_INCR

Y Size
SRC_Y_INR DST_Y_INCR

Next Descriptor Address
DESCR_NEXT_PTR

DESCR_TYPE
DESCR_CTL

TR_IN_TYPE
SCR_TRANSFER_SIZE

TR_OUT_TYPE
DST_TRANSFER_SIZE

DATA_SIZE

WAIT_FOR_DEACTINTR_TYPE CH_DISABLE

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 90

DMA Controller

the trigger signal will trigger only a single iteration of the
Y loop transfer.

■ Type 2: A trigger results in execution of the current
descriptor. Regardless of DESCR_TYPE, the trigger will
execute the entire descriptor. If there was a next
descriptor configured for the current descriptor, this
trigger setting will not automatically trigger the next
descriptor.

■ Type 3: A trigger results in execution of the current
descriptor and also triggering the next descriptor. The
execution of the next descriptor from this point will be
determined by the TR_IN_TYPE setting of the next
descriptor.

Trigger out type, TR_OUT_TYPE: This field determines
what completion event will generate the output trigger
signal. This field can be configured to one of the following
modes:

■ Type 0: Generates a trigger output for completion of
every single element transfer.

■ Type 1: Generates a trigger output for completion of a
1D transfer

■ Type 2: Generates a trigger output for completion of the
current descriptor. This trigger output is generated
independent of the state of the DESCR_NEXT_PTR.

■ Type 3: Generates a trigger output on completion of the
current descriptor, when the current descriptor is the last
descriptor in the descriptor chain. This means a trigger is
generated when the descriptor execution is complete
and the DESCR_NEXT_PTR is ‘0’.

Interrupt Type, INTR_TYPE: This field determines which
completion event will generate the output interrupt signal.
This field can be configured to one of the following modes:

■ Type 0: Generates an interrupt output for completion of
every single element transfer.

■ Type 1: Generates an interrupt output for completion of a
1-D transfer.

■ Type 2: Generates an interrupt output for completion of
the current descriptor. This interrupt output is generated
independent of the state of the DESCR_NEXT_PTR.

■ Type 3: Generates an interrupt output on completion of
the current descriptor, when the current descriptor is the
last descriptor in the descriptor chain. This means an
interrupt is generated when the descriptor execution is
complete and the DESCR_NEXT_PTR is ‘0’.

WAIT_FOR_DEACT: When the DMA transfer based on the
TR_IN_TYPE is completed, the data transfer engine checks
the state of trigger deactivation. The data transfer on the
second trigger is initiated only after deactivation of the first.
The WAIT_FOR_DEACT parameter will determine when the
trigger signal is considered deactivated. The first DMA
transfer is activated when the trigger is activated, but the
transfer is not considered complete until the trigger is
deactivated. This field is used to synchronize the controller’s

data transfers with the agent that generated the trigger. This
field has four settings:

■ 0 – Pulse Trigger: Do not wait for deactivation. When a
trigger is detected, the transfer is initiated. After
completing the transfer, if the trigger is still active then it
is considered as another trigger and the subsequent
transfer is initiated immediately.

■ 1 – Level-sensitive waits four slow clock cycles after the
transfer to consider as a deactivation. When a trigger is
detected, the transfer is initiated. After completing the
transfer, if the trigger is still active then it is considered
as another trigger after waiting for four cycles. Then, a
subsequent transfer is initiated. The transfer
corresponding to the trigger is considered complete only
at the end of the four additional cycles. Even trigger
output events will be affected based on this delay. This
parameter adds a four-cycle delay in each trigger
transaction and hence affects throughput.

■ 2 – Level-sensitive waits 16 slow clock cycles after the
transfer to consider as a deactivation. When a trigger is
detected, the transfer is initiated. After completing the
transfer, if the trigger is still active then it is considered
as another trigger after waiting for 16 cycles. Then, a
subsequent transfer is initiated. The transfer
corresponding to the trigger is considered complete only
at the end of the 16 additional cycles. Even trigger
output events will be affected based on this delay. This
parameter adds a 16-cycle delay in each trigger
transaction and hence affects throughput.

■ 3 – Pulse trigger waits indefinitely for deactivation. The
DMA transfer is initiated after the trigger signal
deactivates. The next transfer is initiated only if the
trigger goes low and then high again. A trigger signal
that remains active or does not transition to zero
between two transaction will simply stall the DMA
channel.

The WAIT_FOR_DEACT field is used in a system to
cater to delayed response of other parts of the system to
actions of the DMA. Consider an example of a TX FIFO
that has a trigger going to the DMA when its not full.
Free space in FIFO will trigger a DMA transfer to the
FIFO, which in turn will deactivate the trigger. However,
there can be a delay in this deactivation by the agent,
which may cause the DMA to have initiated another
transfer that can cause a FIFO overflow. This can be
avoided by using the four or 16 clock cycle delays.

X Count: This field determines the number of single
element transfers present in the X loop (inner loop). This
field is valid when the DESCR_TYPE is set to 1D or 2D
transfer.

Source Address Increment (X loop) (SCR_X_INCR): This
field configures the index by which the source address is to
be incremented for every iteration in an X loop. The field is
expressed in multiples of SRC_TRANSFER_SIZE. This field
is a signed number and hence may be decrementing or

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 91

DMA Controller

incrementing. If the source address does not need to be
incremented, you can set this parameter to zero.

Destination Address Increment (X loop) (DST_X_INCR):
This field configures the index by which the destination
address is to be incremented, for every iteration in an X
loop. The field is expressed in multiples of
DST_TRANSFER_SIZE. This field is a signed number and
hence may be decrementing or incrementing. If the
destination address does not need to be incremented, you
can set this parameter to zero.

Y Count: This field determines the number of 1-D transfers
present in the Y loop (outer loop). This field is valid when the
DESCR_TYPE is set to 2-D transfer.

Source Address Increment (Y loop) (SCR_Y_INCR): This
field configures the index by which the source address is to
be incremented, for every iteration in a Y loop. The field is
expressed in multiples of SRC_TRANSFER_SIZE. This field
is a signed number and hence may be decrementing or
incrementing. If the source address does not need to be
incremented, you can set this parameter to zero.

Destination Address Increment (X loop) (DST_Y_INCR):
This field configures the index by which the destination
address is to be incremented, for every iteration in a Y loop.
The field is expressed in multiples of
DST_TRANSFER_SIZE. This field is a signed number and
hence may be decrementing or incrementing. If the
destination address does not need to be incremented, you
can set this parameter to zero.

Channel Disable (CH_DISABLE): This field specifies
whether the channel is disabled or not after completion of
the current descriptor (independent of the value of the

DESCR_NEXT_PTR). A disabled channel will ignore its
input triggers.

10.4.2 Transfer Size

The word width for a transfer can be configured using the
transfer/data size parameter in the descriptor. The settings
are diversified into source transfer size, destination transfer
size, and data size. The data size parameter (DATA_SIZE)
sets the width of the bus for the transfer. The source and
destination transfer sizes set by SCR_TRANSFER_SIZE
and DST_TRANSFER_SIZE can have a value either the
DATA_SIZE or 32 bit. DATA_SIZE can have a 32-bit, 16-bit,
or 8-bit setting.

The source and destination transfer size for the DMA must
match the addressable width of the source and destination,
regardless of the width of data that must be moved. The
DATA_SIZE parameter will correspond to the width of the
actual data. For example, if a 16-bit PWM is used as a
destination for DMA data, the DST_TRANSFER_SIZE must
be set to 32 bit to match the width of the PWM register,
because the peripheral register width for the TCPWM block
(and most PSoC 6 MCU peripherals) is always 32-bit wide.
However, in this example the DATA_SIZE for the destination
may still be set to 16 bit because the 16-bit PWM only uses
two bytes of data. SRAM and Flash are 8-bit, 16-bit, or 32-
bit addressable and can use any source and destination
transfer sizes to match the needs of the application.

Table 10-3 summarizes the possible combinations of the
transfer size settings and its description.

10.4.3 Descriptor Chaining

Descriptors can be chained together. The DESCR_NEXT_PTR field contains a pointer to the next descriptor in the chain. A
channel executes the next descriptor in the chain when it completes executing the current descriptor. The last descriptor in
the chain has DESCR_NEXT_PTR set to ‘0’ (NULL pointer). A descriptor chain is also referred to as a descriptor list. It is

Table 10-3. Transfer Size Settings

DATA_SIZE
SCR_TRANSFER_

SIZE
DST_TRANSFER_

SIZE
Typical Usage Description

8-bit 8-bit 8-bit Memory to Memory No data manipulation

8-bit 32-bit 8-bit Peripheral to Memory Higher 24 bits from the source dropped

8-bit 8-bit 32-bit Memory to Peripheral Higher 24 bits zero padded at destination

8-bit 32-bit 32-bit Peripheral to Peripheral
Higher 24 bits from the source dropped and
higher 24 bits zero padded at destination

16-bit 16-bit 16-bit Memory to Memory No data manipulation

16-bit 32-bit 16-bit Peripheral to Memory Higher 16 bits from the source dropped

16-bit 16-bit 32-bit Memory to Peripheral Higher 16 bits zero padded at destination

16-bit 32-bit 32-bit Peripheral to Peripheral
Higher 16 bits from the source dropped and
higher 16-bit zero padded at destination

32-bit 32-bit 32-bit Peripheral to Peripheral No data manipulation

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 92

DMA Controller

possible to have a circular list; in a circular list, the execution continues indefinitely until there is an error or the channel or the
controller is disabled by user code.

10.5 DMA Controller

Figure 10-3. DMA Controller Overview

10.5.1 Trigger Selection

Trigger signals can be generated from different sections of
the chips. A trigger multiplexer block helps route these
trigger signals to the destination. The DMA is one such
destination of triggers. The trigger multiplexer block is
outside the DMA block and is discussed in the Trigger
Multiplexer Block chapter on page 273.

10.5.2 Pending Triggers

Pending triggers keep track of activated triggers by locally
storing them in pending bits. This is essential because
multiple channel triggers may be activated simultaneously,
whereas only one channel can be served by the data
transfer engine at a time. This component enables the use
of both level-sensitive (high/‘1’) and pulse-sensitive (two
high/‘1’ clk_slow cycles) triggers.

■ Level-sensitive triggers are associated with a certain
state, for example, a FIFO being full. These triggers
remain active as long as the state is maintained. It is not
required to track pending level-sensitive triggers in the
DMA controller because the triggers are maintained
outside the controller.

■ Pulse-sensitive triggers are associated with a certain
event, for example, an ADC sample has become
available. It is essential to track these triggers in the
DMA controller because the trigger pulse may disappear
before it is served by the data transfer engine. Pulse
triggers should be high/‘1’ for two clk_slow cycles.

The priority decoder determines the highest priority
pending channel.

The data transfer engine is responsible for the data
transfer from a source location to a destination location.
When idle, the data transfer engine is ready to accept the
highest priority activated channel. It is also responsible for
reading the channel descriptor from memory.

Master I/F is an AHB-Lite bus master that allows the DMA
controller to initiate AHB-Lite data transfers to the source
and destination locations as well as to read the descriptor
from memory.

Slave I/F is an AHB-Lite bus slave that allows the main CPU
to access DMA controller control/status registers.

10.5.3 Output Triggers

Each channel has an output trigger. This trigger is high for
two slow clock cycles. The trigger is generated on the
completion of a data transfer. At the system level, these
output triggers can be connected to the trigger multiplexer
component. This connection allows a DMA controller output
trigger to be connected to a DMA controller input trigger. In
other words, the completion of a transfer in one channel can
activate another channel or even reactivate the same
channel.

DMA output triggers also connect to digital system
interconnects (DSI) and some DSI signals connect to the
trigger multiplexer inputs. Trigger outputs routing to other
DMA channels or other peripheral trigger inputs is achieved
using the trigger multiplexer. Refer to the Trigger Multiplexer
Block chapter on page 273.

Trigger
Multiplexer

System
Triggers

Pending
triggers

Priority
Decoder

Data Transfer Engine
(active request)

Bus slave
interface

Bus master
interface

DMA
registers

DescriptorsDescriptorsDescriptors

Memory

DMA

Trigger out

Interrupt

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 93

DMA Controller

10.5.4 Status registers

The controller status register (DWx_STATUS) contains the
following information.

■ ACTIVE – Active channel present, yes/no.

■ P – Active channel's access control user/privileged

■ NS – Active channel's access control secure/non-secure

■ CH_IDX – Active channel index if there is an active
channel

■ PRIO – Active channel priority

■ PREEMPTABLE – Active channel pre-emptable or not

■ STATE – State of the DW controller state machine. The
following states are specified:

❐ Default/inactive state

❐ Loading descriptor: This state is when the controller
has recognized the channel that was triggered and
become active and is now loading its respective
descriptor.

❐ Loading data element: Reading data from source
address

❐ Storing data element: Writing data into the destina-
tion address

❐ Update of active channel control information

❐ Waiting for input trigger deactivation

10.5.5 DMA Performance

The DMA block works on the clk_slow domain and hence all
clocks described in this section are in clk_slow units.

Every time a DMA channel is triggered the DMA hardware
goes through the following steps:

■ Trigger synchronization

■ Detection, priority decoding, and making channel
pending

■ Start state machine and load channel configuration

■ Load DMA descriptor

■ Load next DMA descriptor pointer

■ Moving first element of data from source to destination.

Each of these steps involve multiple cycles for completion.
Table 10-4 shows the number of cycles needed for each
step.

For subsequent transfers on a preloaded descriptor, cycles are needed only to move the data from source to destination.
Therefore, transfers such as 1-D and 2-D, which are not preempted, incurs all the cycles only for the first transfer; subsequent
transfers will cost three cycles.

Based on the configuration of TRIG_IN_TYPE, the trigger synchronization cycles may be incurred for each single element
transfer or for each 1-D transfer.

The descriptor is four words long for a single transfer type, five words for 1-D transfer, and six words for a 2-D transfer. Hence,
the number of cycles needed to fetch a descriptor will vary based on its type.

Another factor to note is the latency in data or descriptor fetch due to wait states or bus latency.

The DMA performance for different types of transfers can be summarized as follows.

■ Single transfer

❐ 14 cycles per transfer + latency due to wait states or bus latency

■ 1D transfer

❐ To transfer n data elements

Number of cycles = 12 + n * 3 + m

Table 10-4. DMA Steps and Performance

Operation Cycles

Trigger Synchronization 2

Detection, priority decoding and making channel pending 1

Start state machine and load channel config 3

Load descriptors

4 for single transfer

5 for 1-D transfer

6 for 2-D transfer

Load next pointer 1

Moving data from source to destination 3

Total 14 for single transfer

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 94

DMA Controller

m is the total number of wait states seen by DMA while loading or storing descriptors or data. An additional cycle is
required for the first transfer, to load the X-Loop configuration register.

■ 2D transfer

❐ If the 2 D transfer is transferring n elements then

Number of cycles = 13 + n * 3 + m

m is total number of wait states seen by DMA while loading or storing descriptors or data. Two additional cycles are
required for the first transfer, to load the X-loop and Y-Loop configuration register.

Note: Descriptors in memory and memory wait states will also affect the descriptor load delay.

■ Wait states: Memory accesses can have a wait state associated with them. These wait states need to be accounted into
the calculation of throughput.

■ Channel arbitration: Some time channels are not immediately made active after reception of trigger. This is due to other
active channels in the system. This can lead to multiple cycles being lost before the channel is even made active.

■ Preemption: The choice of making a DMA channel preemptable impacts its performance. This is because every time a
channel is prempted:

❐ The channel is in a pending state for as long as the higher priority channel is running

❐ On resumption, the channel descriptor needs to be fetched again. This is additional cycles for every resume. So if
there are a large number of high-priority channels, making a low-priority channel preemptible can have adverse effects
on its throughput. On the other hand, if there is a low-priority channel that is transferring a large amount of data, then
not making it preemptable can starve other high-priority channels for too long.

Sometimes, users can also distribute channels across multiple DW blocks to avoid conditions of preemption and deal with
the contention at the bus arbitration level.

■ Bus arbitration: Several bus masters access the bus, including the CPU cores and multiple DMA (DW) and DMAC. This
makes any access to data movement over the bus subject to arbitration with other masters. Actions such as fetching the
descriptor or data can be stalled by arbitration. The arbitration of the bus is based on the arbitration scheme configured in
PROT_SMPU_MSx_CTL[PRIO]

■ Transfer width: The width of the transfer configured by the Data_size parameter in the descriptor is important in the
transfer throughput calculation. 32-bit transfers are four times faster than 8-bit transfers.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 95

11. Cryptographic Function Block (Crypto)

The Cryptographic block (Crypto) provides hardware implementation and acceleration of cryptographic functions.
Implementation in hardware takes less time and energy than the equivalent firmware implementation. In addition, the block
provides True Random Number generation functionality in silicon, which is not available in firmware.

11.1 Features
■ Advanced encryption standard (AES)

■ Data Encryption and Triple Data Encryption Standards (DES, TDES)

■ Secure Hash Algorithm (SHA)

■ Cyclic redundancy checking (CRC)

■ Pseudo random number generator (PRNG)

■ True random number generator (TRNG)

■ Vector unit (VU) to support asymmetric key cryptography, such as RSA and ECC.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 96

Cryptographic Function Block (Crypto)

11.2 Architecture

The following figure gives an overview of the cryptographic block.

Figure 11-1. Crypto Block Diagram

The crypto block has the following interfaces:

■ An AHB-Lite slave interface connects the block to the
AHB-Lite infrastructure. This interface supports 8/16/32-
bit AHB-Lite transfers. MMIO register accesses are 32-
bit only. Memory buffer accesses can be 8/16/32-bit.

■ An AHB-Lite master interface connects the block to the
AHB-Lite infrastructure. This interface supports 8/16/32-
bit AHB-Lite transfers. The interface enables the crypto
block to access operation operand data from system
memories, such as Flash or SRAM.

■ A single interrupt signal “interrupt” is used to signal the
completion of an operation.

■ A clock signal “clk_sys” interface connects to the SRSS.

The block has the following components:

■ An AHB-Lite slave interface.

■ An AHB-Lite master interface.

■ A component that contains MMIO control and status
registers.

■ A memory buffer, for internal operation operand data.

■ A memory interface that directs operation operand data
requests to either the block internal memory buffer or to
the AHB-Lite master interface.

■ An instruction controller component that decodes
instructions from an instruction FIFO. The controller
issues the instructions to the function specific
components.

■ Cryptographic function specific components.

The following sections explain each component in detail.

11.3 Instruction Controller

The instruction controller consists of an instruction FIFO, an
instruction decoder, and a general-purpose register file.

■ The instruction FIFO is software-programmable through
MMIO registers that are accessed through the AHB-Lite
slave interface. Software writes instructions and
instruction operand data to the instruction FIFO. The
FIFO consists of eight 32-bit FIFO entries.

■ The instruction decoder decodes the instructions (and
the associated instruction operand data) from the
instruction FIFO. The instruction decoder issues the
decoded instruction to a specific functional component.
The functional component is responsible for instruction
execution.

■ The general-purpose register file consists of sixteen 32-
bit registers. An instruction specifies the specific use of
register-file registers. Registers are used to specify
instruction operand data, such as memory locations (for
example, for DES, AES, and SHA instructions) or
immediate data operations (for example, for vector unit
instructions).

AHB-Lite Slave Interface
AHB-Lite Master

Interface

Instruction
FIFO

Memory Buffer
(up to 16KB)

Memory interface

Others
TRNG
PRNG
CRC

Asymmetric
RSA
ECC

Symmetric
DES

TDES
AES

Hashing
SHA1
SHA2
SHA3

Interrupt

AHB-Lite infrastructure

clk_sys
Control

&
Status
(MMIO)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 97

Cryptographic Function Block (Crypto)

11.3.1 Instructions

An instruction consists of a sequence of one, two, or three
instruction words. Most instructions are encoded by a single
instruction word.

The instruction FIFO can hold up to eight 32-bit instruction
words. A CPU writes instruction words to the instruction
FIFO (INSTR_FF_WR register) and the crypto block
decodes the instruction words to execute the instructions.
INSTR_FF_STATUS.USED specifies how many of the eight
instruction FIFO entries are used. The instruction FIFO
decouples the progress of CPU execution from the crypto
block execution: the CPU can write new instruction words to
the FIFO, while the block executes previously written
instructions.

There are multiple interrupt causes associated with the
instruction FIFO and the instruction decoder:

■ The INTR.INSTR_FF_OVERFLOW interrupt cause is
activated on a write to a full instruction FIFO.

■ THE INTR.INSTR_FF_LEVEL interrupt cause is
activated when the number of used FIFO entries
(INSTR_FF_STATUS.USED) is less than a specified
number of FIFO entries (INSTR_FF_CTL.LEVEL).

■ The INTR.INSTR_OPC_ERROR interrupt cause is
activated when an instruction's operation code is not
defined.

■ The INTR.INSTR_CC_ERROR interrupt cause is
activated when a vector unit instruction has an
undefined condition code.

Most instructions perform specific cryptographic
functionality. For example, the AES instruction performs and
Advanced Encryption Standard (AES) block cipher
operation. Some instructions perform more generic
functionality: most generic instructions move operand data
between different locations. Higher level symmetric cipher
and hash functionality is implemented using a combination
of cryptographic instructions and generic instructions.
Higher level asymmetric cipher functionality is implemented
using a set of vector unit (VU) instructions.

11.3.2 Instruction Operands

The instruction operands are found in one of the following
locations:

■ System memory

■ Memory buffer

■ Instruction FIFO instruction words

■ Load and store FIFOs

■ Register buffer

■ Vector unit register-file

System memory. The system memory includes all memory-
mapped memories attached to the bus infrastructure that

are accessible by the crypto block through the master bus
interface.

Memory buffer. The crypto block memory buffer is an
internal SRAM with a capacity of up to 16 KB. This internal
SRAM provides better latency and bandwidth characteristics
than the system memory. Therefore, frequently accessed
vector unit instruction operand data is typically located in the
memory buffer.

Both the block’s external system memory and internal
memory buffer are accessed through the same memory
interface component. The access address specifies if the
access is to the system memory or the internal memory
buffer (also see VU_CTL.ADDR[31:14]).

External bus masters can access both the system memory
and the crypto’s internal memory. The external bus masters
access the internal memory through the slave bus interface.

Instruction FIFO. For some instructions, immediate
operand data is provided by the instruction words. The
limited 32-bit instruction words only allow for limited
immediate operand data.

Load and store FIFOs. Most instructions have stream-like
operand data: sequences of bytes that are specified by the
access address of the start byte. The two load FIFOs
provide access to source operand data and the single store
FIFO provides access to destination operand data. Typically,
vector unit instruction operand data is “streamed” from the
crypto block memory buffer.

Register buffer. Most symmetric and hash cryptographic
instructions benefit from a large (2048-bit) register buffer.
This register buffer provides access flexibility that is not
provided by the load and store FIFOs. The register buffer is
shared by different instructions to amortize its cost (silicon
area). After an Active reset or a crypto block reset
(CTL.ENABLED), the register buffer is set to ‘0’.

Vector unit register file. Most vector unit instructions
perform large integer arithmetic functionality. For example,
the VU ADD instruction can add two 4096-bit numbers.
Typically, operand data is “streamed” from the memory
buffer. In addition, a vector unit register file with sixteen
registers is provided. Each register specifies the location of
a number (start word access address) and the size of the
number (the size is in bits).

11.3.3 Load and Store FIFO Instructions

The load and store FIFOs provide access to operand data in
a “streaming” nature. Operand data is streamed through the
memory interface from or to either the internal memory
buffer or the system memory.

Two independent load FIFOs provide access to streamed
source operand data. Each FIFO has a multi-byte buffer to
prefetch operand data.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 98

Cryptographic Function Block (Crypto)

One store FIFO provides access to streamed destination
operand data. The FIFO has a multi-byte buffer to
temporarily hold the data before it is written to the memory
interface.

Streamed operand data is specified by a memory start
address and an operand size in bytes.

Three FIFO instructions are supported: FF_START,
FF_STOP, and FF_CONTINUE. The FF_START and
FF_STOP instructions are supported for both the load and
store FIFOs. The FF_CONTINUE instruction is only
supported for the load FIFOs. The FF_START and
FF_CONTINUE instructions consist of three instruction
words. The FF_STOP instruction consists of a single
instruction word.

Table 11-1. FF_START Instruction

Instruction Format FF_START (ff_identifier, address[31:0], size[31:0])

Encoding

IW0[31:24] = “operation code”
IW0[3:0] = ff_identifier // “8”: load FIFO 0,
 // “9”: load FIFO 1,
 // “12”: store FIFO
IW1[31:0] = address[31:0]
IW2[31:0] = size[31:0]

Mnemonic Operation Code Functionality

FF_START 0x70

Clear the FIFO multi-byte buffer. Start streaming size[31:0] operand data bytes,
starting at address[31:0].

This instruction is supported by both load and store FIFOs. For load FIFOs, data
bytes are read through the memory interface. For the store FIFO, data bytes are
written to the memory interface.

The INSTR_OPC_ERROR interrupt cause is set when the ff_identifier is not a legal
value.

Table 11-2. FF_STOP instruction

Instruction Format FF_STOP (ff_identifier)

Encoding

IW0[31:24] = “operation code”
IW0[3:0] = ff_identifier // “8”: load FIFO 0,
 // “9”: load FIFO 1,
 // “12”: store FIFO

Mnemonic Operation Code Functionality

FF_STOP 0x72

Stop streaming

This instruction is supported by both load and store FIFOs. For load FIFOs, the multi-
byte buffer is cleared. For the store FIFO, the multi-byte buffer is written to the mem-
ory interface; that is, the buffer is flushed.

The INSTR_OPC_ERROR interrupt cause is set when the ff_identifier is not a legal
value.

Table 11-3. FF_CONTINUE Instruction

Instruction Format FF_CONTINUE (ff_identifier, address[31:0], size[31:0])

Encoding

IW0[31:24] = “operation code”
IW0[3:0] = ff_identifier // “8”: load FIFO 0,
 // “9”: load FIFO 1,
IW1[31:0] = address[31:0]
IW2[31:0] = size[31:0]

Mnemonic Operation Code Functionality

FF_CONTINUE 0x71

Do not clear the FIFO multi-byte buffer. Continue streaming size[31:0] oper-
and data bytes, starting at address[31:0]. This instruction can only be started
when a previous FF_START or FF_CONTINUE instruction for the same load
FIFO has read all its operand data bytes from the memory interface (see
LOAD01/_FF_STATUS.BUSY).

This instruction is only supported by the load FIFOs.

The INSTR_OPC_ERROR interrupt cause is set when the ff_identifier is not a
legal value.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 99

Cryptographic Function Block (Crypto)

The status of the load and store FIFOs is provided through the LOAD0_FF_STATUS, LOAD1_FF_STATUS, and
STORE_FF_STATUS registers.

11.3.4 Register Buffer Instructions

The 2048-bit register buffer has two 1024-bit partitions: reg_buff[1023:0] and reg_buff[2047:1024]. The reg_buff[1023:0]
partition has eight 128-bit subpartitions:

■ block0[127:0] = reg_buff[0*128+127:0*128]

■ block1[127:0] = reg_buff[1*128+127:1*128]

■ block2[127:0] = reg_buff[2*128+127:2*128]

■ block3[127:0] = reg_buff[3*128+127:3*128]

■ block4[127:0] = reg_buff[4*128+127:4*128]

■ block5[127:0] = reg_buff[5*128+127:5*128]

■ block6[127:0] = reg_buff[6*128+127:6*128]

■ block7[127:0] = reg_buff[7*128+127:7*128]

The reg_buff[1023:0] partition consists of 128 bytes: Byte offset 0 identifies reg_buff[7:0] and Byte offset 127 identifies
reg_buff[1023:1016].

Some instructions work on the complete register buffer and some instructions work on 128-bit subpartitions.

Table 11-4. CLEAR Instruction

Instruction Format CLEAR ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

CLEAR 0x64

reg_buff[2047:0] = 0;
This instruction is used to set the register buffer to ‘0’. This instruction is useful to
prevent information leakage from the register buffer.

The instruction also sets DEV_KEY_STATUS.LOADED to '0'.

Table 11-5. SWAP Instruction

Instruction Format SWAP ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

SWAP 0x65

temp = reg_buff[1023:0];
reg_buff[1023:0] = reg_buff[2047:1024];
reg_buff[2047:1024] = temp;
This instruction swaps/exchanges the two register buffer partitions.

Table 11-6. XOR Instruction

Instruction Format XOR (offset[6:0], size[7:0])

Encoding
IW[31:24] = “operation code”
IW[14:8] = offset
IW[7:0] = size // in the range [0,128]

Mnemonic Operation Code Functionality

XOR 0x66

data = GetFifoData (LOAD0_FIFO, size);
data = data << (offset*8);
reg_buff[1023:0] = reg_buff[1023:0] ^ data;
This instruction always uses load FIFO 0.

Note: This instruction can only access the lower register buffer partition.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 100

Cryptographic Function Block (Crypto)

Some instructions work on (up to) 128-bit subpartitions or blocks. In addition, these instructions can work on the load and
store FIFOs. The instructions' source and destination operand identifiers are encoded as follows:

■ 0: block0[127:0] = reg_buff[0*128+127:0*128]

■ 1: block1[127:0] = reg_buff[1*128+127:1*128]

■ 2: block2[127:0] = reg_buff[2*128+127:2*128]

■ 3: block3[127:0] = reg_buff[3*128+127:3*128]

■ 4: block4[127:0] = reg_buff[4*128+127:4*128]

■ 5: block5[127:0] = reg_buff[5*128+127:5*128]

■ 6: block6[127:0] = reg_buff[6*128+127:6*128]

■ 7: block7[127:0] = reg_buff[7*128+127:7*128]

■ 8: load FIFO 0

■ 9: load FIFO 1

■ 12: store FIFO

Table 11-7. STORE Instruction

Instruction Format STORE (offset[6:0], size[7:0])

Encoding
IW[31:24] = “operation code”
IW[14:8] = offset
IW[7:0] = size // in the range [0,128]

Mnemonic Operation Code Functionality

STORE 0x67
data = reg_buff[1023:0]
data = data >> (offset*8);
SetFifoData (STORE_FIFO, size, data)

Table 11-8. BYTE_SET Instruction

Instruction Format BYTE_SET (offset[6:0], byte[7:0])

Encoding
IW[31:24] = “operation code”
IW[14:8] = offset
IW[7:0] = byte

Mnemonic Operation Code Functionality

BYTE_SET 0x68 reg_buff[offset*8 + 7: offset*8] = byte;

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 101

Cryptographic Function Block (Crypto)

Table 11-9. BLOCK_MOV Instruction

Instruction Format BLOCK_MOV (reflect[1], size[3:0], dst[3:0], src0[3:0])

Encoding

IW[31:24] = “operation code”
IW[23] = reflect
IW[19:16] = size
IW[15:12] = dst
IW[3:0] = src0

Mnemonic Operation Code Functionality

BLOCK_MOV 0x40

size = (size == 0) ? 16 : size;
data1 = data0 = GetBlock (src0, size);
if (reflect) { // assume size of 16 B / 128 bit
 temp = data0;
 for (i = 0; i < 16; i += 1) {
 for (j = 0; j < 8; j += 1) {
 // reflection of bits in a byte
 data1[8*i + j] = data0[8*i + 7-j];
 }
 }
}
SetBlock (dst, size, data1);

Table 11-10. BLOCK_XOR Instruction

Instruction Format BLOCK_XOR (size[3:0], dst[3:0], src1[3:0], src0[3:0])

Encoding

IW[31:24] = “operation code”
IW[19:16] = size
IW[15:12] = dst
IW[7:4] = src1
IW[3:0] = src0

Mnemonic Operation Code Functionality

BLOCK_XOR 0x41

size = (size == 0) ? 16 : size;
data0 = GetBlock (src0, size);
data1 = GetBlock (src1, size);
SetBlock (dst, size, data0 ^ data1);

Table 11-11. BLOCK_SET Instruction

Instruction Format BLOCK_SET (size[3:0], dst[3:0], byte[7:0])

Encoding

IW[31:24] = “operation code”
IW[19:16] = size
IW[15:12] = dst
IW[7:0] = byte

Mnemonic Operation Code Functionality

BLOCK_SET 0x42
size = (size == 0) ? 16 : size;
SetBlock (dst, size, {16{byte[7:0]}})

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 102

Cryptographic Function Block (Crypto)

GetBlock is defined as follows:
GetBlock (src, size) {
 switch (src) {
 0: return block0[127:0];
 1: return block1[127:0];
 2: return block2[127:0];
 3: return block3[127:0];
 4: return block4[127:0];
 5: return block5[127:0];
 6: return block6[127:0];
 7: return block7[127:0];
 default: return GetFifoData (src, size);
 }
}

SetBlock is defined as follows:
SetBlock (dst, size, data) {
 switch (dst) {
 0: block0[127:0] = data;
 1: block1[127:0] = data;
 2: block2[127:0] = data;
 3: block3[127:0] = data;
 4: block4[127:0] = data;
 5: block5[127:0] = data;
 6: block6[127:0] = data;
 7: block7[127:0] = data;
 default: SetFifoData (dst, size, data);
 }
}

Table 11-12. BLOCK_CMP Instruction

Instruction Format BLOCK_CMP (size[3:0], src1[3:0], src0[7:0])

Encoding

IW[31:24] = “operation code”
IW[19:16] = size
IW[7:4] = src1
IW[3:0] = src0

Mnemonic Operation Code Functionality

BLOCK_CMP 0x43

size = (size == 0) ? 16 : size;
data0 = GetSourceBlock (src0, size);
data1 = GetSourceBlock (src1, size);
RESULT.DATA |= (data0[size*8-1:0] != data1[size*8-1:0]);

Table 11-13. BLOCK_GCM Instruction

Instruction Format BLOCK_GCM (when GCM parameter is '1')

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

BLOCK_GCM 0x43

Perform a GCM multiplication:

■ {block2, block1} = XMUL (block1, block3)

■ block1 = GCM_Reduce ({block2, block1})
The instruction uses three specific 128-bit blocks. The XMUL operation is
part of the BLOCK_GCM instruction and is a carry-less multiplication. The
reduction is specific for the GCM cipher mode.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 103

Cryptographic Function Block (Crypto)

The GetFifoData function is defined as loading “size” bytes from a load FIFO. Up to 16 bytes can be loaded as data[127:0].
The first (top) loaded FIFO entry is mapped on data[7:0], the second loaded FIFO entry is mapped on data[15:8], and so on.
The SetFifoData function is defined as storing size bytes from a load FIFO. Up to 16 bytes can be stored as data[127:0]. The
first stored FIFO entry is mapped on data[7:0], the second stored FIFO entry is mapped on data[15:8], and so on.

11.4 Hash Algorithms

11.4.1 SHA1 and SHA2

The SHA1 and SHA2 functionality includes three hash instructions per the SHA standard (FIPS 180-4).

■ The SHA1 instruction provides all SHA1 functionality (SHA1 always uses 512-bit blocks).

■ The SHA2_256 instruction provides SHA2 functionality for 512-bit blocks.

■ The SHA2_512 instruction provides SHA2 functionality for 1024-bit blocks.

The instructions support different block sizes and hash sizes:

The SHA1 instruction supports a single algorithm with a specific message digest size. The SHA2_256 and SHA2_512
instructions support multiple algorithms with different message digest sizes.

A SHA algorithm calculates a fixed-length hash value from a
variable length message. The hash value is used to produce
a message digest or signature. It is computationally
impossible to change the message without changing the
hash value. The algorithm is stateless: a given message
always produces the same hash value. To prevent “replay
attacks”, a counter may be included in the message.

The variable length message must be preprocessed: a ‘1’ bit
must be appended to the message followed by ‘0’s and a bit
size field. The preprocessed message consists of an integer
multiple of 512 bit or 1024 bit blocks. The SHA component
processes a single block at a time:

■ The first SHA instruction on the first message block uses
an initial hash value as defined by the standard (each
SHA algorithm has a specific initial hash value).

■ Subsequent SHA instructions on successive message
blocks use the produced hash value of the previous SHA
operation.

The SHA instruction of the last message block produces the
final hash value. The message digest is a subset of this final
hash value.

The SHA instructions do not perform the following
functionality:

■ Preprocessing of a message.

■ Initialization of the register buffer with the algorithm’s
specific initial hash value.

■ Copy the algorithm’s message digest to memory.

Software is required to preprocess the message. The
FIFO_START instruction can be used to load (load FIFO)
the register buffer with the initial hash value and to store
(store FIFO) the message digest.

A SHA instruction uses “round weights” that are derived
from the message block. Each SHA round uses a dedicated
round weight. The “round weights” are derived on-the-fly (a
new round weight is calculated when needed, and replaces

Instruction Block Size Hash Size

SHA1 512 bits 160 bits

SHA2_256 512 bits 256 bits

SHA2_512 1024 bits 512 bits

Instruction Algorithm Hash Size Message Digest Size

SHA1 SHA-1 160 bits 160 bits

SHA2_256
SHA-224 256 bits 224 bits

SHA-256 256 bits 256 bits

SHA2_512

SHA-384 512 bits 384 bits

SHA-512 512 bits 512 bits

SHA-512/224 512 bits 224 bits

SHA-512/256 512 bits 256 bits

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 104

Cryptographic Function Block (Crypto)

a round weight from a previous round). The following table
provides the number of rounds.

The instructions use register buffer operands. Specifically,
the instructions use reg_buff[2047:0]:

■ reg_buff[1023:0] is used for the round weights. Before
an instruction, this region is written with the message
block. The SHA1 and SHA2_256 instructions use

reg_buff[511:0] and the SHA2_512 instruction uses
reg_buff[1023:0].

■ reg_buff[1535:1024] is used for the hash value. Before
the first SHA instruction, this region is written with the
algorithm’s initial hash value. The algorithms with hash
values smaller than 512 bits only use the lower bits of
this region.

■ reg_buff[2047:1536] is used as a working copy of the
hash value. This working copy is updated during the
SHA rounds and copied to reg_buff[1535:1024] at the
end of the instruction.

The instructions are described in the following tables.

Instruction Rounds

SHA1 80

SHA2_256 64

SHA2_512 80

Table 11-14. SHA1 Instruction

Instruction Format SHA1 ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

SHA1 0x69

Perform a SHA1 function on a 512-bit message block in reg_buff[511:0] with
the current 160-bit hash value in reg_buff[1183:1024]. The resulting hash
value is provided in reg_buff[1183:1024]. At the end of the instruction,
reg_buff[1023:0] is set to ‘0’.

Table 11-15. SHA2_256 Instruction

Instruction Format SHA2_256 ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

SHA2_256 0x6a

Perform a SHA2 function on a 512-bit message block in reg_buff[511:0] with
the current 256-bit hash value in reg_buff[1279:1024]. The resulting hash
value is provided in reg_buff[1279:1024]. At the end of the instruction,
reg_buff[1023:0] is set to ‘0’.

Table 11-16. SHA2_512 Instruction

Instruction Format SHA2_512 ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

SHA2_512 0x6b

Perform a SHA2 function on a 1024-bit message block in reg_buff[1023:0]
with the current 512-bit hash value in reg_buff[1535:1024]. The resulting hash
value is provided in reg_buff[1535:1024]. At the end of the instruction,
reg_buff[1023:0] is set to ‘0’.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 105

Cryptographic Function Block (Crypto)

11.4.2 SHA3

The Secure Hash Algorithm-3 (SHA-3) is a family of six
algorithms:

■ SHA3-224

■ SHA3-256

■ SHA3-384

■ SHA3-512

■ SHAKE128

■ SHAKE256

Each of these algorithms relies on a specific instance of the
Keccak-p[b, nr] permutation, with b = 1600 and nr = 24. The
parameter b specifies the permutation bit width (1600 bits)
and the parameter nr specifies the number of permutation
rounds (24 rounds).

The permutation bit width b is the sum of:

■ The rate r, which is the number of consumed message
bits or produced digest bits per application of the Keccak
permutation (SHA3 instruction).

■ The capacity c, which is defined as b-r.

All six hash algorithms are constructed by padding a
message M and applying the Keccak-p[1600, 24]
permutation repeatedly. The algorithms differ in terms of the
rate r and the padding.

The permutation’s rate r determines the speed of the
algorithm: a higher rate requires less applications of the
permutation function (SHA3 instruction).

The permutation’s capacity c determines the security of the
algorithm: a higher capacity provides higher security.

Table 11-17 lists the algorithms’ rate and capacity. In
addition, it lists the size of the message digest. Note: The
SHA3 hash algorithms have fixed-length digests and the
SHAKE extendable output functions have variable-length
digests.

The padded message has a length that is an integer multiple of the rate r. The message is processed by repeatedly applying
the SHA3 permutation instruction. Each instruction application uses a message block of r bits. The permutation function
combines the message block of r bits with the current permutation state of b bits and calculates a new permutation state of b
bits.

■ The first SHA3 instruction on the first message block uses the first message block as the initial permutation state.

■ Subsequent SHA3 instructions on successive message blocks first combine the message block with an exclusive or
(XOR) with the current state and calculate a new permutation state.

The message digest is produced in a similar way as the message is consumed: each application of the permutation
instruction produces a message digest of r bits.

The SHA3 functionality includes a SHA3 instruction. The instruction performs a permutation on the 1600-bit state in
reg_buf[1599:0].

The instruction implements the permutation, all other functionality is implemented in sofftware (combination of message block
with the permutation state and copying the message digest to memory).

Table 11-18 describes the instruction.

Table 11-17. Algorithm Rate and Capacity

Algorithm Rate, Capacity Digest Length

SHA3-224 r = 1152 b, c = 448 b 224 b (28 B)

SHA3-256 r = 1088 b, c = 512 b 256 b (32 B)

SHA3-384 r = 832 b, c = 768 b 384 b (48 B)

SHA3-512 r = 576 b, c = 1024 b 512 b (64 B)

SHAKE128 r = 1344 b, c = 256 b Variable length

SHAKE256 r = 1088 b, c = 512 b Variable length

Table 11-18. SHA3 Instruction

Instruction Format SHA3 ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

SHA3 0x6c
Perform a SHA3 permutation on a 1600-bit state reg_buff[1599:0]. The result-
ing state is provided in reg_buff[1599:0].

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 106

Cryptographic Function Block (Crypto)

11.5 DES and TDES

The (T)DES functionality includes block ciphers and inverse block ciphers according to the DES and triple DES standard
(FIPS 46-3). Note that this standard was withdrawn, because it no longer provides the security that is needed to protect
federal government information.

(T)DES is supported for backward compatibility.

■ The DES block cipher encrypts a 64-bit block of plaintext data into a 64-bit block of ciphertext data.

■ The DES inverse block cipher decrypts a 64-bit block of ciphertext data into a 64-bit block of plaintext data.

The DES symmetric key consists of 64 bit. Only 56 bits are used by the algorithm, the other 8 bits are used for parity
checking.

Tripple-DES applies the DES block cipher three times. Each application uses a different key, which results in a 192-bit TDES
key bundle consisting of three 64-bit keys SK1, SK2 and SK3.

■ The TDES block cipher uses the DES block cipher with key SK1 to encrypt a 64-bit plaintext into a 64-bit block T1. Next, it
uses the DES inverse block cipher with key SK2 to decrypt the 64-bit block T1 into a 64-bit block T2. Next, it uses the DES
block cipher with key SK3 to encrypt the 64-bit block T2 into a 64-bit ciphertext.

■ The TDES inverse block cipher uses the DES inverse block cipher with key SK3 to decrypt a 64-bit ciphertext into a 64-bit
block T2. Next, it uses the DES block cipher with key SK2 to encrypt the 64-bit block T2 into a 64-bit block T1. Next, it
uses the DES inverse block cipher with key SK1 to decrypt the 64-bit block T1 into a 64-bit plaintext.

There are four instructions: DES, DES_INV, TDES and TDES_INV, which use register buffer operands. Specifically, the
instructions use the 128-bit subpartitions block0, block1, block4, block5, block6, and block7.

■ Subpartitions block0 and block1 are used for plaintext and ciphertext data.

■ Subpartitions block4, block5, block6, and block7 are used for key information (block5 and block7 are only used by the
TDES and TDES_INV instructions).

Unlike the BLOCK_MOV instruction, the (T)DES instructions use predetermined/fixed subpartitions.

The instructions are described in the following tables.

Table 11-19. DES Instruction

Instruction Format DES ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

DES 0x52

Perform a DES block cipher.

■ The 64-bit plaintext is in block0[63:0].

■ The resulting 64-bit ciphertext is in block1[63:0].

■ The 64-bit input key is in block4[63:0].

■ The 64-bit output key (round key of the final cipher round) is in
block6[63:0].

The instruction is non-destructive: block0 and block4 are not changed by the
instruction.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 107

Cryptographic Function Block (Crypto)

The (T)DES instructions are used with the FF_START, FF_CONTINUE, FF_STOP, BLOCK_MOV, BLOCK_XOR, and
BLOCK_SET instructions to implement different block cipher modes, such as EBC, CBC, OFB, CTR, and CMAC.

Table 11-20. DES_INV Instruction

Instruction Format DES_INV ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

DES_INV 0x53

Perform a DES inverse block cipher.

■ The 64-bit ciphertext is in block0[63:0].

■ The resulting 64-bit plaintext is in block1[63:0].

■ The 64-bit input key is in block4[63:0].

■ The 64-bit output key (round key of the final inverse cipher round) is in
block6[63:0].

The instruction is non-destructive: block0 and block4 are not changed by the
instruction.

Table 11-21. TDES Instruction

Instruction Format TDES ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

TDES 0x54

Perform a TDES block cipher.

■ The 64-bit plaintext is in block0[63:0].

■ The resulting 64-bit ciphertext is in block1[63:0].

■ The 192-bit input key is in {block5[63:0], block4[127:0]} (= {SK3[63:0],
SK2[63:0], SK1[63:0]}).

■ The 192-bit output key (round key of the final cipher round) is in
{block7[63:0], block6[127:0]}.

The instruction is non-destructive: block0, block4 and block5 are not changed
by the instruction.

Table 11-22. TDES_INV Instruction

Instruction Format TDES_INV ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

TDES_INV 0x55

Perform a TDES inverse block cipher.

■ The 64-bit ciphertext is in block0[63:0].

■ The resulting 64-bit plaintext is in block1[63:0].

■ The 192-bit input key is in {block5[63:0], block4[127:0]} (= {SK3[63:0],
SK2[63:0], SK1[63:0]}).

■ The 192-bit output key (round key of the final cipher round) is in
{block7[63:0], block6[127:0]}.

The instruction is non-destructive: block0, block4 and block5 are not changed
by the instruction.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 108

Cryptographic Function Block (Crypto)

11.6 AES

The AES functionality includes a block cipher and an inverse block cipher per the AES standard (FIPS 197):

■ The block cipher (AES instruction) encrypts a 128-bit block of plaintext data into a 128-bit block of ciphertext data.

■ The inverse block cipher (AES_INV instruction) decrypts a 128-bit block of ciphertext data into a 128-bit block of plaintext
data.

AES is a symmetric block cipher: it uses the same symmetric key for the block cipher and inverse block cipher. The (inverse)
block cipher consists of multiple rounds. Each round uses a round key that is generated from the symmetric key.

The block cipher uses the symmetric key as the (start) round key for the first cipher round. The round key for second cipher
round is generated from the symmetric key. The round key for the third cipher round is generated from the round key of the
second cipher round, and so forth. The round key for the last cipher round is generated from the round key of the one-before-
last cipher round.

The inverse block cipher uses the round key of the final block cipher round as the (start) round key for the first inverse cipher
round. The round key for the second inverse cipher round is generated from the round key of the first inverse cipher round,
and so forth. The round key for the last inverse cipher round is generated from the round key of the one-before-last inverse
cipher round. The round key of the last inverse cipher round is the same as the round key of the first cipher round (the
symmetric key).

Round key generation is independent of the plaintext data or ciphertext data. The AES instruction requires the symmetric key
as input to the block cipher. The AES_INV instruction requires the round key of the final cipher round as input to the inverse
block cipher.

The component supports 128 bit, 192 bit, and 256 bit keys. The key size is specified by AES_CTL.KEY_SIZE[1:0]. The key
size determines the number of rounds. Table 11-23 gives the number of rounds.

AES and AES_INV are the two different AES instructions; they use register buffer operands. Specifically, the instructions use
the 128-bit subpartitions block0, block1, block4, block5, block6, and block7.

■ Subpartitions block0 and block1 are used for plaintext and ciphertext data.

■ Subpartitions block4, block5, block6 and block7 are used for key information.

Unlike, for example, the BLOCK_MOV instruction, the AES and AES_INV instructions use predetermined/fixed subpartitions.

Table 11-23. AES Cipher Rounds

AES Key Size Rounds

AES128 10 rounds

AES192 12 rounds

AES256 14 rounds

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 109

Cryptographic Function Block (Crypto)

The instructions are described in the following tables.

The AES and AES_INV instructions are used with the FF_START, FF_CONTINUE, FF_STOP, BLOCK_MOV, BLOCK_XOR,
and BLOCK_SET instructions to implement different block cipher modes, such as EBC, CBC, OFB, CTR, and CMAC.

Table 11-24. AES Instruction

Instruction Format AES ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

AES 0x50

Perform an AES block cipher.

■ The 128-bit plaintext is in block0.

■ The resulting 128-bit ciphertext is in block1.

■ The input key is in block4 and block5. For a 128-bit key, the key is in
block4[127:0]. For a 192-bit key, the key is in {block5[63:0],
block4[127:0]}. For a 256-bit key, the key is in {block5[127:0],
block4[127:0]}.

■ The output key (round key of the final cipher round) is in block6 and
block7. For a 128-bit key, the key is in block6[127:0]. For a 192-bit key, the
key is in {block7[63:0], block6[127:0]}. For a 256-bit key, the key is in
{block7[127:0], block6[127:0]}. Note that the output key is the input key for
an AES inverse block cipher.

The instruction is non-destructive: block0, block4, and block5 are not changed
by the instruction.

Note that the AES instruction can be used to derive the AES_INV input key
from the symmetric key.

Table 11-25. AES_INV Instruction

Instruction Format AES_INV ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

AES_INV 0x51

Perform an AES block cipher.

■ The 128-bit ciphertext is in block0.

■ The resulting 128-bit plaintext is in block1.

■ The input key is in block4 and block5. For a 128-bit key, the key is in
block4[127:0]. For a 192-bit key, the key is in {block5[63:0], block4[127:0]}.
For a 256-bit key, the key is in {block5[127:0], block4[127:0]}.

■ The output key (round key of the final inverse cipher round) is in block6
and block7. For a 128-bit key, the key is in block6[127:0]. For a 192-bit
key, the key is in {block7[63:0], block6[127:0]}. For a 256-bit key, the key is
in {block7[127:0], block6[127:0]}. Note that the output key is the input key
for an AES block cipher.

The instruction is non-destructive: block0, block4 and block5 are not changed
by the instruction.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 110

Cryptographic Function Block (Crypto)

11.7 CRC

The CRC functionality performs a cyclic redundancy check with a programmable polynomial of up to 32 bits.

The load FIFO 0 provides the data (and the size of the data) on which the CRC is performed. The data must be laid out in little
endian format (least significant byte of a multi-byte word should be located at the lowest memory address of the word).

CRC_DATA_CTL.DATA_XOR[7:0] specifies a byte pattern with which each data byte is XOR’d. This allows for inversion of
the data byte value.

CRC_CTL.DATA_REVERSE allows for bit reversal of the data byte (this provides support for serial interfaces that transfer
bytes in most-significant-bit first and least-significant bit first configurations).

CRC_POL_CTL.POLYNOMIAL[31:0] specifies the polynomial. The polynomial specification omits the high order bit and
should be left aligned. For example, popular 32-bit and 16-bit CRC polynomials are specified as follows:

CRC32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

CRC_POL_CTL.POLYNOMIAL[31:0] = 0x04c11db7

CRC16-CCITT: x16 + x12 + x5 + 1

CRC_POL_CTL.POLYNOMIAL[31:0] = (0x1021 << 16)

CRC16: x16 + x15 + x2 + 1

CRC_POL_CTL.POLYNOMIAL[31:0] = (0x8005 << 16)

RESULT.DATA[31:0] holds the LFSR state of the CRC calculation. Before the CRC operation, this field should be initialized
with the CRC seed value.

CRC_REM_CTL.REM_XOR[31:0] specifies a 32-bit pattern with which the RESULT.DATA[31:0] LFSR state is XOR’d.

CRC_CTL.REM_REVERSE allows for bit reversal of the XOR’d state.

CRC_REM_RESULT.REM[31:0] holds the result of the CRC calculation, and is derived from the end state of the CRC
calculation (RESULT.DATA[31:0]).

The CRC instruction is described in Table 11-26.

Figure 11-2 illustrates the CRC functionality.

Table 11-26. CRC Instruction

Instruction Format CRC ()

Encoding IW[31:24] = “operation code”

Mnemonic Operation Code Functionality

CRC 0x58

Perform the CRC function on all data in load FIFO 0. The result of the CRC
function is provided through CRC_REM_RESULT.REM[31:0].

If the data is scattered in memory, a single FF_START and multiple FF_CON-
TINUE instructions should be used to gather the data in a load FIFO 0 Byte
stream. Each FF_START and FF_CONTINUE instruction should be followed
by a CRC instruction, which processes all the bytes of the associated FIFO
instruction (the CRC instruction does not have a “size” operand).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 111

Cryptographic Function Block (Crypto)

Figure 11-2. CRC Functionality

The Linear Feedback Shift Register functionality operates on the LFSR state. It uses the programmed polynomial and
consumes a data bit for each iteration (eight iterations are performed per cycle to provide a throughput of one data byte per

cycle). Figure 11-3 illustrates the functionality for the CRC32 polynomial (x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7

+ x5 + x4 + x2 + x + 1).

Figure 11-3. CRC32 Functionality

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 112

Cryptographic Function Block (Crypto)

Different CRC algorithms require different seed values and have different requirements for XOR functionality and bit reversal.
Table 11-27 provides the proper settings for the CRC32, CRC16-CCITT, and CRC16 algorithms. The table also provides the
remainder after the algorithms are performed on a five-byte array {0x12, 0x34, 0x56, 0x78, 0x9a}.

11.8 PRNG

The pseudo random number generation (PRNG) component generates pseudo random numbers in a fixed range [0,
PR_MAX_CTL.DATA[31:0]]. The generator is based on three Fibonacci-based Linear Feedback Shift Registers (LFSRs). The
following three irreducible polynomials (with minimum feedback) are used:

■ 32-bit polynomial: x32 + x30 + x26 + x25 + 1

■ 31-bit polynomial: x31 + x28 + 1

■ 29-bit polynomial: x29 + x27 + 1

Figure 11-4 illustrates the LFSR functionality.

Figure 11-4. Fixed Fibonacci-based LFSRs

Table 11-27. CRC32, CRC16-CCITT, and CRC16 Algorithm Settings

MMIO Register Field CRC32 CRC16-CCITT CRC16

CRC_POL_CTL.POLYNOMIAL 0x04c11db7 0x10210000 0x80050000

CRC_CTL.DATA_REVERSE 1 0 1

CRC_DATA_CTL.DATA_XOR 0x00 0x00 0x00

RESULT.DATA (seed) 0xffffffff 0xffff0000 0xffff0000

CRC_CTL.REM_REVERSE 1 0 1

CRC_REM_CTL.REM_XOR 0xffffffff 0x00000000 0x00000000

CRC_REM_RESULT.REM 0x3c4687af 0xf8a00000 0x000048d0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 113

Cryptographic Function Block (Crypto)

Software initializes the LFSRs with non-zero seed values.
The PR_LFSR_CTL0, PR_LFSR_CTL1 and
PR_LFSR_CTL2 registers are provided for this purpose. At
any time, the state of these registers can be read to retrieve
the state of the LFSRs. The 32-bit LFSR generates a
repeating bit sequence of 232 – 1 bits, the 31-bit LFSR
generates a repeating bit sequence of 231 – 1 and the 29-bit
LFSR generates a repeating bit sequence of 229 – 1. As the

numbers 232-1, 231-1, and 229-1 are relatively prime, the
XOR output is a repeating bit sequence of roughly
232+31+29.

The final pseudo random bit is the XOR of the three bits that
are generated by the individual LFSRs.

Figure 11-5. XOR Reduction Logic

The pseudo random number generator uses a total of 33
pseudo random bits to generate a result in the range [0,
PR_MAX_CTL.DATA[31:0]].

To generate a pseudo random number result, the following
calculation is performed.

MAX[31:0] = PR_MAX_CTL.DATA[31:0]

MAX_PLUS1[32:0] = MAX[31:0] + 1;

product[63:0] = MAX_PLUS1[32:0] * pr[32:1] + MAX[31:0] *
pr[0];

result = product[63:32];

PR_CMD.START is the PR command. The maximum value
of the generated random number (in PR_RESULT.DATA) is
specified by PR_MAX_CTL.DATA. The PR command can
be executed in parallel with the instruction FIFO instructions
and the TR command.

11.9 TRNG

The true random number generator component (TRNG)
generates true random numbers. The bit size of these
generated numbers is programmable (TR_CTL.SIZE is in
the range [0,32]).

The TRNG relies on up to six ring oscillators to provide
physical noise sources. A ring oscillator consists of a series
of inverters connected in a feedback loop to form a ring. Due
to (temperature) sensitivity of the inverter delays, jitter is
introduced on a ring's oscillating signal. The jittered
oscillating signal is sampled to produce a “digitized analog
signal” (DAS). This is done for all multiple ring oscillators.

To increase entropy and to reduce bias in DAS bits, the DAS
bits are further postprocessed. Post-processing involves two
steps:

■ An optional reduction step (over up to six ring oscillator
DAS bits and over one or multiple DAS bit periods) to
increase entropy.

■ An optional “von Neumann correction” step to reduce a
‘0’ or ‘1’ bias.

This correction step processes pairs of reduction bits as
produced by the previous step. Given two reduced bits
r0 and r1 (with r0 being produced before r1), the correc-
tion step is defined as follows:

❐ {r0, r1} = {0, 0}: no bit is produced

❐ {r0, r1} = {0, 1}: a ‘0’ bit is produced (bit r0)

❐ {r0, r1} = {1, 0}: a ‘1’ bit is produced (bit r0)

❐ {r0, r1} = {1, 1}: no bit is produced

In other words the correction step only produces a bit on a
‘0’ to ‘1’ or ‘1’ to ‘0’ transition. Note that for a random input bit
sequence, the correction step produces an output bit
sequence of roughly one-quarter the frequency of the input
bit sequence (the input reduction bits are processed in non-
overlapping pairs and only half of the pair encodings result
in an output bit).

Post-processing produces bit samples that are considered
true random bit samples. The true random bit samples are
shifted into a register, to provide random values of up to 32
bits.

As a result of high-switching activity, ring oscillators
consume a significant amount of power. Therefore, when
the TRNG functionality is disabled, the ring is “broken” to
prevent switching. When the TRNG functionality is enabled,
a ring oscillator initially has predictable behavior. However,
over time, infinitesimal environmental (temperature)
changes cause an increasing deviation from this predictable
behavior.

■ During the initial delay, the ring oscillator is not a reliable
physical noise source.

■ After an initial delay, the same ring oscillator will show
different oscillation behavior and provides a reliable
physical noise source.

Therefore, the DAS bits can be dropped during an
initialization period (TR_CTL.INIT_DELAY[]).

Figure 11-6 gives an overview of the TRNG component.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 114

Cryptographic Function Block (Crypto)

Figure 11-6. TRNG Overview

The “Sampler” logic digitizes an oscillating signal. Figure 11-7 illustrates the functionality (the complete logic is implemented
using standard platform toolkit components).

Figure 11-7. Sampler Logic

Note that when a ring oscillator is disabled, the synchronization logic is reset. Therefore, the ring oscillator contributes a
constant ‘0’ to the reduction step of the post-processing. As mentioned, the TRNG relies on up to six ring oscillators:

■ RO11: A fixed ring oscillator consisting of 11 inverters.

■ RO15: A fixed ring oscillator consisting of 15 inverters.

■ GARO15: A fixed Galois based ring oscillator of 15 inverters.

■ GARO31: A flexible Galois based ring oscillator of up to 31 inverters. A programmable polynomial of up to order 31
provides the flexibility in the oscillator feedback.

■ FIRO15: A fixed Fibonacci based ring oscillator of 15 inverters.

■ FIRO31: A flexible Fibonacci based ring oscillator of up to 31 inverters. A programmable polynomial of up to order 31
provides the flexibility in the oscillator feedback.

Each ring oscillator can be enabled or disabled. When disabled, the ring is “broken” to prevent switching. The following
Figures illustrate the schematics of the fixed ring oscillators.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 115

Cryptographic Function Block (Crypto)

Figure 11-8. Four Fixed Ring Oscillators: RO11, RO15, GARO15, FIRO15

The XXX_EN enable signals originate from a MMIO register field.

The flexible Galois- and Fibonacci-based ring oscillators rely on programmable polynomials to specify the oscillator feedback.
This allows for rings of 1, 3, 5, …, 31 inverters (an odd number is required to generate an oscillating signal). Figure 11-9 gives
an overview of the Galois-based ring oscillator.

Figure 11-9. Flexible Galois-based Ring Oscillators: GARO31

When the ring oscillator is disabled (GARO31_EN is ‘0’), the polynomial is forced to “0” and the ring is broken as illustrated by
Figure 11-10.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 116

Cryptographic Function Block (Crypto)

Figure 11-10. GARO31 “stopped”

The programmable polynomial specifies the oscillator feedback. Figure 11-11 illustrates two examples.

Figure 11-11. GARO31 – Two Examples

Figure 11-12 gives an overview of the Fibonacci-based ring oscillator.

Figure 11-12. Flexible Fibonacci-based Ring Oscillators: FIRO31

When the ring oscillator is disabled (FIRO31_EN is ‘0’), the polynomial is forced to “0” and the ring is broken as illustrated by
Figure 11-13.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 117

Cryptographic Function Block (Crypto)

Figure 11-13. FIRO31 “stopped”

The programmable polynomial specifies the oscillator feedback. Figure 11-14 illustrates two examples.

Figure 11-14. FIRO31 – Two Examples

There is one TR command, TR_CMD.START, which can be
executed in parallel with the instruction FIFO instructions
and the PR command. The size of the generated random
number (in TR_RESULT.DATA) is specified by
TR_CTL.SIZE.

The TRNG has a built-in health monitor that performs tests
on the digitized noise source to detect deviations from the
intended behavior. For example, the health monitor detects
“stuck at” faults in the digitized analog samples. The health
monitor tests one out of three selected digitized bit streams:

■ DAS bitstream. This is XOR of the digitized analog
samples.

■ RED bitstream. This is the bitstream of reduction bits.
Note that each reduction bit may be calculated over
multiple DAS bits.

■ TR bitstream. This is the bitstream of true random bits
(after the “von Neumann reduction” step).

The health monitor performs two different tests:

The repetition count test. This test checks for the
repetition of the same bit value (‘0’ or ‘1’) in a bitstream. A
detection indicates that a specific active bit value (specified
by a status field BIT) has repeated for a pre-programmed
number of bits (specified by a control field
CUTOFF_COUNT[7:0]). The test uses a counter to maintain
the number of repetitions of the active bit value (specified by
a status field REP_COUNT[7:0]).

If the test is started (specified by START_RC field) and a
change in the bitstream value is observed, the active bit
value BIT is set to the new bit value and the repetition
counter REP_COUNT[] is set to ‘1’. If the bitstream value is
unchanged, the repetition counter REP_COUNT[] is
incremented by “1”.

A detection stops the repetition count test (the START_RC
field is set to ‘0’), sets the associated interrupt status field to
‘1’ and ensures that hardware does not modify the status
fields. When the test is stopped, REP_COUNT[] equals
CUTOFF_COUNT[].

A detection stops the TRNG functionality (all
TR_CTL.XXX_EN fields are set to ‘0’) if
TR_CTL.STOP_ON_RC_DETECT is set to ‘1’.

The adaptive proportion test. This test checks for a
disproportionate occurrence of a specific bit value (‘0’ or ‘1’)
in a bit stream. A detection indicates that a specific active bit
value (specified by a status field BIT) has occurred a pre-
programmed number of times (specified by a control field
CUTOFF_COUNT[15:0]) in a bit sequence of a specific bit
window size (specified by a control field
WINDOW_SIZE[15:0]). The test uses a counter to maintain
an index in the current window (specified by
WINDOW_INDEX[15:0]) and a counter to maintain the
number of occurrences of the active bit value (specified by a
status field OCC_COUNT[15:0]).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 118

Cryptographic Function Block (Crypto)

If the test is started (specified by START_AP field), the
bitstream is partitioned in bit sequences of a specific window
size. At the first bit of a bit sequence, the active bit value BIT
is set to the first bit value, the counter WINDOW_INDEX is
set to “0” and the counter OCC_COUNT is set to “1”. For all
other bits of a bit sequence, the counter WINDOW_INDEX
is incremented by “1”. If the new bit value equals the active
bit value BIT, the counter OCC_COUNT[15:0] is
incremented by “1”. Note that the active bit value BIT is only
set at the first bit of a bit sequence.

A detection stops adaptive proportion test (the START_AP
field is set to ‘0’), sets the associated interrupt status field to
‘1’ and ensures that hardware does not modify the status
fields. When the test is stopped, OCC_COUNT[] equals
CUTOFF_COUNT[] and the WINDOW_INDEX identifies the
bit sequence index on which the detection occurred.

A detection stops the TRNG functionality (all
TR_CTL.XXX_EN fields are set to ‘0’) if
TR_CTL.STOP_ON_AP_DETECT is set to ‘1’.

Figure 11-15 illustrates the health monitor functionality.

Figure 11-15. Health Monitor Functionality

Implementation note. The ring oscillators have special design requirements. They are not synthesized logic, but manually
constructed from selected cells from the standard cell library. Three types of standard cells are required:

■ An inverter cell. The selected cell should have similar rise and fall time requirements. Clock tree inverter cells tend to have
this property and are the preferred implementation of the inverter cell.

■ A two-input XOR cell.

■ A two-input AND cell.

The design uses three Verilog design modules to instantiate the selected cells. This allows easy porting from one standard
cell library to another standard cell library. The three Verilog design modules should not be changed by tools (similar to how
the platform toolkit components are treated in the design flow).

A ring oscillator should be placed and routed in a self-contained rectangular area. This area should preferably be as small as
possible.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 119

Cryptographic Function Block (Crypto)

11.10 Vector Unit

The vector unit (VU) addresses the requirements of asymmetric key cryptography. Similar to other cryptography functionality,
the VU connects to the memory interface through the load and store FIFOs. The memory buffer or system memory contains
memory operand data for the vector unit instructions.

Figure 11-16. Vector Unit

The VU addresses asymmetric key cryptography.
Asymmetric key cryptography includes RSA, Diffie-Hellman
key exchange, digital signature authentication, and elliptic
curve cryptography (ECC). These algorithms share the
requirement to efficiently perform computations in a Galois
field on large integers of up to 1000’s of bits.

The VU performs instructions on operand data.

■ The VU instructions are provided by the instruction
FIFO.

■ The VU operand data is specified by any of the following
(all encoded as part of the 32-bit instruction word):

❐ instruction operation code

❐ instruction register indices

❐ instruction immediate values

The VU uses the VU register file. A VU register is a (data,
size) pair: a 13-bit data field (bits 28 down to 16) and a 13-bit
size field (bits 12 down to 0). The data field is either used as:

■ Instruction operand data: the complete 13-bit data is
used.

■ An offset into memory: the 13-bit data value is a word
offset wrt. a base address into memory.

The size field is only used when the data field is used as an
offset into memory. In this case, the size field specifies the
bit size (minus 1) of the memory operand (the 13-bit field
specifies a size in the range of [1, 8192] bits).

The VU is a “trimmed down” application domain specific
CPU:

■ “Trimmed down”. It does not have a CPU instruction
fetch unit that supports non-sequential program flow.
This functionality is typically not required for asymmetric
key cryptography functions or needs to be provided by
the external AHB-Lite bus master (typically a CPU). This
design decision simplifies the VU.

Note that the instruction FIFO provides the mechanism
by which instructions are provided. This mechanism only
supports a sequential VU program flow.

■ Application domain specific. The VU instructions and
operand data are tuned for asymmetric key
cryptography. For example, instructions are provided for
arithmetic over binary extension fields (GF(2m)) or prime
fields (GF(p)), and memory operands allow for a large
operand length of up to 8192 bits (although the VU
internal data path is limited to 32 bit).

■ CPU. The VU has CPU-like design components, such as
an instruction decoder, a register file, and data path with
multiple functional units.

The VU architecture is the result of a tradeoff between
silicon area, design complexity, performance efficiency, and
algorithmic flexibility. Note that most asymmetric key
algorithms can be performed by the regular CPU. However,
this typically comes at a lower performance level, possibly
large code footprint (due to loop unrolling of code to improve
performance when operating on large operand data), and
possibly large data footprint (due to lookup tables to improve
performance).

The improved performance of the VU (over a regular CPU)
for asymmetric key algorithms also allows for more generic
algorithmic implementations, as opposed to
implementations targeting, such as specific primes or
irreducible polynomials.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 120

Cryptographic Function Block (Crypto)

Before describing the architecture, a short C example is illustrates the VU functionality.
#define SIZE 4096
void Example ()
{
int a = 0; int b = 1; int c = 2; // assign register indices
uint8_t c_data[SIZE/8];
ALLOC_MEM (a, SIZE); // allocate 4096 bits of data
ALLOC_MEM (b, SIZE); // allocate 4096 bits of data
ALLOC_MEM (c, SIZE); // allocate 4096 bits of data
Crypto_WriteMemNumber (a, “0x21542555:fed35532: … :ffea2345”);
Crypto_writeMemNumber (b, “0xef45ac2a:34a312bc: … :000003ab”);
ADD (c, a, b);
Crypto_ReadMemNumber (c, c_data);
}

The example adds two 4096-bit numbers and produces a
4096-bit number. The example is explained as follows:

■ Three local variables are assigned VU register indices:

❐ local variable a uses register 0

❐ local variable b uses register 1

❐ local variable c used register 2

■ Memory is allocated in the memory buffer for each
variable: each variable needs 4096 bits.

■ A function “Crypto_WriteMemNumber” is called to
initialize the memory operand data for source variables a
and b.

■ A VU ADD instruction (long integer addition) is executed.

■ A function “Crypto_WriteMemNumber” is called to read
the result of the instruction from the memory.

The example illustrates that the full expressive power of the
C language is available when writing software for the VU.

The example illustrates that relatively complex functionality
can be expressed in only a few lines of C code (consider
implementing the same functionality on a 32-bit Arm
processor).

The “Crypto_” functions copy data to and from the memory.
These functions are executed on the regular CPU and may
take a significant number of cycles. Asymmetric key
algorithm typically requires little copy functions and a lot of
VU instructions. As a result, the cycle overhead of the copy
functions is negligible. As an example, RSA requires
exponentiation of a number by a second number modulo a
third number. This RSA functionality requires only four copy
functions (three to initialize three memory operands and one
to read the result), but requires thousands of VU
instructions.

The following sections provide an architectural overview of
the VU.

11.10.1 VU Register File

The register file has sixteen registers (r0 through r15). Each
register consists of a 13-bit data field and a 13-bit size field.
The data field is either used as:

■ Instruction operand data: the 13-bit data is used.

■ An offset into memory: the 13-bit data value is a word
offset for a base address into memory. Typically,
memory operand data is located in the crypto memory
buffer (this provides better latency/performance than
memory operand data in system memory).

The size field is used only when the data field is used as an
offset into memory. In this case, the size field specifies the
bit size (minus 1) of the memory operand (the 13-bit field
specifies a size in the range of [1, 8192] bits).

The CPU software decides what instructions use what
registers. There is no compiler with specific conventions for
register usage or to perform register allocation. To ensure
some consistency and interoperability of the functions in a
software library, the software programmer should introduce
its own conventions. Some examples of conventions are:

■ Each non-leaf function saves all registers to the stack on
function entry and restores all registers from the stack on
function exit. This makes all registers available for use
within the function.

■ Each non-leaf function restricts its register use to
registers r4 through r14.

■ Each leaf function either restricts its register use to
registers r0 through r3 or follows the same save/restore
convention as non-leaf functions.

The register-file register r15 serves a specific purpose.
Similar to the Arm architecture, register r15 is used as a
stack pointer.

Figure 11-17 illustrates the register file and how the data
fields are used as offsets in a 16 KB memory region (either
in the crypto memory buffer or the system memory). The
base address of the memory region is provided by
VU_CTL.ADDR[31:8] and the memory region size is
specified by VU_CTL.MASK[].

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 121

Cryptographic Function Block (Crypto)

Figure 11-17. Register File

11.10.2 Stack

The VU stack resides in the memory region. Register r15 is
used as a stack pointer. The stack has two purposes:

■ It is used to save/restore registers r0 through r14. Each
register (data field and size field) uses a single 32-bit
word.

The instruction PUSH_REG saves/pushes all registers
r0 through r14 on the stack (and register r15 is decre-
mented by 15).

The instruction POP_REG restores/pops all registers r0
through r14 from the stack (and register r15 is incre-
mented by 15).

The use of the stack pointer (register r15) is implied by
the PUSH_REG and POP_REG instructions.

■ It is used to allocate memory operands.

The instruction ALLOC_MEM (rx, size-1) allocates
enough 32-bit words to hold a memory operand of “size”
bits for register rx. The stack pointer (register r15) is dec-
remented by the number of allocated 32-bit words. The

data field of register rx is updated with the new stack
pointer value.

The instruction FREE_MEM (“15 bit pattern”) frees the
32-bit words that hold memory operand data associated
with the registers identified by the bit pattern. Note that a
register’s size field specifies the number 32-bit words
that hold its associated memory operand. The stack
pointer is incremented by the number of freed 32-bit
words.

The use of the stack pointer (register r15) is implied by
the instruction. Note that to allocate multiple memory
operands, multiple ALLOC_MEM instructions are
required. However, to free multiple memory buffer oper-
ands, only a single FREE_MEM instruction is required.

Figure 11-18 illustrates the VU register-file state before and
after the execution of instructions ALLOC_MEM (r0, 32-1)
(32 bits requiring one 32-bit stack element) and
ALLOC_MEM (r1, 80-1) (80 bits requiring three 32-bit stack
elements).

Figure 11-18. Left: Register File State before ALLOC_MEM Instructions; Right: Register File after ALLOC_MEM Instructions

Figure 11-19 illustrates the VU component state after the execution of the instruction FREE_MEM ((1 << r1) | (1 << r0)).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 122

Cryptographic Function Block (Crypto)

Figure 11-19. Register File State after FREE_MEM Instruction

Freeing of stack elements should be in the reverse order of
allocation of stack elements. Also see the description of the
FREE_MEM instruction for the order in which registers are
freed (lower registers are freed before higher registers).

11.10.3 Memory Operands

Asymmetric key cryptography requires computations on
large integers of up to 1000’s of bits. These integers are
implemented using memory operands. The instruction
registers’ data values provide offsets in a memory region.
The base address of the memory region is provided by
VU_CTL.ADDR[31:8]. The memory region is located in
either the IP memory buffer or the system memory. The
memory region is accessed through the load and store
FIFOs.

Memory operands are typically located in the crypto memory
buffer (better access latency). Memory operand require one
or multiple 32-bit words. The register size field specifies the
bit size of a memory operand. This size is limited to the
range [1, 8192] bits. Note that there is no size restriction
within this range. A memory operand of n bits requires
(n+31)/32 32-bit words.

11.10.4 Datapath

The VU instructions can operate on 13-bit register data
values and/or large memory operands. The VU datapath is
limited to 32 bits (the width of a single memory word).

To operate on large memory operands, multiple datapath
iterations are required. Dependent on the instruction
opcode, these iterations may be independent of each other
(for example, a OR instruction) or may be dependent of
each other (for example, an ADD instruction requires a
carry). This complexity is completely hidden from software.

■ The instruction opcode specifies whether datapath
iterations are dependent or independent.

■ The register size field provides the VU decoder and
datapath with all the information it needs to determine
the number of datapath iterations.

The VU datapath consists of three functional units:

■ An ALU that performs addition, subtraction, and logical
instructions.

■ A barrel shifter that performs shift instructions.

■ A multiplier that performs multiplication and squaring
instructions.

In addition, a state machine is present for instruction
decoding and controlling multiple datapath iterations. The
state machine also performs administration instructions
such as PUSH_REG, POP_REG, ALLOC_MEM, and
FREE_MEM.

Note that the instruction execution time (in clock cycles) is
typically independent of the instruction operand data values.
However, the execution time is dependent on the size of
memory operands (as specified by the register size field).
This is an important characteristic, as the data value
independence complicates differential power or execution
time attacks.

11.10.5 Status Register

Similar to the Arm architecture, the VU has a STATUS
register:

■ It is affected by instruction execution.

■ It controls instruction execution.

The STATUS register is a 4-bit field, with the following fields:

■ CARRY field (bit 0). This field is set to ‘1’ if the result of
an addition exceeds the destination operand size, if the
result of a subtraction is positive or zero, or as the result
of a shift instruction.

■ EVEN field (bit 1). This field is set to ‘1’ (and cleared to
‘0’ otherwise) if the result of an instruction is even (bit 0
of the destination operand is ‘0’).

■ ZERO field (bit 2). This field is set to ‘1’ (and cleared to
‘0’ otherwise) if the result of an instruction is “0”.

■ ONE field (bit 3). This field is set to ‘1’ (and cleared to ‘0’
otherwise) if the result of an instruction is “1”.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 123

Cryptographic Function Block (Crypto)

The STATUS register fields are set and cleared as a result
of instruction execution. Not all instructions affect all
STATUS register fields.

Conditional execution. As mentioned, the STATUS
register controls instruction execution. It does so through
conditional instruction execution (again, similar to the Arm
architecture). Almost all instructions (the SET_REG

instruction is the exception) support conditional execution.
Conditional execution only executes an instruction when a
specific condition, as specified by a condition code in the
instruction word, is met. The condition code is dependent on
the STATUS register fields. The following table lists the
condition codes and the conditions under which the
conditional instruction is executed.

If a conditional instruction has a condition code that
evaluates to ‘0’/FALSE, it does not change the VU functional
state. This means that:

■ a destination operand is not updated

■ the STATUS register is not updated

11.10.6 Instructions

The VU instructions operate on either register operand data
or memory operand data.

Operand types. Typically, VU instruction operands all have
the same type: either register or memory operands.
However, some exceptions do exist. For example, consider
the following CTSAME (count trailing same) instruction.

CTSAME (r0, r1, r2)

This instruction counts the number of trailing bits (least
significant bits), which are the same as the two memory
operands that are identified by register r1 and r2. The
instruction result is stored in the data field of register r0. This
instruction has two source operands of the memory type
and one destination operand of the register type.

Conditional execution. Conditional execution makes the
execution of an instruction dependent on a condition. For
example, consider the COND_CTSAME (HI, r0, r1, r2)
instruction. This instruction uses the “HI” condition code.
The CTSAME instruction is only executed when the “HI”
condition code evaluates to ‘1’/TRUE. This is the case when
the CARRY field of the STATUS register is ‘1’/TRUE and the
ZERO field of the STATUS register is ‘0’/FALSE.

Unconditional execution uses the “ALWAYS” condition code,
which always evaluates to ‘1’/TRUE. For brevity, and
unconditional instruction XXX is not written as COND_XXX,
but simply as XXX.

Note that a not executed conditional instruction does not
update the STATUS register.

Memory operand data extension. Register operand data
always has the same 13-bit size. Memory operand data has
a size that is specified by a register’s size field. Therefore, it
is possible to have memory operands with different sizes.
This is intentional, but requires some rules in terms of how
to deal with instructions that operate on memory operands
with different sizes. These rules are as follows:

■ If an instruction has a destination memory operand (for
example, an ADD instruction), the size of this destination
operand specifies the size of the instruction execution.

■ If an instruction has no destination memory operand (for
example, a CTSAME instruction), the maximum size of
all source memory operands specifies the size of the
instruction.

■ If the instruction size (as determined by the previous two
rules) is larger than a source memory operand, the
memory operand is extended with leading ‘0’ bits (most
significant ‘0’ bits).

■ If the instruction size is smaller than a source memory
operand, the memory operand’s leading bits (most
significant bits) are dropped/ignored (the LSR, LSR1,
and LSR1_WITH_CARRY are an exception to this rule).

Table 11-28. Condition Codes

Abbreviation Condition Code Value Description Condition

ALWAYS 0x0 Always ‘1’

EQ 0x1 Equal ZERO

NE 0x2 Not equal !ZERO

CS 0x3 Carry set/higher or same CARRY

CC 0x4 Carry clear/lower !CARRY

HI 0x5 Higher CARRY & !ZERO

LS 0x6 Lower or same !CARRY | ZERO

EVEN 0x7 Even EVEN

ODD 0x8 Odd !EVEN

ONE 0x9 One ONE

NOT_ONE 0xa Not one !ONE

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 124

Cryptographic Function Block (Crypto)

To illustrate memory operand extension, we give a few
examples.
CTSAME (r0, r1, r2)
r1 specifies a 40-bit memory operand
0x11:12345678
r2 specifies a 64-bit memory operand
0x11111111:ffffff78

The instruction size is 64 bits (maximum size of the two
source memory operands). The memory operand
0x11:12345678 is extended to 0x00000011:12345678. The
CTSAME instruction produces the result 8 in the register r0
data field.
ADD (r0, r1, r2)
r0 specifies a 48-bit memory operand
r1 specifies a 40-bit memory operand
0x11:12345678
r2 specifies a 64-bit memory operand
0xffffffff:ffffff78

The instruction size is 48 bits (size of the destination
memory operand). The memory operand 0x11:12345678 is
extended to 0x0011:12345678. The memory operand
0xffffffff:ffffff78 is reduced to 0xffff:ffffff78. The ADD
instruction produces the 40-bit result 0x0011:123455f0 in
the destination memory operand. Note that this instruction

generates a carry and will set the CARRY field of the
STATUS register to ‘1’/TRUE.

11.10.7 Instruction Set

This section describes all VU instructions. For each
instruction, the following is described:

■ The instruction format

❐ Source operand types (register or memory oper-
ands)

❐ Support for conditional execution

❐ Encoding of the 32-bit instruction word (IW[31:0])

■ Mnemonic

■ Operation code

■ Functionality

For instructions with memory operands, the source and
destination memory operands may overlap, unless
otherwise mentioned (the USQUARE, XSQUARE, UMUL,
and XMUL instructions do not allow memory operand
overlap).

Table 11-29. ALLOC_MEM Instruction

Instruction Format
Mnemonic (rdst, imm13[12:0])
rdst: register operand
imm13: 13-bit immediate date

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[19:16] = rdst
IW[12:0] = imm13

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

ALLOC_MEM 0x12
r15.data[12:0] = r15_data[12:0] – (imm13 >> 5) - 1;
rdst.data[12:0] = r15_data[12:0];
rdst.size[12:0] = imm13; // bit size minus ‘1’

Table 11-30. Instructions with Memory Operands, Category III

Instruction Format
Mnemonic (imm16[15:0])
imm16: 16-bit immediate date

Encoding
IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:0] = imm16

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

FREE_MEM 0x13

for (idx = 0; idx <= 15; idx++) {
 if (imm16[idx]) {
 imm13 = r[idx].size[12:0]
 r15.data[12:0] = r15_data[12:0] + (imm13 >> 5) + 1;
 }
}

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 125

Cryptographic Function Block (Crypto)

Table 11-31. Instructions with Register Operand Only, Category I

Instruction Format

Mnemonic (rdst, imm13_0[13:0], imm13_1[11:0])
rdst: register operand
imm13_0: 13 bit immediate (for register data field)
imm13_1: 13-bit immediate (for register size field)

Encoding

IW[31:30] = “operation code”
IW[29:26] = rdst
IW[25:13] = imm13_1
IW[12:0] = imm13_0

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

SET_REG 0x2
rdst.data[12:0] = imm13_1;
rdst.size[12:0] = imm13_0; // bit size minus ‘1’

Table 11-32. MOV_REG Instruction

Instruction Format

Mnemonic (rdst, rsrc) or COND_Mnemonic (cc, rdst, rsrc)
rdst: register operand
rsrc: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[3:0] = rsrc

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

MOV_REG 0x02 rdst.data = rsrc.data; rdst.size = rsrc.size;

Table 11-33. LD_REG Instruction

Instruction Format

Mnemonic (rsrc1, rsrc0) or COND_Mnemonic (cc, rsrc1, rsrc0)
rsrc1: register operand
rsrc0: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rsrc1
IW[3:0] = rsrc0

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

LD_REG 0x00

word = GetMemData (r15.data+rsrc0, 32-1); // r15: stack
pointer
rsrc1.data[12:0] = word >> 16;
rsrc1.size[12:0] = word;

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 126

Cryptographic Function Block (Crypto)

Table 11-34. ST_REG Instruction

Instruction Format

Mnemonic (rsrc1, rsrc0) or COND_Mnemonic (cc, rsrc1, rsrc0)
rsrc1: register operand
rsrc0: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[7:4] = rsrc1
IW[3:0] = rsrc0

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

ST_REG 0x01
word = rsrc1.data[12:0] << 16 | rsrc1.size[12:0]
SetMemBuffData (r15.data+rsrc0, word, 32-1);

Table 11-35. Instructions with Register Operand Only, Category III

Instruction Format

Mnemonic (rsrc1, rsrc0) or COND_Mnemonic (cc, rsrc1, rsrc0)
rsrc0: register operand
rsrc1: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[7:4] = rsrc1
IW[3:0] = rsrc0

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

SWAP_REG 0x03
data = rsrc1.data; size = rsrc1.size;
rsrc1.data = rsrc0.data; rsrc1.size = rsrc0.size;
rsrc0.data = data; rsrc0.size = size;

Table 11-36. Instructions with Register Operand Only, Category IV

Instruction Format
Mnemonic () or COND_Mnemonic (cc)
cc: condition code

Encoding
IW[31:24] = “operation code”
IW[23:20] = cc

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

PUSH_REG 0x10

r15.data -= 15; // r15: stack pointer
word = r0.data[12:0] << 16 | r0.size[12:0]; Mem-
Buff[r15.data+0] = word;
word = r1.data[12:0] << 16 | r1.size[12:0]; Mem-
Buff[r15.data+1] = word;
…
word = r14.data[12:0] << 16 | r14.size[12:0]; Mem-
Buff[r15.data+14] = word;

POP_REG 0x11

word = GetMemData (r15.data+0, 32-1);
r0.data = word >> 16; r0.size = word;
word = MemBuff[r15.data+1];
r1.data[12:0] = word >> 16; r1.size[12:0] = word;
…
word = MemBuff[r15.data+14];
r14.data[12:0] = word >> 16; r14.size[12:0] = word;
r15.data += 15;

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 127

Cryptographic Function Block (Crypto)

Table 11-37. Instructions with Register Operand Only, Category V

Instruction Format

Mnemonic (rdst, rsrc1, rsrc0) or COND_Mnemonic (cc, rdst, rsrc1, rsrc0)
rdst: register operand
rsrc1: register operand
rsrc0: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[7:4] = rsrc1
IW[3:0] = rsrc0

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

ADD_REG 0x06 rdst.data[12:0] = rsrc1.data[12:0] + rsrc0.data[12:0];

SUB_REG 0x07 rdst.data[12:0] = rsrc1.data[12:0] – rsrc0.data[12:0];

OR_REG 0x08 rdst.data[12:0] = rsrc1.data[12:0] | rsrc0.data[12:0];

AND_REG 0x09 rdst.data[12:0] = rsrc1.data[12:0] & rsrc0.data[12:0];

XOR_REG 0x0a rdst.data[12:0] = rsrc1.data[12:0] ^ rsrc0.data[12:0];

NOR_REG 0x0b rdst.data[12:0] = ~(rsrc1.data[12:0] | rsrc0.data[12:0]);

NAND_REG 0x0c rdst.data[12:0] = ~(rsrc1.data[12:0] & rsrc0.data[12:0]);

MIN_REG 0x0d rdst.data[12:0] = Minimum (rsrc1.data[12:0], rsrc0.data[12:0]);

MAX_REG 0x0e rdst.data[12:0] = Maximum (rsrc1.data[12:0], rsrc0.data[12:0]);

Table 11-38. MOV_REG_TO_STATUS

Instruction Format
Mnemonic (rsrc) or COND_Mnemonic (cc, rsrc)
rsrc: register operand
cc: condition code

Encoding
IW[31:24] = “operation code”
IW[23:20] = cc
IW[3:0] = rsrc

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

MOV_REG_TO_STATUS 0x04

STATUS.CARRY = rsrc.data[0];
STATUS.EVEN = rsrc.data[1];
STATUS.ZERO = rsrc.data[2];
STATUS.ONE = rsrc.data[3];

Table 11-39. MOV_STATUS_TO_REG

Instruction Format
Mnemonic (rdst) or COND_Mnemonic (cc, rdst)
rdst: register operand
cc: condition code

Encoding
IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

MOV_STATUS_TO_REG 0x05

rdst.data= 0;
rdst.data[0] = STATUS.CARRY;
rdst.data[1] = STATUS.EVEN;
rdst.data[2] = STATUS.ZERO;
rdst.data[3] = STATUS.ONE;

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 128

Cryptographic Function Block (Crypto)

Table 11-40. MOV_IMM_TO_STATUS

Instruction Format
Mnemonic (imm4) or COND_Mnemonic (cc, imm4)
imm4: immediate value
cc: condition code

Encoding
IW[31:24] = “operation code”
IW[23:20] = cc
IW[3:0] = imm4

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

MOV_IMM_TO_STATUS 0x01

STATUS.CARRY = imm[0];
STATUS.EVEN = imm[1];
STATUS.ZERO = imm[2];
STATUS.ONE = imm[3];

Table 11-41. Instructions with Mixed Operands, Category I

Instruction Format

Mnemonic (rdst, rsrc1, rsrc0) or COND_Mnemonic (cc, rdst, rsrc1, rsrc0)
rdst: memory buffer operand
rsrc1: memory buffer operand
rsrc0: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[7:4] = rsrc1
IW[3:0] = rsrc0

Shared Functionality
STATUS.EVEN = (dst_data[0] == 0)
STATUS.ZERO = (dst_data[instr_size:0] == 0)
STATUS.ONE = (dst_data[instr_size:0] == 1)

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

LSL 0x20

src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, rdst.size);
dst_data = src1_data << rsrc0.data[12:0];
if (rsrc0.data[12:0] != 0) STATUS.CARRY = dst_-
data[rdst.size +1];
else STATUS.CARRY = 0
SetMemBuffData (rdst.data, dst_data, rdst.size);

LSR 0x23

src1_data = GetMemData (rsrc1.data, rsrc1.size);
dst_data = src1_data >> rsrc0.data[12:0];
if (rsrc0.data[12:0] != 0) STATUS.CARRY = dst_data[-1];
else STATUS.CARRY = 0;
SetMemBuffData (rdst.data, dst_data, rdst.size);

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 129

Cryptographic Function Block (Crypto)

Table 11-42. Instructions with Mixed Operands, Category II

Instruction Format

Mnemonic (rdst, rsrc) or COND_Mnemonic (cc, rdst, rsrc)
rdst: memory buffer operand
rsrc: memory buffer operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[7:4] = rsrc

Shared Functionality
STATUS.EVEN = (dst_data[0] == 0)
STATUS.ZERO = (dst_data[instr_size:0] == 0)
STATUS.ONE = (dst_data[instr_size:0] == 1)

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

LSL1 0x21

src_data = GetMemData (rsrc.data, rsrc.size);
src_data = SizeAdjust (src_data, rdst.size);
dst_data = (src_data << 1);
STATUS.CARRY = dst_data[rdst.size +1];
SetMemBuffData (rdst.data, dst_data, rdst.size);

LSL1_WITH_CARRY 0x22

src_data = GetMemData (rsrc.data, rsrc.size);
src_data = SizeAdjust (src_data, rdst.size);
dst_data = (src_data << 1) | STATUS.CARRY;
STATUS.CARRY = dst_data[rdst.size +1];
SetMemBuffData (rdst.data, dst_data, rdst.size);

LSR1 0x24

src_data = GetMemData (rsrc.data, rsrc.size);
dst_data = src_data >> 1;
STATUS.CARRY = dst_data[-1];
SetMemBuffData (rdst.data, dst_data, rdst.size);

LSR1_WITH_CARRY 0x25

src_data = GetMemData (rsrc.data, rsrc.size);
dst_data = src_data >> 1; dst_data[rdst.size] = STA-
TUS.CARRY;
STATUS.CARRY = dst_data[-1];
SetMemBuffData (rdst.data, dst_data, rdst.size);

Table 11-43. Instructions with Mixed Operands, Category III

Instruction Format

Mnemonic (rdst, rsrc) or COND_Mnemonic (cc, rdst, rsrc)
rdst: memory buffer operand
rsrc: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[3:0] = rsrc

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

SET_BIT 0x28
dst_data = GetMemData (rdst.data, rdst.size);
dst_data[rsrc.data[12:0]] = 1;
SetMemBuffData (rdst.data, dst_data, rdst.size);

CLR_BIT 0x29
dst_data = GetMemData (rdst.data, rdst.size);
dst_data[rsrc.data[12:0]] = 0;
SetMemBuffData (rdst.data, dst_data, rdst.size);

INV_BIT 0x2a
dst_data = GetMemData (rdst.data, rdst.size);
dst_data[rsrc.data[12:0]] = !dst_data[rsrc.data[12:0]];
SetMemBuffData (rdst.data, dst_data, rdst.size);

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 130

Cryptographic Function Block (Crypto)

Table 11-44. Instructions with Mixed Operands, Category IV

Instruction Format

Mnemonic (rdst, rsrc1, rsrc0) or COND_Mnemonic (cc, rdst, rsrc1, rsrc0)
rdst: register operand
rsrc1: memory buffer operand
rsrc0: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[7:4] = rsrc1
IW[3:0] = rsrc0

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

GET_BIT 0x2b

src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_bit = src1_data[rsrc0.data[12:0]];
rdst.data = src1_bit;
STATUS.CARRY = src1_bit;

Table 11-45. Instructions with Mixed Operands, Category V

Instruction Format

Mnemonic (rdst, rsrc1, rsrc0) or COND_Mnemonic (cc, rdst, rsrc1, rsrc0)
rdst: register operand
rsrc1: memory buffer operand
rsrc0: memory buffer operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[7:4] = rsrc1
IW[3:0] = rsrc0

Shared Functionality
STATUS.ZERO = (src0_data[instr_size:0] == src1_data[instr_size:0])
Note that for 8192-bit operands, two equal operands result in rdst.data[12:0] = “0”. The ZERO cause field can
be used to identify this situation.

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

CLSAME 0x26

instr_size = Maximum (rsrc1.size, rsrc0.size);
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
temp_data = src1_data ^ src0_data;
for (idx = instr_size-1; idx >= 0; idx--) {
if (temp_data[idx] == 1) break;
}
rdst.data[12:0] = instr_size - idx - 1;

CTSAME 0x27

instr_size = Maximum (rsrc1.size, rsrc0.size);
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
temp_data = src1_data ^ src0_data;
for (idx = 0; idx < instr_size; idx++) {
if (temp_data[idx] == 1) break;
}
rdst.data[12:0] = idx;

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 131

Cryptographic Function Block (Crypto)

Table 11-46. Instructions with Memory Operands, Category I

Instruction Format
Mnemonic (rdst) or COND_Mnemonic (cc, rdst)
rdst: memory buffer operand
cc: condition code

Encoding
IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst

Shared Functionality
STATUS.EVEN = (dst_data[0] == 0)
STATUS.ZERO = (dst_data[instr_size:0] == 0)
STATUS.ONE = (dst_data[instr_size:0] == 1)

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

SET_TO_ZERO 0x34
instr_size = rdst.size;
dst_data = 0;
SetMemBuffData (rdst.data, dst_data, instr_size);

SET_TO_ONE 0x35
instr_size = rdst.size;
dst_data = 1;
SetMemBuffData (rdst.data, dst_data, instr_size);

Table 11-47. Instructions with Memory Operands, Category II

Instruction Format

Mnemonic (rdst, rsrc) or COND_Mnemonic (cc, rdst, rsrc)
rdst: memory buffer operand
rsrc: memory buffer operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[3:0] = rsrc

Shared Functionality
STATUS.EVEN = (dst_data[0] == 0)
STATUS.ZERO = (dst_data[instr_size:0] == 0)
STATUS.ONE = (dst_data[instr_size:0] == 1)

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

MOV 0x30

instr_size = rdst.size;
src_data = GetMemData (rsrc.data, rsrc.size);
src_data = SizeAdjust (src_data, instr_size);
dst_data = src_data;
SetMemBuffData (rdst.data, dst_data, instr_size);

XSQUARE 0x31

instr_size = rdst.size;
src_data = GetMemData (rsrc.data, rsrc.size);
src_data = SizeAdjust (src_data, instr_size);
dst_data = PolynomialMultiplication (src_data, src_data);
SetMemBuffData (rdst.data, dst_data, instr_size);
Note: The source and destination memory operands must not overlap.

USQUARE 0x2f

instr_size = rdst.size;
src_data = GetMemData (rsrc.data, rsrc.size);
src_data = SizeAdjust (src_data, instr_size);
dst_data = src_data * src_data;
SetMemBuffData (rdst.data, dst_data, instr_size);
Note: The source and destination memory operands must not overlap.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 132

Cryptographic Function Block (Crypto)

Table 11-48. Instructions with Memory Operands, Category III

Instruction Format

Mnemonic (rsrc1, rsrc0) or COND_Mnemonic (cc, rsrc1, rsrc0)
rsrc1: memory buffer operand
rsrc0: memory buffer operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[7:4] = rsrc1
IW[3:0] = rsrc0

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

CMP_SUB 0x3d

instr_size = Maximum (rsrc1.size, rsrc0.size);
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
dst_data = src1_data – src0_data;
STATUS.CARRY = (src1_data >= src0_data);
STATUS.EVEN = (dst_data[0] == 0)
STATUS.ZERO = (dst_data[instr_size:0] == 0)
STATUS.ONE = (dst_data[instr_size:0] == 1)

CMP_DEGREE 0x3e

instr_size = Maximum (rsrc1.size, rsrc0.size);
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
STATUS.CARRY = PolynomialDegree (src1_data) >= Polynomi-
alDegree (src0_data);
STATUS.ZERO = PolynomialDegree (src1_data) == Polynomial-
Degree (src0_data);

Table 11-49. Instructions with Memory Operands, Category IV

Instruction Format
Mnemonic (rsrc) or COND_Mnemonic (cc, rsrc)
rsrc: memory buffer operand
cc: condition code

Encoding
IW[31:24] = “operation code”
IW[23:20] = cc
IW[3:0] = rsrc

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

TST 0x3f

instr_size = rsrc.size;
src_data = GetMemData (rsrc.data, rsrc.size);
dst_data = src_data;
STATUS.CARRY = 0; // always set to ‘0’!!!
STATUS.EVEN = (dst_data[0] == 0)
STATUS.ZERO = (dst_data[instr_size:0] == 0)
STATUS.ONE = (dst_data[instr_size:0] == 1)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 133

Cryptographic Function Block (Crypto)

Table 11-50. Instructions with Memory Operands, Category V

Instruction Format

Mnemonic (rdst, rsrc1, rsrc0) or COND_Mnemonic (cc, rdst, rsrc1, rsrc0)
rdst: memory buffer operand
rsrc1: memory buffer operand
rsrc0: memory buffer operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[15:12] = rdst
IW[7:4] = rsrc1
IW[3:0] = rsrc0

Shared Functionality
STATUS.EVEN = (dst_data[0] == 0)
STATUS.ZERO = (dst_data[instr_size:0] == 0)
STATUS.ONE = (dst_data[instr_size:0] == 1)

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

XMUL 0x32

instr_size = rdst.size;
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
dst_data = PolynomialMultiplication (src1_data, src0_-
data);
SetMemBuffData (rdst.data, dst_data, instr_size);
Note: The source and destination memory operands must not overlap.
When one of the operands is 32 or less bits in size, performance is best when
rsrc0 is used for this operand.

UMUL 0x33

instr_size = rdst.size;
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
dst_data = src1_data * src0_data;
SetMemBuffData (rdst.data, dst_data, instr_size);
Note: The source and destination memory operands must not overlap.
When one of the operands is 32 or less bits in size, performance is best when
rsrc0 is used for this operand.

ADD 0x36

instr_size = rdst.size;
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
dst_data = src1_data + src0_data;
STATUS.CARRY = (dst_data >= (1 << instr_size));
SetMemBuffData (rdst.data, dst_data, instr_size);

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 134

Cryptographic Function Block (Crypto)

SUB 0x37

instr_size = rdst.size;
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
dst_data = src1_data - src0_data;
STATUS.CARRY = (src1_data >= src0_data);
SetMemBuffData (rdst.data, dst_data, instr_size);

ADD_WITH_CARRY 0x14

instr_size = rdst.size;
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
dst_data = src1_data + src0_data + STATUS.CARRY;
STATUS.CARRY = (dst_data >= (1 << instr_size));
SetMemBuffData (rdst.data, dst_data, instr_size);

SUB_WITH_CARRY 0x15

instr_size = rdst.size;
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
dst_data = src1_data - src0_data – !STATUS.CARRY;
STATUS.CARRY = (src1_data >= src0_data);
SetMemBuffData (rdst.data, dst_data, instr_size);

OR, AND, XOR, NOR,
NAND

0x38, 0x39, 0x3a, 0x3b,
0x3c

instr_size = rdst.size;
src0_data = GetMemData (rsrc0.data, rsrc0.size);
src0_data = SizeAdjust (src0_data, instr_size);
src1_data = GetMemData (rsrc1.data, rsrc1.size);
src1_data = SizeAdjust (src1_data, instr_size);
OR: dst_data = src1_data | src0_data;
AND: dst_data = src1_data & src0_data;
XOR: dst_data = src1_data ^ src0_data;
NOR: dst_data = ~(src1_data | src0_data);
NAND: dst_data = ~(src1_data & src0_data);
SetMemBuffData (rdst.data, dst_data, instr_size);

Table 11-50. Instructions with Memory Operands, Category V

Instruction Format

Mnemonic (rdst, rsrc1, rsrc0) or COND_Mnemonic (cc, rdst, rsrc1, rsrc0)
rdst: memory buffer operand
rsrc1: memory buffer operand
rsrc0: memory buffer operand
cc: condition code

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 135

Cryptographic Function Block (Crypto)

Table 11-51. Instructions with Memory Operands, Category VI

Instruction Format

Mnemonic (rdst, imm12) or COND_Mnemonic (cc, rdst, imm12)
rdst: memory buffer operand
rsrc: register operand
cc: condition code

Encoding

IW[31:24] = “operation code”
IW[23:20] = cc
IW[19:16] = rdst
IW[12:0] = imm13

Mnemonic Operation Code Functionality (if “cc” evaluates to ‘1’/TRUE)

SET_BIT_IMM 0x2c
dst_data = GetMemData (rdst.data, rdst.size);
dst_data[imm13] = 1;
SetMemBuffData (rdst.data, dst_data, rdst.size);

CLR_BIT_IMM 0x2d
dst_data = GetMemData (rdst.data, rdst.size);
dst_data[imm13] = 0;
SetMemBuffData (rdst.data, dst_data, rdst.size);

INV_BIT_IMM 0x2e
dst_data = GetMemData (rdst.data, rdst.size);
dst_data[imm13] = !dst_data[imm13];
SetMemBuffData (rdst.data, dst_data, rdst.size);

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 136

12. Program and Debug Interface

The PSoC 6 MCU Program and Debug interface provides a communication gateway for an external device to perform
programming or debugging. The external device can be a Cypress-supplied programmer and debugger, or a third-party
device that supports programming and debugging. The serial wire debug (SWD) or the JTAG interface can be used as the
communication protocol between the external device and PSoC 6 MCUs.

12.1 Features
■ Supports programming and debugging through the JTAG or SWD interface.

■ CM4 supports 4-bit ETM tracing, serial wire viewer (SWV), and printf() style debugging through the single-wire output
(SWO) pin. CM0+ supports Micro Trace Buffer (MTB) with 4 KB dedicated RAM.

■ Supports Cross Triggering Interface (CTI) and Cross Triggering Matrix (CTM).

■ CM0+ supports four hardware breakpoints and two watchpoints. CM4 supports six hardware breakpoints and four
watchpoints.

■ Provides read and write access to all memory and registers in the system while debugging, including the Cortex-M4 and
Cortex-M0+ register banks when the core is running or halted.

12.2 Architecture

Figure 12-1 shows the block diagram of the program and debug interface in the PSoC 6 MCU. The debug and access port
(DAP) acts as the program and debug interface. The external programmer or debugger, also known as the “host”,
communicates with the DAP of the PSoC 6 MCU “target” using either the SWD or JTAG interface. The debug physical port
pins communicate with the DAP through the high-speed I/O matrix (HSIOM). See the I/O System chapter on page 240 for
details on HSIOM.

The debug infrastructure is organized in the following four groups:

■ DAP (provides pin interfaces through which the debug host can connect to the chip)

■ Cortex-M0+ core debug components

■ Cortex-M4 core debug components

■ Other debug infrastructure (includes the CM4 tracing, the CTM, and the System ROM table)

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 137

Program and Debug Interface

Figure 12-1. Program and Debug Interface

The DAP communicates with the Cortex-M0+ CPU using the Arm-specified advanced high-performance bus (AHB) interface.
AHB is the systems interconnect protocol used inside the device, which facilitates memory and peripheral register access by
the AHB master. The PSoC 6 MCU has six AHB masters – Arm CM4 CPU core, Arm CM0 CPU core, Datawire0, Datawire1,
Crypto, and DAP. The external host can effectively take control of the entire device through the DAP to perform programming
and debugging operations.

The following are the various debug and trace components:

■ Debug components

❐ JTAG and SWD for debug control and access

■ Trace source components

❐ Micro trace buffer (MTB-M0+) for tracing Cortex-M0+ program execution

❐ Embedded trace macrocell (ETM-M4) for tracing Cortex-M4 program execution

■ Trace sink components

❐ Trace port interface unit (TPIU) to drive the trace information out of the chip to an external trace port analyzer

■ Cross-triggering components

❐ Cross-trigger interface (CTI)

❐ Cross-trigger matrix (CTM)

■ ROM tables

Cortex-M0+

PSoC 6

S
W

D
/J

T
A

G

CM0 Access
Port

System
Access Port

D
A

P
 B

U
S

DAP

Arm Cortex-M4 subsystem

Arm Cortex-M0+ subsystem

CM0+ AHB decoder

Micro Trace Buffer (MTB)

Cross Trigger
Interface (CTI)

CM0 external
ROM table

SLV

AHB SRAM

Cortex-M4

CM4 APB decoder

Embedded Trace Macro (ETM)

Cross Trigger
Interface (CTI)

CM4
ROM table

AHB

CM4 AP

D
A

P
D

A
P

ITM

Debug APB
decoder

Debug
ROM table

Cross Trigger
Interface (CTI)

Cross Trigger
Matrix (CTM)

Trace Port
Interface Unit

(TPIU)P
or

t
P

in
s

System
ROM table

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 138

Program and Debug Interface

12.2.1 Debug Access Port (DAP)

The DAP consists of a combined SWD/JTAG interface
(SWJ) that also includes the SWD listener. The SWD
listener decides whether the JTAG interface (default) or
SWD interface is active. Note that JTAG and SWD are
mutually exclusive because they share pins.

The debug port (DP) connects to the DAP bus, which in turn
connects to one of three Access Ports (AP), namely:

■ The CM0-AP, which connects directly to the AHB debug
slave port (SLV) of the CM0+ and gives access to the
CM0+ internal debug components. This also allows
access to the rest of the system through the CM0+ AHB
master interface. This provides the debug host the same
view as an application running on the CM0+. This
includes access to the MMIO of other debug
components of the Cortex M0+ subsystem. These
debug components can also be accessed by the CM0+
CPU, but cannot be reached through the other APs or by
the CM4 core.

■ The CM4-AP located inside the CM4 gives access to the
CM4 internal debug components. The CM4-AP also
allows access to the rest of the system through the CM4
AHB master interfaces. This provides the debug host the
same view as an application running on the CM4 core.
Additionally, the CM4-AP provides access to the debug
components in the CM4 core through the External
Peripheral Bus (EPB). These debug components can
also be accessed by the CM4 CPU, but cannot be
reached through the other APs or by the CM0+ core.

■ The System-AP, which through an AHB mux gives
access to the rest of the system. This allows access to
the System ROM table, which cannot be reached any
other way. The System ROM table provides the chip ID
but is otherwise empty.

12.2.1.1 DAP Security

For security reasons all three APs each can be
independently disabled. Each AP disable is controlled by
two MMIO bits. One bit, CPUSS_AP_CTL.xxx_DISABLE
(where xxx can be CM0 or CM4 or SYS), can be set during
boot, before the debugger can connect, based on eFuse
settings. After this bit is set it cannot be cleared.

The second bit, CPUSS_AP_CTL.xxx_ENABLE, is a regular
read/write bit. This bit also resets to zero and is set to ‘1’ by
either the ROM boot code or the flash boot code depending
on the life-cycle stage. This feature can be used to block
debug access during normal operation, but re-enable some
debug access after a successful authentication.

In addition to the above, the System AP is also protected by
an MPU. This can be used to give the debugger limited
access to the rest of the system. Allow access to the System
ROM table for chip identification. If debug access is restored
after successful authentication, this MPU must be
configured to allow authentication requests.

Note: The debug slave interfaces of both the CPUs bypass
the internal CPU MPU.

12.2.1.2 DAP Power Domain

Almost all the debug components are part of the Active
power domain. The only exception is the SWD/JTAG-DP,
which is part of the Deep Sleep power domain. This allows
the debug host to connect during Deep Sleep, while the
application is ‘running’ or powered down. This enables in-
field debugging for low-power applications in which the chip
is mostly in Deep Sleep.

After the debugger is connected to the chip, it must bring the
chip to the Active state before any operation. For this, the
SWD/JTAG-DP has a register (DP_CTL_STAT) with two
power request bits. The two bits are CDBGPWRUPREQ
and CSYSPWRUPREQ, which request for debug power
and system power, respectively. These bits must remain set
for the duration of the debug session.

Note that only the two SWD pins (SWCLKTCK and
SWDIOTMS) are operational during the Deep Sleep mode –
the JTAG pins are operational only in Active mode. The
JTAG debug and JTAG boundary scan are not available
when the system is in Deep Sleep mode. JTAG functionality
is available only after a chip power-on-reset.

12.2.2 ROM Tables

The ROM tables are organized in a tree hierarchy. Each AP
has a register that contains a 32-bit address pointer to the
base of the root ROM table for that AP. For PSoC 6 MCUs,
there are three such root ROM tables.

Each ROM table contains 32-bit entries with an address
pointer that either points to the base of the next level ROM
table. Each ROM table also contains a set of ID registers
that hold JEDEC compliant identifiers to identify the
manufacturer, part number, and major and minor revision
numbers. For all ROM tables in PSoC 6 MCUs, these IDs
are the same. Each ROM table and CoreSight compliant
component also contains component identification registers.

12.2.3 Trace

The micro trace buffer (MTB-M0+) component captures the
program execution flow from Cortex-M0+ CPU and stores it
in a local SRAM memory. This information can be read by
an external debug tool through JTAG/SWD interface to
construct the program execution flow.

The embedded trace macro (ETM) component connected to
Cortex-M4 captures the program execution flow from
Cortex-M4 CPU and generates trace output on its advanced
trace bus (ATB) interface. The instrumentation trace
macrocell (ITM), which is inside Cortex-M4, also generates
trace output on its ATB interface. These two ATB interfaces
(from ETM-M4 and ITM) are connected a trace port interface
unit (TPIU).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 139

Program and Debug Interface

The TPIU drives the external pins of a trace port (through
IOSS interface), so that the trace can be captured by an
external trace port analyzer (TPA). For more details, refer to
the Arm Debug Interface Architecture Specification ADIv5.0
to ADIv5.2.

12.2.4 Embedded Cross Triggering

The Arm CoreSight includes Embedded Cross Triggering
(ECT) to communicate events between debug components.
These events are particularly useful with tracing and
multicore platforms. For example trigger events can be used
to:

■ Start or stop both CPUs at (almost) the same time

■ Start or stop instruction tracing based on trace buffer
being full or not or based on other events

CoreSight uses two components to support ECT, namely a
CTI and a CTM, both of which are used in PSoC 6 MCUs.

The CTI component interfaces with other debug
components, sending triggers back and forth and
synchronizing them as needed. The CTM connects several
CTIs, thus allowing events to be communicated from one
CTI to another.

The PSoC 6 MCU has three CTIs, one for each CPU and
one for the trace components in the debug structure. These
three CTIs are connected together through the CTM. The
CM4 CTI is located in the fast clock domain and the other
two CTIs and the CTM are all located in the same slow-

frequency clock domain. For more details, refer to the Arm
documentation.

12.3 Serial Wire Debug (SWD)
Interface

The PSoC 6 MCU supports programming and debugging
through the SWD interface. The SWD protocol is a packet-
based serial transaction protocol. At the pin level, it uses a
single bidirectional data signal (SWDIO) and a unidirectional
clock signal (SWDCK). The host programmer always drives
the clock line, whereas either the host or the target drives
the data line. A complete data transfer (one SWD packet)
requires 46 clocks and consists of three phases:

■ Host Packet Request Phase – The host issues a
request to the PSoC 6 MCU target.

■ Target Acknowledge Response Phase – The PSoC 6
MCU target sends an acknowledgement to the host.

■ Data Transfer Phase – The host or target writes data to
the bus, depending on the direction of the transfer.

When control of the SWDIO line passes from the host to the
target, or vice versa, there is a turnaround period (Trn)
where neither device drives the line and it floats in a high-
impedance (Hi-Z) state. This period is either one-half or one
and a half clock cycles, depending on the transition.

Figure 12-2 shows the timing diagrams of read and write
SWD packets.

Figure 12-2. SWD Write and Read Packet Timing Diagrams

S
ta

rt
 (

1
)

A
P

n
D

P

R
nW

 (
0

)

A[2:3]

P
a

ri
ty

S
to

p
 (

0
)

P
a

rk
 (

1
)

T
rn

 (
H

i-Z
)

1

w
d

a
ta

[0
]

P
a

ri
ty

ACK[0:2]

0 0

w
d

a
ta

[1
]

w
da

ta
[3

1]

...

...

...

T
rn

 (
H

i-
Z

)

Host Packet Request Phase Target ACK Phase Host Data Transfer Phase

SWD Write Packet

S
ta

rt
 (

1)

A
P

nD
P

R
n

W
 (

1
)

A[2:3]

P
a

rit
y

S
to

p
 (

0
)

P
a

rk
 (

1
)

T
rn

 (
H

i-
Z

)

1

rd
a

ta
[0

]

P
a

rit
y

ACK[0:2]

0 0

rd
a

ta
[1

]

rd
a

ta
[3

1
]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK and Data Transfer Phases

SWD Read Packet

SWDCK

SWDIO

SWDCK

SWDIO

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 140

Program and Debug Interface

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the host

a. The start bit initiates a transfer; it is always logic 1.

b. The AP not DP (APnDP) bit determines whether the
transfer is an AP access – 1b or a DP access – 0b.

c. The Read not Write bit (RnW) controls which
direction the data transfer is in. 1b represents a ‘read
from’ the target, or 0b for a ‘write to’ the target.

d. The Address bits (A[3:2]) are register select bits for
AP or DP, depending on the APnDP bit value.
Note: Address bits are transmitted with the LSb first.

e. The parity bit contains the parity of APnDP, RnW,
and ADDR bits. It is an even parity bit; this means,
when XORed with the other bits, the result will be 0.

If the parity bit is not correct, the header is ignored by
the PSoC 6 MCU; there is no ACK response (ACK =
111b). The programming operation should be
aborted and retried again by following a device reset.

f. The stop bit is always logic 0.

g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO driven
by the target

a. The ACK[2:0] bits represent the target to host
response, indicating failure or success, among other
results. See Table 12-1 for definitions. Note: ACK
bits are transmitted with the LSb first.

3. Data Transfer Phase: SWDIO driven by either target or
host depending on direction

a. The data for read or write is written to the bus, LSb
first.

b. The data parity bit indicates the parity of the data
read or written. It is an even parity; this means when
XORed with the data bits, the result will be 0.

If the parity bit indicates a data error, corrective
action should be taken. For a read packet, if the host
detects a parity error, it must abort the programming
operation and restart. For a write packet, if the target
detects a parity error, it generates a FAULT ACK
response in the next packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. Three or more dummy clock cycles should be
generated between two SWD packets if the clock is not free-
running or to make the clock free-running in IDLE mode.

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

12.3.1 SWD Timing Details

The SWDIO line is written to and read at different times
depending on the direction of communication. The host

drives the SWDIO line during the Host Packet Request
phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response phase and, if the target is reading
out data, during the Data Transfer phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 12-1 and Figure 12-2 illustrate the timing of SWDIO bit
writes and reads.

12.3.2 ACK Details

The acknowledge (ACK) bitfield is used to communicate the
status of the previous transfer. OK ACK means that previous
packet was successful. A WAIT response requires a data
phase. For a FAULT status, the programming operation
should be aborted immediately. Table 12-2 shows the ACK
bit-field decoding details.

Details on WAIT and FAULT response behaviors are as
follows:

■ For a WAIT response, if the transaction is a read, the
host should ignore the data read in the data phase. The
target does not drive the line and the host must not
check the parity bit as well.

■ For a WAIT response, if the transaction is a write, the
data phase is ignored by the PSoC 6 MCU. But, the host
must still send the data to be written to complete the
packet. The parity bit corresponding to the data should
also be sent by the host.

■ A WAIT response means that the PSoC 6 MCU is
processing the previous transaction. The host can try for
a maximum of four continuous WAIT responses to see
whether an OK response is received. If it fails, then the

Table 12-1. SWDIO Bit Write and Read Timing

SWD Packet Phase
SWDIO Edge

Falling Rising

Host Packet Request
Host Write Target Read

Host Data Transfer

Target Ack Response
Host Read Target Write

Target Data Transfer

Table 12-2. SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 001b

WAIT 010b

FAULT 100b

NO ACK 111b

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 141

Program and Debug Interface

programming operation should be aborted and retried
again.

■ For a FAULT response, the programming operation
should be aborted and retried again by doing a device
reset.

12.3.3 Turnaround (Trn) Period Details

There is a turnaround period between the packet request
and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in
Figure 12-2. According to the SWD protocol, the Trn period
is used by both the host and target to change the drive
modes on their respective SWDIO lines. During the first Trn
period after the packet request, the target starts driving the
ACK data on the SWDIO line on the rising edge of SWDCK.
This action ensures that the host can read the ACK data on
the next falling edge. Thus, the first Trn period lasts only
one-half cycle. The second Trn period of the SWD packet is
one and a half cycles. Neither the host nor the PSoC 6 MCU
should drive the SWDIO line during the Trn period.

12.4 JTAG Interface

In response to higher pin densities on ICs, the Joint Test
Action Group (JTAG) proposed a method to test circuit
boards by controlling the pins on the ICs (and reading their
values) via a separate test interface. The solution, later
formalized as IEEE Standard 1149.1-2001, is based on the
concept of a serial shift register routed across all of the pins
of the IC – hence the name “boundary scan.” The circuitry at
each pin is supplemented with a multipurpose element
called a boundary scan cell. In PSoC 6 MCUs, most GPIO
port pins have a boundary scan cell associated with them
(see the GPIO block diagrams in the I/O System chapter on
page 240). The interface used to control the values in the
boundary scan cells is called the Test Access Port (TAP)
and is commonly known as the JTAG interface. It consists of
three signals: Test Data In (TDI), Test Data Out (TDO), and
Test Mode Select (TMS). Also included is a clock signal
(TCK) that clocks the other signals. TDI, TMS, and TCK are
all inputs to the device and TDO is the output from the
device. This interface enables testing multiple ICs on a
circuit board, in a daisy-chain fashion, as shown in
Figure 12-3.

Figure 12-3. JTAG Interface to Multiple ICs on a Circuit Board

The JTAG interface architecture within each device is shown in Figure 12-4. Data at TDI is shifted in, through one of several
available registers, and out to TDO.

TMS

TCK

TDI TDO

TMS

TCK

TDI

TDO

Device 1 TMS

TCK

TDI TDO

Device 2 TMS

TCK

TDI TDO

Device 3

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 142

Program and Debug Interface

Figure 12-4. JTAG Interface Architecture

The TMS signal controls a state machine in the TAP. The state machine controls which register (including the boundary scan
path) is in the TDI-to-TDO shift path, as shown in Figure 12-5. The following terms apply:

■ IR - the instruction register

■ DR - one of the other registers (including the boundary scan path), as determined by the contents of the instruction
register

■ capture - transfer the contents of a DR to a shift register, to be shifted out on TDO (read the DR)

■ update - transfer the contents of a shift register, shifted in from TDI, to a DR (write the DR)

Instruction Register

Core
Logic

BYPASS Register

ID Register

Other Register

Test Access Port
Controller

Boundary Scan Path

IO Pads

Boundary
Scan Cells

TDI

TCK

TMS

TRST
TDO

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 143

Program and Debug Interface

Figure 12-5. TAP State Machine

The registers in the TAP are:

■ Instruction – Typically two to four bits wide, holds the current instruction that defines which data register is placed in the
TDI-to-TDO shift path.

■ Bypass – one bit wide, directly connects TDI with TDO, causing the device to be bypassed for JTAG purposes.

■ ID – 32 bits wide, used to read the JTAG manufacturer/part number ID of the device.

■ Boundary Scan Path (BSR) – Width equals the number of I/O pins that have boundary scan cells, used to set or read the
states of those I/O pins.

Other registers may be included in accordance with the device manufacturer specifications. The standard set of instructions
(values that can be shifted into the instruction register), as specified in IEEE 1149, are:

■ EXTEST – Causes TDI and TDO to be connected to the BSR. The device is changed from its normal operating mode to a
test mode. Then, the device’s pin states can be sampled using the capture dr JTAG state, and new values can be applied
to the pins of the device using the update dr state.

■ SAMPLE – Causes TDI and TDO to be connected to the BSR, but the device remains in its normal operating mode.
During this instruction, the BSR can be read by the capture dr JTAG state to take a sample of the functional data entering
and leaving the device.

■ PRELOAD – Causes TDI and TDO to be connected to the BSR, but the device is left in its normal operating mode. The
instruction is used to preload test data into the BSR before loading an EXTEST instruction.

Optional, but commonly available, instructions are:

■ IDCODE – Causes TDI and TDO to be connected to an IDCODE register.

■ INTEST – Causes TDI and TDO to be connected to the BSR. While the EXTEST instruction allows access to the device
pins, INTEST enables similar access to the corelogic signals of a device

For more information, see the IEEE Standard, available at www.ieee.org.

test logic reset

run test idle

select dr scan

capture dr

shift dr

exit 1 dr

pause dr

exit 2 dr

update dr

select ir scan

capture ir

shift ir

exit 1 ir

pause ir

exit 2 ir

update ir

TMS = 0

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 0TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 0

http://www.ieee.org

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 144

Program and Debug Interface

12.5 Programming the PSoC 6 MCU

The PSoC 6 MCU is programmed using the following sequence. Refer to the PSoC 6 MCU Programming Specifications for
complete details on the programming algorithm, timing specifications, and hardware configuration required for programming.

1. Acquire the SWD port in the PSoC 6 MCU.

2. Enter the programming mode.

3. Execute the device programming routines such as Silicon ID Check, Flash Programming, Flash Verification, and
Checksum Verification.

12.5.1 SWD Port Acquisition

12.5.1.1 SWD Port Acquire Sequence

The first step in device programming is for the host to acquire the target’s SWD port. The host first performs a device reset by
asserting the external reset (XRES) pin. After removing the XRES signal, the host must send an SWD connect sequence for
the device within the acquire window to connect to the SWD interface in the DAP.

The debug access port must be reset using the standard Arm command. The DAP reset command consists of more than 49
SWDCK clock cycles with SWDIO asserted high. The transaction must be completed by sending at least one SWDCK clock
cycle with SWDIO asserted low. This sequence synchronizes the programmer and the chip. Read_DAP() refers to the read of
the IDCODE register in the debug port. The sequence of line reset and IDCODE read should be repeated until an OK ACK is
received for the IDCODE read or a timeout (2 ms) occurs. The SWD port is said to be in the acquired state if an OK ACK is
received within the time window and the IDCODE read matches with that of the Cortex-M0+ DAP.

12.5.2 SWD Programming Mode Entry

After the SWD port is acquired, the host must enter the device programming mode within a specific time window. This is done
by setting the TEST_MODE bit (bit 31) in the test mode control register (MODE register). The debug port should also be
configured before entering the device programming mode. Timing specifications and pseudo code for entering the
programming mode are detailed in the PSoC 6 MCU Programming Specifications document.

12.5.3 SWD Programming Routine Executions

When the device is in programming mode, the external programmer can start sending the SWD packet sequence for
performing programming operations such as flash erase, flash program, checksum verification, and so on. The programming
routines are explained in the Nonvolatile Memory chapter on page 146. The exact sequence of calling the programming
routines is given in the PSoC 6 MCU Programming Specifications document.

https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 145

Program and Debug Interface

12.6 Registers

Table 12-3. List of Registers

Register Name Description

CM0P_DWT Cortex M0+ Data Watchpoint and Trace (DWT) registers

CM0P_BP Cortex M0+ BreakPoint (BP) registers

CM0P_ROM Cortex M0+ CPU Coresight ROM table

CM0P_CTI Cortex M0+ Cross-Trigger Interface (CTI) registers

CM0P_MTB Cortex M0+ Micro Trace Buffer (MTB) registers

CM4_ITM Cortex M4 Instrumentation Trace Macrocell (ITM) registers

CM4_DWT Cortex M4 Data Watchpoint and Trace (DWT) registers

CM4_FPB Cortex M4 Flash Patch and Breakpoint (FPB) registers

CM4_SCS Cortex M4 System Control Space (SCS) registers

CM4_ETM Cortex M4 Embedded Trace Macrocell (ETM) registers

CM4_CTI Cortex M4 Cross-Trigger Interface (CTI) registers

CM4_ROM Cortex M4 CPU Coresight ROM table

TRC_TPIU System Trace Coresight Trace Port Interface Unit (TPIU) registers

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 146

13. Nonvolatile Memory

Nonvolatile memory refers to the flash and SROM memory in the PSoC 6 MCU. This chapter explains the geometry and
capability of the flash memory. It also lists the SROM API functions that are used to program the flash memory.

13.1 Flash Memory

The PSoC 6 flash offers high bulk program performance and supports ultra-low-power operation. Flash is typically used to
store CPU instructions and data when the device power is off. Flash may be written, but the process is much slower and more
restrictive than for SRAM.

13.1.1 Features

This section lists the features of PSoC 6 flash.

■ 512-byte row size; minimum programmable unit

■ Supports the Read While Write (RWW) feature with a sector size of 256KB

■ 10-year retention

■ Endurance of 10 k program cycles

13.1.2 Configuration

13.1.2.1 Block Diagram

Flash is part of the CPU subsystem. The Cortex-M4 and Cortex M0+, as well as other bus masters, can access flash via the
AHB.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 147

Nonvolatile Memory

Figure 13-1. Block Diagram

13.1.3 Flash Geometry

The flash is divided into three regions: the application region, and the supervisory flash (SFlash) region, and the auxiliary
flash (AUXFlash) region. The flash has an Erase Disturb mechanism in which writes to rows affect the endurance of other
rows in the same sector. It is recommended that the AUXFlash region is used for frequently-updated data. For data that
changes infrequently or code images, the application flash region can be used.

The SFlash region is used to store trim parameters, system configuration parameters, protection and security settings, boot
code, and other Cypress proprietary information. Read access to this region is permitted, but program/erase access is limited.
The application region is used to store code images or data. The AUXFlash is typically used for EEPROM emulation.

Each region divides into sectors and rows. The sector is the largest division of the region and consists of a number of 512
byte rows.

Figure 13-2. Flash Geometry Organization

Table 13-1. Flash Geometry

Application Flash SFlash and AUXFlash

Read
Width

KB Sectors KB/Sector
Rows/
Sector

KB/Row KB Sectors KB/Sector
Rows/
Sector

KB/Row

128 1024 4 256 512 0.5 64 2 32 64 0.5

System Interconnect (AHB, IPC)

System
Resources

Peripherals

CM4 CM0+ Flash SRAM0-4
DataWire/

DMA
Crypto ROM

Peripheral Interconnect (MMIO)

S
er

ia
l M

em
or

y
In

te
rf

a
ce

 (
Q

S
P

I)

2x
 S

D
H

C

I/O Subsystem

U
S

B
F

S

SFlash

Application
flash

AUXFlash

Flash

S3

R0

R511

S0

4 Sectors (256 kB) 512 Rows (0.5 kB)

S0
R0

R632 Sectors (32 kB)

64 Rows (0.5 kB)

S0 R0

R63
2 Sectors (32 kB) 64 Rows (0.5 kB)

S1

S1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 148

Nonvolatile Memory

13.1.4 Flash Controller

Access to the flash memory is enabled through the flash controller. The flash controller interfaces with the AHB-Lite bus and
provides flash access for the CM0+, CM4, Crypto, DataWire, and debug. The flash controller generates a bus error if:

■ A flash read access to a sector that is currently being programmed/erased

■ A read access to a memory hole in the flash memory region. A memory hole is defined as a location that is not occupied
by the application flash, AUXFlash, or SFlash. Note that the AUXFlash space and SFlash space can be non-powers of 2
for some flash macros

The flash controller also provides the registers which support configuration of flash accesses.

13.1.4.1 Wait State Count

FLASHC_FLASH_CTL supports configuration of flash wait cycles. If clk_hf is greater than the maximum operating frequency
of the flash memory, it is necessary to insert wait cycles when accessing the flash memory by setting the appropriate value in
the FLASHC_FLASH_CTL.MAIN_WS register. Set the wait cycles as follows.

13.1.4.2 Power Modes

FLASHC_FLASH_PWR_CTL provides enable bits for the flash memory. Software can turn off all regions of the flash memory
by setting the ENABLE and ENABLE_HV fields to 0.

The wakeup time of flash memory is 10 µs. Software should wait at least 10 µs before reading from flash after it is re-enabled
through the FLASHC_FLASH_PWR_CTL register.

The flash controller provides functionality down to the Deep Sleep power mode. In the Deep Sleep power mode, the following
flash controller information is retained:

■ The retention MMIO registers (listed in Table 13-2)

■ The cache data structure

Note that buffer information (in the AHB-Lite buffer interfaces and in the synchronization logic) is not retained. Losing buffer
information after Deep Sleep transition has limited performance impact.

13.1.4.3 CPU Caches

The flash controller provides 8 kB caches for both the CM0+ and CM4 CPUs. Each cache is a four-way set associative with a
least recently used (LRU) replacement scheme. Four-way set associativity means that each cache has four ways per set, with

Table 13-2. Flash Controller Retention Registers

Register Name Description

FLASHC_FLASH_CTL Flash controller control register

FLASHC_FLASH_PWR_CTL Flash enable control

FLASHC_FLASH_CMD Flash commands for cache/buffer invalidation

FLASHC_CM0/CM4_STATUS CM0/4 interface status

FLASHC_CM0/CM4_CA_CTL CM0/4 cache control

FLASHC_*Peripheral*_BUFF_CTL
Buffer control register where *peripheral* may be Crypto, DMA, DWx (DataWire x = 0, 1),
or EXT_MSx (External master; x = 0, 1)

HF Clock Frequency FLASH_CTL.MAIN_WS[3:0]

clk_hf  33 MHz 0

33 < clk_hf  66 MHz 1

66 < clk_hf  99 MHz 2

99 < clk_hf  133 MHz 3

133 < clk_hf  150 MHz 4

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 149

Nonvolatile Memory

each way containing a valid bit, tag, and data. The cache looks at all of the ways in a selected set, checking for validity and a
matching tag. These caches can be enabled/disabled through the FLASHC_CM0/4_CA_CTL.CA_EN registers.

The cache supports faster flash memory reads when enabled. On a read transfer “miss”, however, a normal flash controller
access will occur.

Cache Prefetch. The caches support pre-fetching through the CM0/4_CA_CTL.PREF_EN register.

If prefetch is enabled, a cache miss results in a 16 B refill for
the missing data and a 16 B prefetch for the next sequential
data. The prefetch data is stored in a temporary buffer and is
only copied to the cache when a read transfer “misses” and
requires that data.

13.1.5 Read While Write (RWW) Support

The PSoC 6 MCU supports read operations on one area
while programming/erasing in another area. This is
implemented to support firmware upgrades and parallel
tasks in the dual-core system. The application flash contains
four sectors, each 256KB in size. The AUXFlash and SFlash
are additional sectors apart from the main flash.

The RWW feature is available between sectors – you can
read/execute from one sector while there is an ongoing
write/erase operation in another sector. However, when the
code execution/read is in the last 16 bytes of a given sector
(say sector 0) and the flash write/erase operation is in the
next sector (sector 1), an RWW violation may occur if
prefetch is enabled. This is because prefetch will fetch the
next 16 bytes of data, which is part of sector 1 while a write
operation is underway in the same sector. This will result in
a fault and should be considered during firmware design.
Firmware can be designed to place dead code in the last 16
bytes of every sector making sure the last 16 bytes of a
sector are never accessed or can disable prefetch during a
flash write/erase operation.

13.2 Flash Memory Programming

13.2.1 Features

■ SROM API library for flash management through system
calls such as Program Row, Erase Flash, and Blow
eFuse

■ System calls can be performed using CM0+, CM4, or
DAP

13.2.2 Architecture

Flash programming operations are implemented as system
calls. System calls are executed out of SROM in Protection
Context 0. System calls are executed inside CM0+ NMI. The
system call interface makes use of IPC to initiate an NMI to
CM0+.

System calls can be performed by CM0+, CM4, or DAP.
Each of them have a reserved IPC structure (used as a
mailbox) through which they can request CM0+ to perform a
system call. Each one acquires the specific mailbox, writes
the opcode and argument to the data field of the mailbox,
and notifies a dedicated IPC interrupt structure. This results
in an NMI interrupt in CM0+. The following diagram
illustrates the system call interface using IPC.

Register Bit Field and Bit Name Description

CM0_CA_CTL[32:0] CA_EN[31]
Cache enable:
0: Disabled

1: Enabled

CM4_CA_CTL[32:0] CA_EN[31]
Cache enable:
0: Disabled

1: Enabled

Table 13-3. CM0/4 Cache Control Prefetch Enable Register Values and Bit Field

Register Bit Field and Bit Name Description

CM0_CA_CTL[32:0] PREF_EN[30]

Prefetch enable:

0: Disabled

1: Enabled

CM4_CA_CTL[32:0] PREF_EN[30]

Prefetch enable:

0: Disabled

1: Enabled

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 150

Nonvolatile Memory

Figure 13-3. System Call Interface Using IPC

The PSoC 6 MCU’s IPC component carries only a single 32-
bit argument. This argument is either a pointer to SRAM or a
formatted opcode or argument value that cannot be a valid
SRAM address. The encoding used for DAP and the CM4 or
CM0+ is slightly different.

DAP. If (opcode + argument) is less than or equal to 31
bits, store them in the data field and set the LSb of the data
field as ‘1’. Upon completion of the call, a return value is
passed in the IPC data register. For calls that need more
argument data, the data field is a pointer to a structure in
SRAM (aligned on a word boundary) that has the opcode
and the argument. So it is a pointer if and only if the LSb is
0.

CM4 or CM0+. A pointer is always used to structure SRAM.
Commands that are issued as a single word by DAP can still
be issued by CM0+ or CM4, but use an SRAM structure
instead.

The NMI interrupt handler for system calls works as follows.

■ If the ROM boot process code is not initialized in the
protection state (PROTECTION is still at its default/reset
value UNKOWN), the NMI calls have no effect and the
handler returns.

■ A jump table is used to point to the code in ROM or flash.
This jump table is located in ROM or flash (as configured
in SFlash).

The IPC mechanism is used to return the result of the
system call. Two factors must be considered.

■ The result is to be passed in SRAM: CM0+ writes the
result in SRAM and releases the IPC structure. The
requester knows that the result is ready from the
RELEASE interrupt.

■ The result is scalar ( 32 bits) and there is no SRAM to
pass the result: in this case, the CM0+ writes the result
to the data field of the IPC structure and releases it. The
requester can read the data when the IPC structure lock
is released. The requester polls the IPC structure to
know when it is released.

External programmers program the PSoC 6 MCU flash
memory using the JTAG or SWD protocol by sending the
commands to the DAP. The programming sequence for
PSoC 6 MCUs with an external programmer is given in the
PSoC 6 MCU Programming Specifications. Flash memory
can also be programmed by the CM4/CM0+ CPU by
accessing the IPC interface. This type of programming is
typically used to update a portion of the flash memory as
part of a bootload operation, or other application
requirement, such as updating a lookup table stored in the
flash memory. All write operations to flash memory, whether
from the DAP or from the CPU, are done through the CM0+.

13.3 System Call Implementation

13.3.1 System Call via CM0+ or CM4

System calls can be made from the CM0+ or CM4 at any
point during code execution. CM0+ or CM4 should acquire
the IPC_STRUCT reserved for them and provide arguments

Table 13-4. IPC Structure

Master IPC Structure Resource Used

M0+ IPC_STRUCT0

M4 IPC_STRUCT1

DAP IPC_STRUCT2

Access Point IPC Structure Resource Used

CM0+ NMI interrupt IPC_INTR_STRUCT0

IPC Structure 0

IPC Structure 1

IPC Structure 2

IPC Interrupt
Structure 0

M0+ NMI

Reserved for M0+ Access

Reserved for M4 Access

Reserved for DAP Access

Control

Data (32 bytes)

Control

Data (32 bytes)

Control

Data (32 bytes)

https://www.Infineon.com/PSoC6ProgrammingSpec

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 151

Nonvolatile Memory

in either of the methods described above and notify IPC
interrupt 0 to trigger a system call.

13.3.2 System Call via DAP

If the device is acquired, then the boot ROM enters “busy-
wait loop” and waits for commands issued by the DAP. For a
detailed description on acquiring the device see the PSoC 6
MCU Programming Specifications.

13.3.3 Exiting from a System Call

When the API operation is complete, CM0+ will release the
IPC structure that initiated the system call. If an interrupt is
required upon release, the corresponding mask bit should
be set in IPC_INTR_STRUCT_INTR_MASK.RELEASE[i].
The exit code must also restore the CM0+ protection context
(PROT_MPU_MS_CTL.PC) to the one that was backed up
in PROT_MPU_MS_CTL.PC_SAVED.

13.3.4 SRAM Usage

2KB of SRAM [TOP_OF_SRAM – 2KB, TOP_OF_SRAM] is
reserved for system calls and 1KB of SRAM
[TOP_OF_SRAM – 3KB, TOP_OF_SRAM – 2KB] is used by
SROM boot and should not be part of noinit RAM.
TOP_OF_SRAM is the last address of SRAM.

https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 152

Nonvolatile Memory

13.4 SROM API Library

SROM has two categories of APIs:

■ Flash management APIs – These APIs provide the ability to program, erase, and test the flash macro.

■ System management APIs – These APIs provide the ability to perform system tasks such as checksum and blowing
eFuse.

Table 13-5 shows a summary of the APIs.

Table 13-5. List of System Calls

System Call Opcode Description
API

Category

Access Allowed

Normala

a. Refer to Device Security chapter on page 191.

Secure Dead

Cypress ID 0x00
Returns die ID, major/minor ID, and
protection state

SYS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

Blow eFuse Bit 0x01 Blows the addressed eFuse bit SYS DAP None None

Read eFuse Byte 0x03 Reads addressed eFuse byte SYS CM0+, CM4, DAP CM0+, CM4, DAP None

Write Row 0x05
Pre-program, erase, and program the
addressed flash row

FLS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

Program Row 0x06 Programs the addressed flash row FLS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

Erase All 0x0A Erases all flash FLS CM0+, CM4, DAP None DAP

Checksum 0x0B
Reads either the whole flash or a row
of flash, and returns the sum of each
byte read

FLS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

Compute Hash 0x0D
Computes the hash value of the
mentioned flash region

SYS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

ConfigureRegionBulk 0x0E
Copies data from addressed source
to addressed destination

SYS None None None

DirectExecute 0x0F
Executes the code located at the
provided address

SYS DAPb

b. Allowed only if SFLASH.DIRECT_EXECUTE_DISABLE = 0.

None None

Erase Sector 0x14 Erases the addressed flash sector FLS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

Soft Reset 0x1B
Provides system reset to either or
both cores

SYS CM0+, CM4, DAP DAPc

c. DAP has no access if secure eFuse is blown.

CM0+, CM4

Erase Row 0x1C Erases the addressed flash row FLS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

Erase Subsector 0x1D
Erases the addressed flash
subsector

FLS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

GenerateHash 0x1E
Generates the hash of the objects
indicated by the table of contents

SYS CM0+, CM4, DAP None None

ReadUniqueID 0x1F
Returns the unique ID of the die from
SFlash

SYS CM0+, CM4, DAP CM0+, CM4, DAP CM0+, CM4, DAP

CheckFactoryHash 0x27 Checks if FACTORY HASH is valid SYS CM0+, CM4, DAP None None

TransitionToRMA 0x28 Convert part to RMA life cycle SYS None CM0+, CM4, DAP None

ReadFuseByteMargin 0x2B Marginally reads eFuse SYS CM0+, CM4, DAP CM0+, CM4, DAPd

d. DAP has no access if secure eFuse is blown, but access is allowed in SECURE_WITH_DEBUG life cycle

None

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 153

Nonvolatile Memory

13.5 System Calls

Table 13-5 lists all the system calls supported in PSoC 6 MCUs along with the function description and availability in device
protection modes. See the Device Security chapter on page 191 for more information on the device protection settings. Note
that some system calls cannot be called by the CM4, CM0+, or DAP as given in the table. The following sections provide
detailed information on each system call.

13.5.1 Cypress ID

This function returns a 12-bit family ID, 16-bit silicon ID, 8-bit revision ID, and the current device protection mode. These
values are returned to the IPC_STRUCT_DATA register if invoked with IPC_STRUCT_DATA[0] set to ‘1’. Parameters are
passed through the IPC_STRUCT_DATA register.

Note that only 32 bits are available to store the return value in the IPC structure. Therefore, the API takes a parameter ID type
based on which it will return family ID and revision ID if the ID type is set to ‘0’, and silicon ID and protection state if the ID type
is set to ‘1’.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Table 13-6. Cypress ID

Cypress IDs Memory Location Data

Family ID [7:0] 0xF0000FE0 Part Number [7:0]

Family ID [11:8] 0xF0000FE4 Part Number [3:0]

Major Revision 0xF0000FE8 Revision [7:4]

Minor Revision 0xF0000FEC Rev and Minor Revision Field [7:4]

Silicon ID SFlash Silicon ID [15:0]

Protection state MMIO Protection [3:0]

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x00 Silicon ID opcode.

Bits [15:8]
0 - returns 0. Read family ID and revision ID from SFlash

1 - returns 16-bit silicon ID and protection state
ID type.

Bits [0] 0x1 Indicates that all the arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored.
This must be a 32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x00 Silicon ID opcode.

Bits[15:8]
0 - returns 12-bit family ID and revision ID

1 - returns 16-bit silicon ID and protection state
ID type.

Bits[0] 0xXX Not used (don't care).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 154

Nonvolatile Memory

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [7:0]
If ID type = 0, Family ID Lo

If ID type = 1, Silicon ID Lo See the device datasheet for silicon ID values for different part
numbers.

Bits [15:8]
If ID type = 0, Family ID Hi

If ID type = 1, Silicon ID Hi

Bits [19:16]

If ID type = 0, Minor Revision ID

If ID type = 1, Protection state

0: UNKNOWN

1: VIRGIN

2: NORMAL

3: SECURE

4: DEAD
See the device datasheet for these values.

Bits [23:20]

If ID Type = 0 Major Revision ID

If ID Type = 1 Life-cycle stage

0: VIRGIN

1: NORMAL

2: SEC_W_DBG

3: SECURE

4: RMA

Bits [27:24] 0xXX Not used (don't care).

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Return Value Description

SRAM_SCRATCH Register

Bits [7:0]
If ID type = 0, Family ID Lo

If ID type = 1, Silicon ID Lo See the device datasheet for silicon ID values for different part
numbers.

Bits [15:8]
If ID type = 0, Family ID Hi

If ID type = 1, Silicon ID Hi

Bits [19:16]

If ID type = 0, Minor Revision ID

If ID type = 1, Protection state

0: UNKNOWN

1: VIRGIN

2: NORMAL

3: SECURE

4: DEAD
See the PSoC 6 MCU Programming Specifications for these values.

Bits [23:20]

If ID Type = 0 Major Revision ID

If ID Type = 1 Life-cycle stage

0: VIRGIN

1: NORMAL

2: SEC_W_DBG

3: SECURE

4: RMA

Bits [27:24] 0xXX Not used (don't care).

Bits [31:28] 0xA Success status code.

https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 155

Nonvolatile Memory

13.5.2 Blow eFuse Bit

This function blows the addressed eFuse bit. The read value of a blown eFuse bit is ‘1’ and that of an unblown eFuse bit is ‘0’.
These values are returned to the IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA
register.

The Blow eFuse Bit function should be called with default boot clock configuration settings. This can be achieved by setting
SFLASH.TOC2_FLAGS.CLOCK_CONFIG as 0x3. For more information on the boot code configuration, see the Boot
Code chapter on page 173.

Other valid clock settings depend on the use of the FLL:

■ If you are not using the FLL, set CLK_HF[0] = 8 MHz.

■ If you are using the FLL and CLK_ROOT_SELECT.ROOT_DIV = DIV_BY_2, valid CLK_HF[0] frequencies are 25 MHz
and 50 MHz.

Parameters if DAP is Master

Return if DAP Invoked the System Call

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x01 Blow efuse bit opcode.

Bits [23:16] Byte Address

Refer to the Device Security chapter on page 191 for more details.Bits [15:12] Macro Address

Bits [10:8] Bit Address

Bits [0] 0x1 Indicates that all the arguments are passed in DATA.

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 156

Nonvolatile Memory

13.5.3 Read eFuse Byte

This function returns the eFuse contents of the addressed byte. The read value of a blown eFuse bit is ‘1’ and that of an
unblown eFuse bit is ‘0’. These values are returned to the IPC_STRUCT_DATA register. Parameters are passed through the
IPC_STRUCT_DATA register.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x03 Read eFuse bit opcode.

Bits [23:8] eFuse Address Refer to the eFuse Memory chapter on page 189 for more details.

Bits [0] 0x1 Indicates all arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x03 Read eFuse bit opcode.

Bits [23:8] eFuse Address Refer to the eFuse Memory chapter on page 189 for more details.

Bits [7:0] 0xXX Not used (don't care).

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [23:0] eFuse byte Byte read from eFuse if status is success; otherwise, error code.

Bits [27:24] 0xXX Not used (don't care).

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Return Value Description

SRAM_SCRATCH Register

Bits [23:0] eFuse byte Byte read from eFuse if status is success; otherwise, error code.

Bits [27:24] 0xXX Not used (don't care).

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 157

Nonvolatile Memory

13.5.4 Write Row

This function is used to program the flash. You must provide data to be loaded and the flash address to be programmed. The
WriteRow parameter performs pre-program and erase, and then programs the flash row with contents from the row latch.

The PSoC 6 MCU supports the Read While Write (RWW) feature, which allows flash to be read from a sector that is not
programmed/erased during a program/erase of another sector. Each row is of 512 bytes in size.

The API is implemented in three phases to make it non-blocking. The first phase sets up the flash for pre-program and erase
operations and returns to the user code by exiting from NMI without releasing the IPC structure that invoked the API. Now,
user code and interrupts can be handled but no NMI can be invoked.

Upon completion of the erase, an interrupt is generated by the flash macro, which will invoke the second phase of the
WriteRow API to complete the ongoing erase operation successfully and start the program operation. API returns from NMI to
user code after it sets up for program operation.

Upon completion of the program, an interrupt is generated by the flash macro, which will invoke the third phase of the
WriteRow API to complete the ongoing program operation successfully; this completes the WriteRow API. SROM API will
now return the pass or fail status and releases the IPC structure.

This API can also be called in blocking mode by setting the blocking parameter as ‘1’, in which case the API will return only
after all flash operation completes.

The API returns a fail status if you do not have write access to flash according to SMPU settings. See the CPU Subsystem
(CPUSS) chapter on page 31 for more details. After flash program operation is complete, the API will optionally compare the
flash row with the contents in row latch for data integrity check. The function returns 0xF0000022 if the data integrity check
fails.

Note that to be able to perform flash writes, the VCCD should be more than 0.99 V. If the device operating voltage is less than

0.99 V (the 0.9-V mode of operation), follow this sequence to perform any flash write operations.

1. Write the appropriate registers to increase voltage from 0.9 V to 1.1 V. Refer to Power Supply on page 199 for details on
how to switch voltages.

2. Write VCC_SEL = 1.

3. Perform the flash write operations.

4. Write the appropriate registers to drop the regulated voltage from 1.1 V to 0.9 V.

5. Write VCC_SEL = 0.

Note that the device should not be reset or transitioned into Hibernate or Deep Sleep power modes until the flash write is
complete.

Parameters if DAP/CM0+/CM4 is Master

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x05 Write Row opcode.

Bits[23:16] 0xXX Not used

Bits[15:8]
Blocking: 0x01 – API blocks CM0+

Other values - Non-blocking

Bit [2]

0 - Read operation is allowed on the
sector that is not being erased/
programmed

1 - Read operation is stalled until the
erase/program operation is complete

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 158

Nonvolatile Memory

Return if DAP/CM0+/CM4 Invoked the System Call

13.5.5 Program Row

This function programs the addressed flash row. You must provide the data to be loaded and flash address to be
programmed. The flash row should be in the erased state before calling this function.

The function is implemented in two phases to make it non-blocking. The first phase sets up the flash for program operation
and returns to user code by exiting from NMI without releasing the IPC structure that invoked the API. Now user code and
interrupts can be handled but no NMI can be invoked.

Upon completion of the program operation, an interrupt is generated by the flash macro, which will invoke the second phase
of the ProgramRow API to complete the ongoing program operation successfully. The SROM API will return the pass or fail
status and releases the IPC structure.

After flash program operation is complete, the API will optionally compare the flash row with the contents in the row latch for
data integrity check. It returns STATUS_PL_ROW_COMP_FA if data integrity check fails. The values are returned to the
IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA register.

Note that to be able to perform flash writes, the VCCD should be more than 0.99 V. If the device operating voltage is less than

0.99 V (the 0.9-V mode of operation), follow this sequence to perform any flash write operations.

1. Write the appropriate registers to increase voltage from 0.9 V to 1.1 V. Refer to Power Supply on page 199 for details on
how to switch voltages.

2. Write VCC_SEL = 1.

3. Perform the flash write operations.

4. Write the appropriate registers to drop the regulated voltage from 1.1 V to 0.9 V.

5. Write VCC_SEL = 0.

Note that the device should not be reset or transitioned into Hibernate or Deep Sleep power modes until the flash write is
complete.

SRAM_SCRATCH Register + 0x04

Bits [23:16]

Verify row:

0 - Data integrity check is not performed

1 - Data integrity check is performed

Bits [31:24], Bits [15:0] 0xXX Not used (don't care).

SRAM_SCRATCH Register + 0x08

Bits [31:0]
Flash address to be programmed. This should be provided in 32-bit
system address format. For example, to program the second half-
word, provide either of the byte address 0x1000003 or 0x1000004.

SRAM_SCRATCH Register + 0x0C

Bits [31:0]
Data word 0 (data provided should be
proportional to the data size provided,
data to be programmed into LSbs)

SRAM_SCRATCH Register + 0x0C + n*0x04

Bits [31:0] Data word n (data to be programmed)

Address Return Value Description

SRAM_SCRATCH Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS/Program command
ongoing in background

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 159

Nonvolatile Memory

Parameters if DAP/CM0+/CM4 is Master

Return if DAP/CM0+/CM4 Invoked the System Call

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits[31:24] 0x06 Program Row opcode.

Bits[23:16]

Skip blank check:

0x01 – Skips the blank check step

Other – Perform blank check

Bits[15:8]
Blocking: 0x01 – API blocks CM0+

Other values - Non-blocking

Bit [2]

0 - Read operation is allowed on the
sector that is not being erased/
programmed

1 - Read operation is stalled until the
erase/program operation is complete

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH Register + 0x04

Bits [23:16]

Verify row:

0 - Data integrity check is not performed

1 - Data integrity check is performed

Bits [15:8]

Data location:

0 - row latch

1 - SRAM

Bits[7:0] 0xXX Not used (don't care).

SRAM_SCRATCH Register + 0x08

Bits [31:0]
Flash address to be programmed. This should be provided in 32-bit
system address format. For example, to program the second half-
word, provide either of the byte address 0x1000003 or 0x1000004.

SRAM_SCRATCH Register + 0x0C

Bits [31:0]
Data word 0 (data provided should be
proportional to data size provided, data
to be programmed into LSbs)

SRAM_SCRATCH Register + 0x0C + n*0x04

Bits [31:0] Data word n (data to be programmed)

Address Return Value Description

SRAM_SCRATCH Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS/Program command
ongoing in background

0xF = ERROR
Status code (see System Call Status for details).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 160

Nonvolatile Memory

13.5.6 Erase All

This function erases the entire flash macro specified. This API will erase only the main flash array. The API will check whether
all data is ‘0’ to confirm whether the erase is successful. It will return CHECKSUM_NON_ZERO error status if a non-zero
word is encountered in the available flash.

The values are returned to the IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA
register.

Note that to be able to perform flash writes, the VCCD should be more than 0.99 V. If the device operating voltage is less than

0.99 V (the 0.9-V mode of operation), follow this sequence to perform any flash write operation.

1. Write the appropriate registers to increase voltage from 0.9 V to 1.1 V. Refer to Power Supply on page 199 for details on
how to switch voltages.

2. Write VCC_SEL = 1.

3. Perform the flash write operations.

4. Write the appropriate registers to drop the regulated voltage from 1.1 V to 0.9 V.

5. Write VCC_SEL = 0.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Return if DAP Invoked the System Call

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x0A Erase All opcode.

Bit [2]

0 - Read operation is allowed on the
sector that is not being erased/
programmed

1 - Read operation is stalled until the
erase/program operation is complete

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

Bits [0] 1 Indicates that all the arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x0A Erase All opcode.

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [23:20] 0x00

Bits [27:24] 0xXX Not used (don't care).

Bits [31:28] 0xA Success status code

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 161

Nonvolatile Memory

Return if CM0+/CM4 Invoked the System Call

13.5.7 Checksum

This function reads either the entire flash or a row of flash, and returns the sum of each byte read. Bytes 1 and 2 of the
parameters select whether the checksum is performed on the entire flash or on a row of flash. This function will inherit the
identity of the master that called the function. Hence if a non-secure master requests for either the whole or row checksum of
a secured flash, then the fault exception will be raised by the hardware.

The values are returned to the IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA
register.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Address Return Value Description

SRAM_SCRATCH Register

Bits [23:20] 0x00

Bits [27:24] 0xXX Not used (don't care).

Bits [31:28] 0xA Success status code

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x0B Checksum opcode.

Bits [23:22]

0 - application

1 - AUXFlash

other - supervisory

Flash region.

Bits [21]
0 - row

1 - whole flash
Whole flash.

Bits [20:8] Row ID.

Bits [0] 1 Indicates that all the arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x0B Checksum opcode.

Bits [23:22]

0 - application

1 - AUXFlash

2 - supervisory

Flash region.

Bits [21]
0 - row

1 - whole flash
Whole flash.

Bits [20:8] Row ID.

Bits [0] 0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 162

Nonvolatile Memory

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

13.5.8 Compute Hash

This function generates the hash of the flash region provided using the formula:

H(n+1) = {H(n)*2+Byte}% 127; where H(0) = 0

This function returns an invalid address status if called on an out-of-bound flash region. Note that CM0+ will inherit the
protection context of the master, which invoked it before performing hash. The values are returned to the
IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA register.

Parameters if DAP/CM0+/CM4 is Master

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [23:0] Checksum Checksum if status is SUCCESS

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Return Value Description

SRAM_SCRATCH Register

Bits [23:0] Checksum Checksum if status is SUCCESS

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x0D Compute hash opcode.

Bits[23:16] 0xXX Not used (don't care).

Bits[15:8]
0x01 - CRC8 SAE

others - Basic hash
Type

Bits[7:0] 0xXX Not used (don't care)

SRAM_SCRATCH Register + 0x04

Bits [31:0] Start address (32-bit system address of the first byte of the data).

SRAM_SCRATCH Register + 0x08

Bits [31:0]
0 – 1 byte

1 – 2 bytes, and so on
Number of bytes.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 163

Nonvolatile Memory

Return if DAP/CM0+/CM4 Invoked the System Call

13.5.9 ConfigureRegionBulk

This API writes a 32-bit data value to a set of contiguous addresses. It cannot be used to configure protected registers or
flash. The Start and End addresses of the region are configurable but must be within a writable area. The region must also be
32-bit aligned. The data will be written to the region starting at the start address up to and including the memory at the end
address. The start address must be lower than the end address or the API will return an error status.

Parameters if DAP/CM0+/CM4 is Master

Return if DAP/CM0+/CM4 Invoked the System Call

Address Return Value Description

SRAM_SCRATCH Register

Bits [23:0] Hash of the data Hash of data if status is SUCCESS.

Bits [27:24] 0xXX Not used (don't care).

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must
be a 32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x0E Configure region bulk opcode.

Bits [23:0] 0xXX Not used (don't care).

SRAM_SCRATCH Register + 0x04

Bits [31:0] Start address 32-bit system address of the first byte of the data

SRAM_SCRATCH Register + 0x08

Bits [31:0] End address 32-bit system address of the first byte of the data

SRAM_SCRATCH Register + 0x0C

Bits [31:0] Data Data to be written to each 32-bit address from start to end

Address Return Value Description

SRAM_SCRATCH Register

Bits [23:0] Error Code (if any) Error Code

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 164

Nonvolatile Memory

13.5.10 DirectExecute

This function directly executes code located at a configurable address. This function is only available in normal life-cycle state
if the DIRECT_EXECUTE_DISABLE bit is 0.

Parameters if DAP is Master

Return if DAP Invoked the System Call

13.5.11 Erase Sector

This function erases the specified sector. Each sector consists of 512 rows. The values are returned to the
IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA register.

Note that to be able to perform flash writes, the VCCD should be more than 0.99 V. If the device operating voltage is less than

0.99 V (the 0.9-V mode of operation), follow this sequence to perform any flash write operations.

1. Write the appropriate registers to increase voltage from 0.9 V to 1.1 V. Refer to Power Supply on page 199 for details on
how to switch voltages.

2. Write VCC_SEL = 1.

3. Perform the flash write operations.

4. Write the appropriate registers to drop the regulated voltage from 1.1 V to 0.9 V.

5. Write VCC_SEL = 0.

Note that the device should not be reset or transitioned into Hibernate or Deep Sleep power modes until the erase is
complete.

Parameters if DAP/CM0+/CM4 is Master

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x0F Direct Execute Opcode

Bits [23:2] Address [21:0] Address of function to execute

Bit [1]
0 - SRAM

1 - Flash
Location of function to execute

Bit [0] 1 Indicates that all arguments are passed through DATA

Address Return Value Description

SRAM_SCRATCH Register

Bits [23:0] Error Code (if any) Error Code

Bits [31:28] 0xF = ERROR Does not return any status on success.

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x14 Erase Sector opcode.

Bits[23:16]
0x01 - Set FM interrupt mask

Other - Do not set FM interrupt mask
Interrupt mask

Bits[15:8]
Blocking: 0x01 – API blocks CM0+

Other values – Non-blocking

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 165

Nonvolatile Memory

Return if DAP/CM0+/CM4 Invoked the System Call

13.5.12 Soft Reset

This function resets the system by setting CM0+ AIRCR system reset bit. This will result in a system-wide reset, except debug
logic. This API can also be used for selective reset of only the CM4 core based on the ‘Type’ parameter. The values are
returned to the IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA register.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Bit [2]

0 - Read operation is allowed on the
sector that is not being erased/
programmed

1 - Read operation is stalled until the
erase/program operation is complete

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH Register + 0x04

Bits [31:0]

Flash address to be erased. Should be provided in 32-bit system
address format. For example, to erase the second sector you need to
provide the 32-bit system address of any of the bytes in the second
sector.

Address Return Value Description

SRAM_SCRATCH Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x1B Soft Reset opcode.

Bits [7:1]
0 - System reset

1 - Only CM4 resets
Type of reset

Bits[0] 0x1 Indicates all arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x1B Soft Reset opcode.

Bits [7:1]
0 - System reset

1 - Only CM4 resets
Type of reset

Bits [0] 0xXX Not used (don't care).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 166

Nonvolatile Memory

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

13.5.13 Erase Row

This function erases the specified row. You must provide the address of the row that needs to be erased. The values are
returned to the IPC_STRUCT_DATA register. Parameters are passed through the IPC_STRUCT_DATA register.

Note that to be able to perform flash writes, the VCCD should be more than 0.99 V. If the device operating voltage is less than

0.99 V (the 0.9-V mode of operation), follow this sequence to perform any flash write operations.

1. Write the appropriate registers to increase voltage from 0.9 V to 1.1 V. Refer to Power Supply on page 199 for details on
how to switch voltages.

2. Write VCC_SEL = 1.

3. Perform the flash write operations.

4. Write the appropriate registers to drop the regulated voltage from 1.1 V to 0.9 V.

5. Write VCC_SEL = 0.

Parameters if DAP/CM0+/CM4 is Master

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Return Value Description

SRAM_SCRATCH Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be
a 32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x1C Erase row opcode.

Bits[23:16] 0xXX

Bits[15:8]
0x01 - API blocks CM0+

Other - Non-blocking

Bit [2]

0 - Read operation is allowed on the sector
that is not being erased/programmed

1 - Read operation is stalled until the erase/
program operation is complete

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH Register + 0x04

Bits [31:0] Address

Flash address to be erased. This should be provided in the 32-bit
system address format. For example, to erase the second row you
need to provide the 32-bit system address of any of the bytes in the
second row.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 167

Nonvolatile Memory

Return if DAP/CM0+/CM4 Invoked the System Call

13.5.14 Erase Subsector

This function erases the specified subsector, which consists of 8 rows. The values are returned to the IPC_STRUCT_DATA
register. Parameters are passed through the IPC_STRUCT_DATA register.

Note that to be able to perform flash writes, the VCCD should be more than 0.99 V. If the device operating voltage is less than

0.99 V (the 0.9-V mode of operation), follow this sequence to perform any flash write operations.

1. Write the appropriate registers to increase voltage from 0.9 V to 1.1 V. Refer to Power Supply on page 199 for details on
how to switch voltages.

2. Write VCC_SEL = 1.

3. Perform the flash write operations.

4. Write the appropriate registers to drop the regulated voltage from 1.1 V to 0.9 V.

5. Write VCC_SEL = 0.

Parameters if DAP/CM0+/CM4 is Master

Address Return Value Description

SRAM_SCRATCH Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must be a
32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x1D Erase subsector opcode.

Bits [23:16] 0xXX Not used (don't care).

Bits [15:8]
0x01- API blocks CM0+

Other - Non-blocking

Bit [2]

0 - Read operation is allowed on the
sector that is not being erased/
programmed

1 - Read operation is stalled until the
erase/program operation is complete

Bit [1]
0 - HV cycles are firmware controlled

1 - HV cycles are hardware controlled

SRAM_SCRATCH Register + 0x04

Bits [31:0] Address

Flash address to be erased. This should be provided in 32-bit system
address format. For example, to erase the second subsector you
need to provide the 32-bit system address of any of the bytes in the
second subsector.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 168

Nonvolatile Memory

Return if DAP/CM0+/CM4 Invoked the System Call

13.5.15 GenerateHash

This function returns the truncated SHA-256 of the Flash boot programmed in SFlash. This function gets the Flash Boot size
from the TOC. This function is typically called to confirm that the hash value to be blown into eFuse matches what the ROM
Boot expects.

This function returns the number of zeros of the SECURE_HASH

Parameters if DAP/CM0+/CM4 is Master

Return if DAP/CM0+/CM4 Invoked the System Call

Address Return Value Description

SRAM_SCRATCH Register

Bits [23:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits[31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must
be a 32-bit aligned address.

SRAM_SCRATCH Register

Bits[31:24] 0x1E Opcode for GenerateHash

Bits[15:8]
0x1 - Return the factory hash

Other - Return hash of all objects per
TOC1 and TOC2

Address Return Value Description

SRAM_SCRATCH Register

Bits[23:0] Error code (if any) See System Call Status for details

Bits[31:28]
0xA = SUCCESS

0xF = ERROR
Status code (See System Call Status for details)

SRAM_SCRATCH Register + 0x04

Bits[31:0] HASH_WORD0

SRAM_SCRATCH Register + 0x08

Bits[31:0] HASH_WORD1

SRAM_SCRATCH Register + 0x0C

Bits[31:0] HASH_WORD2

SRAM_SCRATCH Register + 0x10

Bits[31:0] HASH_WORD3

SRAM_SCRATCH Register + 0x14

Bits[31:0] HASH_ZEROS

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 169

Nonvolatile Memory

13.5.16 ReadUniqueID

This function returns the unique ID of the die from SFlash.

Parameters if DAP/ CM0+/CM4 is Master

Return if DAP/ CM0+/CM4 Invoked the System Call

13.5.17 CheckFactoryHash

This function generates the FACTORY_HASH according to the TOC1 and compares the value with the FACTORY1_HASH
eFuse value.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits[31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must
be a 32-bit aligned address.

SRAM_SCRATCH Register

Bits[31:24] 0x1F Opcode for ReadUniqueID

Bits[15:0] Not Used (Don't care)

Address Return Value Description

SRAM_SCRATCH Register

Bits[23:0] DIE_LOT if SUCCESS See System Call Status for details

Bits[31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details)

SRAM_SCRATCH Register + 0x04

Bits[31:0] DIE_ID0

SRAM_SCRATCH Register + 0x08

Bits[31:0] DIE_ID1

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x27 CheckFactoryHash Opcode

Bit [0] 1 Indicates all arguments are passed in DATA.

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must
be a 32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x27 CheckFactoryHash Opcode

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 170

Nonvolatile Memory

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

13.5.18 TransitionToRMA

This function converts the part from SECURE, SECURE_WITH_DEBUG, or NORMAL to the RMA life-cycle stage. This API
performs eFuse programming, VDD should be set to 2.5 V for successful programming.

This function uses Flash Boot functions. The stack consumed by these functions is around 700 bytes. This function returns
STATUS_EMB_ACTIVE failure code if any active embedded flash operations are going on.

Parameters if DAP/CM0+/CM4 is Master

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Return Value Description

SRAM_SCRATCH Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must
be a 32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:0] 0x28 Transition to RMA opcode

SRAM_SCRATCH + 0x04

Bits [31:0] Object Size in Bytes (including itself)

SRAM_SCRATCH + 0x08

Bits [31:0] Command ID (0x120028F0)

SRAM_SCRATCH + 0x0C

Bits [31:0] Unique ID word 0

SRAM_SCRATCH + 0x10

Bits [31:0] Unique ID word 1

SRAM_SCRATCH + 0x14

Bits [31:0] Unique ID word 2

SRAM_SCRATCH + 0x18

Bits [31:0] Signature of RMA certificate

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 171

Nonvolatile Memory

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

13.5.19 ReadFuseByteMargin

This API returns the eFuse contents of the addressed byte read marginally. The read value of a blown bit is ‘1’ and of a not
blown bit is ‘0’.

Parameters if DAP is Master

Parameters if CM0+/CM4 is Master

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Return Value Description

SRAM_SCRATCH Register

Bits [27:0] Error code (if any) See System Call Status for details.

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:24] 0x2B Opcode for ReadFuseByteMargin

Bits [23:20]

0 - Low resistance, –50% from nominal

1 - Nominal resistance
(default read condition)

2 - High resistance (+50% from nominal)
Other - 100% from nominal

Margin control

Bits [19:8] eFuse address (0, 1… 511)

Bit [0]
1 - Indicates all arguments are passed
from DATA

Address Value to be Written Description

IPC_STRUCT_DATA Register

Bits [31:0] SRAM_SCRATCH_ADDR
SRAM address where the API parameters are stored. This must
be a 32-bit aligned address.

SRAM_SCRATCH Register

Bits [31:24] 0x2B Opcode for ReadFuseByteMargin

Bits [23:20]

0 - Low resistance, –50% from nominal

1 - Nominal resistance
(default read condition)

2 - High resistance (+50% from nominal)

Other - 100% from nominal

Margin control

Bits [19:8] eFuse address (0, 1… 511)

Bit [0]
1 - Indicates all arguments are passed
from DATA

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 172

Nonvolatile Memory

Return if DAP Invoked the System Call

Return if CM0+/CM4 Invoked the System Call

13.6 System Call Status

At the end of every system call, a status code is written over the arguments in the IPC_DATA register or the SRAM address
pointed by IPC_DATA. A success status is 0xAXXXXXXX, where X indicates don’t care values or return data for system calls
that return a value. A failure status is indicated by 0xF00000XX, where XX is the failure code.

Note that for system calls that require access to restricted memory regions, if the client does not have access to the restricted
region, the system call may return 0xF000_0013 rather than the expected 0xF000_0008. Because of this, it is important to
ensure that arguments are passed correctly and that the memory region to access is available for read or write access.

Address Return Value Description

IPC_STRUCT_DATA Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [23:0] Byte read from eFuse See System Call Status for details.

Address Return Value Description

SRAM_SCRATCH Register

Bits [31:28]
0xA = SUCCESS

0xF = ERROR
Status code (see System Call Status for details).

Bits [23:0] Byte read from eFuse See System Call Status for details.

Table 13-7. System Call Status

Status Code Description

0xAXXXXXXX Success – The X denotes a don't care value, which has a value of '0' returned by the SROM.

0xF0000001 Invalid protection state – This API is not available in current protection state.

0xF0000002 Invalid eFuse address.

0xF0000003 Invalid flash row latch address.

0xF0000004 Wrong or out-of-bound flash address.

0xF0000005 Row is write protected.

0xF0000006 Client did not use its reserved IPC structure for invoking the system call.

0xF0000008 Client does not have access to the addressed memory location.

0xF0000009 Command in progress.

0xF000000A Checksum of flash resulted in non-zero.

0xF000000B The opcode is not valid.

0xF0000013 An argument to the system call is not in a valid location.

0xF0000021 Sector erase requested on SFlash region.

0xF0000041 Bulk erase failed.

0xF0000042 Sector erase failed.

0xF0000043 Subsector erase failed.

0xF0000044 Verification of Bulk, Sector, or Subsector fails after program/erase.

0xF000000F Returned when invalid arguments are passed to the API. For example, calling Silicon ID API with ID type of 0x5.

0xF000000b5 Invalid FACTORY_HASH

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 173

14. Boot Code

System boot is defined as the process of validating and starting the product firmware. PSoC 6 has 128KB of embedded
SROM, which stores the firmware to begin the boot process. This firmware is called ROM boot. The second stage of the boot
process takes place in SFlash and is called Flash boot. The main function of the boot process is to configure the system
(apply trims, configure access, and set protection settings according to the product life-cycle stage), authenticate the
application, and transfer control to the application.

14.1 Features

The PSoC 6 boot code supports the following features:

■ After reset, the boot code starts execution from ROM on the CM0+.

■ The boot process consists of two parts – ROM boot process and Flash boot process.

■ The ROM boot code applies life-cycle stage and protection state.

■ The ROM boot code validates the integrity of the Flash boot process before starting it.

■ The Flash boot code validates the integrity of the user application before starting it when the device in the SECURE life-
cycle stage. User application validation may optionally be enabled in the NORMAL life-cycle stage.

14.2 ROM Boot

The boot code starts execution from ROM. The ROM boot code applies trims and configurations, and validates the integrity of
the flash boot process before starting it.

14.2.1 Data Integrity Checks

ROM boot uses a Table of Contents (TOC) data structure to locate various objects that are stored in both application flash and
SFlash. The location of some of these objects is fixed in the factory while other object locations are fixed at the original
equipment manufacturer (OEM). The TOC is split into two parts – TOC1 and TOC2 – that correspond to objects fixed in the
factory and objects fixed at OEM, respectively. TOC1 and TOC2 are stored in SFlash.

The data integrity of selected objects listed at the beginning of TOC1 must be verified at the OEM before transitioning the part
to the SECURE life-cycle stage. The FACTORY_HASH is generated using SHA-256, which is the concatenation of the
objects to be verified in TOC1. The FACTORY_HASH is stored in eFuse before the device leaves Cypress.

The data integrity of selected objects in both TOC1 and TOC2 must be verified as part of authentication of Flash boot by ROM
boot in the SECURE life-cycle stage. A 128-bit truncated SHA-256 value known as the SECURE_HASH is used to check the
integrity of these objects. If the TOC structures fail integrity checks, then the RTOC structures are checked for validity. If the

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 174

Boot Code

RTOC structures are valid, then the boot process uses the RTOC structures in place of the TOC structures. The
SECURE_HASH should be generated with the GenerateHash system call and blown into eFuse before transitioning the
device into SECURE life-cycle stage. See the PSoC 6 MCU Programming Specifications for more information.

A summary of the objects used in the data integrity checks is shown in Figure 14-1. The TOC structure formats are outlined in
Table 14-1 to Table 14-3.

Figure 14-1. Objects, Memory Regions, and Stages of Boot Process for Data Integrity Checks

TOC 2

TOC 1

Flash Boot
Code

Trim Values
& Misc

Public Key

SFlash

ROM
Code

(Fixed)

Factory_HASH (Normal Mode)

Secure_HASH (Secure Mode)

Public Key

Factory_Hash is only used to
validate that the device has not
been modified before the
transition to Secure mode.

eFuse cells can be programmed
from 0 to 1, but not back to 0.

Secure_HASH

Factory_HASH

DAP Configs

LifeCycle State

eFuse (OTP)

In Secure mode, Flash Boot,
Trim values, TOC1, TOC2, and
Public key are validated with
Secure_HASH in eFuse.

User Application Code

Digital Signature

User Application Block

Table 14-1. TOC1 Format

Offset from
Beginning of Row

Purpose Comments

0x00 Object size in bytes for CRC calculation starting from offset 0x00

TOC1 filled in
VIRGIN pro-
tection state
by Cypress

0x04 Magic number (0x01211219)

0x08 Number of objects starting from offset 0xC to be verified for FACTORY_HASH

0x0C Address of Trims stored in SFlash

0x10 Address of Unique ID (fixed size of 12 bytes) stored in SFlash

0x14 Address of Flash boot object that includes Flash Patch object stored in SFlash

0x18 Address of SYSCALL_TABLE entry (fixed size of 4 bytes) in SFlash

0x1C-0x1F8 … (additional objects if needed or 0's if none)

0x1FC CRC16-CCITT (the upper two bytes contain the CRC little endian value and the lower two bytes are 0)

https://www.Infineon.com/PSoC6ProgrammingSpec

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 175

Boot Code

Additional objects included in the calculation of the SECURE_HASH must have a size smaller than or equal to the size of the
memory region they reside in.

Table 14-2. TOC2 Format

Offset from
Beginning

of Row

Absolute
Address

SFlash Register Purpose

0x00 0x16007C00 TOC2_OBJECT_SIZE Object size in bytes for CRC calculation starting from offset 0x00

0x04 0x16007C04 TOC2_MAGIC_NUMBER Magic Number (0x01211220)

0x08 0x16007C08 TOC2_KEY_BLOCK_ADDR
Address of Key Storage Flash Blocks. Note that this also marks
the top of flash available.

0x0C 0x16007C0C TOC2_SMIF_CFG_STRUCT_ADDR
Null terminated table of pointers representing the SMIF
configuration structure

0x10 0x16007C10 TOC2_FIRST_USER_APP_ADDR Address of First User Application Object

0x14 0x16007C14 TOC2_FIRST_USER_APP_FORMAT
First Application Object Format (4 bytes). 0 means Basic
Application Format, 1 means Cypress Secure Application
Format, and 2 means Simplified Secure Application Format

0x18 0x16007C18 TOC2_SECOND_USER_APP_ADDR Address of Second User Application Object (0's if none)

0x1C 0x16007C1C TOC2_SECOND_USER_APP_FORMAT Second Application Object Format (4 bytes).

0x20 0x16007C20 TOC2_SHASH_OBJECT

Number of additional objects (In addition to the object included
in the FACTORY_HASH) starting from offset 0x24 to be verified
for SECURE_HASH. The maximum number of additional
objects is 15.

0x24 0x16007C24 TOC2_SIGNATURE_VERIF_KEY
Address of signature verification key (0 if none). The object is
signature scheme specific. It is the public key in case of RSA.

0x1F8 0x16007DF8 TOC2_FLAGS Flash boot parameters. These fields are listed in Table 14-3.

0x1FC 0x16007DFC TOC2_CRC_ADDR
CRC16-CCITT (the upper 2 bytes contain the CRC little endian
value and the lower 2 bytes are 0)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 176

Boot Code

The wait window time is configurable; however, the CRC value used to validate the TOC2 must be updated after changing the
value. New entries that need HASH can grow from the top starting at offset 0x28; entries that do not need HASH can grow
from the bottom starting at offset 0x1F8. When the device is in the SECURE life-cycle state, the TOC2 can no longer be
modified.

14.2.2 Life-cycle Stages and Protection States

SECURE and SECURE_WITH_DEBUG life-cycle stages are governed by eFuse. All life-cycle stages are irreversible once
set. Table 14-4 shows the eFuse locations that store information, access restriction settings, and life-cycle stage settings.

Table 14-3. TOC2_FLAGS Bits, Default Settings, and Descriptions

TOC2_FLAGS Bits Name
Default
Value

Description

1:0 IMO/FLL clock frequency 0

CM0+ clock during boot. This clock will remain at this setting after Flash
boot execution until the OEM firmware changes it.

0 = 25 MHz (FLL)

1 = 8 MHz (IMO)

2 = 50 MHz (FLL)

3 = Reserved

4:2 Wait window time 0

Determines the wait window to allow sufficient time to acquire the
debug port.

0 = 20 ms

1 = 10 ms

2 = 1 ms

3 = 0 ms (No wait window)

4 = 100 ms

5-7 = Reserved

30:5 Reserved – Not used.

31 VALIDATE_APP_NORMAL 1

Setting this bit to 1 enables the authentication of the user code. The
TOC2 must be complete and the public key must be written in to
SFlash.

0 = No authentication

1 = Authentication

Table 14-4. Object Location in eFuse

Offset # of Bytes Name Description

0x00 20 Reserved Reserved for PSoC 6 MCU system usage

0x14 16 SECURE_HASH Secure objects 128-bit hash

0x24 2 Reserved Reserved

0x26 1 SECURE_HASH_ZEROS Number of zeros in SECURE_HASH

0x27 2 DEAD_ACCESS_RESTRICT Access restrictions in Dead life-cycle stage

0x29 2 SECURE_ACCESS_RESTRICT Access restrictions in Secure life-cycle stage

0x2B 1 LIFECYCLE_STAGE Normal, Secure, and Secure with Debug fuse bits

0x2C 16 FACTORY_HASH FACTORY_HASH value

0x40 64 CUSTOMER_DATA Customer data

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 177

Boot Code

Normal mode access restrictions to be applied on DAP are stored in SFlash.

The LIFECYCLE_STAGE object in eFuse is used to set the life-cycle state of the device. Table 14-6 shows the bits and the
associated settings of the LIFECYCLE_STAGE location.

DAP settings for Secure and Dead protection states are set in the SECURE_ACCESS_RESTRICT0 and
DEAD_ACCESS_RESTRICT0 registers. DAP settings for the Normal protection state is set in
NORMAL_ACCESS_RESTRICTIONS in SFlash. Table 14-7 shows the format used to set the DAP settings for these states.
For more information about the protection states, see the Device Security chapter on page 191.

Table 14-5. Normal Life-cycle Stage DAP Restriction Register in SFlash

Offset # of Bytes Name Description

0x1A00 2 NORMAL_ACCESS_RESTRICTIONS
Access restrictions applied to DAP in NORMAL
life-cycle state.

Table 14-6. eFuse Bits and Life-Cycle States

Bits Field Name Description

0 NORMAL
A ‘1’ indicates that all factory trimming and testing is complete. The device is in NORMAL
mode.

1 SECURE_WITH_DEBUG
A ‘1’ indicates that the device is in SECURE_WITH_DEBUG mode. Before the device is tran-
sitioned to this stage, the SECURE_HASH must have been programmed in eFuse and valid
application code must have been programmed in the main flash.

2 SECURE
A ‘1’ indicates that the device is in SECURE mode. The SECURE_HASH must have been pro-
grammed in eFuse and valid application code has been programmed in the main flash.

3 RMA
This life-cycle stage allows Failure Analysis (FA). The part is transitioned to the RMA life-cycle
stage when the customer wants Cypress to perform failure analysis. The customer erases all
sensitive data before invoking the system call that transitions the part to RMA.

Table 14-7. DAP Access Restriction Registers for Normal, Secure, and Dead Protection States (all default to 0)

Bits Name Description

0 CM0_AP_DISABLE A ‘1’ indicates that this device does not allow access to the M0+ debug access port.

1 CM4_AP_DISABLE A ‘1’ indicates that this device does not allow access to the M4 debug access port.

2 SYS_AP_DISABLE A ‘1’ indicates that this device does not allow access to the system debug access port.

3 SYS_AP_MPU_ENABLE

A ‘1’ indicates that the MPU on the system debug access port must be programmed and
locked according to the settings in the next four fields. The SYS_DISABLE bit must be left at
‘0’ for this setting to matter. If the SYS_DISABLE bit is set to ‘1’, then the next four fields are
invalid. This affects only the SYS_AP. It does not affect the CM0/4 AP.

5:4 SFLASH_ALLOWED

This field indicates what portion of Supervisory Flash is accessible through the system debug
access port. Only a portion of Supervisory Flash starting at the bottom of the area is exposed.
Encoding is as follows:

0: entire region

1: one-half

2: one-quarter

3: nothing

For example, for an encoding of “2: one-quarter”, the valid code region starts at address
0x16000000 and will go up to one-quarter of the SFlash memory region.

7:6 MMIO_ALLOWED

This field indicates what portion of the MMIO region is accessible through the system debug
access port. Encoding is as follows:

0: All MMIO registers

1: Only IPC MMIO registers accessible (system calls)

2, 3: No MMIO access

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 178

Boot Code

The SECURE_ACCESS_RESTRICT1, DEAD_ACCESS_RESTRICT1, and NORMAL_ACCESS_RESTRICTIONS [15:8]
(SFlash) registers control debug access restriction to specific memory regions. Table 14-8 shows the format used to set these
restrictions.

As an example, if you want to limit the lower one-quarter of flash of a device with 2MB of flash, a “4” is written into the
FLASH_ALLOWED field. Only the flash area between 0x1000_0000 and 0x1007_FFFF will be accessible via the SYS_DAP.
The remaining areal between 0x1008_0000 to 0x101F_FFFF is not accessible. This means that only the lower quarter of
flash can be reprogrammed, erased, or read by the debug port.

Figure 14-2. FLASH_ALLOWED with encoding “4”

As shown in Figure 14-2, if you want to limit the lower fourth of flash of a device with 2MB of flash, write a ‘4’ into the
FLASH_ALLOWED field. Only the flash area between 0x10000000 and 0x1007FFFF will be accessible via the SYS_DAP.
The remaining area between 0x10080000 to 0x101FFFFF would not be accessible. This means that only the lower fourth of
flash can be reprogrammed, erased, or read by the debug port.

Table 14-8. SECURE_ACCESS_RESTRICT1, DEAD_ACCESS_RESTRICT1, and NORMAL_ACCESS_RESTRICTIONS
[15:8] Registers (All default to 0)

Bits Name Description

2:0 FLASH_ALLOWED

This field indicates what portion of the main flash is accessible through the system
debug access port. Only the portion starting at the bottom of flash (0x1000_0000) is
exposed to the system DAP. The encoding is as follows:

0: entire region

1: seven-eighth

2: three-fourth

3: one-half

4: one-quarter

5: one-eighth

6: one-sixteenth

7: nothing

See Figure 14-2 for an example of the encoding for FLASH_ALLOWED.

5:3 SRAM_ALLOWED
This field indicates what portion of SRAM 0 is accessible through the system debug
access port. Only the portion starting at the bottom of the area is exposed. Encoding is
the same as FLASH_ALLOWED.

6 UNUSED UNUSED

7 DIRECT_EXECUTE_DISABLE
Disables DirectExecute system call functionality (implemented in software). See the
Nonvolatile Memory chapter on page 146 for more information.

Main Flash

0x10200000

0x10000000

A
dd

re
ss

 

DAP Accessable

0x10080000

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 179

Boot Code

14.2.3 Secure Boot in ROM Boot

At the end of the ROM boot process, the SECURE eFuse bit is checked. If the life-cycle is SECURE, then ROM boot reads
the SECURE access restrictions in eFuse and deploys the settings using the SYS_AP MPU. If the APP_AUTH_DISABLE
field of the TOC2 is not disabled, then ROM boot calculates the SECURE_HASH value from the contents of Flash boot, the
TOC1 and TOC2 structures, and the public key and compares it to the stored hash value (SECURE_HASH) in eFuse. If they
match, the Flash boot code and data are authentic. If the Flash boot code is authentic, then ROM boot will hand over the boot
process to Flash boot, which resides in SFlash. If the Flash boot is not authentic, then the boot code sets the device into the
DEAD protection state.

14.2.4 Protection Setting

Protection units are set up during ROM boot to restrict access to various regions to ensure device security. The following
tables list those structures, the regions they protect, and the protection settings applied to those regions. The protection
setting are applied in all life-cycle stages except VIRGIN.

Table 14-9. Region Access

Region Description

EFUSE_MMIO Contains registers that support life-cycle setting, key storage, and other one-time-programmable data.

FM_CTL
Specifies flash hardware block control settings including direct memory cell access addressing, write enable,
and interface selection.

Bottom 2KB of SRAM Contains the system call stack.

SROM Contains system firmware that supports ROM boot and system calls.

CRYPTO MMIO
Contains registers that support error correction, random number generation, device key locations, and other
general cryptography information.

IPC Structure Contains registers that support inter-processor communication

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 180

Boot Code

14.2.5 SWD/JTAG Repurposing

When the user-configured access restrictions disable access to the debug access ports, the boot process does not access or
change the SWD/JTAG pins. User firmware can, at any time, change the configuration of the SWD/JTAG pins to another
mode, peripheral, configuration, or purpose. To allow debugging of such applications, a configurable ‘listen window’ is
provided in the TOC2 at offset 0x1F8 bits [4:2]. The boot process will connect and enable the JTAG/SWD interface and wait
for a specified time before starting application firmware. It is expected that application firmware checks the CPUSS
DP_STATUS.SWJ_CONNECTED bit and repurposes the pins only when no SWD/JTAG connection is available.

14.2.6 Waking up from Hibernate

Waking up from Hibernate mode will result in system boot. The integrity checks on the SFlash trim values and SWD/JTAG
connection delay (listen window in Flash boot) are skipped when waking from hibernate.

14.2.7 Disable Watchdog Timer

The ROM boot code will disable the watchdog timer (WDT) if the eFuse.WDT_DISABLE bit is set.

14.2.8 ROM Boot Flow Chart

Figure 14-3 shows the ROM boot flow chart.

Table 14-10. Protection Structures Set Up During Boot Process

Protection Structure
Protection (Read/

Write)
Attribute Settings Protected Region Region Base

Region
Size

(Bytes)

PERI_GR_PPU_RG_MPU_TC
Write only in PC0

Read always
ATT0: 0x80FFFE49

MPU15_MAIN DAP
MPU used to set boot
time protection settings

0x402443E0 4

PERI_GR_PPU_RG_SMPU
Write only in PC0

Read always
ATT0: 0x80FFFe49

SMPU MSn_CTL Reg-
isters

0x40240000 8

PERI_MS_PPU_PROG_STRUCT 1
No Access unless in
PC0

ATT0: 0x87FFFE00 CM0_PC0_HANDLER 0x40210320 8

PERI_MS_PPU_PROG_STRUCT 2
Write only in PC0

Read always
ATT0: 0x87FFFE49

AP_CTL,
CPUSS_PROTEC-
TION, CM0_NMI_CTL,
DP_CTL, MBIST_CTL

0x40210500 24

PERI_MS_PPU_PROG_STRUCT 3
No access unless in
PC0

ATT0: 0x8bFFFE00 FM_CTL MMIO 0x4025F000 4K

PERI_MS_PPU_PROG_STRUCT 4
No access unless in
PC0

ATT0: 0x8aFFFE00 EFUSE MMIO 0x402C0000 2K

PERI_MS_PPU_PROG_STRUCT 5
No write access
during system calls

Varies, depends on
system call execution

System call IPC struc-
tures – IPC 0, 1, and 2

0x40230000 96

PERI_MS_PPU_PROG_STRUCT 6

Read and write
access only in PC0
during system calls
which use CRYPTO

Varies, depends on
system call execution

CRYPTO Memory buf-
fer, used to store oper-
and data for crypto
operation

0x40100000 64K

PROT_SMPU_SMPU_STRUCT 1 No access ATT0: 0x0AFFFE00 Last 2K of SRAM 0x08047800 2K

PROT_SMPU_SMPU_STRUCT 2 No Access ATT0: 0x8EFFFE00 SROM 0x00006000 24K

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 181

Boot Code

Figure 14-3. ROM Boot Flow Chart

No
Get M4 Reset Vector
CM4_VECTOR_TABLE_BASE (CPUSS MMIO)
Set RST SP
Goto RST PC

No
Get M0+ Reset Vector
CM0_VECTOR_TABLE_BASE (CPUSS MMIO)
Set RST SP
Goto RST PC

Hash on trim
area OK ? (SFlash)

Secure Boot ?
(eFuse)

Yes

Yes

RESET

I am M0+?
(CPUSS MMIO)

PROTECTION==UNKOWN ?
(CPUSS MMIO)

No

Yes

No

Yes

No

Deploy NORMAL
Access Restrictions

(SFlash)

(Warm Boot
due to CPU
Reset)

Get Flashboot Location

Get Flashboot Location

Apply initial trim settings
(eFuse)

Deploy SECURE Access
Restrictions (eFuse)

Apply general trim
settings (SFlash)

PROTECTION=NORMAL

Deploy DEAD Access
Restrictions (eFuse)

Setup SysCall IPC
Configure SWD/JTAG pins

PROTECTION=DEAD

IDLE

(DEAD)
(SECURE)

Flash boot

Flash boot

(NORMAL)

Test Mode ?
(SRSS MMIO)

Enable SRAMs

PROTECTION=SECURE

Yes

Authenticate Flash Boot
Corrupt

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 182

Boot Code

14.3 Flash Boot

14.3.1 Overview

The second stage of boot, Flash boot, is entered after ROM boot has authenticated the Flash boot image if the device is in the
SECURE or SECURE_WITH_DEBUG life-cycle stage, or if the APP_AUTH_DISABLE field is not set in TOC2. In the
SECURE or SECURE_WITH_DEBUG life-cycle states, flash boot prevents an application that does not pass integrity checks
from running. The integrity checks can optionally be enabled in the NORMAL mode by setting the APP_AUTH_DISABLE field
in TOC2 to any 2-bit value other than 1. This ensures that the application originates from a valid source and has not been
altered.

The Flash boot firmware:

■ Runs on the security processor (Cortex-M0+)

■ Validates the contents of the TOC2

■ Validates the user application in the Secure life-cycle state or optionally in the Normal life-cycle state

■ Sets up the debug access port (DAP)

■ Enables system calls

■ Hands control to the user application

14.3.2 Features of Flash Boot

■ RSASSA PKCS1 V1.5 with SHA-256 User Application Signature Verification

■ 2048-bit RSA public key with pre-calculated key coefficients for RSA calculation speed increase

■ Support for all device life-cycle stages

■ Configurable debug listen window

14.3.3 Using Flash Boot

Flash boot can be used to allow only authenticated firmware to run on a given platform.

Flash boot determines the life-cycle stage, validates the TOC2, and optionally validates the firmware before transferring
execution to the user's CM0+ application code. The user's CM0+ application enables the CM4 core.

The user firmware will not execute if it is modified by third-party malicious software. The user firmware in flash is validated
using the RSA algorithm. The 2048-bit public key in SFlash and the digital signature stored with the user application are
located using the table of contents, which is located at the end of SFlash. The public key is hashed by SECURE_HASH and
is validated during boot time. If the code is defined as insecure, the device will go to dead mode with limited debug capabilities
determined by the eFuse settings.

14.3.4 Flash Boot Layout

Flash boot consists of a Header field and a Code Segment field. For hash calculation, the object size must be a multiple of
16B so zero padding is applied in the Code Segment.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 183

Boot Code

Figure 14-4. Flash Boot Layout

14.3.4.1 Header

The Flash boot header consists of:

■ The Flash boot object size

■ The Flash boot application version

■ The number of cores (set to ‘1’ for Flash boot)

■ CM0+ vector table offset

■ Cypress ID and CPU Core Index

14.3.4.2 Code Segment

The CM0 code segment consists of:

■ CM0+ vector table

■ CM0+ Flash boot code and data

■ Zero padding to make the Flash boot object a multiple of 16B

14.3.5 Flash Boot Flow Chart

The Flash boot program flow is shown in Figure 14-5. The entry point is a fixed offset in SFlash. Each section of the flow chart
is labeled with an index number. In the sections following the flow chart, explanations of each step are provided with the
associated index number.

Application ID/Version

Attributes

Header
Core0 VT offset

Alignment Padding

CM0
Code
Segment

Flash Boot
Size

Core[0] code and data
(Flash boot, Flash Patch)

Object Size

Core[0] Vector Table

Number of cores (N)

Core0 CPU ID/Index

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 184

Boot Code

Figure 14-5. Flash Boot Flow Chart

Configure SWD/JTAG
pins

Lifecycle =
SECURE?

Set Error Code

(0)

Is TOC2 valid?

(1)

Is DAP enabled?

Idle Loop
(In SROM)

Test
Mode?

Wait window
(default = 20 ms)

Is Reset
Handler valid?

Authenticate
App?

No

Yes

* Set up SP
* Enable IRQ
* Initialization

Is Hard Fault
triggered?

Get App #0
Reset Handler

Is Public Key
valid?

Is Digital
Signature valid?

Enable System
Calls

Wake-up from
Hibernate?

Trigger a Hardfault

From ROM
Boot

Protection =
Virgin?

Set up SP

Idle Loop

Enable System Calls

Set up DAP from AR

Apply System
Protection

Protection = DEAD

Deploy SECURE_DEAD
Access Restrictions

Enable System Calls

Set up DAP for AR

Apply System
Protection

Is DAP enabled?

Configure SWJ Pins

Setup-SP

Idle Loop

Launch CM0+
Application

Set up SP

Dead State Handler

Yes

No

No

No

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Interrupt and
System Calls

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(30)

(31) (17)

(18)

(32)

(34)

(10)

(35)

(36)

(11)

(12)

(17)

(18)

(33)

(50)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 185

Boot Code

14.3.5.1 Entry from ROM Boot (0)

ROM boot transfers control to Flash boot after it validates
the SFlash block and TOC1 in the user flash.

14.3.5.2 Basic Initialization (1)

This stage sets the value of the stack pointer during runtime.
To support recovery from Hard-Fault exceptions during
Flash boot, this stage also enables interrupts.

14.3.5.3 Is TOC2 Valid? (2)

The TOC2 may be in three states:

■ VALID: The TOC2 structure and CRC are valid.

■ CORRUPTED: Either the TOC2 structure or CRC value
are incorrect.

■ ERASED: The first two 32-bit words at the start of TOC2
are equal to the SFlash erase value. The erased value is
0x0000_0000.

If the PROTECTION is SECURE then ERASED state is a
part of CORRUPTED state.

If the PROTECTION is not SECURE then ERASED state is
a special case of VALID state. In this case, Flash boot treats
all the TOC2 entries as having a default value:

■ SFLASH_TOC2_FIRST_USER_APP_ADDR is
0x1000_0000 (the start of Flash).

■ SFLASH_TOC2_FIRST_USER_APP_FORMAT is 0
(Basic Application Format).

■ SFLASH_TOC2_FLAGS = 0x0000_0000

The other TOC2 entries will not be used when TOC2 is in
ERASED or corrupted states.

14.3.5.4 Is Hard Fault Triggered? (3)

The Flash boot test system requires a way to trigger a hard
fault in the Flash boot code. The condition to trigger a hard-
fault is as follows:

1. SFLASH_FLAGS bit FB_HARDFAULT is set.

2. A 32-bit word in TOC2 at offset + 500 contains an
address to a 32-bit word named HardFaultTrigger.

3. HardFaultTrigger value is 0x0000_0001.

14.3.5.5 Trigger a Hard Fault (4)

Flash boot can be used to trigger a hard fault for a testing
purposes.

This can be done, for example, by a 32-bit word read or
write to an unaligned address, or to an invalid memory
region.

The hard fault handler recovers the MCU into the DEAD
state branch. In this branch, an error code is set and the
DAP is enabled.

14.3.5.6 Get App #0 Reset Handler (5)

Flash boot reads the application start address from the
TOC2 entry:

■ SFLASH_TOC2_FIRST_USER_APP_ADDR for App#0.

The application format is stored in the TOC2 entry:

■ SFLASH_TOC2_FIRST_USER_APP_FORMAT for App
#0.

The address of reset handler inside the application depends
on the application format.

14.3.5.7 Is Reset Handler Valid? (6)

Flash boot checks if the address of the reset handler for the
user application is in RAM, SFlash, application flash, or
AUXFlash.

14.3.5.8 Authenticate App? (7)

Flash boot optionally authenticates a digital signature for the
application image in NORMAL mode if the TOC2_FLAGS bit
VALIDATE_APP_NORMAL = 1.

The digital signature for the application image is always
authenticated by the Flash boot in SECURE mode.

14.3.5.9 Is Public Key Valid (8)

The public key structure is filled by the user. Thus, it must be
validated to ensure the correctness of the its entries before
being used.

14.3.5.10 Is Digital Signature Valid? (9)

The user application located in main flash is validated using
the standard RSA 2048-bit algorithm (RSASSA-PKCS1-
v1_5-2048). The public key used for this operation is stored
in the user public key area of SFlash.

The application can be in one of three formats, only two of
which are validated using a public key.

The Crypto block is used for validation and is only enabled
during the application validation process to conserve power.

The following figure shows the application validation flow.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 186

Boot Code

Figure 14-6. Application Validation

14.3.5.11 Enable System Calls (10)

At this point the system calls are enabled. A table of the
system calls is found in SROM API Library on page 152.
The function calls are access via IPC that communicate to
the CM0+ with interrupts. The SROM function
EnableSystemCall() is called to enable these system calls.

14.3.5.12 Is DAP Enabled (11)

Determines if the Debug Access Port (DAP) is enabled by
reading the CPUSS_AP_CTL register, that was set during
ROM BOOT. The DAP consist of three sections: CM4 AP,
CM0+ AP, and System AP. If any of these APs are enabled,
then the DAP is considered to be enabled.

14.3.5.13 Configure SWD/JTAG Pins (12)

The SWD and JTAG GPIOs are configured to work with the
DAP. The CPUSS_AP_CTL register will be used to set DAP.

14.3.5.14 Wake from Hibernate? (13)

If the reason for the reset was wake from hibernate, skip the
wait window and test mode check.

14.3.5.15 Wait Window (14)

The CPU delays execution to allow the debug hardware to
acquire the CM0+. The default delay time is 20 ms, but the
user can set other delay options. For a SECURE mode
device, it is recommended to set the delay to 0 as debug will
not be enabled.

This delay allows the debug hardware to acquire the debug
interface and set the operation to test mode.

14.3.5.16 Test Mode Enable? (15)

After the listen window delay, the firmware checks if the
SRSS_TST_MODE register has either TEST_MODE or
TEST_KEY_DFT_EN bit set. If either bit is set, execution is
transferred to an endless loop in SROM. This is done by
calling the BusyWaitLoop() ROM boot function.

14.3.5.17 Launch CM0+ Application (16)

If the TOC2 is erased and the life-cycle stage is NORMAL,
Flash boot assumes that an application is in the “Basic
Application Format” and the application start address is the
start of the user flash.

Binary
Code
Image

(Firmware)

Hash
Function

SHA-256

Decrypt

(RSA N-bit)

Calculated
Digital
Digest

Digital
Signature

Binary
Code
Image Application

Bundle

Public Key
(2048-bit)

Digital
Signature

Binary Firmware
(Not Encrypted)

Compare Stored Digest
With Calculated Digest

Do
Signatures

Match?

Invalid
Application

Valid
Application

Decrypted
Digital
Digest

No

Yes

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 187

Boot Code

If the TOC2 is valid and the life-cycle stage is NORMAL,
then the application can be in either the Basic or Cypress
Standard Secure application formats.

Otherwise, the application is stored in the Cypress Secure
application format.

The procedure to launch a user application is:

1. Set CPUSS_CM0_VECTOR_TABLE_BASE to the start
of the user application interrupt vector table.

2. Set CPUSS_CM4_VECTOR_TABLE_BASE to
0xFFFF_0000.

3. Perform a core reset.

4. After a core reset is performed ROM boot is launched
(on CM0+).

5. ROM boot checks if CPUSS_PROTECTION ! = 0, which
means ROM boot is launched on CM0+ after a core
reset.

6. If (5) is true, ROM boot sets SP and PC register values
from the user interrupt vector table. The address of a
user application interrupt vector table is stored at step
(1) to CPUSS_CM0_VECTOR_TABLE_BASE.

7. When ROM boot sets PC register value with the user
reset handler address, user code starts executing.

14.3.5.18 Set Up SP (17)

The SP register value for Flash boot is at the top of user
RAM.

14.3.5.19 Idle Loop (18)

Before going to an idle loop the Flash boot sets the
CPUSS_CM0_VECTOR_TABLE_BASE MMIO register to
0xFFFF_0000.

In this state, a NMI interrupt can wake up the device. To
prevent unwanted firmware access, device access
restrictions must be set up correctly for the appropriate life
cycle stage. The protection settings for each life-cycle stage
are listed in Life-cycle Stages and Protection States on
page 176.

14.3.5.20 Set Error Code (30)

If the user application flash or the TOC2 was determined to
be invalid, an error code will be written to IPC.DATA
(structure 2); this will enable to detect the cause during
debug.

Table 14-11. Error Code

Error Name Value Description

CY_FB_STATUS_SUCCESS 0xA100_0100 Success status value

CY_FB_STATUS_BUSY_WAIT_LOOP 0xA100_0101
Debugger probe acquired the device in Test Mode. The Flash
boot entered a busy wait loop.

CY_FB_ERROR_INVALID_APP_SIGN 0xF100_0100

Application signature validation failed for the device families
where flash boot launches only one application from TOC2.

Either the application structure or a digital signature is invalid
for the device families in which Flash boot may launch either of
two applications in TOC2.

CY_FB_ERROR_INVALID_TOC 0xF100_0101 Empty or invalid TOC

CY_FB_ERROR_INVALID_KEY 0xF100_0102 Invalid public key

CY_FB_ERROR_UNREACHABLE 0xF100_0103 Unreachable code

CY_FB_ERROR_TOC_DATA_CLOCK 0xF100_0104 TOC contains invalid CM0+ clock attribute

CY_FB_ERROR_TOC_DATA_DELAY 0xF100_0105 TOC contains invalid listen window delay

CY_FB_ERROR_FLL_CONFIG 0xF100_0106 FLL configuration failed

CY_FB_ERROR_INVALID_APP0_DATA 0xF100_0107
Application structure is invalid for the device families in which
Flash boot may launch only one application from TOC2

CY_FB_ERROR_CRYPTO 0xF100_0108 Error in Crypto operation

CY_FB_ERROR_INVALID_PARAM 0xF100_0109 Invalid parameter value

CY_FB_ERROR_BOOT_HARD_FAULT 0xF100_010a A hard fault exception had happened in the Flash boot

CY_FB_ERROR_UNEXPECTED_INTERRUPT 0xF100_010B Any unexpected interrupt had happened in the Flash boot

CY_FB_ERROR_BOOTLOADER 0xF100_0140 Any bootloader error

CY_FB_ERROR_BOOT_LIN_INIT 0xF100_0141 Bootloader error, LIN initialization failed

CY_FB_ERROR_BOOT_LIN_SET_CMD 0xF100_0142 Bootloader error, LinSetCmd() failed

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 188

Boot Code

14.3.5.21 Protection = Virgin? (31)

The CPUSS_PROTECTION MMIO register value is
compared to the desired protection mode.

14.3.5.22 Life Cycle = SECURE (32)

The life-cycle stage value is stored in eFuse. To determine
this value, Flash boot reads the corresponding eFuse bits. If
the SECURE life-cycle bit is set in eFuse, then the device is
in the SECURE life-cycle stage. Otherwise, the device is in
another life-cycle stage.

Note: Life-cycle stage is not the same as protection mode.
In this case, SECURE_WITH_DEBUG is not equal to
SECURE life-cycle stage; however, the protection state
equals to SECURE for both these stages.

14.3.5.23 Protection = DEAD (33)

In DEAD protection state, the system will not attempt to start
any flash firmware and will restrict access to system
resources to shield secure/sensitive information. The
intention is to allow a controlled set of failure analysis
capabilities only. By default, DEAD mode is open to all
debug functions and users should change to the level of
security required.

14.3.5.24 Deploy Access Restrictions (34)

SECURE_DEAD access restrictions are applied for entering
DEAD branch from the SECURE life-cycle stage.

Assess restrictions are applied by calling the
RestrictAccess() ROM boot function.

14.3.5.25 Set Up DAP from AR (35)

ROM boot function GetAccessRestrictStruct() is called to
determine which APs (access points, one of CM0+ AP, CM4,
and TC) are enabled. Based on this information the proper
values are written to the CPUSS_AP_CTL register.

14.3.5.26 Apply System Protection (36)

System protection settings are usually applied by ROM boot
code before entering Flash boot. If the device enters the
DEAD branch, the system protection settings are changed.
Thus, Flash boot calls the ROM boot function
ApplyProtectionSettings() to reconfigure them.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 189

15. eFuse Memory

The eFuse memory consists of a set of eFuse bits. When an eFuse bit is programmed, or “blown”, its value can never be
changed. Some of the eFuse bits are used to store various unchanging device parameters, including critical device factory
trim settings, device life cycle stages (see the Device Security chapter on page 191), DAP security settings, and encryption
keys. Other eFuse bits are available for custom use.

15.1 Features

The PSoC 6 MCU eFuses have the following features:

■ A total of 1024 eFuse bits. 512 of them are available for custom purposes.

■ The eFuse bits are programmed one at a time, in a manufacturing environment. The eFuse bits cannot be programmed in
the field.

■ Multiple eFuses can be read at the bit or byte level through a PDL API function call or an SROM call. An unblown eFuse
reads as logic 0 and a blown eFuse reads as logic 1. There are no hardware connections from eFuse bits to elsewhere in
the device.

■ SROM system calls are available to program and read eFuses. See the Nonvolatile Memory chapter on page 146. For
detailed information on programming eFuses, see the PSoC 6 MCU Programming Specifications.

15.2 Architecture

The PSoC 6 MCU eFuses can be programmed only in a manufacturing environment. VDDIO0 must be set to 2.5 V, and the
device must be in a specific test mode, entered through an XRES key. For more information, see the PSoC 6 MCU
Programming Specifications.

Table 15-1 shows the usage of the PSoC 6 MCU eFuse bytes.

Table 15-1. PSoC 6 MCU eFuse Byte Assignments

Offset
No. of
Bytes

Name Description

0 20 Reserved Reserved for PSoC 6 MCU system usage

20 16 SECURE_HASH Secure objects 128-bit hash

36 2 Reserved Reserved for PSoC 6 MCU system usage

38 1 SECURE_HASH_ZEROS Number of zeros in SECURE_HASH

39 2 DEAD_ACCESS_RESTRICT Access restrictions in DEAD life cycle stage

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
https://www.Infineon.com/PSoC6ProgrammingSpec
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 190

eFuse Memory

41 2 SECURE_ACCESS_RESTRICT Access restrictions in SECURE life cycle stage

43 1 LIFECYCLE_STAGE Life cycle state

44 17 FACTORY_HASH, FACTORY_HASH_ZEROS Secure objects 128-bit hash plus number of zeros in the hash

61 2 Reserved Reserved for PSoC 6 MCU system usage

63 1 Unused Not used

64 64 CUSTOM_DATA Custom data

Table 15-1. PSoC 6 MCU eFuse Byte Assignments

Offset
No. of
Bytes

Name Description

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 191

16. Device Security

The PSoC 6 MCU offers several features to protect user designs from unauthorized access or copying. Selecting a secure life
cycle stage, enabling flash protection, and using hardware-based encryption can provide a high level of security.

16.1 Features

The PSoC 6 MCU provides the following device security features:

■ Nonvolatile and irreversible life cycle stages that can limit program and debug access.

■ Shared memory protection unit (SMPU) that provides programmable flash, SRAM, and register protection.

■ Cryptographic function block that provides hardware-based encryption and decryption of data and code.

16.2 Architecture

16.2.1 Life Cycle Stages and Protection States

PSoC 6 MCUs have configurable, nonvolatile life cycle stages. Life cycle stages follow a strict, irreversible progression
governed by writing to eFuse – a 1024-bit nonvolatile memory with each bit being one time programmable (OTP). The eFuse
can hold unalterable keys and trim information. See the eFuse Memory chapter on page 189 for more details of the eFuse;
see the Nonvolatile Memory chapter on page 146 for eFuse access system calls.

This chapter discusses hardware blocks used to implement device security. For system-level implementation of device
security, see AN221111 - PSoC™ 6 MCU designing a custom secured system.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.infineon.com/an221111
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 192

Device Security

Figure 16-1. PSoC 6 MCU Life Cycle Stage Transitions

The EFUSE_DATA_LIFECYCLE_STAGE eFuse governs the life-cycle stages.

The PSoC 6 MCU supports the following life cycle stages:

■ VIRGIN – This stage is used by Cypress during
assembly and testing. During this stage, trim values and
flash boot are written into SFlash. Devices that are in
this stage never leave the factory. In this stage, the boot
ROM assumes that no other eFuse data or flash data is
valid. Devices are transitioned to the Normal stage
before they leave the factory.

■ NORMAL – This is the life cycle stage of a device after
trimming and testing is complete in the factory. All
configuration and trimming information is complete. Valid
flash boot code is programmed in the SFlash. To allow
the OEM to check data integrity of trims, flash boot, and
other objects from the factory, a hash (SHA-256
truncated to 128 bits) of these objects is stored in eFuse.
This hash is referred to as Factory_HASH. In Normal
mode, by default, there is full debug access to the CPUs
and system. The device may be erased and
programmed as needed.

■ SECURE – This is the stage of a secure device. Before
transitioning to this stage, ensure that the following steps
are complete:

❐ Secure access restrictions are programmed into the
EFUSE_DATA_SECURE_ACCESS_RESTRICT0
and

EFUSE_DATA_SECURE_ACCESS_RESTRICT1
registers.

❐ The TOC2 should optionally be programmed with the
correct address of the user key storage blocks in
flash.

❐ The TOC2 should be programmed with the user
application format, the starting addresses of the user
application, and the address of the public key in
SFlash.

❐ Protection units should be set up to protect sensitive
code regions.

❐ Public and private keys must be generated.

In this stage, the protection state is set to Secure, and
Secure DAP access restrictions are deployed. A secure
device will boot only after successful authentication of its
flash boot and application code.

After an MCU is in the Secure life cycle stage, it cannot
go back to the Normal stage. SFlash cannot be pro-
grammed in this stage. The debug ports may be dis-
abled depending on user preferences, so it is not
possible to reprogram or erase the device with a hard-
ware programmer/debugger. At this point, the firmware
can only be updated by invoking a bootloader, which
must be provided as part of device firmware.

Access restrictions in the SECURE state can be con-
trolled by writing to the following eFuses:

Virgin

Normal

Secure Secure w/ Debug

Write
Nomal
eFuse

Write
Secure
eFuse

Write
Secure /w

Debug
eFuse

RMA

Write RMA
eFuse

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 193

Device Security

EFUSE_DATA_SECURE_ACCESS_RESTRICT0 and
EFUSE_DATA_SECURE_ACCESS_RESTRICT1.

Code should be tested in Normal and Secure with
Debug stages before advancing to this stage. This is to
prevent a configuration error that can cause the device
to be inaccessible for programming and therefore,
become unusable.

■ SECURE_WITH_DEBUG – This is similar to the Secure
stage, except that Normal access restrictions are applied
to enable debugging. Devices that are in the Secure with
Debug stage cannot be changed back to either Secure
or Normal stage.

Secure applications may also be developed in the
Normal life-cycle stage with code validation enabled.
This requires the
TOC2_FLAGS.VALIDATE_APP_NORMAL bits at offset
0x1F8 to be set. See the Boot Code chapter on
page 173 for more information. This method has the
advantage of being able to transition to the SECURE
life-cycle stage after testing is complete.

■ RMA – Customers can transition the device to the RMA
stage (from Secure) when they want Cypress to perform
failure analysis on the device. The customer should
erase all sensitive data (including firmware) before
invoking the system call that transitions the device to
RMA. Flash erase should be performed by calling
EraseRow/EraseSubSector/EraseSector/EraseAll
SROM APIs five times repeatedly on the secure FLASH
region before converting the device to RMA. Erasing the
device five times eliminates any possibility of
determining the previous state of any flash cell. See the
Nonvolatile Memory chapter on page 146 for more
details on these SROM APIs.

When invoking the system call to transition to RMA, the
customer must provide a certificate that authorizes
Cypress to transition the device with a specific Unique ID
to the RMA life cycle stage. The certificate will be signed
by the customer using the same private key that is used
to sign the user application image. The verification of the
signature uses the same algorithm used by flash boot to
authenticate the user application. The same public key
(injected by the OEM) stored in SFlash is used for the
verification. Note that the signature is unique to a spe-
cific device. A signature will only work with the specific
device for which it was generated because it uses the
unique device ID.

When a device is reset in the RMA life cycle stage, the
boot will set access restrictions such that the DAP has
access only to System AP and IPC MMIO registers for
making system calls, and adequate RAM for communi-
cation. It will then wait for the “Open for RMA” system
call from the DAP along with the certificate of authoriza-
tion. This is the same certificate used in transitioning the
device to RMA. The boot process will not initiate any
firmware until it successfully executes the “Open for
RMA” command. After the command is successful, the

device will behave as though it were in the Virgin life
cycle stage, but it cannot be transitioned to Virgin or any
other stage. The life cycle stage stored in eFuse cannot
be changed from RMA. Every time the device is reset, it
must execute the “Open for RMA” command success-
fully before the device can be used

A powered PSoC 6 MCU also has a volatile protection state
that reflects its life cycle stage. The protection state is
determined on boot by reading the eFuse values.
Figure 16-2 illustrates the protection state transitions.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 194

Device Security

Figure 16-2. Protection State Transitions

Protection state is defined by the STATE field of the CPUSS_PROTECTION register.

■ STATE is 0: UNKNOWN state.

■ STATE is 1: VIRGIN state.

■ STATE is 2: NORMAL state.

■ STATE is 3: SECURE state.

■ STATE is 4: DEAD state.

The CPUSS_PROTECTION register can be written only to affect the transitions defined in Figure 16-2. Any value written to
this register that does not represent a transition in Figure 16-2 is rejected in hardware. A life cycle stage change (by writing to
eFuse) does not immediately affect a protection state change. After writing the NORMAL, SECURE_WITH_DEBUG, or
SECURE state in the eFuse, a reboot is required for the change of life cycle stage to take effect on the protection state.

There are more protection states than there are life-cycle stages. The additional protection states are:

■ UNKNOWN – A device comes out of reset in this state. The ROM boot code needs to run through its courses (reading
eFuses and checking integrity) to determine the life cycle stage of the device and select the proper protection state.

■ DEAD – A device will enter the DEAD protection state when a corruption/error is detected in the boot process. In DEAD
protection state, the system will not attempt to start any flash firmware and may restrict access to system resources to
shield secure/sensitive information. Access restrictions in DEAD mode are controlled by
EFUSE_DATA_DEAD_ACCESS_RESTRICT0 and EFUSE_DATA_DEAD_ACCESS_RESTRICT1 eFuses.

NORMAL Lifecycle in
eFuse

VIRGIN

DEAD

NORMAL

SECURE

UNKNOWN
(After Reset)

SECURE Lifecycle in
eFuse

eFuse Lifecycle Bits Set?

Corruption or error
detected during the boot

process

No

No

Yes

Yes

Yes

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 195

Device Security

16.2.2 Flash Security

PSoC 6 MCUs include a flexible flash-protection system that controls access to flash memory. This feature is designed to
secure proprietary code, but it can also be used to protect against inadvertent writes to the bootloader portion of flash.

Flash memory is organized in sectors. Flash protection is provided by a shared memory protection unit (SMPU). The SMPU is
intended to distinguish between different protection contexts and to distinguish secure from non-secure accesses. The
system function that performs flash programming first looks at the SMPU settings and will not allow to program or erase flash
blocks protected by the SMPUs.

For more details, see the Protection Units chapter on page 70.

16.2.3 Hardware-Based Encryption

The PSoC 6 MCU has a cryptographic block (Crypto) that provides hardware implementation and acceleration of
cryptographic functions. It implements symmetric key encryption and decryption, hashing, message authentication, random
number generation (pseudo and true), and cyclic redundancy checking. It can work with internal as well as external memory.
See the Cryptographic Function Block (Crypto) chapter on page 95 and Serial Memory Interface (SMIF) chapter on page 343
for more details.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 196

Section C:System Resources Subsystem (SRSS)

This section encompasses the following chapters:

■ Power Supply and Monitoring chapter on page 197

■ Device Power Modes chapter on page 204

■ Backup System chapter on page 214

■ Clocking System chapter on page 221

■ Reset System chapter on page 236

■ I/O System chapter on page 240

■ Watchdog Timer chapter on page 262

■ Trigger Multiplexer Block chapter on page 273

■ Profiler chapter on page 278

Top Level Architecture

Figure C-1. System-Wide Resources Block Diagram

System
Hibernate Mode

Backup
Domain

System
DeepSleep Mode

System LP/ULP Mode
CPUs Active/Sleep

Color Key:
Power Modes and

Domains

System Resources

Power Clocks

POR

LVD

BOD

OVP

Buck Regulator

WCORTC

IMO

WDT

2x PLL

ECO

ILO

FLL

2x MCWDT

Backup Regs

XRES Reset

PMIC Control

PILO

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 197

17. Power Supply and Monitoring

The PSoC 6 MCU family supports an operating voltage range of 1.7 V to 3.6 V. It integrates multiple regulators including an
on-chip single input multiple output (SIMO) buck converter to power the blocks within the device in various power modes. The
device supports multiple power supply rails – VDDD, VDDA, VDDIO, and VBACKUP – enabling the application to use a dedicated
supply for different blocks within the device. For instance, VDDA is used to power analog peripherals such as ADC and
opamps.

The PSoC 6 MCU family supports power-on-reset (POR), brownout detection (BOD), over-voltage protection (OVP), and low-
voltage-detection (LVD) circuit for power supply monitoring and failure protection purposes.

17.1 Features

The power supply subsystem of the PSoC 6 MCU supports the following features:

■ Operating voltage range of 1.7 V to 3.6 V

■ User-selectable core logic operation at either 1.1 V (LP) or 0.9 V (ULP)

■ Three independent supply rails (VDDD, VDDA, and VDDIO) for PSoC core peripherals and one independent supply rail

(VBACKUP) for backup domain

■ Multiple on-chip regulators

❐ One low-dropout (LDO) regulator to power peripherals in Active power mode

❐ One SIMO buck converter with two outputs

❐ Multiple low-power regulators to power peripherals operating in different low-power modes

■ Two BOD circuit (VDDD and VCCD) in all power modes except Hibernate mode

■ LVD circuit to monitor VDDD, VAMUXA, VAMUXB, VBACKUP, or VDDIO

■ One OVP block monitoring VCCD

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

Power Supply and Monitoring

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 198

17.2 Architecture

Figure 17-1. Power System Block Diagram

VRF

10 µF

VSSD

VDDD VDDAVDDIOVBACKUP

VCCDPSLP

VCCRET

Single Input Multiple
Output Buck

2.2 uH

VIND1

VIND2

VDDBAK

Low-dropout regulator
(Active regulator)

Backup Supply
Selection

Deep-Sleep and
Retention regulators

VCCD

Active domain and
High frequency logic/

peripherals

Flash

Backup logic, WCO,
RTC

Deep-Sleep domain
peripherals / SRAM

SRAM (Active)

High voltage (VDDD)
and hibernate Domain

peripherals

IO Cells

Analog peripherals

0.1 µF1 µF 0.1 µF1 µF 0.1 µF1 µF 0.1 µF1 µF

1 µF

Regulators (LDO or Buck)

Deep-Sleep power supply/logic

Active mode power supply/logic

Retention power supply/logic

Backup power supply/logic

Legend:

External power pad

External IO pad

Internal power rails

VSSD

VSSD VSSD VSSIO VSSA

PSoC 6

VBUCK1

0.1 µF10 µF

VSS_NS VDD_NS

4.7 µF

VSSD

Optional
(can power

external
devices)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 199

Power Supply and Monitoring

See the device datasheet for the values to be used for the
capacitors and inductor shown in Figure 17-1.

The regulators and supply pins/rails shown in Figure 17-1
power various blocks inside the device. The availability of
various supply rails/pins for an application will depend on
the device package selected. Refer to the device datasheet
for details.

All the core regulators draw their input power from the VDDD
supply pin. The SIMO buck uses the VDD_NS supply pin as
its input. VCCD supply is used to power all active domain and
high frequency peripherals. The VBUCK1 output of SIMO can
be connected to the VCCD pin and in firmware the VCCD
supply can be switched to the SIMO buck output. A
dedicated Deep Sleep regulator powers all the Deep Sleep
peripherals. The Deep Sleep regulator switches its output to
VCCD when available and to its regulated output when VCCD
is not present (System Deep Sleep power mode). Hibernate
domain does not implement any regulators and the
peripherals available in that domain such as Low-Power
comparator and ILO operate directly from VDDD.

When the VDDA pin is not present, analog peripherals run
directly from the VDDD.

The I/O cells operate from various VDDx (VDDA, VDDD, or
VDDIO) pins depending on the port where they are located.
VCCD supply is used to drive logic inside the I/O cells from
core peripherals. VDDA powers the analog logic such as
analog mux switches inside the I/O cell. To know which I/Os
operate from which supply, refer to the device datasheet.

The device includes a VBACKUP supply pin to power a small
set of peripherals such as RTC and WCO, which run
independent from other supply rails available in the device.
When the VBACKUP supply is not present, the device uses
VDDD to power these peripherals.

In addition to the power rails and regulators, the device
provides options to monitor supply rails and protection
against potential supply failures. These include a POR
circuit, a BOD circuit, an OVP circuit, and a LVD circuit.

17.3 Power Supply

17.3.1 Regulators Summary

17.3.1.1 Core Regulators

The device includes the following core regulators to power
peripherals and blocks in various power modes.

Linear Core Regulator

The device includes a linear LDO regulator to power the
Active and Sleep mode peripherals. This regulator
generates the core voltage (VCCD) required for Active mode

operation of the peripherals from VDDD. The regulator is

capable of providing 0.9 V and 1.1 V for core operation. See

Core Operating Voltage on page 200. The regulator is
available in Active and Sleep power modes. This regulator
implements two sub-modes – high-current and low-current
modes. LINREG_LPMODE bit [24] of the PWR_CTL
register selects between the two modes of operation. The
high-current mode is the normal operating mode, that is, the
device operates to its full capacity in Active or Sleep power
modes. In the low-current mode or the minimum regulator
current mode, the current output from the regulator is
limited. This mode implements the Low-Power Active and
Sleep power modes. The low-current mode sets a limitation
on the capabilities and availability of resources in the Low-
Power Active and Sleep modes. For details, see the Device
Power Modes chapter on page 204.

By default, the linear regulator is powered on reset. The
regulator can be disabled by setting the LINREG_DIS bit
[23] of the PWR_CTL register. Note that the linear regulator
should be turned OFF only when the following conditions
are satisfied:

■ Switching buck regulator is ON, VBUCK1 output is

enabled and connected to VCCD externally.

■ The load current requirement of the device from the
VCCD supply does not exceed 20 mA. This should be

ensured by the firmware by disabling power consuming
high-frequency peripherals and reducing the system
clock frequency.

If the linear regulator is turned OFF without the above
conditions satisfied, it will result in VCCD brownout and the

device will reset.

Switching (Buck) Core Regulator

The device includes a switching (buck) core regulator. The
buck regulator included is a single input multiple (two)
output (SIMO) regulator that can generate two outputs
(VBUCK1 and VRF) from a single input supply (VDD_NS). The
buck requires only one inductor to generate both outputs.
However, it requires two external capacitors, one for each
output. Note that the VBUCK1 output is also available in the
Deep Sleep device power mode.

The buck regulator can be enabled by setting the BUCK_EN
bit [30] of the PWR_BUCK_CTL register. Both the outputs
can be enabled/disabled individually using the
BUCK_OUTx_EN bit [31] of the PWR_BUCK_CTLx
registers. The VBUCK1 output supports voltages from 0.85 V
to 1.20 V. Use either 0.9 V or 1.1 V for VCCD operation.

The VRF output supports voltages from 1.15 V to 1.50 V.
The output selection can be made using BUCK_OUTx_SEL
bits in the PWR_BUCK_CTLx registers. In addition, the VRF
output enable/disable can be controlled by hardware . This
is enabled by setting the BUCK_OUT2_HW_SEL bit [30] of
the PWR_BUCK_CTL2 register. If enabled, the
BUCK_OUT2_EN bit is ignored and the hardware signal will
be used to control the VRF output.

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 200

Power Supply and Monitoring

When used to power the core peripherals, the buck
regulator provides better power efficiency than the linear
regulator, especially at higher VDDD. However, the buck

regulator has less load current capability (20 mA individually
or 30 mA combined) than the linear regulator. Therefore,
when using the buck regulator, take care not to overload the
regulator by running only the necessary peripherals at a
lower frequency in firmware. Overload conditions can cause
the buck output to drop and result in a brownout reset.
Follow these steps in firmware when switching to the buck
regulator for core (VCCD) operation without causing a

brownout.

1. Make sure VBUCK1 and VCCD pins are shorted externally

on the board.

2. Change the core supply voltage to 50 mV more than the
final buck voltage. For instance, if the final buck voltage
is 0.9 V, then set the LDO output to 0.95 V and 1.15 V for
1.1 V buck operation. Set the ACT_REG_TRIM bits[4:0]
of the PWR_TRIM_PWRSYS_CTL register to ‘0x0B’ to
switch to 0.9 V and '0x1B' to switch to 1.1 V buck
operation. This is discussed in Core Operating Voltage.

3. Reduce the device current consumption by reducing
clock frequency and switching off blocks to meet the
SIMO buck regulator’s load capacity.

4. Disable System Deep Sleep mode regulators. Because
the SIMO buck regulator is available in the System Deep
Sleep power mode, other deep-sleep regulators can be
powered down. This is done by setting the following bits
in the PWR_CTL register:

a. DPSLP_REG_DIS bit [20] – Disables the deep-sleep
core regulator.

b. RET_REG_DIS bit [21] – Disables the logic retention
regulator.

c. NWELL_REG_DIS bit [22] – Disables the nwell
regulator.

5. Set the buck output to the desired value by writing ‘2’ (for
0.9 V) or ‘5’ (for 1.1 V) to the BUCK_OUT1_SEL bits[2:0]
of the PWR_BUCK_CTL register.

6. Enable the SIMO buck regulator and VBUCK1 output by

setting the BUCK_EN bit[30] and BUCK_OUT1_EN
bit[31] of the PWR_BUCK_CTL register.

7. Wait 200 µs for the SIMO buck regulator to start up and
settle.

8. Disable the linear regulator by setting the LINREG_DIS
bit[23] of the PWR_CTL register.

After transitioning to the SIMO buck regulator, do not switch
back to the linear regulator mode to ensure proper device
operation. This should happen once during powerup.

Core Operating Voltage

PSoC 6 MCUs can operate at either 0.9 V LP mode
(nominal) or 1.1 V ULP mode (nominal) core voltage. On
reset, the core is configured to operate at 1.1 V by default.
At 0.9 V, power consumption is less, but there are some
limitations. The maximum operating frequency for all HFCLK
paths should not exceed 50 MHz, whereas the peripheral
and slow clock should not exceed 25 MHz.

Follow these steps to change the PSoC 6 MCU core
voltage:

1. While transitioning to 0.9 V (ULP mode), reduce the
operating frequency to be within the HFCLK and peri
clock limits defined in the device datasheet for ULP
mode. Turn off blocks, if required, to be within the
maximum current consumption limit of the linear
regulator at 0.9 V.

2. Set the ACT_REG_TRIM bits[4:0] of the
PWR_TRIM_PWRSYS_CTL register to ‘0x07’ for 0.9 V
or ‘0x17’ for 1.1 V. For the SIMO buck regulator, set the
BUCK_OUT1_SEL bits[2:0] of the PWR_BUCK_CTL
register to ‘0x02’ for 0.9 V and ‘0x05’ for 1.1 V.

3. In the case of 1.1 V to 0.9 V transition, the time it takes
to discharge or settle to the new voltage may depend on
the load. So the system can continue to operate while
the voltage discharges.

4. In the case of 0.9 V to 1.1 V transition, wait 9 µs (or
200 µs for SIMO) for the regulator to stabilize to the new
voltage. The clock frequency can be increased after the
settling delay.

Notes:

■ When changing clock frequencies, make sure to update
wait states of RAM/ROM/FLASH. Refer to the CPU
Subsystem (CPUSS) chapter on page 31 for details on
the wait states.

■ Flash write is not allowed in 0.9 V (ULP mode) core
operation.

Other Low-power Regulators

In addition to the core active regulators, the device includes
multiple low-power regulators for powering Deep Sleep
peripherals/logic (VCCDPSLP), digital retention logic/SRAM

(VCCRET), and N-wells (VNWELL) in the device. Note that

VNWELL is not shown in Figure 17-1 because this rail is used

across the device for powering all the N-wells in the chip.
These rails are shorted to VCCD in Active and Sleep power

modes. VCCRET powers all the Active mode logic that needs

to be in retention in Deep Sleep mode.

Note that none of these power rails are available in
Hibernate mode. In Hibernate mode, all the hibernate logic
and peripherals operate from VDDD directly and a Hibernate

wakeup resets the device. For details, refer to the Device
Power Modes chapter on page 204.

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 201

Power Supply and Monitoring

17.3.2 Power Pins and Rails

Table 17-1 lists all the power supply pins available in the device. The supply rails running inside the device (VCCDPSLP,

VCCRET, VDDBAK, and VNWELL) are derived from these external supply pins/rails.

17.3.3 Power Sequencing Requirements

VDDD, VBACKUP, VDDIO, and VDDA do not have any

sequencing limitation and can establish in any order. The
presence of VDDA without VDD or VDDD can cause some

leakage from VDDA. However, it will not drive any analog or

digital output. All the VDDA pins in packages that offer

multiple VDDA supply pins, must be shorted externally (on

the PCB). Note that the system will not exit reset until both
VDDD and VDDA are established. However, it will not wait for

other supplies to establish.

17.3.4 Backup Domain

The PSoC 6 MCU offers an independent backup supply
option (VBACKUP). This rail powers a small set of peripherals

that includes an RTC, WCO, and a small number of
retention registers. This rail is independent of all other rails
and can exist even when other rails are absent. As
Figure 17-1 shows, this pin sources the VDDBAK rail in the

device. The VDDBAK rail is connected to VDDD when no

VBACKUP supply exists. For details on the backup domain,

refer to the Backup System chapter on page 214.

17.3.5 Power Supply Sources

The PSoC 6 MCU offers power supply options that support
a wide range of application voltages and requirements.
VDDD input supports a voltage range of 1.7 V to 3.6 V. If the

application voltage is in this range, then the PSoC 6 MCU
(VDDD) can be interfaced directly to the application voltage.

In applications that have voltage beyond this range, a
suitable PMIC (Buck or Boost or Buck-Boost) should be
used to bring the voltage to this range.

Other supply rails and pins such as VDDA, VDDIO, and

VBACKUP exist independent of VDDD and VCCD.

17.4 Voltage Monitoring

The PSoC 6 MCU offers multiple voltage monitoring and
supply failure protection options. This includes POR, BOD,
LVD, and OVP.

17.4.1 Power-On-Reset (POR)

POR circuits provide a reset pulse during the initial power
ramp. POR circuits monitor VDDD voltage. Typically, the

POR circuits are not very accurate about the trip-point.

POR circuits are used during initial chip power-up and then
disabled. Refer to the device datasheet for details on the

POR trip-point levels.

Table 17-1. Supply Pins

Supply Pin Ground Pin Voltage Range Supporteda

a. Refer to the device datasheet for exact range and recommended connections.

Description

VDD or VDDD VSS or VSSD 1.7 V to 3.6 V
VDD is a single supply input for multiple supplies and VDDD is a

digital supply input. Either of the pins will be present in a given
package.

VDD_NS VSS_NS 1.7 V to 3.6 V Supply input to the SIMO buck regulator on-chip.

VCCD VSS or VSSD Capacitor (0.9 V or 1.1 V)
Core supply or bypass capacitor for the internal core regulator
(LDO).

VBUCK1 VSS or VSSD Capacitor (0.9 V to 1.2 V)
Buck regulator's first output can be connected to VCCD exter-

nally or connected to the bypass capacitor (4.7 µF) for powering
external components.

VRF VSS or VSSD Capacitor (1.15 V to 1.5 V)
Buck regulator's second output; connect a bypass capacitor (10
µF) to the pin.

VDDA VSS or VSSA (if available) 1.7 V to 3.6 V Analog supply voltage.

VDDIO VSS or VSSIO (if available) 1.7 V to 3.6 V Additional I/O supply voltage.

VBACKUP VSS or VSSD (if available) 1.4 V to 3.6 V Backup domain supply voltage.

VIND1 – Inductor Inductor connection for the internal buck regulator.

VIND2 – Inductor Inductor connection for the internal buck regulator.

https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 202

Power Supply and Monitoring

17.4.2 Brownout-Detect (BOD)

The BOD circuit protects the operating or retaining logic
from possibly unsafe supply conditions by applying reset to
the device. The PSoC 6 MCU offers two BOD circuits –
high-voltage BOD (HVBOD) and low-voltage BOD (LVBOD).
The HVBOD monitors the VDDD voltage and LVBOD

monitors the VCCD voltage. Both BOD circuits generate a

reset if a voltage excursion dips below the minimum VDDD/

VCCD voltage required for safe operation (see the device

datasheet for details). The system will not come out of
RESET until the supply is detected to be valid again.

The HVBOD circuit guarantees a reset in System LP, ULP,
and Deep Sleep power modes before the system crashes,
provided the VDDD supply ramp satisfies the datasheet

maximum supply ramp limits in that mode. There is no BOD
support in Hibernate mode. Applications that require BOD
support should not use Hibernate mode and should disable
it. Refer to the Device Power Modes chapter on page 204
for details.

The LVBOD, operating on VCCD, is not as robust as the

HVBOD. The limitation is because of the small voltage
detection range available for LVBOD on the minimum
allowed VCCD.

For details on the BOD trip-points, supported supply ramp
rate, and BOD detector response time, refer to the device
datasheet.

17.4.3 Low-Voltage-Detect (LVD)

An LVD circuit monitors external supply voltage and
accurately detects depletion of the energy source. The LVD
generates an interrupt to cause the system to take
preventive measures.

The LVD can be configured to monitor VDDD, VAMUXA,

VAMUXB, or VDDIO. The HVLVD1_SRCSEL bits [6:4] of the

PWR_LVD_CTL register selects the source of the LVD. The
LVD support up to 15 voltage levels (thresholds) to monitor
between 1.2 V to 3.1 V. The HVLVD1_TRIPSEL bits [3:0] of
the PWR_LVD_CTL register select the threshold levels of
the LVD. LVD should be disabled before selecting the
threshold. The HVLVD1_EN bit [7] of the PWR_LVD_CTL
register can be used to enable or disable the LVD.

Whenever the voltage level of the supply being monitored
drops below the threshold, the LVD generates an interrupt.
This interrupt status is available in the SRSS_INTR register.
HVLVD1 bit [1] of the SRSS_INTR register indicates a
pending LVD interrupt. The SRSS_INTR_MASK register
decides whether LVD interrupts are forwarded to the CPU or
not.

Note that the LVD circuit is available only in Active,
LPACTIVE, Sleep, and LPSLEEP power modes. If an LVD is
required in Deep Sleep mode, then the device should be

configured to periodically wake up from Deep Sleep mode
using a Deep Sleep wakeup source. This makes sure an
LVD check is performed during Active/LPACTIVE mode.

When enabling the LVD circuit, it is possible to receive a
false interrupt during the initial settling time. Firmware can
mask this by waiting for 8 µs after setting the HVLVD1_EN
bit in the PWR_LVD_CTL register. The recommended
firmware procedure to enable the LVD function is:

1. Ensure that the HVLVD1 bit in the SRSS_INTR_MASK
register is 0 to prevent propagating a false interrupt.

2. Set the required trip-point in the HVLVD1_TRIPSEL field
of the PWR_LVD_CTL register.

3. Configure the LVD edge (falling/rising/both) that triggers
the interrupt by configuring HVLVD1_EDGE_SEL
bits[1:0] of SRSS_INTR_CFG register. By default, the
configuration disables the interrupt. Note: LVD logic may
falsely detect a falling edge during Deep Sleep entry.
This applies only when HVLVD1_EDGE_SEL is set to
FALLING(2) or BOTH(3). Firmware can workaround this
condition by disabling falling edge detection before
entering Deep Sleep, and re-enabling it after exiting
Deep Sleep.

4. Enable the LVD by setting the HVLVD1_EN bit in the
PWR_LVD_CTL register. This may cause a false LVD
event.

5. Wait at least 8 µs for the circuit to stabilize.

6. Clear any false event by setting the HVLVD1 bit in the
SRSS_INTR register. The bit will not clear if the LVD
condition is truly present.

7. Unmask the interrupt by setting the HVLVD1 bit in
SRSS_INTR_MASK.

LVD is used to detect potential brownouts. When the supply
being monitored drops below the threshold, the interrupt
generated can be used to save necessary data to flash,
dump logs, trigger external circuits, and so on.

For details on supported LVD thresholds, refer to the device
datasheet and the PWR_LVD_CTL register definition in the
registers TRM.

https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
http://www.cypress.com/trm220777
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 203

Power Supply and Monitoring

Figure 17-2. PSoC 6 MCU LVD Block

17.4.4 Over-Voltage Protection (OVP)

The PSoC 6 MCU offers an over-voltage protection circuit that monitors the VCCD supply. Similar to the BOD circuit, the OVP

circuit protects the device from unsafe supply conditions by applying a reset. As the name suggests, the OVP circuit applies a
device reset, when the VCCD supply goes above the maximum allowed voltage. The OVP circuit can generate a reset in all

device power modes except the Hibernate mode.

17.5 Register List

Name Description

PWR_CTL
Power Mode Control register - controls the device power mode options and allows observation of current
state

PWR_BUCK_CTL Buck Control register - controls the buck output and master buck enable

PWR_BUCK_CTL2 Buck Control register 2 - controls the VRF output

PWR_LVD_CTL LVD Configuration register

SRSS_INTR SRSS Interrupt register - shows interrupt requests from the SRSS peripheral

SRSS_INTR_MASK SRSS Interrupt Mask register - controls forwarding of the interrupt to CPU

SRSS_INTR_SET SRSS Interrupt Set register - sets interrupts; this register is used for firmware testing

SRSS_INTR_MASKED
SRSS Interrupt Masked register - logical AND of corresponding SRSS interrupt request (SRSS Interrupt
register) and mask bits (SRSS Interrupt Mask register)

.

.

.

.

.

1.2 V

3.1 V

HVLVD1_TRIPSEL [3:0]

4

HVLVD1 SRSS_INTR[HVLVD1]

HVLVD1_SRCSEL [2:0]

3

VDDD

VAMUXA

VAMUXB

SRSS_INTR_MASK[HVLVD1]
To CPU as SRSS
interrupt

PSoC 6 LVD block

HVLVD1_EN

-

+

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 204

18. Device Power Modes

The PSoC 6 MCU can operate in four system and three CPU power modes. These modes are intended to minimize the
average power consumption in an application. The power modes supported by PSoC 6 MCUs, in the order of decreasing
power consumption, are:

■ System Low Power (LP) – All peripherals and CPU power modes are available at maximum speed and current
■ System Ultra Low Power (ULP) – All peripherals and CPU power modes are available, but with limited speed and current
■ CPU Active – CPU is executing code in system LP or ULP mode
■ CPU Sleep – CPU code execution is halted in system LP or ULP mode
■ CPU Deep Sleep – CPU code execution is halted and system deep sleep is requested while in system LP or ULP mode
■ System Deep Sleep – Entered only after both CPUs enter CPU Deep Sleep mode. Only low-frequency peripherals are

available
■ System Hibernate – Device and I/O states are frozen and the device resets on wakeup

CPU Active, Sleep, and Deep Sleep are standard Arm-defined power modes supported by the Arm CPU instruction set
architecture (ISA). System LP, ULP, Deep Sleep and Hibernate modes are additional low-power modes supported by PSoC 6.
Hibernate mode is the lowest power mode in the PSoC 6 MCU and on wakeup, the CPU and all peripherals go through a
reset.

18.1 Features

The PSoC 6 MCU power modes have the following features:

■ Four system and three CPU power modes aimed at optimizing power consumption in an application
■ System ULP mode with reduced operating current and clock frequency while supporting full device functionality
■ System Deep Sleep mode with support for multiple wakeup sources and configurable amount of SRAM retention
■ System Hibernate mode with wakeup from I/O, comparator, WDT, RTC, and timer alarms

The power consumption in different power modes is further controlled by using the following methods:

■ Enabling and disabling clocks to peripherals
■ Powering on/off clock sources
■ Powering on/off peripherals and resources inside the PSoC 6 device

18.2 Architecture

The PSoC 6 device supports multiple power modes. Some modes only affect the CPUs (CPU power modes) and others affect
the whole system (system power modes). The system and CPU power modes are used in combination to control the total
system performance and power. CPU power modes are entered separately for each CPU on the device.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 205

Device Power Modes

The SysPm Peripheral Driver Library (PDL) driver supports all device power mode transitions and is the recommended
method of transition and configuration of PSoC 6 MCU power resources.

Table 18-1 summarizes the power modes available in PSoC 6 MCUs, their description, and details on their entry and exit
conditions.

Table 18-1. PSoC 6 MCU Power Modes

System
Power
Mode

MCU
Power
Mode

Description Entry Conditions
Wakeup
Sources

Wakeup
Action

LP

Active

System – Primary mode of operation. 1.1
V core voltage. All peripherals are avail-
able (programmable). Maximum clock fre-
quencies

CPU – Active mode

Reset from external reset, brownout,
power on reset system and Hibernate
mode. Manual register write from sys-
tem ULP mode. Wakeup from CPU
Sleep or CPU Deep Sleep while in sys-
tem LP mode. Wakeup from system
Deep Sleep after entered from LP mode.

Not applicable N/A

Sleep

1.1 V core voltage. One or more CPUs in
Sleep mode (execution halted). All periph-
erals are available (programmable). Maxi-
mum clock frequencies

In system LP mode, CPU executes WFI/
WFE instruction with Deep Sleep dis-
abled

Any interrupt to
CPU

Interrupt

Deep
Sleep

1.1 V core voltage. One CPU in Deep
Sleep mode (execution halted). Other
CPU in Active or Sleep mode. All periph-
erals are available (programmable). Maxi-
mum clock frequencies

In system LP mode, CPU executes WFI/
WFE instruction with Deep Sleep
enabled

Any interrupt to
CPU

Interrupt

ULP

Active
0.9 V core voltage. All peripherals are
available (programmable). Limited clock
frequencies. No Flash write.

Manual register write from system LP
mode. Wakeup from CPU Sleep or CPU
Deep Sleep while in system ULP mode.
Wakeup from system Deep Sleep after
entered from ULP mode.

Not applicable N/A

Sleep

0.9 V core voltage. One or more CPUs in
Sleep mode (execution halted). All periph-
erals are available (programmable). Lim-
ited clock frequencies. No Flash write.

In system ULP mode, CPU executes
WFI/WFE instruction with Deep Sleep
disabled

Any interrupt to
CPU

Interrupt

Deep
Sleep

0.9 V core voltage. One CPU in Deep
Sleep mode (execution halted). Other
CPU in Active or Sleep mode. All periph-
erals are available (programmable). Lim-
ited clock frequencies. No Flash write.

In system ULP mode, CPU executes
WFI/WFE instruction with Deep Sleep
enabled

Any interrupt to
CPU

Interrupt

Deep
Sleep

Deep
Sleep

All high-frequency clocks and peripherals
are turned off. Low-frequency clock (32
kHz) and low-power analog and digital
peripherals are available for operation
and as wakeup sources. SRAM is
retained (programmable).

Both CPUs simultaneously in CPU Deep
Sleep mode.

GPIO interrupt,
Low-Power
comparator,
SCB, CTBm,
watchdog timer,
and RTC alarms

Interrupt

Hibernate N/A

GPIO states are frozen. All peripherals
and clocks in the device are completely
turned off except optional low-power com-
parators and backup domain. Wakeup is
possible through WAKEUP pins, XRES,
low-power comparator (programmable),
WDT, and RTC alarms (programmable).
Device resets on wakeup.

Manual register write from LP or ULP
modes.

WAKEUP pin,
low- power com-
parator, watch-

dog timera, and

RTCb alarms

a. Watchdog timer is capable of generating a hibernate wakeup. See the Watchdog Timer chapter on page 262 for details.
b. RTC (along with WCO) is part of the backup domain and is available irrespective of the device power mode. RTC alarms are capable of waking up the device

from any power mode.

Reset

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 206

Device Power Modes

18.2.1 CPU Power Modes

The CPU Active, Sleep, and Deep Sleep modes are the
standard Arm-defined power modes supported by both
Cortex-M4 and Cortex-M0+ CPUs. All Arm CPU power
modes are available in both system LP and ULP power
modes. CPU power modes affect each CPU independently.

18.2.1.1 CPU Active Mode

In CPU Active mode, the CPU executes code and all logic
and memory is powered. The firmware may decide to
enable or disable specific peripherals and power domains
depending on the application and power requirements. All
the peripherals are available for use in Active mode. The
device enters CPU Active mode upon any device reset or
wakeup.

18.2.1.2 CPU Sleep Mode

In CPU Sleep mode, the CPU clock is turned off and the
CPU halts code execution. Note that in the PSoC 6 MCU,
Cortex-M4 and Cortex-M0+ both support their own CPU
Sleep modes and each CPU can be in sleep independent of
the other CPU state. All peripherals available in Active mode
are also available in Sleep mode. Any peripheral interrupt,
masked to the CPU, will wake the CPU to Active mode. Only
the CPU(s) with the interrupt masked will wake.

18.2.1.3 CPU Deep Sleep Mode

In CPU Deep Sleep mode, the CPU requests the device to
go into system Deep Sleep mode. When the device is ready,
it enters Deep Sleep mode as detailed in 18.2.3 System
Deep Sleep Mode.

Because PSoC 6 has more than one CPU, both CPUs must
independently enter CPU Deep Sleep before the system will
transition to system Deep Sleep.

18.2.2 System Power Modes

System power modes affect the whole device and may be
combined with CPU power modes.

18.2.2.1 System Low Power Mode

System Low Power (LP) mode is the default operating mode
of the device after reset and provides maximum system
performance. In LP mode all resources are available for
operation at their maximum power level and speed.

While in system LP mode the CPUs may operate in any of
the standard Arm defined CPU modes detailed in 18.2.1
CPU Power Modes.

18.2.2.2 System Ultra Low Power Mode

System Ultra Low Power (ULP) mode is identical to LP
mode with a performance tradeoff made to achieve lower
system current. This tradeoff lowers the core operating

voltage, which then requires reduced operating clock
frequency and limited high-frequency clock sources. Flash
write operations are not available in ULP mode. Table 18-5
provides the list of resources available in ULP mode along
with limitations.

While in system ULP mode, the CPUs may operate in any of
the standard Arm-defined CPU modes detailed in 18.2.1
CPU Power Modes.

Transitioning between LP and ULP modes is performed by
reducing the core regulator voltage from the LP mode
voltage to the ULP mode voltage. The lower voltage reduces
system operating current and slows down signal speeds
requiring a lower maximum operating frequency. Refer to
Core Operating Voltage section in Power Supply and
Monitoring chapter on page 197 for details on how to switch
between LP and ULP modes.

18.2.3 System Deep Sleep Mode

In system Deep Sleep mode, all the high-speed clock
sources are off. This in turn makes high-speed peripherals
unusable in system Deep Sleep mode. However, low-speed
clock sources and peripherals may continue to operate, if
configured and enabled by the firmware. In addition, the
peripherals that do not need a clock or receive a clock from
their external interface (I2C or SPI slave) may continue to
operate, if configured for system Deep Sleep operation. The
PSoC 6 MCU provides an option to configure the amount of
SRAM, in blocks of 32 KB, that are retained during Deep
Sleep mode.

Both Cortex-M0+ and Cortex-M4 can enter CPU Deep
Sleep mode independently. However, the entire device
enters system Deep Sleep mode only when both the CPUs
are in CPU Deep Sleep. On wakeup, the CPU that woke up
enters CPU Active mode and the other CPU remains in CPU
Deep Sleep mode. On wakeup, the system will return to LP
or ULP mode based on what mode was Active before
entering system Deep Sleep. Both CPUs may wake up to
CPU Active simultaneously from the same wakeup source if
so configured.

The device enters system Deep Sleep mode after the
following conditions are met.

■ The LPM_READY bit of the PWR_CTL register should
read ‘1’. This ensures the system is ready to enter Deep
Sleep. If the bit reads ‘0’, then the device will wait in
system LP or ULP mode instead of system Deep Sleep
until the bit is set, at which instant the device
automatically enters Deep Sleep mode, if requested.

■ Both Cortex-M0+ and Cortex-M4 must be in CPU Deep
Sleep. This is achieved by setting the SLEEPDEEP bit
[2] of the SCR register of both Cortex-M0+ and Cortex-
M4 and then executing WFI or WFE instruction.

■ The HIBERNATE bit [31] of the PWR_HIBERNATE
register should be cleared; otherwise, the device will
enter system Hibernate mode.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 207

Device Power Modes

In system Deep Sleep mode, the LP and ULP mode
regulator is turned off and a lower power, Deep Sleep
regulator sources all the peripherals enabled in system
Deep Sleep mode. Alternatively, the buck regulator can be
used to power the Deep Sleep peripherals. See the Power
Supply and Monitoring chapter on page 197 for details.
Table 18-5 provides the list of resources available in system
Deep Sleep mode.

Interrupts from low-speed, asynchronous, or low-power
analog peripherals can cause a CPU wakeup from system
Deep Sleep mode. Note that when a debugger is running on
either core, the device stays in system LP or ULP mode and
the CPUs enter CPU Sleep mode instead of CPU Deep
Sleep mode. PSoC 6 uses buffered writes. Therefore, writes
to an MMIO register or memory can take few a cycles from
the write instruction execution. The only way to ensure that
the write operation is complete is by reading the same
location after the write. It is required to follow a write by a
read to the same location before executing a WFI/WFE
instruction to enter CPU Deep Sleep mode.

18.2.4 System Hibernate Mode
System Hibernate mode is the lowest power mode of the
device when external supplies are still present and XRES is
deasserted. It is intended for applications in a dormant state.
In this mode, both the Active LP/ULP mode regulator and
Deep Sleep regulator are turned off and GPIO states are
automatically frozen. Wakeup is facilitated through
dedicated wakeup pins and a Low-Power comparator
output. Low-Power comparator operation in Hibernate mode
requires externally generated voltages for wakeup
comparison. Internal references are not available in
Hibernate mode. Optionally, an RTC alarm from the backup
domain or a watchdog timer (16-bit free-running WDT)
interrupt can generate a Hibernate wakeup signal. Set the
MASK_HIBALARM bit [18] of the PWR_HIBERNATE
register to enable the RTC alarm wakeup from Hibernate
mode.

The device goes through a reset on wakeup from Hibernate.
I/O pins remain in the configuration they were frozen before
entering Hibernate mode. To differentiate between other
system resets and a Hibernate mode wakeup, the TOKEN
bits [7:0] of the PWR_HIBERNATE register can be used as
described in the Power Mode Transitions on page 209. The
PWR_HIBERNATE (except the HIBERNATE bit [31])
register along with the PWR_HIB_DATA register are
retained through the Hibernate wakeup sequence and can
be used by the application for retaining some content. Note
that these registers are reset by other reset events. On a
Hibernate wakeup event, the HIBERNATE bit [31] of the
PWR_HIBERNATE register is cleared.

The brownout detect (BOD) block is not available in
Hibernate mode. As a result, the device does not recover
from a brownout event in Hibernate mode. Do not enter
Hibernate mode in applications that require brownout
detection, that is, applications where the supply is not

stable. In addition, make sure the supply is stable for at least
250 µs before the device enters Hibernate mode. To prevent
accidental entry into Hibernate mode in applications that
cannot meet these requirements, an option to disable the
Hibernate mode is provided. Set the HIBERNATE_DISABLE
bit [30] of the PWR_HIBERNATE register to disable
Hibernate mode in the device. Note that this bit is a write-
once bit during execution and is cleared only on reset.
Debug functionality will be lost and the debugger will
disconnect on entering Hibernate mode.

18.2.5 Other Operation Modes
In addition to the power modes discussed in the previous
sections, there are three other states the device can be in –
Reset, Off, and Backup states. These states are determined
by the external power supply and XRES connections. No
firmware action is required to enter these modes nor an
interrupt or wakeup event to exit them.

18.2.5.1 Backup Domain
PSoC 6 offers an independent backup supply option that
can be supplied through a separate Vbackup pin. For details
on the backup domain and the powering options, refer to the
Backup System chapter on page 214. This domain powers a
real-time clock (RTC) block, WCO, and a small set of
backup registers. Because the power supply to these blocks
come from a dedicated Vbackup pin, these blocks continue
to operate in all CPU and system power modes, and even
when the device power is disconnected or held in reset as
long as a Vbackup supply is provided. The RTC present in
the backup domain provides an option to wake up the
device from any CPU or system power mode. The RTC can
be clocked by an external crystal (WCO) or the internal low-
speed oscillator (ILO). However, the ILO is available only if
the device is powered – the device should not be in the off or
reset state. Using ILO is not recommended for timekeeping
purpose; however, it can be used for wakeup from Hibernate
power mode.

18.2.5.2 Reset State
Reset is the device state when an external reset (XRES pin
pulled low) is applied or when POR/BOD is asserted. Reset
is not a power mode. During the reset state, all the
components in the device are powered down and I/Os are
tristated, keeping the power consumption to a minimum.

18.2.5.3 Off State
The off state simply represents the device state with no
power applied. Even in the device off state, the backup
domain can continue to receive power (Vbackup pin) and
run the peripherals present in that domain. The reset and off
states are discussed for completeness of all possible modes
and states the device can be in. These states can be used in
a system to further optimize power consumption. For
instance, the system can control the supply of the PSoC 6
MCU by enabling or disabling the regulator output powering
the device using the PMIC interface.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 208

Device Power Modes

18.3 Power Mode Transitions

Figure 18-1 shows various states the device can be in along with possible power mode transition paths.

Figure 18-1. Power Mode Transitions in PSoC 6 MCU

S y s te m U LP
(0 .9 V C o re)

S y s tem LP
(1 .1 V C o re)

C P U A ctive C P U A ctive

C P U S leep /
D eep s leep

C P U S leep /
D eep s leep

S ystem
H ibe rna te

X R E S

R ese t ev en t

F irm w are ac t ion

H ibe rna te w akeup even ts

P ow er M ode A c tion

L E G E N D :

X R E S /
P O R /B O D

asse rt

F irm w are
ac t ion

P e riphe ra l
in te rrup t

F irm w are
ac t ion

W akeup
assert

X R E S /P O R /B O D
deasse rt

P e riphe ra l in te rrup ts /
H a rdw are even ts

S ys tem
D eep s leep

O ff

B oth
C P U s in

D eep s leep D eep s leep
in te rrup t fo r

th is C P U

F irm w are
ac t ion

P e riphe ra l
in te rrup t

D eep s leep
in te rrup t fo r
o ther C P U

D eep s leep
in te rrup t fo r
o the r C P U

D eep s leep
in te rrup t fo r

th is C P U

F irm w are
ac t ion

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 209

Device Power Modes

18.3.1 Power-up Transitions

Table 18-2 summarizes various power-up transitions, their type, triggers, and actions.

18.3.2 Power Mode Transitions

Table 18-2. Power Mode Transitions

Initial State Final State Type Trigger Actions

Off XRES External
Power rail (VDDD) ramps up

above POR voltage level with
XRES pin asserted.

1. All high-voltage logic is reset

Off Reset External
Power rail (VDDD) ramps up

above POR voltage level with
XRES pin de-asserted.

1. All high-voltage logic is reset

2. Low-voltage (internal core and Deep Sleep mode)
regulators and references are ramped up

3. All low-voltage logic (logic operating from internal
regulators) is reset

4. IMO clock is started

XRES Reset External
XRES is de-asserted with VDDD

present and above POR level.

1. Low-voltage regulators and references are ramped up

2. All low-voltage logic is reset

3. IMO clock is started

Reset Active Internal
Reset sequence completes. This
transition can also be caused by
internal resets.

1. Clock is released to the system

2. System reset is de-asserted

3. CPU starts execution

Table 18-3. Power Mode Transitions

Initial State Final State Type Trigger Actions

System LP
System
ULP

Internal

Firmware action

1. Ensure the Clk_HF paths, peripheral, and slow clocks are less than the
ULP clock speed limitations.

2. Flash/SRAM/ROM wait states values are increased to ULP values as
detailed in the Nonvolatile Memory chapter on page 146.

3. Configure the core regulator to 0.9 V.

1. Device is put into ULP
mode with all peripherals
available with limited
speed. Flash write
operation are not
supported.

System
ULP

System LP Internal

Firmware action

1. Configure the core regulator to 1.1 V.

2. Wait 9 µs to allow the core voltage to stabilize at the new value.

3. Flash/SRAM/ROM wait states values are decreased to LP values as
detailed in the Nonvolatile Memory chapter on page 146.

4. Increase the Clk_HF paths, peripheral, and slow clocks as desired up to
the maximum LP clock speed specifications.

1. Device is put into LP
mode with all peripherals
available with maximum
speed. Flash write
operations are supported.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 210

Device Power Modes

System LP/
ULP and
CPU Active

System LP/
ULP and
CPU Sleep

Internal

Firmware action

1. Clear the SLEEPDEEP bit [2] of the SCR register for both Cortex-M0+
and Cortex-M4.

2. Optionally, set the SLEEPONEXIT bit [1] of the SCR register, if the CPU
runs only on interrupts. When this bit is set, the CPU does not return to
application code after the WFI/WFE instruction is executed. The CPU wakes
up on any enabled (masked to CPU) interrupt or event and enters CPU
Sleep mode as soon as it exits the interrupt or services the event.

3. Optionally, set the SEVONPEND bit [4] of the SCR register if the applica-
tion must wake up the CPU from any pending interrupt. If this bit is set, any
interrupt that enters a pending state wakes up the CPU. This includes all the
disabled (unmasked) interrupts to CPU.

4. Execute WFI/WFE instruction on both CPUs.

1. CPU clocks are gated
off

2. CPU waits for an inter-
rupt or event to wake it
up.

System LP/
ULP and
CPU Active

System LP/
UP and
CPU Deep
Sleep

Internal

Firmware action

Perform these steps to enter Deep Sleep mode (LPM_READY bit [5] of the
PWR_CTL register should read '1' before performing these steps):

1. Clear the HIBERNATE bit [31] of the PWR_HIBERNATE register.

2. Set the SLEEPDEEP bit [2] of the SCR register for one or both Cortex-
M0+ and Cortex-M4.

3. Optionally, set the SLEEPONEXIT bit [1] of the SCR register if the CPU
runs only on interrupts. When this bit is set, the CPU does not return to
application code after the WFI/WFE instruction is executed. The CPU wakes
up on any enabled (masked to CPU) interrupt or event and enters CPU
Deep Sleep mode as soon as it exits the interrupt or services the event.

4. Optionally, set the SEVONPEND bit [4] of the SCR register if the applica-
tion needs to wake up the CPU from any pending interrupt. If this bit is set,
any interrupt that enters a pending state wakes up the CPU. This includes all
the disabled (unmasked) interrupts to CPU.

5. Read the SCR register before executing a WFI/WFE instruction to ensure
the write operation is complete. PSoC 6 uses buffered writes and any write
transfer just before executing WFI/WFE instruction should be followed by a
read to the same memory location. This ensures that the write operation has
taken effect before entering Deep Sleep mode. Execute WFI/WFE instruc-
tion on both CPUs.

6. CPU in Deep Sleep mode generates a hardware request for the whole
device to enter system Deep Sleep. A CPU waiting in CPU Deep Sleep state
is functionally identical to CPU Sleep mode with the exception of the
hardware request.

7. If only one CPU is in Deep Sleep mode the system will remain in system
LP or ULP mode until the other CPU also enters CPU Deep Sleep. While
waiting, a masked interrupt can wake the CPU to Active mode.

1. CPU clocks are gated
off

2. CPU waits for a Deep
Sleep interrupt to wake it
up.

System LP/
ULP and
CPU Deep
Sleep

System
Deep Sleep

Internal

Hardware action

1. When both CPUs enter CPU Deep Sleep mode and the LPM_READY bit
[5] of the PWR_CTL register reads '1', the device will automatically transition
to system Deep Sleep power mode.

1. High-frequency clocks
are shut down.

2. Retention is enabled
and non-retention logic is
reset.

3. Active regulator is dis-
abled and Deep Sleep
regulator takes over.

Table 18-3. Power Mode Transitions

Initial State Final State Type Trigger Actions

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 211

Device Power Modes

18.3.3 Wakeup Transitions

System LP/
ULP and
CPU Active

System
Hibernate

Internal

Firmware action

Perform these steps to enter Hibernate mode (LPM_READY bit [5] of the
PWR_CTL register should read '1' before performing these steps):

1. Set the TOKEN bits [7:0] of the PWR_HIBERNATE register (optional) and
PWR_HIB_DATA register to some application-specific branching data that
can be used on a wakeup event from Hibernate mode.

2. Set the UNLOCK bits [8:15] of the PWR_HIBERNATE register to 0x3A,
this ungates writes to FREEZE and HIBERNATE bits of the PWR_HIBER-
NATE register.

3. Configure wakeup pins polarity (POLARITY_HIBPIN bits [23:20]), wakeup
pins mask (MASK_HIBPIN bits [27:24]) and wakeup alarm mask (MASK_HI-
BALARM bit [18]) in the PWR_HIBERNATE register based on the applica-
tion requirement.

4. Optionally, set the FREEZE bit [17] of the PWR_HIBERNATE register to
freeze the I/O pins.

5. Set the HIBERNATE bit [31] of the PWR_HIBERNATE register to enter
Hibernate mode.

6. Ensure that the write operation to the PWR_HIBERNATE register is
complete by reading the PWR_HIBERNATE register. Otherwise, instead of
entering Hibernate mode, the CPU may start executing instructions after the
write instruction. When the write is followed by a WFI/WFE instruction, the
WFI/WFE can prevent the write from taking effect. On completion of the
write operation, the device automatically enters Hibernate mode.

1. CPU enters low-power
mode.

2. Both high-frequency
and low-frequency clocks
are shut down.

3. Retention is enabled
and non-retention logic is
reset.

4. Both Active and Deep
Sleep regulators are
powered down. The
peripherals that are
active in the Hibernate
domain operate directly
out of VDDD.

Table 18-3. Power Mode Transitions

Initial State Final State Type Trigger Actions

Table 18-4. Wakeup Transitions

Initial State Final State Type Trigger Actions

CPU Sleep CPU Active Internal/External
Any peripheral
interrupt masked to
CPU

1. Clock to CPU is ungated.

2. Peripheral interrupt is serviced by CPU.

3. Device remains in current system LP or ULP power mode.

System Deep
Sleep

System LP/
ULP Active
and CPU
Active

Internal/External
Any Deep Sleep
interrupt

1. Active regulator and references are enabled.

2. Retention is disabled and non-retention reset is de-asserted.

3. High-frequency clocks are turned on.

4. CPU exits low-power mode and services the interrupt.

5. Returns to previous system LP or ULP power mode.

Note: If only one CPU wakes up from the system Deep Sleep
interrupt, then the other CPU remains in the CPU Deep Sleep
state until its Deep Sleep interrupt wakes it up. However, the
system will wake up to LP or ULP mode. Note that a Deep Sleep
interrupt can wake up either one or both CPUs depending on the
WIC configuration for the CPU. See the Interrupts chapter on
page 55.

Hibernate
System LP
and CPU
Active

External

Wakeup pin, RTC
alarm, WDT interrupt,
or Low-Power
comparator output
asserts

1. Device is reset and goes through a reset to active power-up
transition.

2. Optionally, read the TOKEN bits [7:0] of the
PWR_HIBERNATE and PWR_HIB_DATA registers for
application-specific branching from hibernate wakeup.

3. Optionally, set the I/O drive modes by reading the I/O frozen
output and setting the I/O output to the read value.

4. Unfreeze the I/O cells by clearing the FREEZE bit [17] of the
PWR_HIBERNATE register.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 212

Device Power Modes

18.4 Summary

Table 18-5. Resources Available in Different Power Modes

Component

Power Modes

LP ULP
Deep Sleep Hibernate XRES

Power Off
with BackupCPU Active

CPU Sleep/
Deep Sleep

CPU Active
CPU Sleep/
Deep Sleep

Core functions

CPU On Sleep On Sleep Retention Off Off Off

SRAM On On On On Retention Off Off Off

Flash Read/Write Read/Write Read Only Read Only Off Off Off Off

High-Speed Clock
(IMO, ECO, PLL, FLL)

On On On On Off Off Off Off

LVD On On On On Off Off Off Off

ILO On On On On On On Off Off

Peripherals

USB On On On On Suspend mode Off Off Off

SMIF On On On On Retention Off Off Off

UDB On On On On Off Off Off Off

SAR ADC On On On On Off Off Off Off

LPCMP On On On On Ona Ona Off Off

CTBm On On On On On (lower GBW)b Off Off Off

TCPWM On On On On Off Off Off Off

CSD On On On On Retention Off Off Off

LCD On On On On On Off Off Off

SCB On On On On
Retention (I2C/SPI
wakeup available)c

Off Off Off

GPIO On On On On On Freeze Off Off

Watchdog timer On On On On On On Off Off

Multi-Counter WDT On On On On On Off Off Off

Resets

XRES On On On On On On On Off

POR On On On On On On Off Off

BOD On On On On On Off Off Off

Watchdog reset On On On On On Ond Off Off

Backup domain

WCO, RTC, alarms On On On On On On On On

a. Low-Power comparator may be optionally enabled in the Hibernate mode to generate wakeup.
b. Low-power comparator and CTBm may be optionally enabled in the system Deep Sleep mode to generate wakeup.
c. Only the SCB with system Deep Sleep support is available in the Deep Sleep power mode; other SCBs are not available in the Deep Sleep power mode.
d. Watchdog interrupt can generate a Hibernate wakeup. See the Watchdog Timer chapter on page 262 for details.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 213

Device Power Modes

18.5 Register List

Name Description

PWR_CTL Power Mode Control register – controls the device power mode options and allows observation of current state

PWR_HIBERNATE Hibernate Mode register – controls various Hibernate mode entry/exit related options

PWR_HIB_DATA Hibernate Mode Data register – data register that is retained through a hibernate wakeup sequence

CM4_SCS_SCR
Cortex-M4 System Control register – controls the CM4 CPU sleep and deep sleep decisions on the WFI/WFE
instruction execution. This register is detailed in the ARMv7-M Architecture Reference Manual available from
Arm

CM0P_SCS_SCR
Cortex-M0+ System Control register – controls the CM0+ CPU sleep and deep sleep decisions on the WFI/
WFE instruction execution. This register is detailed in the ARMv7-M Architecture Reference Manual available
from Arm

CPUSS_CM0_CTL
Controls the CM0+ power state. Note that this register may only be modified by the CM4 while the CM0+ is in
CPU Deep Sleep mode

CPUSS_CM0_STATUS Specifies if the CM0+ is in CPU Active, Sleep, or Deep Sleep power mode

CPUSS_CM4_PWR_CTL
Controls the CM4 power state. Note that this register may only be modified by the CM0+ while the CM4 is in
CPU Deep Sleep mode.

CPUSS_CM4_STATUS Specifies if the CM4 is in CPU Active, Sleep, or Deep Sleep power mode

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 214

19. Backup System

The Backup domain adds an “always on” functionality to PSoC 6 MCUs using a separate power domain supplied by a backup
supply (VBACKUP) such as a battery or supercapacitor. It contains a real-time clock (RTC) with alarm feature, supported by a
32768-Hz watch crystal oscillator (WCO), and power-management IC (PMIC) control.

Backup is not a power mode; it is a power domain with its own power supply, which can be active during any of the device
power modes. For more details, see the Power Supply and Monitoring chapter on page 197 and Device Power
Modes chapter on page 204.

19.1 Features
■ Fully-featured RTC

❐ Year/Month/Date, Day-of-Week, Hour : Minute : Second fields

❐ All fields binary coded decimal (BCD)

❐ Supports both 12-hour and 24-hour formats

❐ Automatic leap year correction

■ Configurable alarm function

❐ Alarm on Month/Date, Day-of-Week, Hour : Minute : Second fields

❐ Two independent alarms

■ 32768-Hz WCO with calibration

■ Automatic backup power switching

■ Built-in supercapacitor charger

■ External PMIC control

■ 32-byte backup registers

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 215

Backup System

19.2 Architecture

Figure 19-1. Block Diagram

The Backup system includes an accurate WCO that can
generate the clock required for the RTC with the help of an
external crystal or external clock inputs. The RTC has a
programmable alarm feature, which can generate interrupts
to the CPU. An AHB-Lite interface provides firmware access
to MMIO registers in the Backup domain.

An automatic backup power switch selects the VDDBAK

supply required to run the blocks in the Backup domain –
either VDDD (main power) or VBACKUP (backup battery/

supercapacitor power).

The domain also has backup registers that can store 32
bytes of data and retain its contents even when the main
supply (VDDD) is OFF as long as the backup supply

(VBACKUP) is present. The Backup system can also control

an external PMIC that supplies VDDD.

19.3 Power Supply

Power to the backup system (VDDBAK) is automatically
switched between VDDD (main supply) and VBACKUP

(Backup domain supply). VBACKUP is typically connected to

an independent supply derived from a battery or
supercapacitor (see the Power Supply and
Monitoring chapter on page 197 for more details).

There are no VBACKUP versus VDDD sequencing restrictions

for the power selector switch. Either VBACKUP or VDDD may

be removed during normal operation, and the Backup
system will remain powered.

The VDDBAK_CTL bitfield in the BACKUP_CTL register
controls the behavior of the power selector switch. See the
registers TRM for details of this register. Possible options
are:

■ VDDBAK_CTL = 0 (Default mode): Selects VDDD when

the brownout detector in the system resources is
enabled and no brownout situation is detected (see the
Power Supply and Monitoring chapter on page 197 for
more details). Otherwise, it selects the highest supply
among VDDD and VBACKUP.

■ VDDBAK_CTL = 1, 2, or 3: Always selects VBACKUP for

debug purposes.

If a supercapacitor is connected to VBACKUP, the PSoC 6

MCU can charge the supercapacitor while VDDD is available.

Supercapacitor charging can be enabled by writing “3C” to
the EN_CHARGE_KEY bitfield in the BACKUP_CTL
register. Note that this feature is for charging
supercapacitors only and cannot safely charge a battery. Do
not write this key when VBACKUP is connected to a battery.

Battery charging must be handled at the board level using
external circuitry.

Note: If VDDD and VBACKUP are connected on the PCB, the

Backup domain may require an explicit reset triggered by
firmware using the RESET bitfield in the BACKUP_RESET
register. This firmware reset is required if the VBACKUP

supply was invalid during a previous power supply ramp-up
or brownout event. It is not necessary to reset the Backup
domain if the RES_CAUSE register indicates a non-power-
related reset as the reset cause, or if the PSoC 6 MCU just

RTC
Registers

RTC

Alarm

Config

User
Registers

RTC

Alarm

Config

Watch
Crystal

Oscillator
(WCO)

Backup
Registers
(32 bytes)

MMIO
Interface

AHB
Interface Backup

Power
Switch

AHB-Lite Bus

VDDD

VBACKUP

WCO_IN WCO_OUT
(Crystal and Capacitor Connections /

External Clock Input)

PMIC_Wakeup_In

PMIC_Wakeup_Out

(Power Supply Pins)

(Controls an External
Power Management IC)

LFCLK
(from System Resources)

VDDBAK

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 216

Backup System

woke from the Hibernate power mode and the supply is
assumed to have been valid the entire time.

It is possible to monitor the VBACKUP supply using an ADC

attached to AMUXBUS-A by setting the VBACKUP_MEAS
bit in the BACKUP_CTL register. Note that the VBACKUP

signal is scaled by 10 percent so it is within the supply range
of the ADC. See the SAR ADC chapter on page 538 for
more details on how to connect the ADC to AMUXBUS-A.

19.4 Clocking

The RTC primarily runs from a 32768-Hz clock, after it is
scaled down to one-second ticks. This clock signal can
come from either of these internal sources:

■ Watch-crystal oscillator (WCO). This is a high-accuracy
clock generator that is suitable for RTC applications and
requires a 32768-Hz external crystal populated on the
application board. WCO can also operate without
crystal, using external clock/sine wave inputs. These
additional operating modes are explained later in this
section. WCO is supplied by the Backup domain and can
therefore run without VDDD present.

■ Alternate Backup Clock (ALTBAK): This option allows
the use of LFCLK generated by the System Resources
Subsystem (SRSS) as the Backup domain clock. Note
that LFCLK is not available in all device power modes or
when the VDDD is removed. (See the Device Power

Modes chapter on page 204 for more detail.)

Clock glitches can propagate into the Backup system
when LFCLK is enabled or disabled by the SRSS. In
addition, LFCLK may not be as accurate as WCO
depending on the actual source of LFCLK. Because of
these reasons, LFCLK is not recommend for RTC
applications. Also, if the WCO is intended as the clock
source then choose it directly instead of routing through
LFCLK.

For more details on these clocks and calibration, see the
Clocking System chapter on page 221.

The RTC clock source can be selected using the CLK_SEL
bitfield in the BACKUP_CTL register. The WCO_EN bit in
the BACKUP_CTL register can be used to enable or disable
the WCO. If the WCO operates with an external crystal,
make sure the WCO_BYPASS bit in the BACKUP_CTL
register is cleared before enabling the WCO. In addition, the
PRESCALER bitfield in BACKUP_CTL must be configured
for a prescaler value of 32768.

Note: External crystal and bypass capacitors of proper
values must be connected to WCO_IN and WCO_OUT and
pins. See the device datasheet for details of component
values and electrical connections. In addition, GPIOs must
be configured for WCO_OUT and WCO_IN signals. See the
I/O System chapter on page 240 to know how to configure
the GPIOs.

19.4.1 WCO with External Clock/Sine
Wave Input

The WCO can also operate from external clock/sine wave
inputs. In these modes, WCO must be bypassed by setting
the WCO_BYPASS bit in the BACKUP_CTL register before
enabling the WCO. Also, GPIOs must be configured for
WCO_OUT and WCO_IN signals (in Analog mode). The
external clock/sine wave input modes, prescaler settings,
and electrical connections are as follows:

■ 32768-Hz external clock mode: In this mode, WCO_IN is
floating and WCO_OUT is externally driven by a 32768-
Hz square wave clock toggling between ground and
VDDD supply levels. In this configuration, the WCO_OUT

pin functions as a digital input pin for the external clock.
The PRESCALER bitfield in BACKUP_CTL must be
configured for a prescaler value of 32768.

■ 60-Hz external clock mode: This mode can be used for
deriving a clock from the 60-Hz AC mains supply. In this
mode, WCO_OUT is floating and WCO_IN is driven with
an external sine wave with zero DC offset, derived from
the 60-Hz/120-V mains through a 100:1 capacitive
divider. For example, a suitable capacitive divider can be
formed by connecting a 220-pF/6-V capacitor between
WCO_IN and ground, and a 2.2-pF/ 200-V capacitor
between WCO_IN and the 60-Hz/120-V mains input.
The PRESCALER bitfield in BACKUP_CTL must be
configured for a prescaler value of 60.

■ 50-Hz external clock mode: This mode is similar to the
60-Hz mode, and can be used for 50-Hz/220-V mains
standard. The capacitive divider explained previously
can be modified to fit this type of supply by having a 1-pF
/250-V capacitor between WCO_IN and the mains input.
The PRESCALER bitfield in BACKUP_CTL must be
configured for a prescaler value of 50.

19.4.2 Calibration

The absolute frequency of the clock input can be calibrated
using the BACKUP_CAL_CTL register. Calibration only
works when the PRESCALER bitfield in BACKUP_CTL is
set to 32768.

CALIB_VAL is a 6-bit field in the BACKUP_CAL_CTL
register that holds the calibration value for absolute
frequency (at a fixed temperature). One bit of this field
translates into 128 ticks to be added or removed from the
clock count. Therefore, each bit translates to a change of
1.085 ppm (= 128/(60*60*32768)).

The CALIB_SIGN field in the BACKUP_CAL_CTL register
controls whether the ticks are added (it takes fewer clock
ticks to count one second) or subtracted (it takes more clock
ticks to count one second).

For more information, see the BACKUP_CAL_CTL register
in the registers TRM.

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 217

Backup System

19.5 Reset

The PSoC 6 MCU reset sources that monitor device power supply such as power-on reset (POR) and brownout reset (BOD)
cannot reset the backup system as long as the backup supply (VDDBAK) is present. Moreover, internal and external resets

such as watchdog timer (WDT) reset and XRES cannot reset the backup system. The backup system is reset only when:

■ all the power supplies are removed from the Backup domain, also known as a “cold-start”.

■ the firmware triggers a Backup domain reset using the RESET bitfield in the BACKUP_RESET register.

19.6 Real-Time Clock

The RTC consists of seven binary coded decimal (BCD) fields and one control bit as follows:

BCD encoding indicates that each four-bit nibble represents
one decimal digit. Constant bits are omitted in the RTC
implementation. For example, the maximum RTC_SEC is
59, which can be represented as two binary nibbles 0101b
1001b. However, the most significant bit is always zero and
is therefore omitted, making the RTC_SEC a 7-bit field.

The RTC supports both 12-hour format with AM/PM flag,
and 24-hour format for “hours” field. The RTC also includes
a “day of the week” field, which counts from 1 to 7. You
should define which weekday is represented by a value of
‘1’.

The RTC implements automatic leap year correction for the
Date field (day of the month). If the Year is divisible by 4, the
month of February (Month=2) will have 29 days instead of
28. When the year reaches 2100 - the Year field rolls over
from 99 to 00 - the leap year correction will be wrong (2100
is flagged as a leap year which it is not); therefore, an
interrupt is raised to allow the firmware to take appropriate
actions. This interrupt is called the century interrupt.

User registers containing these bitfields are
BACKUP_RTC_TIME and BACKUP_RTC_DATE. See the
corresponding register descriptions in the registers TRM for
details. As the user registers are in the high-frequency bus-
clock domain and the actual RTC registers run from the low-
frequency 32768-Hz clock, reading and writing RTC

registers require special care. These processes are
explained in the following section.

19.6.1 Reading RTC User Registers

To start a read transaction, the firmware should set the
READ bit in the BACKUP_RTC_RW register. When this bit
is set, the RTC registers will be copied to user registers and
frozen so that a coherent RTC value can safely be read by
the firmware. The read transaction is completed by clearing
the READ bit.

The READ bit cannot be set if:

■ RTC is still busy with a previous operation (that is, the
RTC_BUSY bit in the BACKUP_STATUS register is set)

■ WRITE bit in the BACKUP_RTC_RW register is set

The firmware should verify that the above bits are not set
before setting the READ bit.

19.6.2 Writing to RTC User Registers

When the WRITE bit in the BACKUP_RTC_RW register is
set, data can be written into the RTC user registers;
otherwise, writes to the RTC user registers are ignored.
When all the RTC writes are done, the firmware must clear
the WRITE bit for the RTC update to take effect. After the

Table 19-1. RTC Fields

Bitfield Name
Number
of Bits

Description

RTC_SEC 7 Calendar seconds in BCD, 0-59

RTC_MIN 7 Calendar minutes in BCD, 0-59

RTC_HOUR 6

Calendar hours in BCD; value depends on 12-hour or 24-hour format set in the BACKUP_RTC_TIME register.
In 24-hour mode, bits RTC_HOUR[5:0] = 0–23
In 12-hour mode, bit RTC_HOUR[5] = 0 for AM and 1 for PM
Bits RTC_HOUR[4:0] = 1–12

CTRL_12HR 1 Select the 12-hour or 24-hour mode: 1=12HR, 0=24HR

RTC_DAY 3
Calendar day of the week in BCD, 1-7
You should define the meaning of the values

RTC_DATE 6
Calendar day of the month in BCD, 1-31
Automatic leap year correction

RTC_MON 4 Calendar month in BCD, 1-12

RTC_YEAR 8 Calendar year in BCD, 0-99 (Can be used to represent years 2000 -2099)

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 218

Backup System

WRITE bit is cleared, the hardware will copy all the new data
on one single WCO clock edge to ensure coherency to the
actual RTC registers.

The WRITE bit cannot be set if:

■ RTC is still busy with a previous operation (that is, the
RTC_BUSY bit in the BACKUP_STATUS register is set)

■ READ bit in the BACKUP_RTC_RW register is set

The firmware should make sure that the values written to the
RTC fields form a coherent legal set. The hardware does not
check the validity of the written values. Writing illegal values
results in undefined behavior of the RTC.

When in the middle of an RTC update with the WRITE bit
set, and a brownout, reset, or entry to Deep Sleep or
Hibernate mode occurs, the write operation will not be
complete. This is because the WRITE bit will be cleared by
a reset, and the RTC update is triggered only when this bit is

cleared by a WRITE transaction. If the write operation is in
progress (RTC_BUSY), data corruption can occur if the
system is reset or enters Deep Sleep or Hibernate mode.

19.7 Alarm Feature

The Alarm feature allows the RTC to be used to generate an
interrupt, which may be used to wake up the system from
Sleep, Deep Sleep, and Hibernate power modes.

The Alarm feature consists of six fields corresponding to the
fields of the RTC: Month/Date, Day-of-Week, and
Hour : Minute : Second. Each Alarm field has an enable bit
that needs to be set to enable matching; if the bit is cleared,
then the field will be ignored for matching.

The Alarm bitfields are as follows:

If the master enable (ALM_EN) is set, but all alarm fields for date and time are disabled, an alarm interrupt will be generated
once every second. Note that there is no alarm field for Year because the life expectancy of a chip is about 20 years and thus
setting an alarm for a certain year means that the alarm matches either once or never in the lifetime of the chip.

The PSoC 6 MCU has two independent alarms. See the BACKUP_ALM1_TIME, BACKUP_ALM1_DATE,
BACKUP_ALM2_TIME, and BACKUP_ALM2_DATE registers in the registers TRM for details.

Note that the alarm user registers, similar to RTC user registers, require certain special steps before read/write operations, as
explained in sections Reading RTC User Registers on page 217 and Writing to RTC User Registers on page 217.

Interrupts must be properly configured for the RTC to generate interrupts/wake up events. Also, to enable RTC interrupts to
wake up the device from Hibernate mode, the MASK_HIBALARM bit in the PWR_HIBERNATE register must be set. See the
Device Power Modes chapter on page 204 and Interrupts chapter on page 55 for details.

Table 19-2. Alarm Bitfields

Bitfield Name
Number
of Bits

Description

ALARM_SEC 7 Alarm seconds in BCD, 0-59

ALARM_SEC_EN 1 Alarm second enable: 0=disable, 1=enable

ALARM _MIN 7 Alarm minutes in BCD, 0-59

ALARM _MIN_EN 1 Alarm minutes enable: 0=disable, 1=enable

ALARM _HOUR 6

Alarm hours in BCD, value depending on the 12-hour or 24-hour mode
In 12-hour mode, bit ALARM _HOUR[5] = 0 for AM and 1 for PM,
bits ALARM_HOUR[4:0] = 1–12
In 24-hour mode, bits ALARM_HOUR[5:0] = 0–23

ALARM _HOUR_EN 1 Alarm hour enable: 0=disable, 1=enable

ALARM_DAY 3
Calendar day of the week in BCD, 1-7
You should define the meaning of the values

ALARM_DAY_EN 1 Alarm day of the week enable: 0=disable, 1=enable

ALARM _DATE 6
Alarm day of the month in BCD, 1-31
Leap year corrected

ALARM _DATE_EN 1 Alarm day of the month enable: 0=disable, 1=enable

ALARM _MON 4 Alarm month in BCD, 1-12

ALARM _MON_EN 1 Alarm month enable: 0=disable, 1=enable

ALM_EN 1

Master enable for alarm.
0: Alarm is disabled. Fields for date and time are ignored.
1: Alarm is enabled. If none of the date and time fields are enabled, then this alarm triggers once
every second.

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 219

Backup System

The BACKUP_INTR_MASK register can be used to disable certain interrupts from the backup system.

The RTC alarm can also control an external PMIC as explained in the following section.

19.8 PMIC Control

The backup system can control an external PMIC that supplies VDDD. PMIC enable is an active-high output that is available at

a certain pin PMIC_Wakeup_Out. See the device datasheet for the location of this pin. This pin can be connected to the
“enable” input of a PMIC. PMIC_Wakeup_Out will retain its state until the backup domain is powered. If there is a brownout
and backup domain looses power, the pin is reset to its default high value.

Table 19-4 shows the bitfields in BACKUP_PMIC_CTL.

Note that two writes to the BACKUP_PMIC_CTL register
are required to change the PMIC_EN setting. The first write
should update the desired settings (including the UNLOCK
code) but should not change PMIC_EN or
PMIC_EN_OUTEN. The second write must use the same bit
values as the first one except desired PMIC_EN/
PMIC_EN_OUTEN settings.

When the PMIC_EN bit is cleared by firmware, the external
PMIC is disabled and the system functions normally until
VDDD is no longer present (OFF with Backup mode). The
firmware can set this bit if it does so before VDDD is actually

removed. The time between firmware disabling the
PMIC_EN bit and the actual removal of VDDD depends on
the external PMIC and supply-capacitor characteristics.

Additionally, PMIC can be turned on by one of these events:

■ An RTC Alarm/Century Interrupt

■ A logic high input at the PMIC_Wakeup_In pin. See the
device datasheet for the location of this pin. This allows
a mechanical button or an external input from another
device to wake up the system and enable the PMIC. The
POLARITY bit in the BACKUP_PMIC_CTL register must

Table 19-3. Interrupt Mask Bits

Bit Name Description

ALARM1 Mask bit for interrupt generated by ALARM1

ALARM2 Mask bit for interrupt generated by ALARM2

CENTURY Mask bit for century interrupt (interrupt generated when the Year field rolls over from 99 to 00)

Table 19-4. PMIC Control Bits

Bitfield Name
Number
of Bits

Description

UNLOCK 8
This byte must be set to 0x3A for PMIC to be disabled. Any other value in this field will
cause writes to PMIC_EN to be ignored. Do not change PMIC_EN in the same write cycle
as setting/clearing the UNLOCK code; do these in separate write cycles.

POLARITY 1 Reserved for future use. Keep this bit at ‘1’.

PMIC_EN_OUTEN 1

Output enable of the PMIC_EN pin.

0: PMIC_EN pin output is HI-Z. This allows the PMIC_EN pin to be used as a GPIO. The
HI-Z condition is kept only if the UNLOCK key (0x3A) is present.

1: PMIC_EN pin output is enabled.

PMIC_ALWAYSEN 1

Override normal PMIC controls to prevent errant firmware from accidentally turning off the
PMIC.

0: Normal operation; PMIC_EN and PMIC_OUTEN work as explained in their bitfield
descriptions.

1: PMIC_EN is forced set; PMIC_EN and PMIC_OUTEN are ignored.

This bit is a write-once bit that cannot be cleared until the next Backup domain reset.

PMIC_EN 1

Enable external PMIC (hardware output available at pin PMIC_Wakeup_Out). This bit is
enabled by default.

This bit will only clear if the UNLOCK field was written correctly in a previous write operation
and PMIC_ALWAYSEN = 0.

https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 220

Backup System

be set to ‘1’ to use this feature. The same wakeup pin
PMIC_Wakeup_In can wake up the device from
Hibernate mode. See the Device Power Modes chapter
on page 204 for details.

Make sure that one or more of these events are configured
properly, and a battery or supercapacitor is connected to
VBACKUP with sufficient charge to power the backup system

until one of these events occur. Otherwise, the PMIC may
continue to be in the disabled state with the PSoC 6 MCU
unable to enable it again.

19.9 Backup Registers

The Backup domain has sixteen registers
(BACKUP_BREG0 to BACKUP_BREG15), which can be
used to store 32 bytes of important information/flags. These
registers retain their contents even when the main supply
(VDDD) is off as long as backup supply (VBACKUP) is present.

These registers can also be used to store information that
must be retained when the device enters Hibernate mode.

19.10 Register List

Table 19-5. Backup Registers

Register Name Description

BACKUP_CTL Main control register (including power and clock)

BACKUP_RTC_RW RTC read/write control register

BACKUP_STATUS Status register

BACKUP_RTC_TIME Calendar seconds, minutes, hours, and day of week

BACKUP_RTC_DATE Calendar day of month, month, and year

BACKUP_ALM1_TIME Alarm 1 seconds, minute, hours, and day of week

BACKUP_ALM1_DATE Alarm 1 day of month, and month

BACKUP_ALM2_TIME Alarm 2 seconds, minute, hours, and day of week

BACKUP_ALM2_DATE Alarm 2 day of month, and month

BACKUP_INTR Interrupt request register

BACKUP_INTR_MASK Interrupt mask register

BACKUP_INTR_MASKED Interrupt masked request register

BACKUP_PMIC_CTL PMIC control register

BACKUP_BREG0 to BACK-
UP_BREG15

Backup registers

BACKUP_RESET Reset register for the backup domain

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 221

20. Clocking System

PSoC 6 MCU provides flexible clocking options with on-chip crystal oscillators, phase lock loop, frequency lock loop, and
supports multiple external clock sources.

20.1 Features

The PSoC 6 MCU clock system includes these resources:

■ Three internal clock sources:

❐ 8-MHz internal main oscillator (IMO)

❐ 32-kHz internal low-speed oscillator (ILO)

❐ Precision 32-kHz internal low-speed oscillator (PILO)

■ Three external clock sources

❐ External clock (EXTCLK) generated using a signal from an I/O pin

❐ External 16–35 MHz crystal oscillator (ECO)

❐ External 32-kHz watch crystal oscillator (WCO)

■ One frequency lock loop (FLL) with 24–100 MHz output range

■ One phase-locked loop (PLL) with 10.625–150 MHz output range

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

Clocking System

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 222

20.2 Architecture

Figure 20-1 gives a generic view of the clocking system in PSoC 6 MCUs.

Figure 20-1. Clocking System Block Diagram

ECO

IMO

EXTCLK

CLK_HF[0]

dsi_out <1:0>

ALTHF

Predivider
(1/2/4/8)

WCO*

ILO*
CLK_LF

dsi_in0

PLL

FLL

PILO

(FLL/PLL) Root mux

CLK_PATH2

USB

SMIF

Audio

clk_ext

clk_fast
(CM4)

Peripheral
Blocks(SCB,

TCPWM,
UDBᶧ

dsi_in1

dsi_in2

dsi_in3

dsi_in4

Predivider
(1/2/4/8)

Predivider
(1/2/4/8)

Predivider
(1/2/4/8)

Predivider
(1/2/4/8)

clk_peri
clk_slow
(CM0)

Path Mux

CLK_PATH4

Active Domain

Deep Sleep/Hibernate Domain

*Works in Hibernate

Yellow muxes are glitch safe

CLK_PATH3

CLK_HF[1]

CLK_HF[2]

CLK_HF[3]

CLK_HF[4]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 223

Clocking System

20.3 Clock Sources

20.3.1 Internal Main Oscillator (IMO)

The IMO is an accurate, high-speed internal (crystal-less)
oscillator that produces a fixed frequency of 8 MHz. The
IMO output can be used by the PLL or FLL to generate a
wide range of higher frequency clocks, or it can be used
directly by the high-frequency root clocks.

When USB is present the USB Start-of-Frame (SOF) signal
is used to trim the IMO to ensure that the IMO matches the
accuracy of the USB SOF. The ENABLE_LOCK bitfield in
the USBFS0_USBDEV_CR register of the USB block needs
to be set for this feature to work. The driver for the USB
block in the PDL does this automatically.

The IMO is available only in the system LP and ULP power
modes.

20.3.2 External Crystal Oscillator (ECO)

The PSoC 6 MCU contains an oscillator to drive an external
16-MHz to 35-MHz crystal. This clock source is built using
an oscillator circuit in PSoC. The circuit employs an external
crystal that needs to be populated on the external crystal
pins of the PSoC 6 MCU. See AN218241 - PSoC 6 MCU
Hardware Design Considerations for more details.

The ECO can be enabled by using the CLK_ECO_CONFIG
ECO_EN register bitfields.

20.3.2.1 ECO Trimming

The ECO supports a wide variety of crystals and ceramic
resonators with the nominal frequency range specification of
f = 16 MHz – 35 MHz. The crystal manufacturer typically
provides numerical values for parameters, namely the
maximum drive level (DL), the equivalent series resistance
(ESR), shunt capacitance of the crystal (C0), and the parallel
load capacitance (CL). These parameters can be used to
calculate the transconductance (gm) and the maximum peak
to peak (VPP).

Max peak to peak value:

Transconductance:

ECO does not support VPP less than 1.3 V.

The following fields are found in the CLK_TRIM_ECO_CTL
register. The Amplitude trim (ATRIM) and WDTRIM settings
control the trim for amplitude of the oscillator output. ATRIM

sets the crystal drive level when automatic gain control
(AGC) is enabled (CLK_ECO_CONFIG.AGC_EN = 1). AGC
must be enabled all the time.

ATRIM and WDTRIM values are set at 15 and 7,
respectively.

The GTRIM sets up the trim for amplifier gain based on the
calculated gm, as shown in Table 20-1.

RTRIM and FTRIM are set to 0 and 3, respectively.

First, set up the trim values based on Table 20-1 and other
listed values; then enable the ECO. After the ECO is
enabled, the CLK_ECO_STATUS register can be checked
to ensure it is ready.

20.3.3 External Clock (EXTCLK)
The external clock is a 0- to 100-MHz range clock that can
be sourced from a signal on a designated I/O pin. This clock
can be used as the source clock for either the PLL or FLL, or
can be used directly by the high-frequency clocks.

When manually configuring a pin as an input to EXTCLK,
the drive mode of the pin must be set to high-impedance
digital to enable the digital input buffer. See the I/O
System chapter on page 240 for more details. Consult the
device datasheet to determine the specific pin used for
EXTCLK. See KBA224493 for more details.

20.3.4 Internal Low-speed Oscillator (ILO)
The ILO operates with no external components and outputs
a stable clock at 32.768 kHz nominal. The ILO is relatively
low power and low accuracy. It is available in all power
modes. If the ILO is to remain active in Hibernate mode, and
across power-on-reset (POR) or brownout detect (BOD), the
ILO_BACKUP bit must be set in the CLK_ILO_CONFIG
register.

The ILO can be used as the clock source for:

■ CLK_LF: CLK_LF in turn can be used as a source for the
backup domain (CLK_BAK). CLK_BAK runs the real-
time clock (RTC). This can be useful if you do not wish to
populate a WCO. Although the ILO is not suitable as an
RTC due to its poor accuracy, it can be used as a
HIBERNATE wakeup source using the wakeup alarm
facility in the RTC. In this case, the VDDD rail must be

supplied during HIBERNATE for the ILO to run, and the
HVILO_BACKUP bit must be set in the
CLK_ILO_CONFIG register. CLK_LF is also the source

VPP 2 VP=

VP 2

2 DL
ESR

4 f CL C0+ 
--=

gm 4 5 2 f CL C0+   2
ESR=

Table 20-1. GTRIM Settings

gm GTRIM

gm < 9 mA/V 0x01

9 mA/V < gm < 18 mA/V 0x00

gm > 18 mA/V INT (gm / 9 mA/V)

https://www.cypress.com/documentation/application-notes/an218241-psoc-6-mcu-hardware-design-considerations
https://www.cypress.com/documentation/application-notes/an218241-psoc-6-mcu-hardware-design-considerations
https://www.cypress.com/documentation/application-notes/an218241-psoc-6-mcu-hardware-design-considerations
https://community.cypress.com/docs/DOC-15849
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 224

Clocking System

of the MCWDT timers; see the Watchdog Timer chapter
on page 262 for details.

■ DSI_Mux: The ILO can be routed to the digital signal
interconnect (DSI) mux and can then be routed as the
source of the FLL, or directly as a source for one of the
high-frequency clocks. However, this is not
recommended due to the low accuracy of the ILO.

The ILO is always the source of the watchdog timer (WDT).

The ILO is enabled and disabled with the ENABLE bit of the
CLK_ILO_CONFIG register. Always leave the ILO enabled
as it is the source of the WDT.

If the WDT is enabled, the only way to disable the ILO is to
first clear the WDT_LOCK bit in the WDT_CTL register and
then clear the ENABLE bit in the CLK_ILO_CONFIG
register. If the WDT_LOCK bit is set, any register write to
disable the ILO will be ignored. Enabling the WDT will
automatically enable the ILO.

The calibration counters described in Clock Calibration
Counters on page 235 can be used to measure the ILO
against a high-accuracy clock such as the ECO. This result
can then be used to determine how the ILO must be
adjusted. The ILO can be trimmed using the
CLK_TRIM_ILO_CTL register.

20.3.5 Precision Internal Low-speed
Oscillator (PILO)

PILO is an additional source that can provide a more
accurate 32.768-kHz clock than ILO when periodically
calibrated using a high-accuracy clock such as the ECO.
The PILO works in Deep Sleep and higher modes. It does
not work in Hibernate mode.

The PILO can be used as the clock source for:

■ CLK_LF: CLK_LF in turn can be used as a source for the
backup domain (CLK_BAK). CLK_BAK runs the RTC.
When Hibernate mode is entered or VCCD is removed
the PILO is disabled, which can lead to corruption of the
RTC timers/counters. If this is unacceptable use the ILO
or WCO. The PILO does not run in Hibernate mode.

■ DSI_Mux: The PILO can be routed to the DSI mux and
can then be routed as the source of the FLL, or directly
as a source for one of the high-frequency clocks.

The PILO is enabled by first writing to the PILO_EN bit in the
CLK_PILO_CONFIG register, then waiting 1 msec, and then
writing ‘1’ to the PILO_RESET_N and PILO_CLK_EN bits of
the same register. To disable the PILO, write ‘0’ to PILO_EN,
CLK_PILO_CONFIG, and PILO_RESET_N at the same
time.

Periodic calibration to a high-accuracy clock (such as ECO)
is required to maintain accuracy. The calibration counters
described in Clock Calibration Counters on page 235 can be
used to measure the PILO against a high-accuracy clock
such as the ECO. This result can then be used to determine
how the PILO must be adjusted. The PILO can be adjusted
in 8-Hz steps using the PILO_FFREQ field of
CLK_PILO_CONFIG.

20.3.6 Watch Crystal Oscillator (WCO)

The WCO is a highly accurate 32.768-kHz clock source. It is
the primary clock source for the RTC. The WCO can also be
used as a source for CLK_LF.

The WCO can be enabled and disabled by setting the
WCO_EN bit in the CTL register for the backup domain. The
WCO can also be bypassed and an external 32.768-kHz
clock can be routed on a WCO output pin. This is done by
setting the WCO_BYPASS bit in the CTL register for the
backup domain. See WCO with External Clock/Sine Wave
Input on page 216 for more details.

20.4 Clock Generation

20.4.1 Phase-Locked Loop (PLL)

The PSoC 6 MCU contains one PLL, which resides on
CLK_PATH1. It is capable of generating a clock output in the
range 10.625–150 MHz; the input frequency must be
between 4 and 64 MHz. This makes it possible to use the
IMO to generate much higher clock frequencies for the rest
of the system.

Figure 20-2. PLL Block Diagram

The PLL is configured following these steps: Note: fref is the input frequency of the PLL, that is, the

frequency of input clock, such as 8 MHz for the IMO.

Phase
Detector

Charge
pump

Voltage
control

Oscillator
(VCO)Feedback

Divider (P)

Reference
Divider (Q)

Reference
Clock

PLL OUTOutput
Divider

Lock
Detect Bypass

Logic

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 225

Clocking System

1. Determine the desired output frequency (fout). Calculate

the reference (REFERENCE_DIV), feedback
(FEEDBACK_DIV), and output (OUTPUT_DIV) dividers
subject to the following constraints:

a. PFD frequency (phase detector frequency). fpfd = fref

/ REFERENCE_DIV. It must be in the range 4 MHz
to 8 MHz. There may be multiple reference divider
values that meet this constraint.

b. VCO frequency. fvco = fpfd * FEEDBACK_DIV. It must

be in the range 170 MHz to 400 MHz. There may be
multiple feedback divider values that meet this
constraint with different REFERENCE_DIV choices.

c. Output frequency. fout = fvco / OUTPUT_DIV. It must

be in the range 10.625 MHz to 150 MHz. Note that
your device may not be capable of operating at this
frequency; check the device datasheet. It may not be
possible to get the desired frequency due to
granularity; therefore, consider the frequency error of
the two closest choices.

d. Choose the best combination of divider parameters
depending on the application. Some possible
decision-making factors are: minimum output
frequency error, lowest power consumption (lowest
fvco), or lowest jitter (highest fvco).

2. Program the divider settings in the appropriate
CLK_PLL_CONFIG register. Do not enable the PLL on
the same cycle as configuring the dividers. Do not
change the divider settings while the PLL is enabled.

3. Enable the PLL (CLK_PLL_CONFIG.ENABLE = 1). Wait
at least 1 µs for PLL circuits to start.

4. Wait until the PLL is locked before using the output. By
default, the PLL output is bypassed to its reference clock
and will automatically switch to the PLL output when it is
locked. This behavior can be changed using
PLL_CONFIG.BYPASS_SEL. The status of the PLL can
be checked by reading CLK_PLL_STATUS. This register
contains a bit indicating the PLL has locked. It also
contains a bit indicating if the PLL lost the lock status.

To disable the PLL, first set the PLL_CONFIG.BYPASS_SEL
to PLL_REF. Then wait at least six PLL output clock cycles
before disabling the PLL by setting PLL_CONFIG.ENABLE
to ‘0’.

20.4.2 Frequency Lock Loop (FLL)

The PSoC 6 MCU contains one frequency lock loop (FLL),
which resides on Clock Path 0. The FLL is capable of
generating a clock output in the range 24 MHz to 100 MHz;
the input frequency must be between 0.001 and 100 MHz,
and must be at least 2.5 times less than the CCO frequency.
This makes it possible to use the IMO to generate much
higher clock frequencies for the rest of the system.

The FLL is similar in purpose to a PLL but is not equivalent:

■ FLL can start up (lock) much faster than the PLL.

■ It consumes less current than the PLL.

■ FLL does not lock the phase. At the heart of the FLL is a
current-controlled oscillator (CCO). The output
frequency of this CCO is controlled by adjusting the trim
of the CCO; this is done in hardware and is explained in
detail later in this section.

■ FLL can produce up to 100-MHz clock with good duty
cycle through its divided clock output.

■ FLL reference clock can be the WCO (32 kHz), IMO
(8 MHz), or any other periodic clock source.

Note: The CCO frequency must be at least 2.5 times
greater than the reference frequency.

The CCO can output a stable frequency in the 48 MHz to
200 MHz range. This range is divided into five sub-ranges
as shown by Table 20-2.

Note: The output of the CCO has an option to enable a
divide by two or not. For this device, the divide by two must
always be enabled.

Within each range, the CCO output is controlled via a 9-bit
trim field. This trim field is updated via hardware based on
the control algorithm described below.

A reference clock must be provided to the FLL. This
reference clock is typically the IMO, but could be many
different clock sources. The FLL compares the reference
clock against the CCO clock to determine how to adjust the
CCO trim. Specifically, the FLL will count the number of
CCO clock cycles inside a specified window of reference
clock cycles. The number of reference clock cycles to count
is set by the FLL_REF_DIV field in the CLK_FLL_CONFIG2
register.

After the CCO clocks are counted, they are compared
against an ideal value and an error is calculated. The ideal
value is programmed into the FLL_MULT field of the
CLK_FLL_CONFIG register.

As an example, the reference clock is the IMO (8 MHz), the
desired CCO frequency is 100 MHz, the value for
FLL_REF_DIV is set to 146. This means that the FLL will
count the number of CCO clocks within 146 clock periods of
the reference clock. In one clock cycle of the reference clock
(IMO), there should be 100 / 8 = 12.5 clock cycles of the
CCO. Multiply this number by 146 and the value of
FLL_MULT should be 1825.

If the FLL counts a value different from 1825, it attempts to
adjust the CCO such that it achieves 1825 the next time it
counts. This is done by scaling the error term with

Table 20-2. CCO Frequency Ranges

CCO
Range

0 1 2 3 4

fmin 48 MHz 64 MHz 85 MHz 113 MHz 150 MHz

fmax 64 MHz 85 MHz 113 MHz 150 MHz 200 MHz

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 226

Clocking System

FLL_LF_IGAIN and FLL_LF_PGAIN found in
CLK_FLL_CONFIG3. Figure 20-3 shows how the error (err)
term is multiplied by FLL_LF_IGAIN and FLL_LF_PGAIN
and then summed with the current trim to produce a new

trim value for the CCO. The CCO_LIMIT field in the
CLK_FLL_CONFIG4 can be used to put an upper limit on
the trim adjustment; this is not needed for most situations.

Figure 20-3. FLL Error Correction Diagram

The FLL determines whether it is “locked” by comparing the error term with the LOCK_TOL field in the CLK_FLL_CONFIG2
register. When the error is less than LOCK_TOL the FLL is considered locked.

After each adjustment to the trim the FLL can be programmed to wait a certain number of reference clocks before doing a
new measurement. The number of reference clocks to wait is set in the SETTLING_COUNT field of CLK_FLL_CONFIG3. Set
this such that the FLL waits ~1 µs before a new count. Therefore, if the 8-MHz IMO is used as the reference this field should
be programmed to ‘8’.

When configuring the FLL there are two important factors that must be considered: lock time and accuracy. Accuracy is the
closeness to the intended output frequency. These two numbers are inversely related to each other via the value of REF_DIV.
Higher REF_DIV values lead to higher accuracy, whereas lower REF_DIV values lead to faster lock times.

In the example used previously the 8-MHz IMO was used as the reference, and the desired FLL output was 100 MHz. For
that example, there are 12.5 CCO clocks in one reference clock. If the value for REF_DIV is set to ‘1’ then FLL_MULT must
be set to either ‘13’ or ‘12’. This will result in a CCO output of either 96 MHz or 104 MHz, and an error of 4 percent from the
desired 100 MHz. Therefore, the best way to improve this is to increase REF_DIV. However, the larger REF_DIV is, the
longer each measurement cycle takes, thus increasing the lock time. In this example, REF_DIV was set to 146. This means
each measurement cycle takes 146 * (1/8 MHz) = 18.25 µs, whereas when REF_DIV is set to 1, each measurement cycle
takes 1 * (1/ 8 MHz) 0.125 µs.

Another issue with lower REF_DIV values is that the minimum LOCK_TOL is 1, so the output of the CCO can have an error of
±1. In the example where REF_DIV = 1 and FLL_MULT = 13, the MULT value can really be 12, 13, or 14 and still be locked.
This means the output of the FLL may vary between 96 and 112 MHz, which may not be desirable.

Thus, a choice must be made between faster lock times and more accurate FLL outputs. The biggest change to make for this
is the value of REF_DIV. The following section describes how to configure all of the FLL registers and gives some example
equations to set REF_DIV N for best accuracy.

20.4.2.1 Configuring the FLL

This section provides a guide to calculate FLL parameters.

The following equations are tailored to achieve the best accuracy.

In these equations:

N = REF_DIV

M = FLL _MULT

 limit

+

current_trim

 IGAIN

 PGAIN

err new_trim

X

X 0

max

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 227

Clocking System

1. Set CCO_RANGE in the CLK_FLL_CONFIG4 register.

a. Determine the output frequency of the FLL.

b. Calculate the CCO frequency. The CCO frequency = 2 * FLL output frequency.

c. Use Table 20-3 to determine the CCO range.

d. Write CCO range into CCO_RANGE in the CLK_FLL_CONFIG4 register.

2. Set the FLL_OUTPUT_DIV in CLK_FLL_CONFIG. Set the output divider to ‘1’.

3. Set FLL_REF_DIV in CLK_FLL_CONFIG2.

FLL_REF_DIV divides the FLL input clock. The FLL counts the number of CCO clocks within one period of the divided
reference clock. A general equation to calculate the reference divider is as follows:

Equation 20-1

The CCOTrimStep is found in Table 20-4.

A larger N results in better precision on the FLL output, but longer lock times; a smaller N will result in faster lock times,
but less precision.

Note: When the WCO is used as the reference clock, N must be set to 19.

4. Set FLL_MULT in CLK_FLL_CONFIG.

FLL_MULT is the ratio between the desired CCO frequency and the divided input frequency. This is the ideal value for the
counter that counts the number of CCO clocks in one period of the divided input frequency.

Equation 20-2

5. Set the FLL_LF_IGAIN and FLL_LF_PGAIN in CLK_FLL_CONFIG3.

Within each range of the CCO there are 512 steps of adjustment for the CCO frequency. These steps are controlled by
CCO_FREQ in the CLK_FLL_CONFIG4 register. The FLL automatically adjusts CCO_FREQ based on the output of the
FLL counter.

The output of the counter gives the number of CCO clocks, over one period of the divided reference clock, by which the
FLL is off. This value is then multiplied by the sum of FLL_LF_IGAIN and FLL_LF_PGAIN. The result of this multiplication
is then summed with the value currently in the CCO_FREQ register.

To determine the values for IGAIN and PGAIN use the following equation:

Equation 20-3

Table 20-3. CCO Frequency Ranges

CCO
Range

0 1 2 3 4

fmin 48 MHz 64 MHz 85 MHz 113 MHz 150 MHz

fmax 64 MHz 85 MHz 113 MHz 150 MHz 200 MHz

Table 20-4. CCO Trim Steps

CCO Range 0 1 2 3 4

CCO_Trim_Steps 0.0011 0.0011 0.0011 0.0011 0.00117

N ROUNDUP
2 fref

CCOTrimStep
fCCOT etarg



 
 
 

=

M fCCOT etarg

N
fref
--------=

IGAIN
0.85

KCCO
N

fref
--------

 
 
 
 
 



PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 228

Clocking System

Find the value of IGAIN closest but not over the values in the gain row in Table 20-5.

Program FLL_LF_IGAIN with the register value that corresponds to the chosen gain value.

Take the IGAIN value from the register and use it in the following equation:

Equation 20-4

Find the value of PGAIN closest but not over the values in the gain row in Table 20-5. Program FLL_PF_IGAIN with the
register value that corresponds to the chosen gain value.

For best performance Pgain_reg + Igain_reg should be as close as possible to calculated IGAIN without exceeding it.
kCCO is the gain of the CCO; Table 20-6 lists the kCCO for each CCO range.

6. Set SETTLING_COUNT in CLK_FLL_CONFIG3.

SETTLING_COUNT is the number of reference clocks to wait for the CCO to settle after it has changed. It is best to set
this such that the settling time is around 1 µs.

Do not set the settling time to anything less than 1 µs, greater will lead to longer lock times.

1. Set LOCK_TOL in CLK_FLL_CONFIG2.

LOCK_TOL determines how much error the FLL can tolerate at the output of the counter that counts the number of CCO
clocks in one period of the divided reference clock. A higher tolerance can be used to lock more quickly or track a less
accurate source. The tolerance should be set such that the FLL does not unlock under normal conditions. A lower
tolerance means a more accurate output, but if the input reference is unstable then the FLL may unlock.

The following equation can be used to help determine the value:

Equation 20-5

CCO (accuracy) = 0.25% or 0.0025

ref (accuracy) is the accuracy of the reference clock

2. Set CCO_FREQ in CLK_FLL_CONFIG4.

This field determines the frequency at which the FLL starts before any measurement. The nearer the FLL is to the desired
frequency, the faster it will lock.

Equation 20-6

Table 20-5. IGAIN and PGAIN Register Values

Register Value 0 1 2 3 4 5 6 7 8 9 10 11

Gain Value 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

Table 20-6. kCCO Values

CCO Range 0 1 2 3 4

kCCO 48109.38 64025.65 84920 113300 154521.85

PGAIN IGAINreg
0.85

KCCO
N

fref
--------

-----------------------------–

SETTLING_COUNT =1 µs * fref

LOCK_TOL M
1 CCOaccuracy+

1 Frefaccuracy–
--- 
  1–=

CCOFREQ ROUPNDUP

LOG
fCCOT etarg

fCCOBase

 
 
 

LOG 1 CCOTrimStep
+ 

--

 
 
 
 
 
 
 

=

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 229

Clocking System

fCCOBase can be found in Table 20-7.

9. Calculating Precision, Accuracy, and Lock Time of FLL

To calculate the precision and accuracy of the FLL, the accuracy of the input source must be considered.

The precision is the larger of:

Equation 20-7

Or (CCO_Trim_Steps / 2)

Example: The desired FLL output is 100 MHz, thus CCO target is 200 MHz. The 2 percent accurate 8 MHz IMO is used as
the reference input. N is calculated to be 69.

PrecisionFLL = ((8 MHz * 1.02)/(69 * 200 MHz)) = 0.059%, which is greater than the (CCO_Trim_Steps / 2)

The accuracy of the FLL output is the precision multiplied by the lock tolerance. If the CCO goes beyond this range, then
the FLL will unlock.

AccuracyFLL = PrecisionFLL * LOCK_TOL

The value for the reference divider N should be tuned such that it achieves the best precision/accuracy versus lock time.

The lock time depends on the time for each adjustment step in the locking process;

Step_Time = (N / fref) + (SETTLING_COUNT / fref)

Multiply this number by the number of steps it takes to lock, to determine lock time. Typically, the FLL locks within the first
~10 steps.

20.4.2.2 Enabling and Disabling the FLL

The FLL requires firmware sequencing when enabling, disabling, and entering/exiting DEEPSLEEP.

To enable the FLL, follow these steps:

1. Enable the CCO by writing CLK_FLL_CONFIG4.CCO_ENABLE = 1 and wait until CLK_FLL_STATUS.CCO_READY==1.

2. Ensure the reference clock has stabilized and CLK_FLL_CONFIG3.BYPASS_SEL = FLL_REF.

3. Write FLL_ENABLE = 1 and wait until CLK_FLL_STATUS.LOCKED==1.

4. Write CLK_FLL_CONFIG3.BYPASS_SEL = FLL_OUT to switch to the FLL output.

To disable the FLL, follow these steps:

1. Ensure the processor is operating from a different clock than clk_path0. If the muxes are changed, wait four FLL output
clock cycles for it to complete.

2. Write CLK_FLL_CONFIG3.BYPASS_SEL = FLL_REF and read the same register to ensure the write completes.

3. Wait at least six FLL reference clock cycles and disable it with FLL_ENABLE = 0.

4. Disable the CCO by writing CLK_FLL_CONFIG4.CCO_ENABLE = 0.

Before entering DEEPSLEEP, either disable the FLL using the above sequence or use the following procedure to deselect/
select it before/after DEEPSLEEP. Before entering DEEPSLEEP, write CLK_FLL_CONFIG3.BYPASS_SEL = FLL_REF to
change the FLL to use its reference clock. After DEEPSLEEP wakeup, wait until CLK_FLL_STATUS.LOCKED==1 and then
write CLK_FLL_CONFIG3.BYPASS_SEL = FLL_OUT to switch to the FLL output.

Note: It is not recommended to use the FLL_AUTO option in the BYPASS_SEL field.

Table 20-7. CCO Base Frequency

CCO Range 0 1 2 3 4

CCO_Base 43600 58100 77200 103000 132000

Table 20-8. CCO Trim Steps

CCO Range 0 1 2 3 4

CCO_Trim_Steps 0.0011 0.0011 0.0011 0.0011 0.00117

PrecisionFLL fref

1 fref accuracy +

N fCCOT etarg


--
 
 
 

=

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 230

Clocking System

20.5 Clock Trees

The PSoC 6 MCU clocks are distributed throughout the
device, as shown in Figure 20-1. The clock trees are
described in this section:

■ Path Clocks

■ High-Frequency Root Clocks (CLK_HF[i])

■ Low-Frequency Clock (CLK_LF)

■ Timer Clock (CLK_TIMER)

■ Analog Pump Clock (CLK_PUMP)

20.5.1 Path Clocks

The PSoC 6 MCU has five clock paths: CLK_PATH0
contains the FLL, CLK_PATH1 contains PLL0, CLK_PATH2,
CLK_PATH3, and CLK_PATH4 are a direct connection to
the high-frequency root clocks. Note that the FLL and PLL
can be bypassed if they are not needed. These paths are
the input sources for the high-frequency clock roots.

Each clock path has a mux to determine which source clock
will clock that path. This configuration is done in
CLK_PATH_SELECT[i] register.

The DSI mux is configured through the
CLK_DSI_SELECT[i] register.

20.5.2 High-Frequency Root Clocks

The PSoC 6 MCU has five high-frequency root clocks
(CLK_HF[i]). Each CLK_HF has a particular destination on
the device, as shown in Table 20-11.

Note that each CLK_HF is an input into the DSI.

Each high-frequency root clock has a mux to determine its
source. This configuration is done in the
CLK_ROOT_SELECT[i] register.

Each CLK_HF has a pre-divider, which is set in the
CLK_ROOT_SELECT register.

CLK_HF[1-4] can be enabled and disabled. CLK_HF[0] is
always enabled as it is the source of the CPU. To enable
and disable CLK_HF[1-4] set the ENABLE bit in the
CLK_ROOT_SELECT register.

Table 20-9. Clock Path Source Selections

Name Description

PATH_MUX[2:0]

Selects the source for clk_path[i]

0: IMO

1: EXTCLK

2: ECO

3: Reserved

4: DSI_MUX

5-7: Reserved

Table 20-10. DSI Mux Source Selection

Name Description

PATH_MUX[2:0]

Selects the source for the DSI_MUX[i]

0: dsi_out[0]

1: dsi_out[1]

2-15: Reserved

16: ILO

17: WCO

18: Reserved

19: PILO

20-31: Reserved

Table 20-11. CLK_HF Destinations

Name Description

CLK_HF[0]
Root clock for both CPUs, PERI, and
AHB infrastructure

CLK_HF[1]
Root clock for the PDM/PCM and I2S
audio subsystem

CLK_HF[2]
Root clock for the Serial Memory
Interface subsystem

CLK_HF[3] Root clock for USB communications

CLK_HF[4]
Clock output on clk_ext pin (when used
as an output)

Table 20-12. HFCLK Input Selection Bits

Name Description

ROOT_MUX[3:0]

HFCLK input clock selection

0: Select CLK_PATH0

1: Select CLK_PATH1

2: Select CLK_PATH2

3: Select CLK_PATH3

4: Select CLK_PATH4

Table 20-13. HFCLK Divider Selection

Name Description

ROOT_DVI[5:4]

Selects predivider value for the clock
root and DSI input

0: No Divider

1: Divide clock by 2

2: Divide clock by 4

3: Divide clock by 8

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 231

Clocking System

20.5.3 Low-Frequency Clock

The low-frequency clock (CLK_LF) in the PSoC 6 MCU has
three input options: ILO, PILO, and WCO.

CLK_LF is the source for the multi-counter watchdog timers
(MCWDT) and the RTC.

The source of CLK_LF is set in the LFCLK_SEL bits of the
CLK_SELECT register.

20.5.4 Timer Clock

The timer clock (CLK_TIMER) can be used as a clock
source for the profiler or the CPU SYSTICK timer. The
source for CLK_TIMER can either be the IMO or
CLK_HF[0]. This selection is made in the TIMER_SEL
bitfield of the CLK_TIMER_CTL register. Several dividers
can be applied to this clock, which are found in the
CLK_TIMER_CTL register.

20.5.5 Group Clocks (clk_sys)

On the PSoC 6 platform, peripherals are grouped. Each
group has a dedicated group clock (also referred to as
clk_sys). The group clock sets the clock rate for the AHB
interface on the peripheral; it also sets the clock rate for the
trigger outputs and trigger input synchronization. Each
group clock has an eight-bit divider located in the
CLOCK_CTL register in the PERI_GROUP_STRUCT in the
PERI register set. For a majority of applications these
dividers should be left at default (divide by 1).

20.5.6 Backup Clock (clk_bak)

The backup clock is used to clock the backup domain,
specifically the RTC. For more information see WCO with
External Clock/Sine Wave Input on page 216.

Table 20-14. LFCLK Input Selection Bits LFCLK_SEL

Name Description

LFCLK_SEL[1:0]

LFCLK input clock selection

0: ILO. Uses the internal local oscillator
as the source of the LFCLK

1: WCO. Uses the watch crystal
oscillator as the source of the LFCLK

2: Reserved

3: PILO: Uses the precision internal
local oscillator as the source of LFCLK

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 232

Clocking System

20.6 CLK_HF[0] Distribution

clk_hf[0] is the root clock for the CPU subsystem and for the peripheral clock dividers.

Figure 20-4. CLK_HF[0] Distribution

20.6.1 CLK_FAST

CLK_FAST clocks the Cortex-M4 processor. This clock is a
divided version of CLK_HF[0]. The divider for this clock is
set in the CM4_CLOCK_CTL register of the CPU
subsystem.

20.6.2 CLK_PERI

CLK_PERI is the source clock for all programmable
peripheral clock dividers and for the Cortex-M0+ processor.
It is a divided version of CLK_HF[0]. The divider for this
clock is set in the PERI_INT_DIV bitfields of the
CM0_CLOCK_CTL register.

20.6.3 CLK_SLOW

CLK_SLOW is the source clock for the Cortex-M0+. This
clock is a divided version of CLK_PERI. The divider for this
clock is set in the SLOW_INT_DIV bitfields of the
CM0_CLOCK_CTL register.

20.7 Peripheral Clock Dividers

The PSoC 6 MCU peripherals such as SCBs and TCPWMs
require a clock. These peripherals can be clocked only by a
peripheral clock divider.

The PSoC 6 MCU has 29 peripheral clock dividers (PCLK).
It has eight 8-bit dividers, sixteen 16-bit dividers, four
fractional 16.5-bit dividers (16 integer bits, five fractional
bits), and one 24.5-bit divider (24 integer bits, five fractional
bits). The output of any of these dividers can be routed to
any peripheral.

20.7.1 Fractional Clock Dividers

Fractional clock dividers allow the clock divisor to include a
fraction of 0..31/32. For example, a 16.5-bit divider with an
integer divide value of 3 generates a 16-MHz clock from a
48-MHz CLK_PERI. A 16.5-bit divider with an integer divide
value of 4 generates a 12-MHz clock from a 48-MHz
CLK_PERI. A 16.5-bit divider with an integer divide value of
3 and a fractional divider of 16 generates a 48 / (3 + 16/32) =
48 / 3.5 = 13.7-MHz clock from a 48-MHz CLK_PERI. Not all
13.7-MHz clock periods are equal in size; some will have a
16-MHz period and others will have a 12-MHz period, such
that the average is 13.7 MHz.

Fractional dividers are useful when a high-precision clock is
required (for example, for a UART/SPI serial interface).
Fractional dividers are not used when a low jitter clock is
required, because the clock periods have a jitter of one
CLK_PERI cycle.

20.7.2 Peripheral Clock Divider
Configuration

The peripheral clock dividers are configured using registers
from the peripheral block; specifically DIV_CMD,
DIV_8_CTL, DIV_16_CTL, DIV_16_5_CTL,
DIV_24_5_CTL, and CLOCK_CTL registers.

First the clock divider needs to be configured. This is done
via the DIV_8_CTL, DIV_16_CTL, DIV_16_5_CTL, and
DIV_24_5_CTL registers. There is one register for each
divider; for example, there are eight DIV_8_CTL registers as
there are eight 8-bit dividers. In these registers, set the
value of the integer divider; if it is a fractional divider then set
the fraction portion as well.

Predivider
1-256CLK_HF[0] CLK_FAST CM4

Predivider
1-256 CLK_PERI

Predivider
1-256

CM0+CLK_SLOW

To peripheral
clock dividers

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 233

Clocking System

After the divider is configured use the DIV_CMD register to
enable the divider. This is done by setting the DIV_SEL to
the divider number you want to enable, and setting the
TYPE_SEL to the divider type. For example, if you wanted
to enable the 0th 16.5-bit divider, write ‘0’ to DIV_SEL and
‘2’ to TYPE_SEL. If you wanted to enable the tenth 16-bit
divider, write ‘10’ to DIV_SEL and ‘1’ to TYPE_SEL. See the
registers TRM for more details.

20.7.2.1 Phase Aligning Dividers

For specific use cases, you must generate clocks that are
phase-aligned. For example, consider the generation of two
gated clocks at 24 and 12 MHz, both of which are derived
from a 48-MHz CLK_PERI. If phase alignment is not
considered, the generated gated clocks appear as follows.

Figure 20-5. Non Phase-Aligned Clock Dividers

These clock signals may or may not be acceptable, depending on the logic functionality implemented on these two clocks. If
the two clock domains communicate with each other, and the slower clock domain (12 MHz) assumes that each high/‘1’ pulse
on its clock coincides with a high/‘1’ phase pulse in the higher clock domain (24 MHz), the phase misalignment is not
acceptable. To address this, it is possible to have dividers produce clock signals that are phase-aligned with any of the other
(enabled) clock dividers. Therefore, if (enabled) divider x is used to generate the 24-MHz clock, divider y can be phase-
aligned to divider x and used to generate the 12-MHz clock. The aligned clocks appear as follows.

Figure 20-6. Phase-Aligned Clock Dividers

Phase alignment also works for fractional divider values. If (enabled) divider x is used to generate the 38.4-MHz clock (divide
by 1 8/32), divider y can be phase-aligned to divider x and used to generate the 19.2-MHz clock (divide by 2 16/32). The
generated gated clocks appear as follows.

Figure 20-7. Phase-Aligned Fractional Dividers

CLK_PERI (48 MHz)

24 MHz gated clock

12 MHz gated clock

No phase alignment

CLK_PERI (48 MHz)

24 MHz gated clock

12 MHz gated clock

Phase alignment

CLK_PERI (48 MHz)

38.4 MHz gated clock

19.2 MHz gated clock

Phase alignment

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 234

Clocking System

Divider phase alignment requires that the divider to which it
is phase-aligned is already enabled. This requires the
dividers to be enabled in a specific order.

Phase alignment is implemented by controlling the start
moment of the divider counters in hardware. When a divider
is enabled, the divider counters are set to ‘0’. The divider
counters will only start incrementing from ‘0’ to the
programmed integer and fractional divider values when the
divider to which it is phase-aligned has an integer counter
value of ‘0’.

Note that the divider and clock multiplexer control register
fields are all retained during the Deep Sleep power mode.
However, the divider counters that are used to implement
the integer and fractional clock dividers are not. These
counters are set to ‘0’ during the Deep Sleep mode.
Therefore, when transitioning from Deep Sleep to Active
mode, all dividers (and clock signals) are enabled and
phase-aligned by design.

Phase alignment is accomplished by setting the
PA_DIV_SEL and PA_DIV_TYPE bits in the DIV_CMD
register before enabling the clock. For example, to align the
fourth 8-bit divider to the third 16-bit divider, set DIV_SEL to
‘4’, TYPE_SEL to ‘0’, PA_DIV_SEL to ‘3’, and
PA_TYPE_SEL to ‘1’.

20.7.2.2 Connecting Dividers to Peripheral

The PSoC 6 MCU has 58 peripherals, which can connect to
one of the programmable dividers. Table 20-15 lists those
peripherals.

To connect a peripheral to a specific divider, the
PERI_CLOCK_CTL register is used. There is one
PERI_CLOCK_CTL register for each entry in Table 20-15.
For example, to select the twelfth 16-bit divider for
tcpwm[0].clocks[2] write to the twenty-ninth CLOCK_CTL
register, set the DIV_SEL to ‘12’, and the TYPE_SEL to ‘1’.

Table 20-15. PSoC 6 MCU Clock Dividers to Peripherals

Clock Number Destination

0 scb[0].clock

1 scb[1].clock

2 scb[2].clock

3 scb[3].clock

4 scb[4].clock

5 scb[5].clock

6 scb[6].clock

7 scb[7].clock

8 scb[8].clock

9 udb.clocks[0]

10 udb.clocks[1]

11 udb.clocks[2]

12 udb.clocks[3]

13 udb.clocks[4]

14 udb.clocks[5]

15 udb.clocks[6]

16 udb.clocks[7]

17 smartio[8].clock

18 smartio[9].clock

19 tcpwm[0].clocks[0]

20 tcpwm[0].clocks[1]

21 tcpwm[0].clocks[2]

22 tcpwm[0].clocks[3]

23 tcpwm[0].clocks[4]

24 tcpwm[0].clocks[5]

25 tcpwm[0].clocks[6]

26 tcpwm[0].clocks[7]

27 tcpwm[1].clocks[0]

28 tcpwm[1].clocks[1]

29 tcpwm[1].clocks[2]

30 tcpwm[1].clocks[3]

31 tcpwm[1].clocks[4]

32 tcpwm[1].clocks[5]

33 tcpwm[1].clocks[6]

34 tcpwm[1].clocks[7]

35 tcpwm[1].clocks[8]

36 tcpwm[1].clocks[9]

37 tcpwm[1].clocks[10]

38 tcpwm[1].clocks[11]

39 tcpwm[1].clocks[12]

40 tcpwm[1].clocks[13]

41 tcpwm[1].clocks[14]

42 tcpwm[1].clocks[15]

43 tcpwm[1].clocks[16]

44 tcpwm[1].clocks[17]

45 tcpwm[1].clocks[18]

46 tcpwm[1].clocks[19]

47 tcpwm[1].clocks[20]

48 tcpwm[1].clocks[21]

49 tcpwm[1].clocks[22]

50 tcpwm[1].clocks[23]

51 csd.clock

52 lcd.clock

53 Reserved

54 cpuss.clock_trace_in

55 pass.clock_ctdac

56 pass.clock_pump_peri

57 pass.clock_sar

58 susb.clock_dev_br

Table 20-15. PSoC 6 MCU Clock Dividers to Peripherals

Clock Number Destination

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 235

Clocking System

20.8 Clock Calibration Counters

A feature of the clocking system in PSoC 6 MCUs is built-in hardware calibration counters. These counters can be used to
compare the frequency of two clock sources against one another. The primary use case is to take a higher accuracy clock
such as the ECO and use it to measure a lower accuracy clock such as the ILO or PILO. The result of this measurement can
then be used to trim the ILO and PILO.

There are two counters: Calibration Counter 1 is clocked off of Calibration Clock 1 (generally the high-accuracy clock) and it
counts down; Calibration Counter 2 is clocked off of Calibration Clock 2 and it counts up. When Calibration Counter 1 reaches
0, Calibration Counter 2 stops counting up and its value can be read. From that value the frequency of Calibration Clock 2 can
be determined with the following equation.

For example, if Calibration Clock 1 = 8 MHz, Counter 1 = 1000, and Counter 2 = 5

Calibration Clock 1 Frequency = (5/1000) * 8 MHz = 40 kHz.

Calibration Clock 1 and Calibration Clock 2 are selected with the CLK_OUTPUT_FAST register. All clock sources are
available as a source for these two clocks. CLK_OUTPUT_SLOW is also used to select the clock source.

Calibration Counter 1 is programmed in CLK_CAL_CNT1. Calibration Counter 2 can be read in CLK_CAL_CNT2.

When Calibration Counter 1 reaches 0, the CAL_COUNTER_DONE bit is set in the CLK_CAL_CNT1 register.

Calibration Clock 2 Frequency
Counter 2 Final Value
Counter 1 Initial Value
-- Calibration Clock 1 Frequency=

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 236

21. Reset System

The PSoC 6 MCU family supports several types of resets that guarantee error-free operation during power up and allow the
device to reset based on user-supplied external hardware or internal software reset signals. The PSoC 6 MCU also contains
hardware to enable the detection of certain resets.

21.1 Features

The PSoC 6 MCU has these reset sources:

■ Power-on reset (POR) to hold the device in reset while the power supply ramps up to the level required for the device to
function properly

■ Brownout reset (BOD) to reset the device if the power supply falls below the device specifications during normal operation

■ External reset (XRES) to reset the device using an external input

■ Watchdog timer (WDT) reset to reset the device if the firmware execution fails to periodically service the watchdog timer

■ Software initiated reset to reset the device on demand using firmware

■ Logic-protection fault resets to reset the device if unauthorized operating conditions occur

■ Clock-supervision logic resets to reset the device when clock-related errors occur

■ Hibernate wakeup reset to bring the device out of the Hibernate low-power mode

21.2 Architecture

The following sections provide a description of the reset sources available in the PSoC 6 MCU family.

Note: None of these sources can reset the Backup system. The Backup domain is reset only when all the power supplies are
removed from it, also known as a “cold start” or if the firmware triggers a reset using the BACKUP_RESET register. Firmware
reset is required if the VBACKUP supply was invalid during a previous power supply ramp-up or brownout event. For more
details, see the Backup System chapter on page 214.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 237

Reset System

Table 21-1 lists all the reset sources in the PSoC 6 MCU.

21.2.1 Power-on Reset

Power-on reset is provided to keep the system in a reset
state during power-up. POR holds the device in reset until
the supply voltage, VDDD reaches the datasheet
specification. The POR activates automatically at power-up.
Refer to thedevice datasheet for details on the POR trip-
point levels.

POR events do not set a reset cause status bit, but can be
partially inferred by the absence of any other reset source. If
no other reset event is detected, then the reset is caused by
POR, BOD, or XRES.

21.2.2 Brownout Reset

Brownout reset monitors the chip digital voltage supply
VDDD and generates a reset if VDDD falls below the minimum

logic operating voltage specified in the device datasheet.

See the Power Supply and Monitoring chapter on page 197
for more details.

BOD events do not set a reset cause status bit, but in some
cases they can be detected. In some BOD events, VDDD will
fall below the minimum logic operating voltage specified by
the datasheet, but remain above the minimum logic
retention voltage.

21.2.3 Watchdog Timer Reset

Watchdog timer reset causes a reset if the WDT is not
serviced by the firmware within a specified time limit. See
the Watchdog Timer chapter on page 262 for more details.

The RESET_WDT bit or RESET_MCWDT0 to
RESET_MCWDT3 status bits of the RES_CAUSE register
is set when a watchdog reset occurs. This bit remains set

Table 21-1. PSoC 6 MCU Reset Sources

Reset Source Reset Condition
Availability in
System Power

Modes
Cause Detection

Power-on Reset

This reset condition occurs during device
power-up. POR holds the device under
reset until the VDDD reaches the threshold

voltage as specified in the device
datasheet.

All Not inferable using the reset cause registers.

Brownout Reset
VDDD falls below the minimum logic

operating voltage specified in the device
datasheet.

All Not inferable using the reset cause registers.

Watchdog Timer Reset
WDT is not reset by firmware within the
configured reset time period of the WDT.

All

RESET_HWWDT bit or RESET_SWWDT0 to
RESET_SWWDT3 status bits of the
RES_CAUSE register is set when a watchdog
reset occurs. This bit remains set until cleared
by the firmware or until a POR, XRES, or BOD
reset occurs. All other resets leave this bit
unaltered.

Hibernate Wakeup
System wakes up from Hibernate power
mode.

Hibernate
Value written to the TOKEN bit field of the
PWR_HIBERNATE register is retained after
reset.

Software Reset
SYSRESETREQ bit is set by the firmware
in the CM0_AIRCR/CM4_AIRCR register.

Active
RESET_SOFT bit of the RES_CAUSE register
is set

External Reset Logic LOW input to XRES pin All Not inferable using the reset cause registers.

Logic Protection Fault
Reset

Unauthorized protection violation
Active, Deep Sleep
modes

RESET_ACT_FAULT or
RESET_DPSLP_FAULT bits of the
RES_CAUSE register is set.

Clock-Supervision
Logic Reset

Loss of a high-frequency clock or watch-
crystal clock, or due to a high-frequency
clock error.

Active, Deep Sleep
modes

RESET_CSV_WCO_LOSS bit of the
RES_CAUSE register is set when WCO clock
is lost. The RESET_CSV_HF_LOSS of
RES_CAUSE2 register can be used to identify
resets caused by the loss of a high-frequency
clock. RESET_CSV_HF_FREQ field can be
used to identify resets caused by the
frequency error of a high-frequency clock.

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 238

Reset System

until cleared by the firmware or until a POR, XRES, or BOD
reset occurs. All other resets leave this bit unaltered.

For more details, see the Watchdog Timer chapter on
page 262.

21.2.4 Software Initiated Reset

Software initiated reset is a mechanism that allows the CPU
to request a reset. The Cortex-M0+ and Cortex-M4
Application Interrupt and Reset Control registers
(CM0_AIRCR and CM4_AIRCR, respectively) can request a
reset by writing a ‘1’ to the SYSRESETREQ bit of the
respective registers.

Note that a value of 0x5FA should be written to the
VECTKEY field of the AIRCR register before setting the
SYSRESETREQ bit; otherwise, the processor ignores the
write. See the CPU Subsystem (CPUSS) chapter on
page 31 and Arm documentation on AIRCR for more details.

The RESET_SOFT status bit of the RES_CAUSE register is
set when a software reset occurs. This bit remains set until
cleared by firmware or until a POR, XRES, or BOD reset
occurs. All other resets leave this bit unaltered.

21.2.5 External Reset

External reset (XRES) is a reset triggered by an external
signal that causes immediate system reset when asserted.
The XRES pin is active low – a logic ‘1’ on the pin has no
effect and a logic ‘0’ causes reset. The pin is pulled to logic
‘1’ inside the device. XRES is available as a dedicated pin.
For detailed pinout, refer to the pinout section of the device
datasheet.

The XRES pin holds the device in reset as long as the pin
input is ‘0’. When the pin is released (changed to logic ‘1’),
the device goes through a normal boot sequence. The
logical thresholds for XRES and other electrical
characteristics are listed in the Electrical Specifications
section of the device datasheet. XRES is available in all
power modes, but cannot reset the Backup system.

An XRES event does not set a reset cause status bit, but
can be partially inferred by the absence of any other reset
source. If no other reset event is detected, then the reset is
caused by POR, BOD, or XRES.

21.2.6 Logic Protection Fault Reset

Logic protection fault reset detects any unauthorized
protection violations and causes the device to reset if they
occur. One example of a protection fault is reaching a debug
breakpoint while executing privileged code.

The RESET_ACT_FAULT or RESET_DPSLP_FAULT bits of
the RES_CAUSE register is set when a protection fault
occurs in Active or Deep Sleep modes, respectively. These
bits remain set until cleared or until a POR, XRES, or BOD
reset. All other resets leave this bit unaltered.

21.2.7 Clock-Supervision Logic Reset

Clock-supervision logic initiates a reset due to the loss of a
high-frequency clock or watch-crystal clock, or due to a
high-frequency clock error.

The RESET_CSV_WCO_LOSS bit of the RES_CAUSE
register is set when the clock supervision logic requests a
reset due to the loss of a watch-crystal clock (if enabled).

The RESET_CSV_HF_LOSS is a 16-bit field in the
RES_CAUSE2 register that can be used to identify resets
caused by the loss of a high-frequency clock. Similarly, the
RESET_CSV_HF_FREQ field can be used to identify resets
caused by the frequency error of a high-frequency clock.

For more information on clocks, see the Clocking
System chapter on page 221.

21.2.8 Hibernate Wakeup Reset

Hibernate wakeup reset occurs when one of the Hibernate
wakeup sources performs a device reset to return to the
Active power mode. See the Device Power Modes chapter
on page 204 for details on Hibernate mode and available
wakeup sources.

TOKEN is an 8-bit field in the PWR_HIBERNATE register
that is retained through a Hibernate wakeup sequence. The
firmware can use this bitfield to differentiate hibernate
wakeup from a general reset event. Similarly, the
PWR_HIB_DATA register can retain its contents through a
Hibernate wakeup reset, but is cleared when XRES is
asserted.

21.3 Identifying Reset Sources

When the device comes out of reset, it is often useful to
know the cause of the most recent or even older resets. This
is achieved through the RES_CAUSE and RES_CAUSE2
registers. These registers have specific status bits allocated
for some of the reset sources. These registers record the
occurrences of WDT reset, software reset, logic-protection
fault, and clock-supervision resets. However, these registers
do not record the occurrences of POR, BOD, XRES, or
Hibernate wakeup resets. The bits in these registers are set
on the occurrence of the corresponding reset and remain

https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439b/BABCIIIA.html
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 239

Reset System

set after the reset, until cleared by the firmware or a loss of
retention, such as a POR, XRES, or BOD.

Hibernate wakeup resets can be detected by examining the
TOKEN field in the PWR_HIBERNATE register as described
previously. Hibernate wakeup resets that occur as a result of

an XRES cannot be detected. The other reset sources can
be inferred to some extent by the status of the RES_CAUSE
and RES_CAUSE2 registers, as shown in Table 21-2.

For more information, see the RES_CAUSE and RES_CAUSE2 registers in the registers TRM.

If these methods cannot detect the cause of the reset, then it can be one of the non-recorded and non-retention resets: BOD,
POR, or XRES. These resets cannot be distinguished using on-chip resources.

21.4 Register List

Table 21-2. Reset Cause Bits to Detect Reset Source

Register Bitfield
Number of

Bits
Description

RES_CAUSE RESET_WDT 1 A hardware WDT reset has occurred since the last power cycle.

RES_CAUSE RESET_ACT_FAULT 1 Fault logging system requested a reset from its Active logic.

RES_CAUSE RESET_DPSLP_FAULT 1 Fault logging system requested a reset from its Deep Sleep logic.

RES_CAUSE RESET_CSV_WCO_LOSS 1
Clock supervision logic requested a reset due to loss of a watch-crystal
clock.

RES_CAUSE RESET_SOFT 1
A CPU requested a system reset through its SYSRESETREQ. This can
be done via a debugger probe or in firmware.

RES_CAUSE RESET_MCWDT0 1 Multi-counter WDT reset #0 has occurred since the last power cycle.

RES_CAUSE RESET_MCWDT1 1 Multi-counter WDT reset #1 has occurred since the last power cycle.

RES_CAUSE RESET_MCWDT2 1 Multi-counter WDT reset #2 has occurred since the last power cycle.

RES_CAUSE RESET_MCWDT3 1 Multi-counter WDT reset #3 has occurred since the last power cycle.

RES_CAUSE2 RESET_CSV_HF_LOSS 16
Clock supervision logic requested a reset due to loss of a high-frequency
clock. Each bit index K corresponds to a clk_hf<K>. Unimplemented
clock bits return zero.

RES_CAUSE2 RESET_CSV_HF_FREQ 16
Clock supervision logic requested a reset due to frequency error of a
high-frequency clock. Each bit index K corresponds to a clk_hf<K>.
Unimplemented clock bits return zero.

Table 21-3. Reset System Register List

Register Description

RES_CAUSE Reset cause observation register

RES_CAUSE2 Reset cause observation register 2

PWR_HIBERNATE
Hibernate power mode control register. Contains a TOKEN field that can be used to detect the Hibernate
wakeup reset

PWR_HIB_DATA Retains its contents through Hibernate wakeup reset

CM4_AIRCR Application interrupt and reset control register of Cortex-M4

CM0_AIRCR Application interrupt and reset control register of Cortex-M0+

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 240

22. I/O System

This chapter explains the PSoC 6 MCU I/O system, its features, architecture, operating modes, and interrupts. The I/O
system provides the interface between the CPU core and peripheral components to the outside world. The flexibility of
PSoC 6 MCUs and the capability of its I/O to route most signals to most pins greatly simplifies circuit design and board layout.
The GPIO pins in the PSoC 6 MCU family are grouped into ports; a port can have a maximum of eight GPIO pins.

22.1 Features

The PSoC 6 MCU GPIOs have these features:

■ Analog and digital input and output capabilities

■ Eight drive strength modes

■ Separate port read and write registers

■ Overvoltage tolerant (OVT-GPIO) pins

■ Separate I/O supplies and voltages for up to six groups of I/O

■ Edge-triggered interrupts on rising edge, falling edge, or on both edges, on all GPIO

■ Slew rate control

■ Frozen mode for latching previous state (used to retain the I/O state in System Hibernate Power mode)

■ Selectable CMOS and low-voltage LVTTL input buffer mode

■ CapSense support

■ Smart I/O provides the ability to perform Boolean functions in the I/O signal path

■ Segment LCD drive support

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 241

I/O System

22.2 Architecture

The PSoC 6 MCU is equipped with analog and digital peripherals. Figure 22-1 shows an overview of the routing between the
peripherals and pins.

Figure 22-1. GPIO Interface Overview

GPIO pins are connected to I/O cells. These cells are equipped with an input buffer for the digital input, providing high input
impedance and a driver for the digital output signals. The digital peripherals connect to the I/O cells via the high-speed I/O
matrix (HSIOM). The HSIOM for each pin contains multiplexers to connect between the selected peripheral and the pin.
HSIOM also bridges the connection between the digital system interconnect (DSI) and the pins. This enables routing of pin
signals to the DSI-connected digital UDB peripherals. Analog peripherals such as SAR ADC, Continuous Time Block (CTB),
Low-Power comparator (LPCOMP), and CapSense are either connected to the GPIO pins directly or through the AMUXBUS.

GPIO & Port
Control

High Speed IO Matrix

CapSense
Sensing

Analog
Peripherals

CapSense
Controller

Segment
LCD

Fixed
Function
Digital

Peripherals

UDB Array

C
on

figu
ra

tion

Interru
pt

In
te

rfa
ce

Port Adapter

DSI

I/O Cell

Pin

AMUXBUS-A
AMUXBUS-B

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 242

I/O System

22.2.1 I/O Cell Architecture

Figure 22-2 shows the I/O cell architecture present in every GPIO cell. It comprises an input buffer and an output driver that
connect to the HSIOM multiplexers for digital input and output signals. Analog peripherals connect directly to the pin for point
to point connections or use the AMUXBUS.

Figure 22-2. GPIO and GPIO_OVT Cell Architecture

Digital
Logic

Slew
Rate

Control

GPIO
Edge

Detect

HSIOM_PRTx_PORT_SEL[1:0][IOy_SEL]

DSI
GPIO_PRTx_IN[INy]

ACTIVE_[15:0]
DEEP_SLEEP_[7:0]

GPIO_PRTx_OUT[OUTy]

GPIO_DSI

DSI_DSI

DSI_GPIO
ACTIVE_0(TCPWM)

ACTIVE_1(SCB)

ACTIVE_2(CAN)

ACTIVE_[15:3]

DEEP_SLEEP_0(LCD-COM)

DEEP_SLEEP_1(LCD-SEG)

DEEP_SLEEP_2(SCB)

DEEP_SLEEP_[7:3]

OUT_EN
OUT

Drive
Mode

Pin

VDD

VSS

Input Buffer
Output Driver

GPIO_PRTx_CFG[DRIVE_MODEy]

5

3

GPIO_PRTx_INTR[IN_INy]
GPIO_PRTx_MASK[EDGEy]

GPIO_PRTx_INTR_MASKED[EDGEy]
GPIO_PRTx_INTR_SET[EDGEy]
GPIO_PRTx_INTR_CFG[EDGEy_SEL]
Pin Interrupt Signal

GPIO_PRTx_CFG[IN_ENy]

GPIO_PRTx_CFG_IN[VTRIP_SELy_0]

GPIO_PRTx_CFG_OUT[DRIVE_SELy]
GPIO_PRTx_CFG_OUT[SLOWy]

GPIO_PRTx_INTR[EDGEy]

2

Dedicated Analog Resources (SAR ADC, LPCOMP)

AMUXBUS-A (CapSense Source, SAR ADC)

AMUXBUS-B (CapSense Shield, SAR ADC)

Switches

x = Port Number
y = Pin Number

Note: HSIOM selection connects OUT and OUT_EN.
ACTIVE_[2:0] and DEEP_SLEEP_[2:0] connections are examples.
See Device Datasheet for specific connections to HSIOM ACTIVE
and DEEP_SLEEP selections.

13

5

DSI

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 243

I/O System

22.2.2 Digital Input Buffer

The digital input buffer provides a high-impedance buffer for
the external digital input. The buffer is enabled or disabled
by the IN_EN[7:0] bit of the Port Configuration Register
(GPIO_PRTx_CFG, where x is the port number).

The input buffer is connected to the HSIOM for routing to the
CPU port registers and selected peripherals. Writing to the
HSIOM port select register (HSIOM_PORT_SELx) selects
the pin connection. See the device datasheet for the specific
connections available for each pin.

If a pin is connected only to an analog signal, the input
buffer should be disabled to avoid crowbar currents.

Each pin’s input buffer trip point and hysteresis are
configurable for the following modes:

■ CMOS + I2C

■ TTL

These buffer modes are selected by the VTRIP_SEL[7:0]_0
bit of the Port Input Buffer Configuration register.
(GPIO_PRTx_CFG_IN).

22.2.3 Digital Output Driver

Pins are driven by the digital output driver. It consists of
circuitry to implement different drive modes and slew rate
control for the digital output signals. The HSIOM selects the
control source for the output driver. The three primary types
of control sources are CPU registers, configurable digital
peripherals instantiated in the programmable UDB/DSI
fabric, and fixed-function digital peripherals. A particular
HSIOM connection is selected by writing to the HSIOM port
select register (HSIOM_PORT_SELx).

I/O ports are powered by different sources. The specific
allocation of ports to supply sources can be found in the
Pinout section of the device datasheet.

Each GPIO pin has ESD diodes to clamp the pin voltage to
the I/O supply source. Ensure that the voltage at the pin
does not exceed the I/O supply voltage VDDIO/VDDD/VDDA or
drop below VSSIO/VSSD/VSSA. For the absolute maximum
and minimum GPIO voltage, see the device datasheet.

The digital output driver can be enabled or disabled in
hardware by using the DSI signal from a peripheral or the
output data register (GPIO_PRTx_OUT) associated with the
output pin. See 22.3 High-Speed I/O Matrix for details on
peripheral source selections supporting output enable
control.

22.2.3.1 Drive Modes

Each I/O is individually configurable to one of eight drive
modes by the DRIVE_MODE[7:0] field of the Port
Configuration register, GPIO_PRTx_CFG. Table 22-1 lists
the drive modes. Drive mode ‘1’ is reserved and should not
be used in most designs. CPU register, UDB/DSI
instantiated digital peripherals, and AMUXBUS connections
support seven discrete drive modes to maximize design
flexibility. Fixed-function digital peripherals, such as SCB
and TCPWM blocks, support modified functionality for the
same seven drive modes compatible with fixed peripheral
signaling. Figure 22-3 shows simplified output driver
diagrams of the pin view for CPU register and UDB/DSI-
based digital peripherals control on each of the eight drive
modes. Figure 22-4 is a simplified output driver diagram that
shows the pin view for fixed-function-based peripherals for
each of the eight drive modes.

Table 22-1. Drive Mode Settings

Drive Mode Value

CPU Register, AMUXBUS, UDB/DSI Digital
Peripheral

Fixed-Function Digital Peripheral

OUT_EN = 1 OUT_EN = 0 OUT_EN = 1 OUT_EN = 0

OUT = 1 OUT = 0 OUT = 1 OUT = 0 OUT = 1 OUT = 0 OUT = 1 OUT = 0

High Impedance 0 HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z

Reserved 1 Strong 1 Strong 0 HI-Z HI-Z Strong 1 Strong 0
Weak 1 &
0

Weak 1 &
0

Resistive Pull Up 2 Weak 1 Strong 0 HI-Z HI-Z Strong 1 Strong 0 Weak 1 Weak 1

Resistive Pull Down 3 Strong 1 Weak 0 HI-Z HI-Z Strong 1 Strong 0 Weak 0 Weak 0

Open Drain, Drives Low 4 HI-Z Strong 0 HI-Z HI-Z Strong 1 Strong 0 HI-Z HI-Z

Open Drain, Drives High 5 Strong 1 HI-Z HI-Z HI-Z Strong 1 Strong 0 HI-Z HI-Z

Strong 6 Strong 1 Strong 0 HI-Z HI-Z Strong 1 Strong 0 HI-Z HI-Z

Resistive Pull Up and Down 7 Weak 1 Weak 0 HI-Z HI-Z Strong 1 Strong 0 Weak 1 Weak 0

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 244

I/O System

Figure 22-3. CPU and DSI/UDB I/O Drive Mode Block Diagram

Figure 22-4. Peripheral I/O Drive Mode Block Diagrams

Resistive
Pull up

2.

IN
OUT

VDDIO

Pin

OUT_EN

High Impedance0.

IN
OUT

Pin

OUT_EN

Reserved1. Resistive
Pull down

3.

IN
OUT

VDDIO

Pin

OUT_EN

Open Drain
Drives Low

4.

IN
OUT

Pin

OUT_EN

Open Drain
Drives High

5.

IN
OUT

VDDIO

Pin

OUT_EN

Strong6. 7.

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

Resistive Pull
Up and Down

Resistive
Pull up

2.

IN
OUT

VDDIO

Pin

OUT_EN

High Impedance0.

IN
OUT

Pin

OUT_EN

Reserved1. Resistive
Pull down

3.

IN
OUT

VDDIO

Pin

OUT_EN

Open Drain,
Drives Low

4. Open Drain,
Drives High

5.

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

Strong6. Resistive Pull
Up and Down

7.

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

IN
OUT

VDDIO

Pin

OUT_EN

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 245

I/O System

■ High-Impedance

This is the standard high-impedance (HI-Z) state
recommended for analog and digital inputs. For digital
signals, the input buffer is enabled; for analog signals, the
input buffer is typically disabled to reduce crowbar current
and leakage in low-power designs. To achieve the lowest
device current, unused GPIOs must be configured to the
high-impedance drive mode with input buffer disabled. High-
impedance drive mode with input buffer disabled is also the
default pin reset state.

■ Resistive Pull-Up or Resistive Pull-Down

Resistive modes provide a series resistance in one of the
data states and strong drive in the other. Pins can be used
for either digital input or digital output in these modes. If
resistive pull-up is required, a ‘1’ must be written to that pin’s
Data Register bit. If resistive pull-down is required, a ‘0’
must be written to that pin’s Data Register. Interfacing
mechanical switches is a common application of these drive
modes. The resistive modes are also used to interface
PSoC with open drain drive lines. Resistive pull-up is used
when the input is open drain low and resistive pull-down is
used when the input is open drain high.

■ Open Drain Drives High and Open Drain Drives Low

Open drain modes provide high impedance in one of the
data states and strong drive in the other. Pins are useful as
digital inputs or outputs in these modes. Therefore, these
modes are widely used in bidirectional digital
communication. Open drain drive high mode is used when
the signal is externally pulled down and open drain drive low
is used when the signal is externally pulled high. A common
application for the open drain drives low mode is driving I2C
bus signal lines.

■ Strong Drive

The strong drive mode is the standard digital output mode
for pins; it provides a strong CMOS output drive in both high
and low states. Strong drive mode pins should not be used
as inputs under normal circumstances. This mode is often
used for digital output signals or to drive external devices.

■ Resistive Pull-Up and Resistive Pull-Down

In the resistive pull-up and pull-down mode, the GPIO will
have a series resistance in both logic 1 and logic 0 output
states. The high data state is pulled up while the low data
state is pulled down. This mode is useful when the pin is
driven by other signals that may cause shorts.

22.2.3.2 Slew Rate Control

GPIO pins have fast and slow output slew rate options for
the strong drivers configured using the SLOW bit of the port
output configuration register (GPIO_PRTx_CFG_OUT). By
default, this bit is cleared and the port works in fast slew
mode. This bit can be set if a slow slew rate is required.
Slower slew rate results in reduced EMI and crosstalk and

are recommended for low-frequency signals or signals
without strict timing constraints.

When configured for fast slew rate, the drive strength can be
set to one of four levels using the DRIVE_SEL field of the
port output configuration register (GPIO_PRTx_CFG_OUT).
The drive strength field determines the active portion of the
output drivers used and can affect the slew rate of output
signals. Drive strength options are full drive strength
(default), one-half strength, one-quarter strength, and one-
eighth strength. Drive strength must be set to full drive
strength when the slow slew rate bit (SLOW) is set.

Note: For some devices in the PSoC 6 MCU family,
simultaneous GPIO switching with unrestricted drive
strengths and frequency can induce noise in on-chip
subsystems affecting CapSense and ADC results. Refer to
the Errata section in the respective device datasheet for
details.

22.2.3.3 GPIO-OVT Pins

Select device pins are overvoltage tolerant (OVT) and are
useful for interfacing to busses or other signals that may
exceed the pin’s VDDIO supply, or where the whole device
supply or pin VDDIO may not be always present. They are
identical to regular GPIOs with the additional feature of
being overvoltage tolerant. GPIO-OVT pins have hardware
to compare VDDIO to the pin voltage. If the pin voltage
exceeds VDDIO, the output driver is disabled and the pin
driver is tristated. This results in negligible current sink at the
pin.

Note that in overvoltage conditions, the input buffer data will
not be valid if the external source’s specification of VOH and

VOL do not match the trip points of the input buffer defined

by the current VDDIO voltage.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 246

I/O System

22.3 High-Speed I/O Matrix

The high-speed I/O matrix (HSIOM) is a set of high-speed multiplexers that route internal CPU and peripheral signals to and
from GPIOs. HSIOM allows GPIOs to be shared with multiple functions and multiplexes the pin connection to a user-selected
peripheral. The HSIOM_PRTx_PORT_SEL[1:0] registers allow a single selection from up to 32 different connections to each
pin as listed in Table 22-2.

Table 22-2. HSIOM Connections

SELy_SEL Name
Digital Driver Signal Source Digital Input

Signal
Destination

Analog Switches
Description

OUT OUT_EN AMUXA AMUXB

0 GPIO OUT Register 1 IN Register 0 0
GPIO_PRTx_OUT register controls
OUT

1 GPIO_DSI OUT Register DSI OUT_EN IN Register 0 0
GPIO_PRTx_OUT register controls
OUT, DSI controls OUT_EN

2 DSI_DSI DSI OUT DSI OUT_EN DSI IN 0 0 DSI controls OUT and OUT_EN

3 DSI_GPIO DSI OUT OUT Register DSI IN 0 0
DSI controls OUT, GPIO_PRTx_OUT
register controls OUT_EN

4 AMUXA OUT Register 1 IN Register 1 0 Analog mux bus A connected to pin

5 AMUXB OUT Register 1 IN Register 0 1 Analog mux bus B connected to pin

6 AMUXA_DSI OUT Register !DSI OUT_EN IN Register
DSI
OUT

0

DSI controls analog mux bus A
connection to pin, GPIO_PRTx_OUT
register controls OUT, DSI OUT_EN
controls OUT_EN

7 AMUXB_DSI OUT Register !DSI OUT_EN IN Register 0
DSI
OUT

DSI controls analog mux bus B
connection to pin, GPIO_PRTx_OUT
register controls OUT, DSI OUT_EN
controls OUT_EN

8 ACT_0
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 0 - See the
datasheet for specific pin connectivity

9 ACT_1
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 1 - See the
datasheet for specific pin connectivity

10 ACT_2
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 2 - See the
datasheet for specific pin connectivity

11 ACT_3
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 3 - See the
datasheet for specific pin connectivity

12 DS_0
Deep Sleep
Source OUT

Deep Sleep
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 0 - See the
datasheet for specific pin connectivity

13 DS_1
Deep Sleep
Source OUT

Deep Sleep
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 1 - See the
datasheet for specific pin connectivity

14 DS_2
Deep Sleep
Source OUT

Deep Sleep
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 2 - See the
datasheet for specific pin connectivity

15 DS_3
Deep Sleep
Source OUT

Deep Sleep
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 3 - See the
datasheet for specific pin connectivity

16 ACT_4
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 4 - See the
datasheet for specific pin connectivity

17 ACT_5
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 5 - See the
datasheet for specific pin connectivity

18 ACT_6
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 6 - See the
datasheet for specific pin connectivity

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 247

I/O System

Note: The Active and Deep Sleep sources are pin dependent. See the “Pinouts” section of the device datasheet for more
details on the features supported by each pin.

19 ACT_7
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 7 - See the
datasheet for specific pin connectivity

20 ACT_8
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 8 - See the
datasheet for specific pin connectivity

21 ACT_9
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 9 - See the
datasheet for specific pin connectivity

22 ACT_10
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 10 - See the
datasheet for specific pin connectivity

23 ACT_11
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 11 - See the
datasheet for specific pin connectivity

24 ACT_12
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 12 - See the
datasheet for specific pin connectivity

25 ACT_13
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 13 - See the
datasheet for specific pin connectivity

26 ACT_14
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 14 - See the
datasheet for specific pin connectivity

27 ACT_15
Active Source

OUT
Active Source

OUT_EN
Active Source IN 0 0

Active functionality 15 - See the
datasheet for specific pin connectivity

28 DS_4
Deep Sleep
Source OUT

Deep Sleep
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 4 - See the
datasheet for specific pin connectivity

29 DS_5
Deep Sleep
Source OUT

Deep Sleep
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 5 - See the
datasheet for specific pin connectivity

30 DS_6
Deep Sleep
Source OUT

Deep Sleep
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 6 - See the
datasheet for specific pin connectivity

31 DS_7
Deep Sleep
Source OUT

Deep Sleep
Source OUT-

_EN
Deep Sleep IN 0 0

Deep Sleep functionality 7 - See the
datasheet for specific pin connectivity

Table 22-2. HSIOM Connections

SELy_SEL Name
Digital Driver Signal Source Digital Input

Signal
Destination

Analog Switches
Description

OUT OUT_EN AMUXA AMUXB

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 248

I/O System

22.4 I/O State on Power Up

During power up, all the GPIOs are in high-impedance analog state and the input buffers are disabled. During runtime, GPIOs
can be configured by writing to the associated registers. Note that the pins supporting debug access port (DAP) connections
(SWD lines) are always enabled as SWD lines during power up. The DAP connection does not provide pull-up or pull-down
resistors; therefore, if left floating some crowbar current is possible. The DAP connection can be disabled or reconfigured for
general-purpose use through the HSIOM only after the device boots and starts executing code.

22.5 Behavior in Low-Power Modes

Table 22-3 shows the status of GPIOs in low-power modes.

22.6 Input and Output Synchronization

For digital input and output signals routed to the UDB array, the I/Os provide synchronization with an internal clock or a digital
signal used as a clock. By default, HFCLK is used for synchronization but any other clock can also be used.

This feature is implemented using the UDB port adapter. See the Universal Digital Blocks (UDB) chapter on page 464 for
details on the port adapter.

22.7 Interrupt

All port pins have the capability to generate interrupts. Figure 22-5 shows the routing of pin signals to generate interrupts.

Figure 22-5. Interrupt Signal Routing

■ Pin signal through the “GPIO Edge Detect” block with direct connection to the CPU interrupt controller

■ Pin signal through the port adapter and DSI to the CPU interrupt controller

Figure 22-6 shows the GPIO Edge Detect block architecture.

Table 22-3. GPIO in Low-Power Modes

Low-Power Mode Status

CPU Sleep
■ Standard GPIO, GPIO-OVT, and SIO pins are active and can be driven by most peripherals such as CapSense,

TCPWMs, and SCBs, which can operate in CPU Sleep mode.

■ Inputs buffers are active; thus an interrupt on any I/O can be used to wake the CPU.

System Deep Sleep
■ GPIO, GPIO-OVT, and SIO pins, connected to System Deep Sleep domain peripherals, are functional. All other

pins maintain the last output driver state and configuration.

■ Pin interrupts are functional on all I/Os and can be used to wake the device.

System Hibernate
■ Pin output states and configuration are latched and remain in the frozen state.

■ Pin interrupts are functional only on select IOs and can be used to wake the device. See the device datasheet
for specific hibernate pin connectivity.

Port
Adapter

DSI

GPIO Edge
Detect

Interrupt
Controller

Pin

DSI Route

Dedicated IRQ Route

HSIOM

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 249

I/O System

Figure 22-6. GPIO Edge Detect Block Architecture

An edge detector is present at each pin. It is capable of
detecting rising edge, falling edge, and both edges without
any reconfiguration. The edge detector is configured by
writing into the EDGEv_SEL bits of the Port Interrupt
Configuration register, GPIO_PRTx_INTR_CFG, as shown
in Table 22-4.

Writing ‘1’ to the corresponding status bit clears the pin edge
state. Clearing the edge state status bit is important;
otherwise, an interrupt can occur repeatedly for a single
trigger or respond only once for multiple triggers, which is
explained later in this section. When the Port Interrupt
Control Status register is read at the same time an edge is
occurring on the corresponding port, it can result in the edge
not being properly detected. Therefore, when using GPIO
interrupts, read the status register only inside the
corresponding interrupt service routine and not in any other
part of the code.

Firmware and the debug interface are able to trigger a
hardware interrupt from any pin by setting the corresponding
bit in the GPIO_PRTx_INTR_SET register.

In addition to the pins, each port provides a glitch filter
connected to its own edge detector. This filter can be driven
by one of the pins of a port. The selection of the driving pin
is done by writing to the FLT_SEL field of the
GPIO_PRTx_INTR_CFG register as shown in Table 22-5.

When a port pin edge occurs, you can read the Port
Interrupt Status register, GPIO_PRTx_INTR, to know which
pin caused the edge. This register includes both the latched
information on which pin detected an edge and the current
pin status. This allows the CPU to read both information in a
single read operation. This register has an additional use –
to clear the latched edge state.

The GPIO_PRTx_INTR_MASK register enables forwarding
of the GPIO_PRTx_INTR edge detect signal to the interrupt
controller when a ‘1’ is written to a pin’s corresponding
bitfield. The GPIO_PRTx_INTR_MASKED register can then
be read to determine the specific pin that generated the
interrupt signal forwarded to the interrupt controller. The
masked edge detector outputs of a port are then ORed
together and routed to the interrupt controller (NVIC in the
CPU subsystem). Thus, there is only one interrupt vector
per port.

The masked and ORed edge detector block output is routed
to the Interrupt Source Multiplexer shown in Figure 8-3 on
page 58, which gives an option of Level and Rising Edge
detection. If the Level option is selected, an interrupt is
triggered repeatedly as long as the Port Interrupt Status
register bit is set. If the Rising Edge detect option is
selected, an interrupt is triggered only once if the Port
Interrupt Status register is not cleared. Thus, the interrupt
status bit must be cleared if the Edge Detect block is used.

Each port has a dedicated interrupt vector when the
interrupt signal is routed through the fixed-function route.
However, when the signal is routed though the DSI, interrupt
vector connections are flexible and can occupy any of the
DSI-connected interrupt lines of the NVIC. See the
Interrupts chapter on page 55 for details.

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

50 ns Glitch Filter

Interrupt
Signal

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7

Table 22-4. Edge Detector Configuration

EDGE_SEL Configuration

00 Interrupt is disabled

01 Interrupt on Rising Edge

10 Interrupt on Falling Edge

11 Interrupt on Both Edges

Table 22-5. Glitch Filter Input Selection

FLT_SEL Selected Pin

000 Pin 0 is selected

001 Pin 1 is selected

010 Pin 2 is selected

011 Pin 3 is selected

100 Pin 4 is selected

101 Pin 5 is selected

110 Pin 6 is selected

111 Pin 7 is selected

Table 22-5. Glitch Filter Input Selection

FLT_SEL Selected Pin

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 250

I/O System

All of the port interrupt vectors are also ORed together into a
single interrupt vector for use on devices with more ports
than there are interrupt vectors available. To determine the
port that triggered the interrupt, the GPIO_INTR_CAUSEx
registers can be read. A ‘1’ present in a bit location indicates
that the corresponding port has a pending interrupt. The
indicated GPIO_PRTx_INTR register can then be read to
determine the pin source.

When the signal is routed through the DSI, bypassing the
Edge Detect block, the edge detection is configurable in the
Interrupt Source Multiplexer block. If the multiplexer is
configured as Level, the interrupt is triggered repeatedly as
long as the pin signal is high. Use the Rising Edge detect
option when this route is selected to generate only one
interrupt.

22.8 Peripheral Connections

22.8.1 Firmware-Controlled GPIO

For standard firmware-controlled GPIO using registers, the
GPIO mode must be selected in the HSIOM_PORT_SELx
register.

The GPIO_PRTx_OUT register is used to read and write the
output buffer state for GPIOs. A write operation to this
register changes the GPIO’s output driver state to the
written value. A read operation reflects the output data
written to this register and the resulting output driver state. It
does not return the current logic level present on GPIO pins,
which may be different. Using the GPIO_PRTx_OUT
register, read-modify-write sequences can be safely
performed on a port that has both input and output GPIOs.

In addition to the data register, three other registers –
GPIO_PRTx_SET, GPIO_PRTx_CLR, and
GPIO_PRTx_INV – are provided to set, clear, and invert the
output data respectively on specific pins in a port without
affecting other pins. This avoids the need for read-modify-
write operations in most use cases. Writing ‘1’ to these
register bitfields will set, clear, or invert the respective pin;
writing ‘0’ will have no affect on the pin state.

GPIO_PRTx_IN is the port I/O pad register, which provides
the actual logic level present on the GPIO pin when read.
Writes to this register have no effect.

22.8.2 Analog I/O

Analog resources, such as LPCOMP, SAR ADC, and CTB,
which require low-impedance routing paths have dedicated
pins. Dedicated analog pins provide direct connections to
specific analog blocks. They help improve performance and
should be given priority over other pins when using these
analog resources. See the device datasheet for details on
these dedicated pins of the PSoC 6 MCU.

To configure a GPIO as a dedicated analog I/O, it should be
configured in high-impedance analog mode (see Table 22-1)
with input buffer disabled. The respective connection should
be enabled via registers in the specific analog resource.

To configure a GPIO as an analog pin connecting to
AMUXBUS, it should be configured in high-impedance
analog mode with the input buffer disabled and then routed
to the correct AMUXBUS using the HSIOM_PORT_SELx
register.

While it is preferred for analog pins to disable the input
buffer, it is acceptable to enable the input buffer if
simultaneous analog and digital input features are required.

22.8.2.1 AMUXBUS Connection

There are two methods of connecting a pin to AMUXBUS A
or B. The pin may be statically connected with a register
write or have the connection dynamically controlled by UDB
based logic routed through the DSI. Static connection is
made by selecting AMUXA or AMUXB in the
HSIOM_PORT_SELx register. Dynamic hardware-
controlled connection is made by selecting AMUXA_DSI or
AMUXB_DSI in the HSIOM_PORT_SELx register, enabling
you to implement hardware AMUXBUS switching.

To properly configure a pin as AMUXBUS input, follow these
steps:

1. If the connection is dynamically controlled by hardware,
the pin output and output enable signals must be
connected to a pin selection signal generated and routed
to the pin by the UDB/DSI system.

2. Configure the GPIO_PRTx_CFG register to set the pin
in high-Impedance mode with input buffer disabled,
enabling analog connectivity on the pin.

3. Configure the HSIOM_PRT_SELx register to connect
the pin to AMUXBUS A or B. For static connections,
select AMUXA or AMUXB. For dynamic connections,
select AMUXA_DSI or AMUXB_DSI.

22.8.3 LCD Drive

GPIOs have the capability of driving an LCD common or
segment line. HSIOM_PORT_SELx registers are used to
select pins for the LCD drive. See the LCD Direct
Drive chapter on page 451 for details.

22.8.4 CapSense

The pins that support CapSense can be configured as
CapSense widgets such as buttons, slider elements,
touchpad elements, or proximity sensors. CapSense also
requires external capacitors and optional shield lines. See
the PSoC 4 and PSoC 6 MCU CapSense Design Guide for
more details.

https://www.infineon.com/AN85951
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 251

I/O System

22.9 Smart I/O

The Smart I/O block adds programmable logic to an I/O port.
This programmable logic integrates board-level Boolean
logic functionality such as AND, OR, and XOR into the port.

The Smart I/O block has these features:

■ Integrate board-level Boolean logic functionality into a
port

■ Ability to preprocess HSIOM input signals from the GPIO
port pins

■ Ability to post-process HSIOM output signals to the
GPIO port pins

■ Support in all device power modes except Hibernate

■ Integrate closely to the I/O pads, providing shortest
signal paths with programmability

22.9.1 Overview

The Smart I/O block is positioned in the signal path between
the HSIOM and the I/O port. The HSIOM multiplexes the
output signals from fixed-function peripherals and CPU to a
specific port pin and vice-versa. The Smart I/O block is
placed on this signal path, acting as a bridge that can
process signals between port pins and HSIOM, as shown in
Figure 22-7.

Figure 22-7. Smart I/O Interface

The signal paths supported through the Smart I/O block as
shown in Figure 22-7 are as follows:

1. Implement self-contained logic functions that directly
operate on port I/O signals

2. Implement self-contained logic functions that operate on
HSIOM signals

3. Operate on and modify HSIOM output signals and route
the modified signals to port I/O signals

4. Operate on and modify port I/O signals and route the
modified signals to HSIOM input signals

The following sections discuss the Smart I/O block
components, routing, and configuration in detail. In these
sections, GPIO signals (io_data) refer to the input/output
signals from the I/O port; device or chip (chip_data) signals
refer to the input/output signals from HSIOM.

22.9.2 Block Components

The internal logic of the Smart I/O includes these
components:

■ Clock/reset

■ Synchronizers

■ Three-input lookup table (LUT)

■ Data unit

22.9.2.1 Clock and Reset

The clock and reset component selects the Smart I/O
block’s clock (clk_block) and reset signal (rst_block_n). A
single clock and reset signal is used for all components in
the block. The clock and reset sources are determined by
the CLOCK_SRC[4:0] bitfield of the SMARTIO_PRTx_CTL
register. The selected clock is used for the synchronous
logic in the block components, which includes the I/O input
synchronizers, LUT, and data unit components. The
selected reset is used to asynchronously reset the
synchronous logic in the LUT and data unit components.

Note that the selected clock (clk_block) for the block’s
synchronous logic is not phase-aligned with other
synchronous logic in the device, operating on the same
clock. Therefore, communication between Smart I/O and
other synchronous logic should be treated as asynchronous.

The following clock sources are available for selection:

■ GPIO input signals “io_data_in[7:0]”. These clock
sources have no associated reset.

■ HSIOM output signals “chip_data[7:0]”. These clock
sources have no associated reset.

■ Smart I/O clock (clk_smartio). This is derived from the
system clock (clk_sys) using a peripheral clock divider.
See the Clocking System chapter on page 221 for
details on peripheral clock dividers. This clock is
available only in System LP and ULP power modes. The
clock can have one out of two associated resets:

HSIOM Smart I/O I/O Port

HSIOM
Output Signals

HSIOM
Input Signals

GPIO Output
Signals

GPIO Input
Signals

12

4

3

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 252

I/O System

rst_sys_act_n and rst_sys_dpslp_n. These resets
determine in which system power modes the block
synchronous state is reset; for example, rst_sys_act_n is
intended for Smart I/O synchronous functionality in the
System LP and ULP power modes and reset is activated
in the System Deep Sleep power mode.

■ Low-frequency system clock (clk_lf). This clock is
available in System Deep Sleep power mode. This clock
has an associated reset, rst_lf_dpslp_n. Reset is
activated if the system enters Hibernate, or is at POR.

When the block is enabled, the selected clock (clk_block)
and associated reset (rst_block_n) are provided to the fabric

components. When the fabric is disabled, no clock is
released to the fabric components and the reset is activated
(the LUT and data unit components are set to the reset
value of ‘0’).

The I/O input synchronizers introduce a delay of two
clk_block cycles (when synchronizers are enabled). As a
result, in the first two cycles, the block may be exposed to
stale data from the synchronizer output. Hence, during the
first two clock cycles, the reset is activated and the block is
in bypass mode.

22.9.2.2 Synchronizer

Each GPIO input signal and device input signal (HSIOM input) can be used either asynchronously or synchronously. To use
the signals synchronously, a double flip-flop synchronizer, as shown in Figure 22-8, is placed on both these signal paths to
synchronize the signal to the Smart I/O clock (clk_block). The synchronization for each pin/input is enabled or disabled by
setting or clearing the IO_SYNC_EN[i] bitfield for GPIO input signal and CHIP_SYNC_EN[i] for HSIOM signal in the
SMARTIO_PRTx_SYNC_CTL register, where ‘i’ is the pin number.

Table 22-6. Clock and Reset Register Control

Register[BIT_POS] Bit Name Description

SMARTIO_PRTn_CTL[12:8] CLOCK_SRC[4:0]

Clock (clk_block)/reset (rst_block_n) source selection:

0: io_data_in[0]/1

...

7: io_data_in[7]/1

8: chip_data[0]/1

...

15: chip_data[7]/1

16: clk_smartio/rst_sys_act_n; asserts reset in any power mode other than System LP
or ULP; that is, Smart I/O is active only in LP or ULP power modes with clock from the
peripheral divider.

17: clk_smartio/rst_sys_dpslp_n. Smart I/O is active in all power modes with a clock
from the peripheral divider. However, the clock will not be active in System deep sleep
power mode.

19: clk_lf/rst_lf_dpslp_n. Smart I/O is active in all power modes with a clock from ILO.

20-30: Clock source is a constant '0'. Any of these clock sources should be selected
when Smart I/O is disabled to ensure low power consumption.

31: clk_sys/1. This selection is not intended for clk_sys operation. However, for
asynchronous operation, three clk_sys cycles after enabling, the Smart I/O is fully
functional (reset is de-activated). To be used for asynchronous (clockless) block
functionality.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 253

I/O System

Figure 22-8. Smart I/O Clock Synchronizer

22.9.2.3 Lookup Table (LUT)

Each Smart I/O block contains eight lookup table (LUT) components. The LUT component consists of a three-input LUT and
a flip-flop. Each LUT block takes three input signals and generates an output based on the configuration set in the
SMARTIO_PRTx_LUT_CTLy register (y denotes the LUT number). For each LUT, the configuration is determined by an 8-bit
lookup vector LUT[7:0] and a 2-bit opcode OPC[1:0] in the SMARTIO_PRTx_LUT_CTLy register. The 8-bit vector is used as
a lookup table for the three input signals. The 2-bit opcode determines the usage of the flip-flop. The LUT configuration for
different opcodes is shown in Figure 22-9.

The SMARTIO_PRTx_LUT_SELy registers select the three input signals (tr0_in, tr1_in, and tr2_in) going into each LUT. The
input can come from the following sources:

■ Data unit output

■ Other LUT output signals (tr_out)

■ HSIOM output signals (chip_data[7:0])

■ GPIO input signals (io_data[7:0])

LUT_TR0_SEL[3:0] bits of the SMARTIO_PRTx_LUT_SELy register selects the tr0_in signal for the yth LUT. Similarly,
LUT_TR1_SEL[3:0] bits and LUT_TR2_SEL[3:0] bits select the tr1_in and tr2_in signals, respectively. See Table 22-7 for
details.

io_data_in[i]
Or

chip_data_in[i]

clk_block

clkclk

DQDQ

0

1

SYNC_CTL.IO_SYNC_EN[i]
Or

SYNC_CTL.CHIP_SYNC_EN[i]

To SMARTIO
block

Clock Synchronizer

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 254

I/O System

Table 22-7. LUT Register Control

Register[BIT_POS] Bit Name Description

SMARTIO_PRTx_LUT_CTLy[7:0] LUT[7:0]

LUT configuration. Depending on the LUT opcode (LUT_OPC), the internal
state, and the LUT input signals tr0_in, tr1_in, and tr2_in, the LUT
configuration is used to determine the LUT output signal and the next
sequential state.

SMARTIO_PRTx_LUT_CTLy[9:8] LUT_OPC[1:0] LUT opcode specifies the LUT operation as illustrated in Figure 22-9.

SMARTIO_PRTx_LUT_SELy[3:0] LUT_TR0_SEL[3:0]

LUT input signal “tr0_in” source selection:

0: Data unit output

1: LUT 1 output

2: LUT 2 output

3: LUT 3 output

4: LUT 4 output

5: LUT 5 output

6: LUT 6 output

7: LUT 7 output

8: chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)

9: chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)

10: chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)

11: chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)

12: io_data_in[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)

13: io_data_in[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)

14: io_data_in[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)

15: io_data_in[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

SMARTIO_PRTx_LUT_SELy[11:8] LUT_TR1_SEL[3:0]

LUT input signal “tr1_in” source selection:

0: LUT 0 output

1: LUT 1 output

2: LUT 2 output

3: LUT 3 output

4: LUT 4 output

5: LUT 5 output

6: LUT 6 output

7: LUT 7 output

8: chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)

9: chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)

10: chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)

11: chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)

12: io_data_in[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)

13: io_data_in[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)

14: io_data_in[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)

15: io_data_in[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

SMARTIO_PRTx_LUT_SELy[19:16] LUT_TR2_SEL[3:0]
LUT input signal “tr2_in” source selection. Encoding is the same as for
LUT_TR1_SEL.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 255

I/O System

Figure 22-9. Smart I/O LUT Configuration

22.9.2.4 Data Unit (DU)

Each Smart I/O block includes a data unit (DU) component. The DU consists of a simple 8-bit datapath. It is capable of
performing simple increment, decrement, increment/decrement, shift, and AND/OR operations. The operation performed by
the DU is selected using a 4-bit opcode DU_OPC[3:0] bitfield in the SMARTIO_PRTx_DU_CTL register.

The DU component supports up to three input trigger signals (tr0_in, tr1_in, tr2_in) similar to the LUT component. These
signals are used to initiate an operation defined by the DU opcode. In addition, the DU also includes two 8-bit data inputs
(data0_in[7:0] and data1_in[7:0]) that are used to initialize the 8-bit internal state (data[7:0]) or to provide a reference. The 8-
bit data input source is configured as:

■ Constant ‘0x00’

■ io_data_in[7:0]

■ chip_data_in[7:0]

■ DATA[7:0] bitfield of SMARTIO_PRTx_DATA register

LUT

tr0_in

tr1_in

tr2_in

tr_out

8

OPC[1:0] = 0

LUT[7:0]

LUT

tr0_in

tr1_in

tr2_in

tr_out

8

OPC[1:0] = 1

LUT[7:0]

clk_block

LUT

tr0_in

tr1_in

tr2_in

8

OPC[1:0] = 2

LUT[7:0]

clk_block

tr_out

tr2_in

tr1_in

tr0_in

OPC[1:0] = 3

clk_block

tr_out

LUT[5]

LUT[4]

LUT[3]

LUT[2]

LUT[1]

LUT[0]

Set

Clr

Clk

Enable

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 256

I/O System

The trigger signals are selected using the DU_TRx_SEL[3:0] bitfield of the SMARTIO_PRTx_DU_SEL register. The DUT_-
DATAx_SEL[1:0] bits of the SMARTIO_PRTx_DU_SEL register select the 8-bit input data source. The size of the DU (number
of bits used by the datapath) is defined by the DU_SIZE[2:0] bits of the SMARTIO_PRTx_DU_CTL register. See Table 22-8
for register control details.

The DU generates a single output trigger signal (tr_out). The internal state (du_data[7:0]) is captured in flip-flops and requires
clk_block.

The following pseudo code describes the various datapath operations supported by the DU opcode. Note that “Comb”
describes the combinatorial functionality – that is, functions that operate independent of previous output states. “Reg”
describes the registered functionality – that is, functions that operate on inputs and previous output states (registered using
flip-flops).
// The following is shared by all operations.
mask = (2 ^ (DU_SIZE+1) – 1)
data_eql_data1_in = (data & mask) == (data1_in & mask));
data_eql_0 = (data & mask) == 0);
data_incr = (data + 1) & mask;
data_decr = (data - 1) & mask;

Table 22-8. Data Unit Register Control

Register[BIT_POS] Bit Name Description

SMARTIO_PRTx_DU_CTL[2:0] DU_SIZE[2:0]
Size/width of the data unit (in bits) is DU_SIZE+1. For example, if DU_SIZE is
7, the width is 8 bits.

SMARTIO_PRTx_DU_CTL[11:8] DU_OPC[3:0]

Data unit opcode specifies the data unit operation:

1: INCR

2: DECR

3: INCR_WRAP

4: DECR_WRAP

5: INCR_DECR

6: INCR_DECR_WRAP

7: ROR

8: SHR

9: AND_OR

10: SHR_MAJ3

11: SHR_EQL

Otherwise: Undefined.

SMARTIO_PRTx_DU_SEL[3:0] DU_TR0_SEl[3:0]

Data unit input signal “tr0_in” source selection:

0: Constant '0'.

1: Constant '1'.

2: Data unit output.

10–3: LUT 7–0 outputs.

Otherwise: Undefined.

SMARTIO_PRTx_DU_SEL[11:8] DU_TR1_SEl[3:0]
Data unit input signal “tr1_in” source selection. Encoding same as DU_TR0_-
SEL

SMARTIO_PRTx_DU_SEL[19:16] DU_TR2_SEl[3:0]
Data unit input signal “tr2_in” source selection. Encoding same as DU_TR0_-
SEL

SMARTIO_PRTx_DU_SEL[25:24] DU_DATA0_SEL[1:0]

Data unit input data “data0_in” source selection:

0: 0x00

1: chip_data[7:0].

2: io_data[7:0].

3: SMARTIO_PRTx_DATA.DATA[7:0] register field.

SMARTIO_PRTx_DU_SEL[29:28] DU_DATA1_SEL[1:0]
Data unit input data “data1_in” source selection. Encoding same as DU_DA-
TA0_SEL.

SMARTIO_PRTx_DATA[7:0] DATA[7:0] Data unit input data source.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 257

I/O System

data0_masked = data_in0 & mask;

// INCR operation: increments data by 1 from an initial value (data0) until it reaches a
// final value (data1).
Comb:tr_out = data_eql_data1_in;
Reg: data <= data;
 if (tr0_in) data <= data0_masked; //tr0_in is reload signal - loads masked data0
 // into data
 else if (tr1_in) data <= data_eql_data1_in ? data : data_incr; //increment data until
 // it equals data1

// INCR_WRAP operation: operates similar to INCR but instead of stopping at data1, it wraps
// around to data0.
Comb:tr_out = data_eql_data1_in;
Reg: data <= data;
 if (tr0_in) data <= data0_masked;
 else if (tr1_in) data <= data_eql_data1_in ? data0_masked : data_incr;

// DECR operation: decrements data from an initial value (data0) until it reaches 0.
Comb:tr_out = data_eql_0;
Reg: data <= data;
 if (tr0_in) data <= data0_masked;
 else if (tr1_in) data <= data_eql_0 ? data : data_decr;

// DECR_WRAP operation: works similar to DECR. Instead of stopping at 0, it wraps around to
// data0.
Comb:tr_out = data_eql_0;
Reg: data <= data;
 if (tr0_in) data <= data0_masked;
 else if (tr1_in) data <= data_eql_0 ? data0_masked: data_decr;

// INCR_DECR operation: combination of INCR and DECR. Depending on trigger signals it either
// starts incrementing or decrementing. Increment stops at data1 and decrement stops at 0.
Comb:tr_out = data_eql_data1_in | data_eql_0;
Reg: data <= data;
 if (tr0_in) data <= data0_masked; // Increment operation takes precedence over
 // decrement when both signal are available
 else if (tr1_in) data <= data_eql_data1_in ? data : data_incr;
 else if (tr2_in) data <= data_eql_0 ? data : data_decr;

// INCR_DECR_WRAP operation: same functionality as INCR_DECR with wrap around to data0 on
// reaching the limits.
Comb:tr_out = data_eql_data1_in | data_eql_0;
Reg: data <= data;
 if (tr0_in) data <= data0_masked;
 else if (tr1_in) data <= data_eql_data1_in ? data0_masked : data_incr;
 else if (tr2_in) data <= data_eql_0 ? data0_masked : data_decr;

// ROR operation: rotates data right and LSb is sent out. The data for rotation is taken from
// data0.
Comb:tr_out = data[0];
Reg: data <= data;
 if (tr0_in) data <= data0_masked;
 else if (tr1_in) {
 data <= {0, data[7:1]} & mask; //Shift right operation
 data[du_size] <= data[0]; //Move the data[0] (LSb) to MSb
 }

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 258

I/O System

// SHR operation: performs shift register operation. Initial data (data0) is shifted out and
// data on tr2_in is shifted in.
Comb:tr_out = data[0];
Reg: data <= data;
 if (tr0_in) data <= data0_masked;
 else if (tr1_in) {
 data <= {0, data[7:1]} & mask; //Shift right operation
 data[du_size] <= tr2_in; //tr2_in Shift in operation
 }

// SHR_MAJ3 operation: performs the same functionality as SHR. Instead of sending out the
// shifted out value, it sends out a '1' if in the last three samples/shifted-out values
// (data[0]), the signal high in at least two samples. otherwise, sends a '0'. This function
// sends out the majority of the last three samples.
Comb:tr_out = (data == 0x03)
 | (data == 0x05)
 | (data == 0x06)
 | (data == 0x07);
Reg: data <= data;
 if (tr0_in) data <= data0_masked;
 else if (tr1_in) {
 data <= {0, data[7:1]} & mask;
 data[du_size] <= tr2_in;
 }

// SHR_EQL operation: performs the same operation as SHR. Instead of shift-out, the output is
// a comparison result (data0 == data1).
Comb:tr_out = data_eql_data1_in;
Reg: data <= data;
 if (tr0_in) data <= data0_masked;
 else if (tr1_in) {
 data <= {0, data[7:1]} & mask;
 data[du_size] <= tr2_in;
 }

// AND_OR operation: ANDs data1 and data0 along with mask; then, ORs all the bits of the
// ANDed output.
Comb:tr_out = | (data & data1_in & mask);
Reg: data <= data;
 if (tr0_in) data <= data0_masked;

22.9.3 Routing

The Smart I/O block includes many switches that are used to route the signals in and out of the block and also between
various components present inside the block. The routing switches are handled through the PRTGIO_PRTx_LUT_SELy and
SMARTIO_PRTx_DU_SEL registers. Refer to the registers TRM for details. The Smart I/O internal routing is shown in
Figure 22-10. In the figure, note that LUT7 to LUT4 operate on io_data/chip_data[7] to io_data/chip_data[4] whereas LUT3 to
LUT0 operate on io_data/chip_data[3] to io_data/chip_data[0].

http://www.cypress.com/trm220777

I/O System

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 259

Figure 22-10. Smart I/O Routing

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

LUT0

tr
0

_i
n

tr
1_

in
tr

2_
in

tr
_o

u
t

LUT1

tr
0_

in
tr

1_
in

tr
2

_i
n

tr
_o

u
t

LUT2

tr
0_

in
tr

1_
in

tr
2_

in

tr
_o

u
t

LUT3

tr
0_

in
tr

1
_i

n
tr

2_
in

tr
_o

u
t

LUT4

tr
0_

in
tr

1_
in

tr
2_

in

tr
_o

u
t

LUT5

tr
0

_i
n

tr
1

_i
n

tr
2

_i
n

tr
_o

u
t

LUT6

tr
0_

in
tr

1_
in

tr
2_

in

tr
_o

u
t

LUT7

tr
0_

in
tr

1_
in

tr
2_

in

tr
_o

u
t

Data Unit

tr
0_

in

tr
1_

in

tr
2_

in

tr
_o

u
t

8

8

8

8

SMARTIO_PRTx_DATA.DATA[7:0]

0x00

chip_data[7:0]

io_data[7:0]

d
at

a_
in

0

d
at

a_
in

1

Clock and
Reset

clk_smartio

clk_sys

clk_lf

io_data[7]
smartio_data[7]

chip_data[7]

io_data[6]
smartio_data[6]

chip_data[6]

io_data[5]
smartio_data[5]

chip_data[5]

io_data[4]
smartio_data[4]

chip_data[4]

io_data[3]
smartio_data[3]

chip_data[3]

io_data[2]
smartio_data[2]

chip_data[2]

io_data[1]
smartio_data[1]

chip_data[1]

io_data[0]
smartio_data[0]

chip_data[0]

rst_block_n

clk_block

smartio_data[7]
chip_data[7]

smartio_data[6]
chip_data[6]

smartio_data[5]
chip_data[5]

smartio_data[4]
chip_data[4]

smartio_data[3]
chip_data[3]

smartio_data[2]
chip_data[2]

smartio_data[1]
chip_data[1]

smartio_data[0]
chip_data[0]

1'b0
1'b1

clk_block

Various signals
8-bit wide data bus
Programmable Switch (ONLY ONE of the switches along a
vertical line can be closed at a time)

Closed switch connecting a bit of the 8-bit data bus

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 260

I/O System

22.9.4 Operation

The Smart I/O block should be configured and operated as follows:

1. Before enabling the block, all the components and routing should be configured as explained in “Block Components” on
page 251.

2. In addition to configuring the components and routing, some block level settings must be configured correctly for desired
operation.

a. Bypass control: The Smart I/O path can be bypassed for a particular GPIO signal by setting the BYPASS[i] bitfield in

the SMARTIO_PRTx_CTL register. When bit ‘i’ is set in the BYPASS[7:0] bitfield, the ith GPIO signal is bypassed to
the HSIOM signal path directly – Smart I/O logic will not be present in that signal path. This is useful when the Smart I/
O function is required only on select I/Os.

b. Pipelined trigger mode: The LUT input multiplexers and the LUT component itself do not include any combinatorial
loops. Similarly, the data unit also does not include any combinatorial loops. However, when one LUT interacts with
the other or to the data unit, inadvertent combinatorial loops are possible. To overcome this limitation, the
PIPELINE_EN bitfield of the SMARTIO_PRTx_CTL register is used. When set, all the outputs (LUT and DU) are
registered before branching out to other components.

3. After the Smart I/O block is configured for the desired functionality, the block can be enabled by setting the ENABLED
bitfield of the SMARTIO_PRTx_CTL register. If disabled, the Smart I/O block is put in bypass mode, where the GPIO
signals are directly controlled by the HSIOM signals and vice-versa. The Smart I/O block must be configured; that is, all
register settings must be updated before enabling the block to prevent glitches during register updates.

Table 22-9. Smart I/O Block Controls

Register [BIT_POS] Bit Name Description

SMARTIO_PRTx_CTL[25] PIPELINE_EN

Enable for pipeline register:

0: Disabled (register is bypassed).

1: Enabled

SMARTIO_PRTx_CTL[31] ENABLED

Enable Smart I/O. Should only be set to '1' when the Smart I/O is completely configured:

0: Disabled (signals are bypassed; behavior as if BYPASS[7:0] is 0xFF). When disabled,
the block (data unit and LUTs) reset is activated.

If the block is disabled:

- The PIPELINE_EN register field should be set to '1', to ensure low power consumption.

- The CLOCK_SRC register field should be set to 20 to 30 (clock is constant '0'), to ensure
low power consumption.

1: Enabled. When enabled, it takes three clk_block clock cycles until the block reset is de-
activated and the block becomes fully functional. This action ensures that the I/O pins'
input synchronizer states are flushed when the block is fully functional.

SMARTIO_PRTx_CTL[7:0] BYPASS[7:0]

Bypass of the Smart I/O, one bit for each I/O pin: BYPASS[i] is for I/O pin i. When
ENABLED is '1', this field is used. When ENABLED is '0', this field is not used and Smart I/
O is always bypassed.

0: No bypass (Smart I/O is present in the signal path)

1: Bypass (Smart I/O is absent in the signal path)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 261

I/O System

22.10 Registers

Note The ‘x’ in the GPIO register name denotes the port number. For example, GPIO_PTR1_OUT is the Port 1 output data
register.

Table 22-10. I/O Registers

Name Description

GPIO_PRTx_OUT Port output data register reads and writes the output driver data for I/O pins in the port.

GPIO_PRTx_OUT_CLR Port output data clear register clears output data of specific I/O pins in the port.

GPIO_PRTx_OUT_SET Port output data set register sets output data of specific I/O pins in the port.

GPIO_PRTx_OUT_INV Port output data invert register inverts output data of specific I/O pins in the port.

GPIO_PRTx_IN Port input state register reads the current pin state present on I/O pin inputs.

GPIO_PRTx_INTR Port interrupt status register reads the current pin interrupt state.

GPIO_PRTx_INTR_MASK
Port interrupt mask register configures the mask that forwards pin interrupts to the CPU’s
interrupt controller.

GPIO_PRTx_INTR_MASKED
Port interrupt masked status register reads the masked interrupt status forwarded to the CPU
interrupt controller.

GPIO_PRTx_INTR_SET Port interrupt set register allows firmware to set pin interrupts.

GPIO_PRTx_INTR_CFG Port interrupt configuration register selects the edge detection type for each pin interrupt.

GPIO_PRTx_CFG Port configuration register selects the drive mode and input buffer enable for each pin.

GPIO_PRTx_CFG_IN Port input buffer configuration register configures the input buffer mode for each pin.

GPIO_PRTx_CFG_OUT Port output buffer configuration register selects the output driver slew rate for each pin.

HSIOM_PORT_SELx
High-speed I/O Mux (HSIOM) port selection register selects the hardware peripheral connection
to I/O pins.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 262

23. Watchdog Timer

The watchdog timer (WDT) is a hardware timer that automatically resets the device in the event of an unexpected firmware
execution path. The WDT, if enabled, must be serviced periodically in firmware to avoid a reset. Otherwise, the timer elapses
and generates a device reset. In addition, the WDT can be used as an interrupt source or a wakeup source in low-power
modes.

The PSoC 6 MCU family includes one free-running WDT and two multi-counter WDTs (MCWDT). The WDT has a 16-bit
counter. Each MCWDT has two 16-bit counters and one 32-bit counter. Thus, the watchdog system has a total of seven
counters – five 16-bit and two 32-bit. All 16-bit counters can generate a watchdog device reset. All seven counters can
generate an interrupt on a match event.

23.1 Features

The PSoC 6 MCU WDT supports these features:

■ One 16-bit free-running WDT with:

❐ ILO as the input clock source

❐ Device reset generation if not serviced within a configurable interval

❐ Periodic Interrupt/wakeup generation in LP/ULP Active, LP/ULP Sleep, Deep Sleep, and Hibernate power modes

■ Two MCWDTs, each supporting:

❐ Device reset generation if not serviced within a configurable interval

❐ LFCLK (ILO , WCO, or PILO) as the input clock source

❐ Periodic interrupt/wake up generation in LP/ULP Active, LP/ULP Sleep, and Deep Sleep power modes (Hibernate
mode is not supported)

❐ Two 16-bit and one 32-bit independent counters, which can be configured as a single 64-bit or 48-bit (with one 16-bit
independent counter), or two 32-bit cascaded counters

23.2 Architecture

The PSoC 6 MCU supports 174 system interrupts. The interrupts are routed to both the CPU cores. In the case of CM4 only
the first 39 interrupts are routed to WIC while all 174 interrupts are routed to NVIC. The CM0 has access to only eight
interrupts of the maximum supported 32 interrupts. The 174 interrupt sources are multiplexed and at a time eight interrupt
sources can be connected to the CM0. The CPUSS_CM0_SYSTEM_INT_CTLx register decides which interrupts are
connected to the CM0. See the Interrupts chapter on page 55 for details on how to configure the interrupt for the free-running

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 263

Watchdog Timer

WDT/MCWDT to the required CPU. The free-running WDT/MCWDT resource must be used by one CPU only; it is not
intended for simultaneous use by both CPUs because of the complexity involved in coordination.

Figure 23-1. Watchdog Timer Block Diagram

23.3 Free-running WDT

23.3.1 Overview

Figure 23-2 shows the functional overview of the free-running WDT. The WDT has a free-running wraparound up-counter with
a maximum of 16-bit resolution. The counter is clocked by the ILO. The timer can generate an interrupt on match and a reset
event on the third unhandled interrupt. The number of bits used for a match comparison is configurable as depicted in
Figure 23-2.

Figure 23-2. Free-running WDT Functional Diagram

Free running watchdog
timer

Multi counter watchdog
timers (x2)

Device
Registers

Low
frequency

clock
(LFCLK)

Clock

CFG/STATUS

Reset

Interrupt

Clock

CFG/STATUS

Reset

Interrupt

2

2

WIC

Device
Reset

ILO

WDT (16-bit Counter)

WDT_CNT

ILO
2(16-WDT_MATCH.IGNORE_BITS*) -1

Bitwise AND

INTERRUPT

WDT_EN EN

SRSS_INTR.WDT_MATCH***

(Write 1 from Firmware)
Count = 0

++Count

Count == 3 RESET

Reset Generation
logic

Yes

Free-running WDT

== WDT_MATCH.MATCH **

* WDT_MATCH.IGNORE_BITS refer to value held by the bits[19:16] of the WDT_MATCH register.
** WDT_MATCH.MATCH refer to the value held by the bits[15:0] of the WDT_MATCH register.
*** SRSS_INTR.WDT_MATCH refers to the WDT_MATCH bit of the SRSS_INTR register.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 264

Watchdog Timer

When enabled, the WDT counts up on each rising edge of
the ILO. When the counter value (WDT_CNT register)
equals the match value stored in MATCH bits [15:0] of the
WDT_MATCH register, an interrupt is generated. The match
event does not reset the WDT counter and the WDT keeps
counting until it reaches the 16-bit boundary (65535) at
which point, it wraps around to 0 and counts up. The match
interrupt is generated every time the counter value equals
the match value.

The WDT_MATCH bit of the SRSS_INTR register is set
whenever a WDT match interrupt occurs. This interrupt must
be cleared by writing a ‘1’ to the same bit. Clearing the
interrupt resets the watchdog. If the firmware does not clear
the interrupt for two consecutive occasions, the third
interrupt generates a device reset.

In addition, the WDT provides an option to set the number of
bits to be used for comparison. The IGNORE_BITS (bits
[19:16] of the WDT_MATCH register) is used for this
purpose. These bits configure the number of MSbs to ignore
from the 16-bit count value while performing the match. For
instance, when the value of these bits equals 3, the MSb 3

bits are ignored while performing the match and the WDT
counter behaves similar to a 13-bit counter. Note that these
bits do not reduce the counter size – the WDT_CNT register
still counts from 0 to 65535 (16-bit).

The WDT can be enabled or disabled using the WDT_EN bit
[0] of the WDT_CTL register. The WDT_CTL register
provides a mechanism to lock the WDT configuration
registers. The WDT_LOCK bits [31:30] control the lock
status of the WDT registers. These bits are special bits,
which can enable the lock in a single write; to release the
lock, two different writes are required. The WDT_LOCK bits
protect the WDT_EN bit, WDT_MATCH register,
CLK_ILO_CONFIG register, and LFCLK_SEL bits [1:0] of
the CLK_SELECT register. Note that the WDT_LOCK bits
are not retained in Deep Sleep mode and reset to their
default (LOCK) state after a deep sleep wakeup. As a result,
to update any register protected by the WDT_LOCK bits
after a deep sleep wakeup, a WDT UNLOCK sequence
should be issued before the register update.

Table 23-1 explains various registers and bitfields used to
configure and use the WDT.

Table 23-1. Free-running WDT Configuration Options

Register [Bit_Pos] Bit_Name Description

WDT_CTL[0] WDT_EN

Enable or disable the watchdog reset

0: WDT reset disabled

1: WDT reset enabled

WDT_CTL[31:30] WDT_LOCK

Lock or unlock write access to the watchdog configuration and clock related registers. When
the bits are set, the lock is enabled.

0: No effect

1: Clear bit 0

2: Clear bit 1

3: Set both bit 0 and 1 (lock enabled)

WDT will lock on a reset. This field is not retained in Deep Sleep or Hibernate mode, so the
WDT will be locked after wakeup from these modes.

WDT_CNT[15:0] COUNTER Current value of WDT counter

WDT_MATCH[15:0] MATCH Match value to a generate watchdog match event

WDT_MATCH[19:16] IGNORE_BITS
Number of MSbs of the WDT_CNT register to ignore for comparison with the MATCH value.
Up to 12 MSbs can be ignored; settings above 12 act same as a setting of 12.

SRSS_INTR[0] WDT_MATCH

WDT interrupt request

This bit is set whenever a watchdog match event happens. The WDT interrupt is cleared by
writing a ‘1’ to this bit

SRSS_INTR_MASK[0] WDT_MATCH

Mask for the WDT interrupt

0: WDT interrupt is blocked

1: WDT interrupt is forwarded to CPU

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 265

Watchdog Timer

23.3.2 Watchdog Reset

A watchdog is typically used to protect the device against firmware/system crashes or faults. When the WDT is used to
protect against system crashes, the WDT interrupt bit should be cleared by a portion of the code that is not directly associated
with the WDT interrupt. Otherwise, even if the main function of the firmware crashes or is in an endless loop, the WDT
interrupt vector can still be intact and feed the WDT periodically. Note that when the debug probe is connected, the device
reset is blocked and an interrupt is generated instead.

The safest way to use the WDT against system crashes is to:

■ Configure the watchdog reset period such that firmware is able to reset the watchdog at least once during the period, even
along the longest firmware delay path. If both CM4 and CM0 are being used then, use the free-running WDT for one of the
CPU and one MCWDT for the other CPU to prevent firmware crashes on either core.

■ Reset (feed) the watchdog by clearing the interrupt bit regularly in the main body of the firmware code by writing a ‘1’ to
the WDT_MATCH bit in the SRSS_INTR register. Note that this does not reset the watchdog counter, it feeds only the
watchdog so that it does not cause a reset for the next two match events.

Do not reset the watchdog (clear interrupt) in the WDT interrupt service routine (ISR) if WDT is being used as a reset source
to protect the system against crashes. Therefore, do not use the WDT reset feature and ISR together.

The recommended steps to use WDT as a reset source are as follows:

1. Make sure the WDT configuration is unlocked by clearing the WDT_LOCK bits[31:30] of the WDT_CTL register. Note that
clearing the bits requires two writes to the register with each write clearing one bit as explained in Table 23-1.

2. Write the desired IGNORE_BITS in the WDT_MATCH register to set the counter resolution to be used for the match.

3. Write any match value to the WDT_MATCH register. The match value does not control the period of watchdog reset as
the counter is not reset on a match event. This value provides an option to control only the first interrupt interval, after that
the successive interrupts’ period is defined by the IGNORE_BITS. Approximate watchdog period (in seconds) is given by
the following equation:

Equation 23-1

4. Set the WDT_MATCH bit in the SRSS_INTR register to clear any pending WDT interrupt.

5. Enable ILO by setting the ENABLE bit [31] of the CLK_ILO_CONFIG register.

6. Enable the WDT by setting the WDT_EN bit in WDT_CTL register.

7. Lock the WDT and ILO configuration by writing ‘3’ to the WDT_LOCK bits. This also locks the LFCLK_SEL bits of the
CLK_SELECT register.

8. In the firmware, write ‘1’ to the WDT_MATCH bit in the SRSS_INT register to feed (clear interrupt) the watchdog.

23.3.3 Watchdog Interrupt

In addition to generating a device reset, the WDT can be used to generate interrupts. Note that interrupt servicing and
watchdog reset cannot be used simultaneously using the free-running WDT.

The watchdog counter can send interrupt requests to the CPU in CPU Active power modes and to the wakeup interrupt
controller (WIC) in CPU Sleep and Deep Sleep power modes. In addition, the watchdog is capable of waking up the device
from Hibernate power mode. It works as follows:

■ CPU Active Mode: In Active power mode, the WDT can send the interrupt to the CPU. The CPU acknowledges the
interrupt request and executes the ISR. Clear the interrupt in the ISR.

■ CPU Sleep or Deep Sleep Mode: In this mode, the CPU is powered down. Therefore, the interrupt request from the WDT
is directly sent to the WIC, which then wakes up the CPU. The CPU acknowledges the interrupt request and executes the
ISR. Clear the interrupt in the ISR.

■ Hibernate Mode: In this mode, the entire device except a few peripherals (such as WDT and LPCOMP) are powered
down. Any interrupt to wake up the device in this mode results in a device reset. Hence, there is no interrupt service
routine or mechanism associated with this mode.

For more details on device power modes, see the Device Power Modes chapter on page 204.

Watchdog reset period = ILOperiod 2 2 16 IGNORE_BITS–
WDT_MATCH+ 

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 266

Watchdog Timer

Because of its free-running nature, the WDT should not be used for periodic interrupt generation. Use the MCWDT instead;
see 23.4 Multi-Counter WDTs. The MCWDT counters can be used to generate periodic interrupts. If absolutely required,
follow these steps to use the WDT as a periodic interrupt generator:

1. Unlock the WDT if this is the first update to the WDT registers after a deep sleep or hibernate wakeup, or a device reset.

2. Write the desired IGNORE_BITS in the WDT_MATCH register to set the counter resolution to be used for the match.

3. Write the desired match value to the WDT_MATCH register.

4. Set the WDT_MATCH bit in the SRSS_INTR register to clear any pending WDT interrupt.

5. Enable the WDT interrupt to CPU by setting the WDT_MATCH bit in SRSS_INTR_MASK.

6. Enable SRSS interrupt to the CPU by configuring the appropriate ISER register (See the Interrupts chapter on page 55 for
details).

7. In the ISR, unlock the WDT; clear the WDT interrupt and add the desired match value to the existing match value. By
doing so, another interrupt is generated when the counter reaches the new match value (period).

23.4 Multi-Counter WDTs

23.4.1 Overview

Figure 23-3 shows the functional overview of a single multi-counter WDT block. The PSoC 6 MCU has two MCWDT blocks.
Each MCWDT block includes two 16-bit counters (MCWDTx_WDT0 and MCWDTx_WDT1) and one 32-bit counter
(MCWDTx_WDT2). These counters can be configured to work independently or in cascade (up to 64-bit). The 16-bit counters
can generate an interrupt or reset the device. The 32-bit counter can only generate an interrupt. All the counters are clocked
by LFCLK.

Note: Because the PSoC 6 MCU includes two CPUs (Cortex-M0+ and Cortex-M4), associate one MCWDT block to only one
CPU during runtime. Although both the MCWDT blocks are available for both CPUs, a single MCWDT is not intended to be
used by multiple CPUs simultaneously; however, a CPU can be associated with 0 or more MCWDTs.

Figure 23-3. Multi-Counter WDT Functional Diagram

LFCLK

MCWDTx_WDT0 (16-bit
Counter)

MCWDT_CTR0

MCWDTx_WDT1 (16-bit
Counter)

MCWDT_CTR1

MCWDTx_WDT2 (32-bit
Counter)

MCWDT_CTRHIGH

MCWDT_CTR0 ==
MCWDT_MATCH0

MCWDT_CTR1 ==
MCWDT_MATCH1

321616

MCWDT
Mode

Configuration
MCWDT_MODE0

2
MCWDT_MODE1

2

MCWDT
Mode

Configuration
MCWDT_MODE2

1

5
MCWDT_BITS2

MCWDT_CASCADE0_1 MCWDT_CASCADE1_2

MCWDT_INT1MCWDT_INT0 MCWDT_INT2RESET RESET

INTERRUPT

RESET

MCWDT
Mode

Configuration

Multi counter
WDT

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 267

Watchdog Timer

23.4.1.1 MCWDTx_WDT0 and MCWDTx_WDT1 Counters Operation

MCWDTx_WDT0 and MCWDTx_WDT1 are 16-bit up counters, which can be configured to be a 16-bit free-running counter
or a counter with any 16-bit period. These counters can be used to generate an interrupt or reset.

The WDT_CTR0 bits [15:0] and WDT_CTR1 bits [16:31] of the MCWDTx_CNTLOW register hold the current counter values
of MCWDTx_WDT0 and MCWDTx_WDT1 respectively. The WDT_MATCH0 bits [15:0] and WDT_MATCH1 bits [16:31] of the
MCWDTx_MATCH register store the match value for MCWDTx_WDT0 and MCWDTx_WDT1 respectively. The
WDT_MODEx bits of the MCWDTx_CONFIG register configure the action the watchdog counter takes on a match event
(WDT_MATCHx == WDT_CTRx). The MCWDTx_WDT0/WDT1 counters perform the following actions:

■ Assert interrupt (WDT_INTx) on match

■ Assert a device reset on match

■ Assert an interrupt on match and a device reset on the third unhandled interrupt

In addition to generating reset and interrupt, the match event can be configured to clear the corresponding counter. This is
done by setting the WDT_CLEARx bit of the MCWDTx_CONFIG register. MCWDTx_WDT0/WDT1 counter operation is
shown in Figure 23-4.

Figure 23-4. MCWDTx_WDT0/WDT1 Operation

Time

Time

Counts value

MCWDTx_WDT0/
WDT1 Match value

0xFFFF

MCWDTx_WDT0/WDT1
interrupt 1

MCWDTx_WDT0/WDT1
interrupt 2

MCWDTx_WDT0/WDT1
interrupt 3

MCWDTx_WDT0/WDT1
counters overflow

MCWDTx_WDT0/WDT1 operation with WDT_CLEARx bit = 0

Counts value

MCWDTx_WDT0/
WDT1 Match value

0xFFFF

MCWDTx_WDT0/WDT1
interrupt and WDT0

reset

MCWDTx_WDT0/WDT1 operation with WDT_CLEARx bit = 1

MCWDTx_WDT0/WDT1
counters overflow

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 268

Watchdog Timer

23.4.1.2 MCWDTx_WDT2 Counter Operation

The MCWDTx_WDT2 is a 32-bit free-running counter, which can be configured to generate an interrupt. The
MCWDTx_CNTHIGH register holds the current value of the MCWDTx_WDT2 counter. MCWDTx_WDT2 does not support a
match feature. However, it can be configured to generate an interrupt when one of the counter bits toggle. The WDT_BITS2
bits [28:24] of the MCWDTx_CONFIG register selects the bit on which the MCWDTx_WDT2 interrupt is asserted.
WDT_MODE2 bit [16] of the MCWDTx_CONFIG register decides whether to assert an interrupt on bit toggle or not.
Figure 23-5 shows the MCWDTx_WDT2 counter operation.

Figure 23-5. MCWDTx_WDT2 Operation

Table 23-2. MCWDTx_WDT0 and MCWDTx_WDT1 Configuration Options

Register [Bit_Pos] Bit_Name Description

MCWDTx_CONFIG[1:0]

MCWDTx_CONFIG[9:8]

WDT_MODE0

WDT_MODE1

WDT action on a match event (WDT_CTRx == WDT_MATCHx)

0: Do nothing

1: Assert interrupt (WDT_INTx)

2: Assert device reset

3: Assert interrupt on match and a device reset on the third unhandled interrupt

MCWDTx_CONFIG[2]

MCWDTx_CONFIG[10]

WDT_CLEAR0

WDT_CLEAR1

Clear the MCWDTx_WDT0/WDT1 counter on match. In other words, (WDT_-
MATCHx + 1) acts similar to a period for the MCWDTx_WDT0/WDT1 counter.

0: Free-running counter

1: Clear WDT_CTRx bits on match

MCWDTx_CNTLOW[15:0]

MCWDTx_CNTLOW[16:31]

WDT_CTR0

WDT_CTR1
Current counter values. Bits[15:0] contain the current value of the MCWDTx_WDT0
counter and bits[31:16] contain the current value of MCWDTx_WDT1 counter.

MCWDTx_MATCH[15:0]

MCWDTx_MATCH[16:31]

WDT_MATCH0

WDT_MATCH1

Match values

Changing WDT_MATCHx requires 1.5 LFCLK cycles to come into effect. After
changing WDT_MATCHx, do not enter the Deep Sleep mode for at least one LFCLK
cycle to ensure the WDT updates to the new setting.

MCWDTx_WDT2 Interrupt
WDT_BITS2 = 1

MCWDTx_WDT2 Interrupt
WDT_BITS2 = 2

Time

Counts value

0xFFFFFFFF

MCWDTx_WDT2 operation

MCWDTx_WDT2
counter period

0x0000 0002

0x0000 0000

0x0000 0004

0x0000 0005

0x0000 0003

0x0000 0006

0x0000 0008

0x0000 0009

0x0000 0007

0x0000 000A

0x0000 000B

0x0000 000D
0x0000 000C

0x0000 000E
0x0000 000F

0x0000 0010

MCWDTx_WDT2 Interrupt
WDT_BITS2 = 3

MCWDTx_WDT2 Interrupt
WDT_BITS2 = 4

0x0000 0001

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 269

Watchdog Timer

23.4.2 Enabling and Disabling WDT

The MCWDT counters are enabled by setting the WDT_ENABLEx bit in the MCWDTx_CTL register and are disabled by
clearing it. Enabling or disabling a MCWDT requires 1.5 LFCLK cycles to come into effect. Therefore, the WDT_ENABLEx bit
value must not be changed more than once in that period and the WDT_ENABLEDx bit of the MCWDTx_CTL register can be
used to monitor enabled/disabled state of the counter.

The WDT_RESETx bit of the MCWDTx_CTL register clears the corresponding MCWDTx counter when set in firmware. The
hardware clears the bit after the counter resets. This option is useful when the MCWDTx_WDT0 or MCWDTx_WDT1 is
configured to generate a device reset on a match event. In such cases, the device resets when the counter reaches the
match value. Thus, setting the WDT_RESET0 or WDT_RESET1 bit resets MCWDTx_WDT0 or MCWDTx_WDT1
respectively, preventing device reset.

After the MCWDT is enabled, do not write to the MCWDT configuration (MCWDTx_CONFIG) and control (MCWDTx_CTL)
registers. Accidental corruption of these registers can be prevented by setting the WDT_LOCK bits [31:30] of the
MCWDTx_CTL register. If the application requires updating the match value (WDT_MATCH) when the MCWDT is running,
the WDT_LOCK bits must be cleared. The WDT_LOCK bits require two different writes to clear both the bits. Writing a ‘1’ to
the bits clears bit 0. Writing a ‘2’ clears bit 1. Writing a ‘3’ sets both the bits and writing ‘0’ does not have any effect. Note that
the WDT_LOCK bits protects only MCWDTx_CTL (except the WDT_LOCK bits), MCWDTx_CONFIG, and MCWDTx_MATCH
registers. The LFCLK select registers are protected by the free-running WDT lock bits.

Note: When the watchdog counters are configured to generate an interrupt every LFCLK cycle, make sure you read the
MCWDTx_INTR register after clearing the watchdog interrupt (setting the WDT_INTx bit in the MCWDTx_INTR register).
Failure to do this may result in missing the next interrupt. Hence, the interrupt period becomes LFCLK/2.

Table 23-3. MCWDTx_WDT2 Configuration Options

Register [Bit_Pos] Bit_Name Description

MCWDTx_CONFIG[16] WDT_MODE2

MCWDTx_WDT2 mode

0: Free-running counter

1: Free-running counter with interrupt (WDT_INTx) request generation. The interrupts are
generated when the bit position specified in WDT_BITS2 toggles in the counter value held
by MCWDTx_CNTHIGH register.

MCWDTx_CONFIG[28:24] WDT_BITS2

Bit to monitor for MCWDTx_WDT2 interrupt assertion

0: Asserts when bit [0] of MCWDTx_CNTHIGH register toggles (interrupt every tick)

……

31: Asserts when bit [31] of MCWDTx_CNTHIGH register toggles (interrupt every 231 ticks)

MCWDTx_CNTHIGH[31:0] WDT_CTR2 Current counter value of MCWDTx_WDT2

Table 23-4. Watchdog Configuration Options

Register [Bit_Pos] Bit_Name Description

MCWDTx_CTL[0]

MCWDTx_CTL[8]

MCWDTx_CTL[16]

WDT_ENABLE0

WDT_ENABLE1

WDT_ENABLE2

Enable MCWDT counter x

0: Counter is disabled

1: Counter is enabled

MCWDTx_CTL[1]

MCWDTx_CTL[9]

MCWDTx_CTL[17]

WDT_ENABLED0

WDT_ENABLED1

WDT_ENABLED2

Indicates the actual enabled/disabled state of counter x. This bit should be monitored after
changing the WDT_ENABLEx bit, to receive an acknowledgment of the change

MCWDTx_CTL[3]

MCWDTx_CTL[11]

MCWDTx_CTL[19]

WDT_RESET0

WDT_RESET1

WDT_RESET2

Reset MCWDT counter x to 0. Hardware clears the bit when the reset is complete

0: Software - No action

1: Software - Resets the counter

MCWDTx_CTL[31:30] WDT_LOCK

Locks or unlocks write access to the MCWDTx_CTL (except the WDT_LOCK bits), MCWDTx-
_CONFIG, and MCWDTx_MATCH registers. When the bits are set, the lock is enabled.

0: No effect

1: Clears bit 0

2: Clears bit 1

3: Sets both bit 0 and 1 (lock enabled)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 270

Watchdog Timer

23.4.3 Watchdog Cascade Options

The cascade configuration shown in Figure 23-3 provides an option to increase the MCWDT counter resolution. The
WDT_CASCADE0_1 bit [3] of the MCWDTx_CONFIG register cascades MCWDTx_WDT0 and MCWDTx_WDT1 and the
WDT_CASCADE1_2 bit [11] of the MCWDTx_CONFIG register cascades MCWDTx_WDT1 and MCWDTx_WDT2. Note that
cascading two 16-bit counters does not provide a 32-bit counter; instead, you get a 16-bit period counter with a 16-bit
prescaler. For example, when cascading MCWDTx_WDT0 and MCWDTx_WDT1, MCWDTx_WDT0 acts as a prescaler for
MCWDTx_WDT1 and the prescaler value is defined by the WDT_MATCH0 bits [15:0] in the MCWDTx_MATCH register. The
MCWDTx_WDT1 has a period defined by WDT_MATCH1 bits [31:16] in the MCWDTx_MATCH register. The same logic
applies to MCWDTx_WDT1 and MCWDTx_WDT2 cascading.

When using cascade (WDT_CASCADE0_1 or WDT_CASCADE1_2 set), resetting the counters when the prescaler or lower
counter is at its match value with the counter configured to clear on match, results in the upper counter incrementing to 1
instead of remaining at 0. This behavior can be corrected by issuing a second reset to the upper counter after approximately
100 µs from the first reset. Note that the second reset is required only when the first reset is issued while the prescaler
counter value is at its match value. Figure 23-6 illustrates the behavior when MCWDTx_WDT0 and MCWDTx_WDT1 are
cascaded along with the second reset timing.

Figure 23-6. MCWDT Reset Behavior in Cascaded Mode

Table 23-5. Watchdog Cascade Options

Register [Bit_Pos] Bit_Name Description

MCWDTx_CONFIG[3] WDT_CASCADE0_1

Cascade MCWDTx_WDT0 and MCWDTx_WDT1

0: MCWDTx_WDT0 and MCWDTx_WDT1 are independent counters

1: MCWDTx_WDT1 increments two cycles after WDT_CTR0 == WDT_MATCH0

MCWDTx_CONFIG[11] WDT_CASCADE1_2

Cascade MCWDTx_WDT1 and MCWDTx_WDT2

0: MCWDTx_WDT1 and MCWDTx_WDT2 are independent counters

1: MCWDTx_WDT2 increments two cycles after WDT_CTR1 == WDT_MATCH1

0x001F 0x0020 0x0000 0x0001 0x0002 0x0003 0x0004 0x0005

0x0000 0x0001

First reset
issued to
both
counters

Counter
reset

Counter
increment

WDT_CTRx ==
WDT_MATCHx

LFCLK

WDT_RESET0

WDT_RESET1

WDT_CTR0

WDT_CTR1

Other settings:
WDT_CASCADE0_1 = 1
WDT_CLEAR0 = 1
WDT_MATCH0 = 0x0020

0x0000

Second reset to
correct the
behavior

~100 µs

Upper counter
reset (second)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 271

Watchdog Timer

In addition, the counters exhibit non-monotonicity in the
following cascaded conditions:

■ If WDT_CASCADE0_1 is set, then WDT_CTR1 does not
increment the cycle after WDT_CTR0 = WDT_MATCH0.

■ If WDT_CASCADE1_2 is set, then WDT_CTR2 does not
increment the cycle after WDT_CTR1 = WDT_MATCH1.

■ If both WDT_CASCADE0_1 and WDT_CASCADE1_2
are set, then WDT_CTR2 does not increment the cycle
after WDT_CTR1 = WDT_MATCH1 and WDT_CTR1
does not increment the cycle after WDT_CTR0 =
WDT_MATCH0.

When cascading is enabled, always read the WDT_CTR1 or
WDT_CTR2 counter value only when the prescaler counter
(WDT_CTR0 or WDT_CTR1) value is not 0. This makes
sure the upper counter is incremented after a match event in
the prescaler counter.

23.4.4 MCDWT Reset

MCWDTx_WDT0 and MCWDTx_WDT1 can be configured
to generate a device reset similar to the free-running WDT
reset. Note that when the debug probe is connected, the
device reset is blocked but an interrupt is generated if
configured. Follow these steps to use the MCWDTx_WDT0
or MCWDTx_WDT1 counter of a MCWDTx block to
generate a system reset:

1. Configure the MCWDT to generate a reset using the
WDT_MODEx bits in MCWDTx_CONFIG. Configure the
WDT_MODE0 or WDT_MODE1 bits in
MCWDTx_CONFIG to ‘2’ (reset on match) or ‘3’
(interrupt on match and reset on the third unhandled
interrupt).

2. Optionally, set the WDT_CLEAR0 or WDT_CLEAR1 bit
in the MCWDTx_CONFIG register for MCWDTx_WDT0
or MCWDTx_WDT1 to reset the corresponding
watchdog counter to ‘0’ on a match event. Otherwise,
the counters are free running. See Table 23-2 on
page 268 for details.

3. Calculate the watchdog reset period such that firmware
is able to reset the watchdog at least once during the
period, even along the longest firmware delay path. For
WDT_MODEx == 2, match value is same as the
watchdog period. For WDT_MODEx == 3, match value
is one-third of the watchdog period. Write the calculated
match value to the WDT_MATCH register for
MCWDTx_WDT0 or MCWDTx_WDT1. Optionally,
enable cascading to increase the interval. Note: The
legal value for the WDT_MATCH field is 1 to 65535.

4. For WDT_MODEx == 2, set the WDT_RESETx bit in the
MCWDTx_CONFIG register to reset the WDTx counter
to 0. For WDT_MODEx == 3, set the WDT_INTx bit in
MCWDTx_INTR to clear any pending interrupts.

5. Enable WDTx by setting the WDT_ENABLEx bit in the
MCWDTx_CTL register. Wait until the WDT_ENABLEDx
bit is set.

6. Lock the MCWDTx configuration by setting the
WDT_LOCK bits of the MCWDTx_CTL register.

7. In the firmware, feed (reset) the watchdog as explained
in step 4.

Do not reset watchdog in the WDT ISR. It is also not
recommended to use the same watchdog counter to
generate a system reset and interrupt. For example, if
MCWDTx_WDT0 is used to generate system reset against
crashes, then MCWDTx_WDT1 or MCWDTx_WDT2 should
be used for periodic interrupt generation.

23.4.5 MCWDT Interrupt

When configured to generate an interrupt, the WDT_INTx
bits of the MCWDTx_INTR register provide the status of any
pending watchdog interrupts. The firmware must clear the
interrupt by setting the WDT_INTx. The WDT_INTx bits of
the MCWDTx_INTR_MASK register mask the
corresponding WDTx interrupt of the MCWDTx block to the
CPU.

Follow these steps to use WDT as a periodic interrupt
generator:

1. Write the desired match value to the WDT_MATCH
register for MCWDTx_WDT0/WDT1 or the WDT_BITS2
value to the MCWDTx_CONFIG register for
MCWDTx_WDT2. Note: The legal value for the
WDT_MATCH field is 1 to 65535.

2. Configure the WDTx to generate an interrupt using the
WDT_MODEx bits in MCWDTx_CONFIG. Configure the
WDT_MODE0 or WDT_MODE1 bits in
MCWDTx_CONFIG for MCWDTx_WDT0 or
MCWDTx_WDT1 to ‘1’ (interrupt on match) or ‘3’
(interrupt on match and reset on third unhandled
interrupt). For MCWDTx_WDT2, set the WDT_MODE2
bit in the MCWDTx_CONFIG register.

3. Set the WDT_INT bit in MCWDTx_INTR to clear any
pending interrupt.

4. Set the WDT_CLEAR0 or WDT_CLEAR1 bit in the
MCWDTx_CONFIG register for MCWDTx_WDT0 or
MCWDTx_WDT1 to reset the corresponding watchdog
counter to ‘0’ on a match event.

5. Mask the WDTx interrupt to the CPU by setting the
WDT_INTx bit in the MCWDTx_INTR_MASK register

6. Enable WDTx by setting the WDT_ENABLEx bit in the
MCWDTx_CTL register. Wait until the WDT_ENABLEDx
bit is set.

7. Enable MCWDTx interrupt to the CPU by configuring the
appropriate ISER register. Refer to the
Interrupts chapter on page 55.

8. In the ISR, clear the WDTx interrupt by setting the
WDT_INTx bit in the MCWDTx_INTR register.

Note that interrupts from all three WDTx counters of the
MCWDT block are mapped as a single interrupt to the CPU.
In the interrupt service routine, the WDT_INTx bits of the

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 272

Watchdog Timer

MCWDTx_INTR register can be read to identify the interrupt
source. However, each MCWDT block has its own interrupt
to the CPU. For details on interrupts, see the
Interrupts chapter on page 55.

The MCWDT block can send interrupt requests to the CPU
in Active power mode and to the WIC in Sleep and Deep
Sleep power modes. It works similar to the free-running
WDT.

23.5 Reset Cause Detection

The RESET_WDT bit [0] in the RES_CAUSE register
indicates the reset generated by the free-running WDT. The
RESET_MCWDTx bit in the RES_CAUSE register indicates
the reset generated by the MCWDTx block. These bits
remain set until cleared or until a power-on reset (POR),
brownout reset (BOD), or external reset (XRES) occurs. All
other resets leave this bit unaltered.

For more details, see the Reset System chapter on
page 236.

23.6 Register List

Table 23-6. WDT Registers

Name Description

WDT_CTL Watchdog Counter Control Register

WDT_CNT Watchdog Counter Count Register

WDT_MATCH Watchdog Counter Match Register

MCWDTx_MCWDT_CNTLOW Multi-counter WDT Sub-counters 0/1

MCWDTx_MCWDT_CNTHIGH Multi-counter WDT Sub-counter 2

MCWDTx_MCWDT_MATCH Multi-counter WDT Counter Match Register for counters 0 and 1

MCWDTx_MCWDT_CONFIG Multi-counter WDT Counter Configuration, including bit toggle interrupt generation for counter 2

MCWDTx_MCWDT_CTL Multi-counter WDT Counter Control

MCWDTx_MCWDT_INTR Multi-counter WDT Counter Interrupt Register

MCWDTx_MCWDT_INTR_SET Multi-counter WDT Counter Interrupt Set Register

MCWDTx_MCWDT_INTR_MASK Multi-counter WDT Counter Interrupt Mask Register

MCWDTx_MCWDT_INTR_MASKED Multi-counter WDT Counter Interrupt Masked Register

CLK_SELECT Clock Selection Register

CLK_ILO_CONFIG ILO Configuration

SRSS_INTR SRSS Interrupt Register

SRSS_INTR_SET SRSS Interrupt Set Register

SRSS_INTR_MASK SRSS Interrupt Mask Register

SRSS_INTR_MASKED SRSS Interrupt Masked Register

RES_CAUSE Reset Cause Observation Register

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 273

24. Trigger Multiplexer Block

Every peripheral in the PSoC 6 MCU is interconnected using trigger signals. Trigger signals are means by which peripherals
denote an occurrence of an event or a state. These triggers are used as means to affect or initiate some action in other
peripherals. The trigger multiplexer block helps to route triggers from a source peripheral block to a destination.

24.1 Features
■ Ability to connect any trigger signal from one peripheral to another

■ Two-layer architecture with 15 trigger groups

■ Supports a software trigger, which can trigger any signal in the block

■ Ability to configure a trigger multiplexer with trigger manipulation features in hardware such as inversion and edge/level
detection

24.2 Architecture

The trigger signals in the PSoC 6 MCU are digital signals generated by peripheral blocks to denote a state such as FIFO
level, or an event such as the completion of an action. These trigger signals typically serve as initiator of other actions in other
peripheral blocks. An example is an ADC peripheral block sampling three channels. After the conversion is complete, a
trigger signal will be generated, which in turn triggers a DMA channel that transfers the ADC data to a memory buffer. This
example is shown in Figure 24-1.

Figure 24-1. Trigger Signal Example

A PSoC 6 MCU has multiple peripheral bocks; each of these blocks can be connected to other blocks through trigger signals,
based on the system implementation. To support this, the PSoC 6 MCU has hardware, which is a series of multiplexers used
to route the trigger signals from potential sources to destinations. This hardware is called the trigger multiplexer block. The
trigger multiplexer can connect to any trigger signal emanating out of any peripheral block in the PSoC 6 MCU and route it to
any other peripheral to initiate or affect an operation at the destination peripheral block.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

ADC

Ch1

Ch2

Ch3 EoC

DMA

Trigger signal

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 274

Trigger Multiplexer Block

24.2.1 Trigger Multiplexer Group

The trigger multiplexer block is implemented using several trigger multiplexers. A trigger multiplexer selects a signal from a
set of trigger output signals from different peripheral blocks to route it to a specific trigger input of another peripheral block.
The multiplexers are grouped into trigger groups. All the trigger multiplexers in a trigger group have similar input options and
are designed to feed similar destination signals. Hence the trigger group can be considered as a block that multiplexes
multiple inputs to multiple outputs. This concept is illustrated in Figure 24-2.

Figure 24-2. Trigger Multiplexer Groups

24.2.2 Trigger Multiplexer Block Architecture

Multiple trigger multiplexer groups in a device are combined to form the trigger multiplexer block. The trigger multiplexer block
is responsible for the entire trigger routing in the device. The trigger multiplexer block is architected into two layers. Each layer
is formed by a separate set of multiple trigger groups.

Figure 24-3 shows the architecture of the trigger multiplexer block in the PSoC 6 MCU. All the trigger signals coming from
different peripheral blocks in the device are routed to the trigger multiplexer inputs. The reduction multiplexer groups take care
of reducing these trigger multiplexer inputs to intermediate signals. These intermediate signals form as inputs to the
distribution multiplexer groups and are multiplexed into trigger multiplexer outputs, which are connected to different peripheral
blocks as their trigger inputs signals.

The reduction multiplexer group layer and the distribution multiplexer group layer are implemented using multiple trigger
multiplexer groups. Figure 24-3 illustrates a generic trigger multiplexer block implementation with a reduction multiplexer layer
of N trigger groups and a distribution multiplexer layer of M trigger groups.

Note: The triggers output into different peripherals, which may have more routing than is shown on the trigger routing
diagram. For more information on this routing, go to the trigger destination peripheral block.

In [0:N-1] Out [0:M-1]

In_1

In_(N-1)

Out_0

Out_1

Out_(M-1)

Trigger multiplexer group takes N
inputs and routes to M outputs

An equivalent implementation of
a trigger multiplexer group with N
inputs and M outputs

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 275

Trigger Multiplexer Block

Figure 24-3. Trigger Multiplexer Block Architecture

24.2.3 Trigger Multiplexer Routing

The use case of a trigger multiplexer block is to route trigger signals from a source peripheral signal to a destination
peripheral. To accomplish this, you must:

1. Identify the reduction trigger group and the distribution trigger group that will be used to accomplish the routing. The
trigger groups are typically numbered continuously. A consecutive set of trigger group numbers will represent all reduction
multiplexers and another set will represent the distribution multiplexers. See Table 24-2 for more details. The reduction
trigger multiplexer group can be identified based on the trigger input signal or from what peripheral block the trigger signal
is sourced. The distribution multiplexer group is determined based on the output or to what peripheral block the trigger
needs to be routed.

2. After the two groups are identified, identify the specific trigger multiplexer in the group that must be configured. To route a
signal from a source to the destination you should configure two trigger multiplexers, one from a reduction group and
another from a distribution group.

3. Configuring the trigger multiplexers is similar for both reduction and distribution multiplexers. All the multiplexers have the
same register structure. A group of registers in the format of PERI_TR_GR[X]_TR_OUT_CTL[Y], with X being the trigger
group and Y being the output trigger line number from the multiplexer, are associated with every trigger multiplexer in the
block. You can configure the input that is connected to the multiplexer’s output by configuring the TR_SEL bits in this
register. Some multiplexers also allow enabling trigger manipulation features such as inversion and edge/level detection.
For edge triggering, the signal is synchronized to the consumer block’s clock and a two-cycle pulse is generated on this
clock. If the multiplexer does not have trigger manipulation logic, it does not have a synchronizer. Trigger manipulation
can also be enabled in the PERI_TR_GROUP.TR_OUT_CTL register, associated with the trigger multiplexer. See
Table 24-1 for more information on the trigger multiplexer registers.

24.2.4 Software Triggers

All input and output signals to a trigger multiplexer can be triggered from software. This is accomplished by writing into the
PERI_TR_CMD register. This register allows you to trigger the corresponding signal for a number of peripheral clock cycles.

The PERI_TR_CMD[GROUP_SEL] bitfield selects the trigger group of the signal being activated. The
PERI_TR_CMD[OUT_SEL] bitfield determines whether the trigger signal is in output or input of the multiplexer.
PERI_TR_CMD[TR_SEL] selects the specific line in the trigger group.

The PERI_TR_CMD[COUNT] bitfield sets up the number of peripheral clocks the trigger will be activated.

Trigger Group 0

Trigger Group 1

Trigger Group N-1

Trigger Group N

Trigger Group N+1

Trigger Group N+M-1

Block_TR_OUT_TRIG_GRP0 [0:n]

Block_TR_OUT_TRIG_GRP1 [0:n]

Block_TR_OUT_TRIG_GRPN [0:n]

Block_TR_IN_TRIG_GRP0 [0:m]

Block_TR_IN_TRIG_GRP1 [0:m]

Block_TR_IN_TRIG_GRPN [0:m]

TR_OUT_TRIG_GRP0 [0:k]

TR_OUT_TRIG_GRP1 [0:k]

TR_OUT_TRIG_GRPN [0:k]

Trigger Multiplexer
Inputs

Trigger Multiplexer
Outputs

Intermediate
Signals

Reduction
Multiplexer Group

Distribution
Multiplexer Group

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 276

Trigger Multiplexer Block

The PERI_TR_CMD[ACTIVATE] bitfield is set to ‘1’ to activate the trigger line specified. Hardware resets this bit after the
trigger is deactivated after the number of cycles set by the PERI_TR_CMD[COUNT].

Trigger signals that are software triggered may have some implications. If the output of a distribution multiplexer is being
triggered, only the peripheral block trigger that the signal feeds is triggered. If an input of a reduction multiplexer is being
triggered, then all the peripheral routes that connect to this signal through the trigger multiplexer block will be triggered. You
should be aware of the routing that is being configured before deciding on the trigger signal. For distribution multiplexers,
each trigger group will have its own clock_source, which will be used for trigger_manipulation and for generating
software_trigger.

24.3 PSoC 6 MCU Trigger Multiplexer Block

The trigger multiplexer block architecture can vary between device families. Figure 24-4 illustrates the trigger multiplexer
block architecture of the PSoC 6 MCU. Note that there are reduction and distribution multiplexer groups in the architecture.
Trigger groups 0 to 8 are distribution multiplexer groups and trigger groups 9 to 14 are reduction multiplexer groups.
Table 24-2 provides a summary of all trigger groups and their usage.

This architecture has exceptions to the two-layer architecture such as the paths to USB burst-end signals and UDB
acknowledge signals. These signals require only one trigger multiplexer to be configured for routing.

24.4 Register List

Table 24-1. Register List

Register Name Description

PERI_TR_CMD
Trigger command register. The control enables software activation of a specific input trigger or
output trigger of the trigger multiplexer structure.

PERI_TR_GR[X]_TR_OUT_CTL[Y]

This register specifies the input trigger for a specific output trigger in a trigger group. It can
also invert the signal and specify if the output signal should be treated as a level-sensitive or
edge-sensitive trigger; only specific multiplexers can do this (see Table 24-2). Every trigger
multiplexer has a group of registers, the number of registers being equal to the output bus size
from the multiplexer. In the register format, X is the trigger group and Y is the output trigger
line number from the multiplexer.

Table 24-2. Trigger Groups in PSoC 6 MCUs

Trigger Group
Number

Type Description

0 Distribution Routes all intermediate signals to DMA0 triggers

1 Distribution Routes all intermediate signals to DMA1 triggers

2 Distribution Routes all intermediate signals to TCPWM group 0 triggers

3 Distribution Routes all intermediate signals to TCPWM group 1 triggers

4 Distribution Routes all intermediate signals to profiler start and stop triggers

5 Distribution Routes all intermediate signals to CPU subsystem triggers

6 Distribution Routes all intermediate signals to programmable analog subsystem triggers

7 Distribution

8 Distribution Routes all intermediate signals to HSIOM triggers

9 Reduction

10 Reduction Routes DMA signals to intermediate signals that feed all the distribution multiplexers

11 Reduction Routes TCPWM signals to intermediate signals that feed all the distribution multiplexers

12 Reduction Routes HSIOM signals to intermediate signals

13 Reduction Routes SCB, audio subsystem, SMIF signals to intermediate signals

14 Reduction Routes CPU subsystem, LPCOMP, SCB, and fault triggers from CPU subsystem to intermediate signals

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 277

Trigger Multiplexer Block

Figure 24-4. PSoC 6 MCU Trigger Multiplexer Block Architecture

Trigger Group 10

Trigger Group 9

Trigger Group 11

Trigger Group 13

Trigger Group 12

Trigger Group 14

Trigger Group 0

Trigger Group 1

Trigger Group 2

Trigger Group 3

Trigger Group 4

Trigger Group 5

Trigger Group 6

Trigger Group 7

Trigger Group 8

USB
DMA Burstend[0:7]

UDB
Tr_dw_ack[0:7]8

8

8

16

2

8

16

2

8

8

8
16

2

16
8

8
16

2

16
8

8
16

8
2

8

8
16
8
2
8

8
16
8
2
8

8
16
8
2
8

8
16
8
2
8

8
16
8
2
8

8
16
8
2
8

DW0
Tr_out[0:15]

DW1
Tr_out[0:15]

TCPWM0[32bit]
Tr_underflow[0:7]
Tr_overflow[0:7]
Tr_compare_match[0:7]

TCPWM1[16bit]
Tr_underflow[0:23]
Tr_overflow[0:23]
Tr_compare_match[0:23]

HSIOM

SCB
Tr_tx_req[0:8]
Tr_rx_req[0:8]

AUDIOSS
Tr_pdm_rx_req
Tr_i2s_tx_req
Tr_i2s_rx_req

SMIF
Tr_tx_req
Tr_rx_req

USB
Dma_req[0:7]

UDB
Tr_udb[0:15]
Dsi_out_tr[0:1]

CPUSS_CTI
Tr_out[0:1]

PASS
Tr_sar_out
Tr_ctdac_empty
Dsi_ctb_cmp0
Dsi_ctb_cmp1

LPCOMP
Dsi_comp[0:1]

SCB
Tr_i2c_scl_filtered[0:8]

CPUSS
Tr_fault[0:1]

DW0
Tr_in[0:15]

DW1
Tr_in[0:15]

TCPWM0[32bit]
Tr_in[0:13]

TCPWM1[16bit]
Tr_in[0:13]

PROFILE
Tr_start[0]
Tr_stop[1]

CPUSS.CTI
Tr_in[0:1]

PASS
Tr_sar_in[0]

UDB
Tr_in[0:1]

HSIOM
Peri_tr_io_output[0:1]

16

16

14

14

2

2

1

2

2

[1:16]

[17:32]

[1:16]

[17:32]

[1:24]

[25:96]

[1:28]

[1:18]

[19:21]

[22:23]

[24:31]

[1:18]

[19:20]

[21:24]

[25:26]

[27:35]

[36:37]

[0:7]

[8:15]

[0:15]

[16:17]

[8:9]

[0:7]

[0:15]

[0:7]

[1:8]
[9:24]

[25:26]

[27:42]
[43:50]

[1:8]
[9:24]

[25:26]

[27:42]
[43:50]

[1:8]
[9:24]

[25:32]

[33:34]

[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

[1:8]
[9:24]

[25:32]
[33:34]
[35:42]

Peri.tr_io_input[0:27]

1

1

1

1

1

1

1

1

1

SW Input
Cpuss.zero[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

CSD
Tr_adc_done
Dsi_sense_out

[32:33]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 278

25. Profiler

The PSoC 6 MCU Profiler provides counters that can measure duration or number of events of a particular peripheral.
Functions such as DMA transfers or buffered serial communications can happen asynchronously, and are not directly tied to
the CPU or code execution. The profiler provides additional insight into the device so you can identify an asynchronous
activity that could not be monitored previously.

The profiler manages a set of counters. You configure an available counter to monitor a particular source. Depending on the
nature of the source, you count either duration (reference clock cycles) or the number of events.

The ability to monitor specific peripherals enables you to understand and optimize asynchronous hardware, including:

■ Identify the activity of a particular peripheral

■ Identify asynchronous activity

25.1 Features

The profiler has these features and capabilities:

■ A variety of sources you can monitor (see Table 25-1)

■ Support for eight counters, to monitor up to eight sources simultaneously

■ For each counter you specify:

❐ what source to monitor (can be changed dynamically if required)

❐ what to measure (duration or events)

❐ what reference clock to use for the count (only affects duration)

■ Provides ability to easily detect active peripherals that may be difficult to measure by external monitoring

■ Provides an absolute count of events or reference clock cycles for each monitored source

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 279

Profiler

25.2 Architecture
Figure 25-1. Profiler Block Diagram

The profiler supports up to 32 counters. The actual number of counters is hardware dependent. This device supports up to
eight counters.

25.2.1 Profiler Design

With the profiler you can monitor:

■ Peripherals that operate asynchronously to software

■ CPU activity

This includes flash access, DMA, and other processes. See Available Monitoring Sources on page 280.

You can measure total energy consumption directly using external hardware. The profiler can monitor internal hardware with
no external probe or measuring device.

The profiler counts either the amount of time that a source is active (duration) or the number of events that occur. The profiler
does not report the actual amount of energy consumed.

Your application may use a system resource or peripheral that is not among the profiler sources. A complete understanding of
your application’s energy consumption requires that you profile those parts of your code that use those other systems. For
example, you could determine the time the peripheral is in use, and then derive energy use based on power consumption
data from the data sheet, or external power monitoring.

All counters that are in use start and stop at the same time. The time between start and stop is called the profiling window, or
the profiling session. During the profiling session, each counter increments at its own rate based on the monitored signal and
(if measuring duration) the selected reference clock. See Start and Stop Profiling on page 282.

Before starting a profiling session, configure the counters you want to use. See Configure and Enable a Counter on page 282.

You can get interim results during a profiling session, or final results after you stop profiling. See Get the Results on page 283.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 280

Profiler

25.2.2 Available Monitoring Sources

You specify which source a counter monitors. The available sources vary per device series. You can find constants in a
header file named <series>_config.h (part of the Peripheral Driver Library). For example, Table 25-1 lists the sources in
psoc63_config.h.

25.2.3 Reference Clocks

Each monitored source has its own clock reference, called the sample clock. Table 25-2 lists the six choices for the sample
clock. You may use one of two CLK_PROFILE sources, or one of four CLK_REF sources.

The counter units of the profiler are clocked using either CLK_HF or CLK_PERI as CLK_PROFILE. You configure CLK_HF in
system resources and CLK_PERI in the CPU subsystem. See Clocking System chapter on page 221 for details on clocks. In
addition, there are four available reference clocks: CLK_TIMER, CLK_IMO, CLK_ECO, and CLK_LF. Any of the six clock
sources can be used as the sample clock.

If you measure events, the sample clock is selected automatically to be either CLK_HF or CLK_PERI depending on the
monitored source. The count represents the number of events that occurred during the profiling session. The profiler counts
the edges of the monitored signal, using either CLK_HF or CLK_PERI to detect edges.

If you measure duration, you specify the sample clock from one of the six choices listed in Table 25-2. When you measure
duration, while the monitored source is active, the counter increments at each cycle of the sample clock. The profiler
synchronizes reference clocks with CLK_PROFILE. As a result the four available reference clocks cannot exceed
CLK_PROFILE/2.

Table 25-1. Available Signals to Monitor

Value Symbol Count Description

0 PROFILE_ONE Duration Constant One

1 CPUSS_MONITOR_CM0 Events CM0+ active cycle count

2 CPUSS_MONITOR_CM4 Events CM4 active cycle count

3 CPUSS_MONITOR_FLASH Events Flash read count

4 CPUSS_MONITOR_DW0_AHB Events DW0 AHB transfer count (DMA transfer)

5 CPUSS_MONITOR_DW1_AHB Events DW1 AHB transfer count (DMA transfer)

6 CPUSS_MONITOR_CRYPTO Events Crypto memory access count

7 USB_MONITOR_AHB Events USB AHB transfer count

8 SCB0_MONITOR_AHB Events SCB 0 AHB transfer count

9 SCB1_MONITOR_AHB Events SCB 1 AHB transfer count

10 SCB2_MONITOR_AHB Events SCB 2 AHB transfer count

11 SCB3_MONITOR_AHB Events SCB 3 AHB transfer count

12 SCB4_MONITOR_AHB Events SCB 4 AHB transfer count

13 SCB5_MONITOR_AHB Events SCB 5 AHB transfer count

14 SCB6_MONITOR_AHB Events SCB 6 AHB transfer count

15 SCB7_MONITOR_AHB Events SCB 7 AHB transfer count

16 SCB8_MONITOR_AHB Events SCB 8 AHB transfer count

17–20 Reserved

21 SMIF_MONITOR_SMIF_SPI_SELECT0 Duration SPI select to memory 0 active

22 SMIF_MONITOR_SMIF_SPI_SELECT1 Duration SPI select to memory 1 active

23 SMIF_MONITOR_SMIF_SPI_SELECT2 Duration SPI select to memory 2 active

24 SMIF_MONITOR_SMIF_SPI_SELECT3 Duration SPI select to memory 3 active

25 SMIF_MONITOR_SMIF_SPI_SELECT_ANY Duration SPI select to any of the memories 0-3 active

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__energy__profiler.html

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 281

Profiler

To measure duration accurately, the sample clock should have a stable frequency throughout the profiling session. If your
application remains in active power states, you can use CLK_HF as the sample clock. CLK_HF gives you the greatest
resolution in your results.

The profiler can be enabled in CPU Active and Sleep modes. However, clock frequencies can change based on the power
state of the application. The source clock frequency should be stable throughout the profiling session to ensure reliable data.

High-frequency clocks are not available in System Deep Sleep and Hibernate power modes, so the profiler is disabled. The
configuration registers maintain state through Deep Sleep. Profiler data is lost (registers are not maintained) in Hibernate
mode. See the Device Power Modes chapter on page 204.

25.3 Using the Profiler

This section describes the steps required to use the profiler effectively. To use the profiler, you add instrumentation code to
your application, to set or read values in particular registers. See the registers TRM for details.

At the highest level you perform these tasks:

■ Enable the profiling block

■ Configure and enable counters

■ Start and stop profiling

■ Handle counter overflow

■ Get the results

■ Exit gracefully

You can monitor as many sources as there are available counters. The actual number of available counters is hardware
dependent. The value is defined in the symbol PROFILE_PRFL_CNT_NR in the <series>_config.h file. For example, the
psoc63_config.h file defines this value as ‘8’.

Instead of manipulating registers directly, you can use the Peripheral Driver Library (PDL). The PDL provides a software API
to manage the profiler and an interrupt to handle counter overflow. The software driver maintains an array of data for each
counter, including the source you want to monitor, whether you are monitoring duration or events, the reference clock, and an
overflow count for each counter. It provides function calls to configure and enable a counter, start and stop a profiling session,
and calculate the results for each counter. The PDL API handles all register and bit access.

Refer to the PDL API Reference for more information. The PDL installer puts the documentation here:
<PDL directory>\doc\pdl_api_reference_manual.html

25.3.1 Enable or Disable the Profiler

Before performing any operations, enable the profiling block. See Table 25-3. This does not enable individual counters or start
a profiling session.

Table 25-2. Available Sample Clock Sources for the Profiler

Value Clock Source Symbol Clock Type

0 Timer CLK_TIMER CLK_REF

1 Internal main oscillator CLK_IMO CLK_REF

2 External crystal oscillator CLK_ECO CLK_REF

3 Low frequency clock CLK_LF CLK_REF

4 High-frequency clock CLK_HF CLK_PROFILE

5 Peripheral clock CLK_PERI CLK_PROFILE

Table 25-3. Enabling the Profiler

Task Register Bitfield Value

Enable the profiler PROFILE_CTL ENABLED 0 = disabled; 1 = enabled

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 282

Profiler

25.3.2 Configure and Enable a Counter

Each counter has a PROFILE_CTL register that holds configuration information. For each counter you specify:

■ The source you want to monitor

■ What you want to measure (events or duration)

■ The reference clock for the counter (affects only duration)

You also enable each counter individually. Only the enabled counters will start when START_TR is set to one. See Table 25-4.

The count value is a 32-bit register. If that is not a sufficiently large number for your purposes, you must also enable the
profiling interrupt for the counter. See Handle Counter Overflow on page 282.

When gathering data, you may want to know the actual number of clock cycles that occurred during the profiling session. To
get this number, configure a counter to use:

■ PROFILE_ONE as the monitored source

■ duration (not events)

■ a reference clock

The count for that counter is the actual number of reference clock cycles that occurred during the profiling session.

25.3.3 Start and Stop Profiling

After configuring and enabling the counters you want to use, you can start and stop a profiling session. You may wish to
ensure that all counters are set to zero before beginning the profiling session. The PROFILE_CMD register applies to all
counters, meaning that all enabled counters will be started at the same time. See Table 25-5.

By design, all counters that are in use start and stop simultaneously. During the profiling session, each counter increments at
its own rate based on the monitored signal and (if measuring duration) the reference clock.

25.3.4 Handle Counter Overflow

Each profiling counter is a 32-bit number. If this is not sufficient for your purposes, then you must handle counter overflow. To
do so you must:

■ Enable the profiling interrupt for the particular counter

■ Provide an interrupt handler

For example, your interrupt handler could maintain an overflow counter for each profiling counter. See the Interrupts chapter
on page 55 for details about interrupts.

Counter overflow involves the interaction of three registers, INTR, INTR_MASK, and INTR_MASKED. Each of these registers
has one bit per profiling counter.

Table 25-4. Configuring and Enabling a Counter

Task Register Bitfield Value

Specify source PROFILE_CTL MON_SEL Table 25-1 on page 280

Specify events or duration PROFILE_CTL CNT_DURATION 0 = events; 1 = duration. See Table 25-1 on page 280

Specify the reference clock PROFILE_CTL REF_CLK_SEL Table 25-2 on page 281

Enable the counter PROFILE_CTL ENABLED 0 = disabled; 1 = enabled

Table 25-5. Starting or Stopping a Profiling Session

Task Register Bitfield Value

Clear all counters PROFILE_CMD CLEAR_ALL_CNT 1 = reset all counters to zero

Start profiling PROFILE_CMD START_TR 1 = start profiling

Stop profiling PROFILE_CMD STOP_TR 1 = stop profiling

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 283

Profiler

When an overflow occurs for a particular counter, hardware sets the corresponding bit in the INTR register. You typically do
not read this register.

To enable the profiling interrupt for a particular counter, set the corresponding bit in the INTR_MASK register.

When an interrupt occurs, your interrupt handler reads the bits in the INTR_MASKED register. This register reflects a bitwise
AND between the INTR register (an overflow interrupt has occurred for a particular counter) and the INTR_MASK register
(this counter has the interrupt enabled). When a bit is set in the INTR_MASKED register, the corresponding counter is
enabled and has experienced an overflow.

You can artificially trigger an overflow interrupt to test your code. The INTR_SET register also has one bit per counter. For
debug purposes, software can set the appropriate bit to activate a specific overflow interrupt. This enables debug of the
interrupt without waiting for hardware to cause the interrupt.

25.3.5 Get the Results

For each of your enabled counters, read the counter value in the CNT register for that counter. This is your absolute count. If
you are tracking counter overflow, then the absolute count is 0x1 0000 0000 * overflow count + counter value.

The common use case is to get results after you stop profiling. However, you can get a snapshot of the results without
stopping the profiler. In this case, however, the profiler is still counting and the results are changing as you gather the data.

After completing a profiling session, you may wish to repeat the same profile. Clear all counters to zero, and then start and
stop profiling. See Start and Stop Profiling on page 282. If you are handling counter overflow, set your overflow counters to
zero as well.

You can also reconfigure any or all counters to gather different data. See Configure and Enable a Counter on page 282.
Reconfigure the profiler, and start another profiling session.

25.3.6 Exit Gracefully

When finished, you should disable the profiler. To do this make sure that you:

■ Stop profiling (see Start and Stop Profiling on page 282)

■ Clear any profiling configuration (see Configure and Enable a Counter on page 282)

■ Disable the profiling interrupt if you have set it up (see Handle Counter Overflow on page 282)

■ Disable the profiler itself (see Enable or Disable the Profiler on page 281)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 284

Section D: Digital Subsystem

This section encompasses the following chapters:

■ Serial Communications Block (SCB) chapter on page 286

■ Serial Memory Interface (SMIF) chapter on page 343

■ Timer, Counter, and PWM (TCPWM) chapter on page 360

■ Inter-IC Sound Bus chapter on page 397

■ PDM-PCM Converter chapter on page 409

■ Universal Serial Bus (USB) Device Mode chapter on page 418

■ Universal Serial Bus (USB) Host chapter on page 434

■ LCD Direct Drive chapter on page 451

■ Universal Digital Blocks (UDB) chapter on page 464

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 285

Digital Subsystem

Top Level Architecture

Figure D-1. Digital System Block Diagram

System
Hibernate Mode

Backup
Domain

System
DeepSleep Mode

System LP/ULP Mode
CPUs Active/Sleep

Color Key:
Power Modes and

Domains

Audio Subsystem

SCB

Programmable Digital: 12x UDB

D
S

I

I/O
 S

u
b

sy
s

te
m

:
U

p
to

 1
0

0
G

P
IO

s
(i

nc
lu

d
in

g
6

O
V

T)
, 1

24
-B

G
A

 P
ac

ka
ge

B
ou

nd
ar

y
S

ca
n

2x
 S

m
ar

t I
/O

 P
or

ts

USB
PHY

S
ys

te
m

 In
te

rc
on

n
ec

t (
M

ul
ti

La
ye

r
A

H
B

, I
P

C
, M

P
U

/S
M

P
U

)

P
er

ip
he

ra
l I

nt
e

rc
on

ne
ct

 (M
M

IO
, P

P
U

)
P

er
ip

he
ra

l c
lo

ck
 (P

C
LK

)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 286

26. Serial Communications Block (SCB)

The Serial Communications Block (SCB) supports three serial communication protocols: Serial Peripheral Interface (SPI),
Universal Asynchronous Receiver Transmitter (UART), and Inter Integrated Circuit (I2C or IIC). Only one of the protocols is
supported by an SCB at any given time. The number of SCBs in a PSoC 6 MCU varies by part number; consult the device
datasheet to determine number of SCBs and the SCB pin locations. Not all SCBs support all three modes (SPI, UART, and
I2C); consult the device datasheet to determine which modes are supported by which SCBs. Not all SCBs operate in deep
sleep, consult the device datasheet to determine which SCBs operate in deep sleep.

26.1 Features

The SCB supports the following features:

■ Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor protocols

■ Standard UART functionality with SmartCard reader, Local Interconnect Network (LIN), and IrDA protocols

❐ Standard LIN slave functionality with LIN v1.3 and LIN v2.1/2.2 specification compliance

■ Standard I2C master and slave functionality

■ Trigger outputs for connection to DMA

■ Multiple interrupt sources to indicate status of FIFOs and transfers

■ Features available only on Deep Sleep-capable SCB:

❐ EZ mode for SPI and I2C slaves; allows for operation without CPU intervention

❐ CMD_RESP mode for SPI and I2C slaves; allows for operation without CPU intervention

❐ Low-power (Deep Sleep) mode of operation for SPI and I2C slaves (using external clocking)

❐ Deep Sleep wakeup on I2C slave address match or SPI slave selection

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 287

Serial Communications Block (SCB)

26.2 Architecture

The operation modes supported by SCB are described in
the following sections.

26.2.1 Buffer Modes

Each SCB has 256 bytes of dedicated RAM for transmit and
receive operation. This RAM can be configured in three
different modes (FIFO, EZ, or CMD_RESP). The following
sections give a high-level overview of each mode. The
sections on each protocol will provide more details.

■ Masters can only use FIFO mode

■ I2C and SPI slaves can use all three modes. Note: EZ
Mode and CMD Response Mode are available only on
the Deep Sleep-capable SCB

■ UART only uses FIFO mode

Note: This document discusses hardware implementation of
the EZ mode; for the firmware implementation, see the PDL.

26.2.1.1 FIFO Mode

In this mode the RAM is split into two 128-byte FIFOs, one
for transmit (TX) and one for receive (RX). The FIFOs can
be configured to be 8 bits x 128 elements or 16 bits x 64
elements; this is done by setting the BYTE_MODE bit in the
SCB control register.

FIFO mode of operation is available only in Active and Sleep
power modes. However, the I2C address or SPI slave select
can be used to wake the device from Deep Sleep on the
Deep Sleep-capable SCB.

Statuses are provided for both the RX and TX FIFOs. There
are multiple interrupt sources available, which indicate the
status of the FIFOs, such as full or empty; see “SCB
Interrupts” on page 334.

26.2.1.2 EZ Mode

In easy (EZ) mode the RAM is used as a single 256-byte
buffer. The external master sets a base address and reads
and writes start from that base address.

EZ Mode is available only for SPI slave and I2C slave. It is
available only on the Deep Sleep capable SCB.

EZ mode is available in Active, Sleep, and Deep Sleep
power modes.

Note: This document discusses hardware implementation of
the EZ mode; for the firmware implementation, see the PDL.

26.2.1.3 CMD_RESP Mode

Command Response (CMD_RESP) mode is similar to EZ
mode except that the base address is provided by the CPU
not the external master.

CMD_RESP mode is available only for SPI slave and I2C
slave. It is available only on the Deep Sleep-capable SCB.

CMD_RESP mode operation is available in Active, Sleep,
and Deep Sleep power modes.

26.2.2 Clocking Modes

The SCB can be clocked either by an internal clock provided
by the peripheral clock dividers (referred to as clk_scb in this
document), or it can be clocked by the external master.

■ UART, SPI master, and I2C master modes must use
clk_scb.

■ Only SPI slave and I2C slave can use the clock from and
external master, and only the Deep Sleep capable SCB
supports this.

Internally- and externally-clocked slave functionality is
determined by two register fields of the SCB CTRL register:

■ EC_AM_MODE indicates whether SPI slave selection or
I2C address matching is internally (‘0’) or externally (‘1’)
clocked.

■ EC_OP_MODE indicates whether the rest of the
protocol operation (besides SPI slave selection and I2C
address matching) is internally (‘0’) or externally (‘1’)
clocked.

Notes:

■ FIFO mode supports an internally- or externally-clocked
address match (EC_AM_MODE is ‘0’ or ‘1’); however,
data transfer must be done with internal clocking.
(EC_OP_MODE is ‘1’).

■ EZ and CMD_RESP modes are supported with
externally clocked operation (EC_OP_MODE is ‘1’).

Table 26-1 provides an overview of the clocking and buffer
modes supported for each communication mode.

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__scb.html
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__scb.html

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 288

Serial Communications Block (SCB)

26.3 Serial Peripheral Interface (SPI)

The SPI protocol is a synchronous serial interface protocol. Devices operate in either master or slave mode. The master
initiates the data transfer. The SCB supports single-master-multiple-slaves topology for SPI. Multiple slaves are supported
with individual slave select lines.

26.3.1 Features

■ Supports master and slave functionality

■ Supports three types of SPI protocols:

❐ Motorola SPI – modes 0, 1, 2, and 3

❐ Texas Instruments SPI, with coinciding and preceding data frame indicator – mode 1 only

❐ National Semiconductor (MicroWire) SPI – mode 0 only

■ Master supports up to four slave select lines

❐ Each slave select has configurable active polarity (high or low)

❐ Slave select can be programmed to stay active for a whole transfer, or just for each byte

■ Master supports late sampling for better timing margin

■ Master supports continuous SPI clock

■ Data frame size programmable from 4 bits to 16 bits

■ Programmable oversampling

■ MSb or LSb first

■ Median filter available for inputs (when using the median filter, the minimum oversample factor is increased)

■ Supports FIFO Mode

■ Supports EZ Mode (slave only) and CMD_RESP mode (slave only) on the Deep Sleep-capable SCB

Table 26-1. Clock Mode Compatibility

Internally clocked (IC)
Externally clocked (EC)
(Deep Sleep SCB only)

FIFO EZ CMD_RESP FIFO EZ CMD_RESP

I2C master Yes No No No No No

I2C slave Yes Yes No Yesa Yes Yes

I2C master-slave Yes No No No No No

SPI master Yes No No No No No

SPI slave Yes Yes No Yesb Yes Yes

UART transmitter Yes No No No No No

UART receiver Yes No No No No No

a. In Deep Sleep mode the external-clocked logic can handle slave address matching, it then triggers an interrupt to wake up the CPU. The slave can be
programmed to stretch the clock, or NACK until internal logic takes over. This applies only to the Deep Sleep-capable SCB.

b. In Deep Sleep mode the external-clocked logic can handle slave selection detection, it then triggers an interrupt to wake up the CPU. Writes will be ignored
and reads will return 0xFF until internal logic takes over. This applies only to the Deep Sleep-capable SCB.

Table 26-2. Clock Configuration and Mode support

Mode
EC_AM_MODE is '0';
EC_OP_MODE is ‘0’

'EC_AM_MODE is '1';
EC_OP_MODE is '0’

'EC_AM_MODE is '1';
EC_OP_MODE is '1'

FIFO mode Yes Yes No

EZ mode Yes Yes Yes

CMD_RESP mode No No Yes

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 289

Serial Communications Block (SCB)

26.3.2 General Description

Figure 26-1 illustrates an example of SPI master with four slaves.

Figure 26-1. SPI Example

A standard SPI interface consists of four signals as follows.

■ SCLK: Serial clock (clock output from the master, input to the slave).

■ MOSI: Master-out-slave-in (data output from the master, input to the slave).

■ MISO: Master-in-slave-out (data input to the master, output from the slave).

■ Slave Select (SS): Typically an active low signal (output from the master, input to the slave).

A simple SPI data transfer involves the following: the master selects a slave by driving its SS line, then it drives data on the
MOSI line and a clock on the SCLK line. The slave uses either of the edges of SCLK depending on the configuration to
capture the data on the MOSI line; it also drives data on the MISO line, which is captured by the master.

26.3.2.1 Transfer Separation

This parameter determines if individual data transfers are separated by slave select deselection, which is controlled by
SCB_SPI_CTRL.SSEL_CONTINUOUS (only applicable for Master mode):

■ Continuous – The slave select line is held in active state until the end of transfer (default).

The master assigns the slave select output after data has been written into the TX FIFO and keeps it active as long as
there are data elements to transmit. The slave select output becomes inactive when all data elements have been transmit-
ted from the TX FIFO and shifter register.

Note: This can happen even in the middle of the transfer if the TX FIFO is not loaded fast enough by the CPU or DMA. To
overcome this behavior, the slave select can be controlled by firmware.

■ Separated – Every data frame 4-16 bits is separated by slave select line deselection by one SCLK period.

By default, the SPI interface supports a data frame size of eight bits (1 byte). The data frame size can be configured to any
value in the range 4 to 16 bits. The serial data can be transmitted either most significant bit (MSb) first or least significant bit
(LSb) first.

SPI
Master

SPI
Slave 1

SPI
Slave 2

SPI
Slave 4

SCLK

MOSI

MISO

Slave Select (SS) 2

Slave Select (SS) 4

SPI
Slave 3

Slave Select (SS) 3

Slave Select (SS) 1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 290

Serial Communications Block (SCB)

Three different variants of the SPI protocol are supported by the SCB:

■ Motorola SPI: This is the original SPI protocol.

■ Texas Instruments SPI: A variation of the original SPI protocol, in which data frames are identified by a pulse on the SS
line.

■ National Semiconductors SPI: A half-duplex variation of the original SPI protocol.

26.3.3 SPI Modes of Operation

26.3.3.1 Motorola SPI

The original SPI protocol was defined by Motorola. It is a full duplex protocol. Multiple data transfers may happen with the SS
line held at ‘0’. When not transmitting data, the SS line is held at ‘1’.

Clock Modes of Motorola SPI

The Motorola SPI protocol has four different clock modes based on how data is driven and captured on the MOSI and MISO
lines. These modes are determined by clock polarity (CPOL) and clock phase (CPHA).

Clock polarity determines the value of the SCLK line when not transmitting data. CPOL = ‘0’ indicates that SCLK is ‘0’ when
not transmitting data. CPOL = ‘1’ indicates that SCLK is ‘1’ when not transmitting data.

Clock phase determines when data is driven and captured. CPHA = 0 means sample (capture data) on the leading (first)
clock edge, while CPHA = 1 means sample on the trailing (second) clock edge, regardless of whether that clock edge is rising
or falling. With CPHA = 0, the data must be stable for setup time before the first clock cycle.

■ Mode 0: CPOL is ‘0’, CPHA is ‘0’: Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK.

■ Mode 1; CPOL is ‘0’, CPHA is ‘1’: Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK.

■ Mode 2: CPOL is ‘1’, CPHA is ‘0’: Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK.

■ Mode 3: CPOL is ‘1’, CPHA is ‘1’: Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK.

Figure 26-2 illustrates driving and capturing of MOSI/MISO data as a function of CPOL and CPHA.

Figure 26-2. SPI Motorola, 4 Modes

CPOL = 0 CPHA = 0

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

MSb LSb

MSb LSb

MSb LSb

MSb LSb

CPOL = 0 CPHA = 1

CPOL = 1 CPHA = 0

CPOL = 1 CPHA = 1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 291

Serial Communications Block (SCB)

Figure 26-3 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0 (CPOL is ‘0’, CPHA is ‘0’).

Figure 26-3. SPI Motorola Data Transfer Example

Figure 26-4. SELECT and SCLK Timing Correlation

SCLK

MOSI

MISO

SCLK

MOSI

MISO

CPOL = 0, CPHA = 0 single data transfer

MSb LSb

MSb LSb MSb LSb

LSbMSb

MSb LSb MSb LSb

 CPOL = 0, CPHA = 0 two successive data transfers

SS

SS

CPHA = 0, CPOL = 0
Oversampling = 5 (1 SCLK period contains 6 clk_scb periods)

SCLK

SS0

clk_scb

¾ SCLK ¼ SCLK

CPHA = 1, CPOL = 0
Oversampling = 5 (1 SCLK period contains 6 clk_scb periods)

SCLK

SS0

clk_scb

¼ SCLK ¾ SCLK

For example above: OversamplingReg = 6 – 1 = 5.
 ¾ * SCLK = ((5 / 2) + 1) + (5 / 4 + 1)) * clk_scb = (3 + 2) * clk_scb = 5 * clk_scb.
 ¼ * SCLK = ((5 / 4) + 1) * clk_scb = 2 * clk_scb.

Note The value ¾ * SCLK is equal to (((OversamplingReg / 2) + 1) + (OversamplingReg / 4) + 1)),
 where OversamplingReg = Oversampling – 1.
 The value ¼ * SCLK is equal to ((OversamplingReg / 4) + 1).
 The result of any division operation is rounded down to the nearest integer.
Note The provided timings are guaranteed by SCB block but do not take into account signal propagation time from SCB block to
 pins.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 292

Serial Communications Block (SCB)

Configuring SCB for SPI Motorola Mode

To configure the SCB for SPI Motorola mode, set various register bits in the following order:

1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI Motorola mode by writing ‘00’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the clock mode in Motorola by writing to the CPHA and CPOL fields (bits 2 and 3 respectively) of the
SCB_SPI_CTRL register.

4. Follow steps 2 to 4 mentioned in “Enabling and Initializing SPI” on page 302.

For more information on these registers, see the registers TRM.

26.3.3.2 Texas Instruments SPI

The Texas Instruments’ SPI protocol redefines the use of the SS signal. It uses the signal to indicate the start of a data
transfer, rather than a low active slave select signal, as in the case of Motorola SPI. The start of a transfer is indicated by a
high active pulse of a single bit transfer period. This pulse may occur one cycle before the transmission of the first data bit, or
may coincide with the transmission of the first data bit. The TI SPI protocol supports only mode 1 (CPOL is ‘0’ and CPHA is
‘1’): data is driven on a rising edge of SCLK and data is captured on a falling edge of SCLK.

Figure 26-5 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse precedes the
first data bit. Note how the SELECT pulse of the second data transfer coincides with the last data bit of the first data transfer.

Figure 26-5. SPI TI Data Transfer Example

Figure 26-6 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse coincides with
the first data bit of a frame.

SCLK

MOSI

MISO

SCLK

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSb LSb

MSb LSb MSb LSb

MSb LSb

MSb LSb MSb LSb

CPOL=0, CPHA=1 two successive data transfers

SS

SS

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 293

Serial Communications Block (SCB)

Figure 26-6. SPI TI Data Transfer Example

Configuring SCB for SPI TI Mode

To configure the SCB for SPI TI mode, set various register bits in the following order:

1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI TI mode by writing ‘01’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in TI by writing to the SELECT_PRECEDE field (bit 1) of the SCB_SPI_CTRL register (‘1’
configures the SELECT pulse to precede the first bit of next frame and ‘0’ otherwise).

4. Set the CPHA bit of the SCB_SPI_CONTROL register to ‘0’, and the CPOL bit of the same register to ‘1’.

5. Follow steps 2 to 4 mentioned in “Enabling and Initializing SPI” on page 302.

For more information on these registers, see the registers TRM.

26.3.3.3 National Semiconductors SPI

The National Semiconductors’ SPI protocol is a half-duplex protocol. Rather than transmission and reception occurring at the
same time, they take turns. The transmission and reception data sizes may differ. A single ‘idle’ bit transfer period separates
transfers from reception. However, successive data transfers are not separated by an idle bit transfer period.

The National Semiconductors SPI protocol supports only mode 0.

Figure 26-7 illustrates a single data transfer and two successive data transfers. In both cases, the transmission data transfer
size is eight bits and the reception data transfer size is four bits.

SCLK

MOSI

MISO

SCLK

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSb LSb

MSb LSb MSb LSb

MSb LSb

MSb LSb MSb LSb

CPOL=0, CPHA=1 two successive data transfers

SS

SS

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 294

Serial Communications Block (SCB)

Figure 26-7. SPI NS Data Transfer Example

Configuring SCB for SPI NS Mode

To configure the SCB for SPI NS mode, set various register bits in the following order:

1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI NS mode by writing ‘10’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Set the CPOL and CHPA bits of the SCB_SPI_CTRL register to ‘0’.

4. Follow steps 2 to 4 mentioned in “Enabling and Initializing SPI” on page 302.

For more information on these registers, see the registers TRM.

MSb LSb

MSb LSb

MSb LSb

MSb LSb

MSb

idle 0 cycle

idle 0 cycle
No idle cycle

SCLK

MOSI

MISO

SCLK

MOSI

MISO

CPOL=0, CPHA=0 single data transfer

CPOL=0, CPHA=0 two successive data transfers

SS

SS

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 295

Serial Communications Block (SCB)

26.3.4 SPI Buffer Modes

SPI can operate in three different buffer modes – FIFO, EZ, and CMD_RESP modes. The buffer is used in different ways in
each of these modes. The following subsections explain each of these buffer modes in detail.

26.3.4.1 FIFO Mode

The FIFO mode has a TX FIFO for the data being transmitted and an RX FIFO for the data received. Each FIFO is
constructed out of the SRAM buffer. The FIFOs are either 64 elements deep with 16-bit data elements or 128 elements deep
with 8-bit data elements. The width of a FIFO is configured using the BYTE_MODE bitfield of the SCB.CTRL register.

FIFO mode of operation is available only in Active and Sleep power modes, and not in the Deep Sleep mode.

Transmit and receive FIFOs allow write and read accesses. A write access to the transmit FIFO uses the TX_FIFO_WR
register. A read access from the receive FIFO uses the RX_FIFO_RD register. For SPI master mode, data transfers are
started when data is written into the TX FIFO. Note that when a master is transmitting and the FIFO becomes empty the slave
is de-selected.

Transmit and receive FIFO status information is available through status registers, TX_FIFO_STATUS and
RX_FIFO_STATUS, and through the INTR_TX and INTR_RX registers.

Each FIFO has a trigger output. This trigger output can be routed through the trigger mux to various other peripheral on the
device such as DMA or TCPWMs. The trigger output of the SCB is controlled through the TRIGGER_LEVEL field in the
RX_CTRL and TX_CTRL registers.

■ For a TX FIFO a trigger is generated when the number of entries in the transmit FIFO is less than
TX_FIFO_CTRL.TRIGGER_LEVEL.

■ For the RX FIFO a trigger is generated when the number of entries in the FIFO is greater than the
RX_FIFO_CTRL.TRIGGER_LEVEL.

Note that the DMA has a trigger deactivation setting. For the SCB this should be set to 16.

Active to Deep Sleep Transition

Before going to deep sleep ensure that all active communication is complete. For a master this can easily be done by
checking the SPI_DONE bit in the INTR_M register, and ensuring the TX FIFO is empty.

For a slave this can be achieved by checking the BUS_BUSY bit in the SPI Status register. Also the RX FIFO should be
empty before going to deep sleep. Any data in the FIFO will be lost during deep sleep.

Also before going to deep sleep the clock to the SCB needs to be disabled. This can be done by setting the
SDA_IN_FILT_TRIM[1] bit in the I2C_CFG register to "0"

Lastly, when the device goes to deep sleep the SCB stops driving the GPIO lines. This leads to floating pins and can lead to
undesirable current during deep sleep power modes. To avoid this condition before entering deep sleep mode change the
HSIOM settings of the SCB pins to GPIO driven, then change the drive mode and drive state to the appropriate state to avoid
floating pins. Consult the I/O System chapter on page 240 for more information on pin drive modes.

Note: Before going into deep sleep the wakeup interrupt should be cleared. See the “SPI Interrupts” on page 335 for more
details.

Deep Sleep to Active Transition

EC_AM = 1, EC_OP = 0, FIFO Mode.

When the SPI Slave Select line is asserted the device will be awoken by an interrupt. After the device is awoken change the
SPI pin drive modes and HSIOM settings back to what they were before deep sleep. When clk_hf[0] is at the desired
frequency set SDA_IN_FILT_TRIM[1] to ‘1’ to enable the clock to the SCB. Then write data into the TX FIFO. At this point the
master can read valid data from the slave. Before that any data read by the master will be invalid.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 296

Serial Communications Block (SCB)

Figure 26-8. SPI Slave Wakeup from Deep Sleep (Motorola, CPHA = 0, CPOL = 0)

26.3.4.2 EZSPI Mode

The easy SPI (EZSPI) protocol only works in the Motorola mode, with any of the clock modes. It allows communication
between master and slave without the need for CPU intervention. In the PSoC 6 MCU, only the deep sleep-capable SCB
supports EZSPI mode.

The EZSPI protocol defines a single memory buffer with an 8-bit EZ address that indexes the buffer (256-entry array of eight
bit per entry) located on the slave device. The EZ address is used to address these 256 locations. All EZSPI data transfers
have 8-bit data frames.

The CPU writes and reads to the memory buffer through the SCB_EZ_DATA registers. These accesses are word accesses,
but only the least significant byte of the word is used.

EZSPI has three types of transfers: a write of the EZ address from the master to the slave, a write of data from the master to
an addressed slave memory location, and a read by the master from an addressed slave memory location.

Note: When multiple bytes are read or written the master must keep SSEL low during the entire transfer.

EZ Address Write

A write of the EZ address starts with a command byte (0x00) on the MOSI line indicating the master’s intent to write the EZ
address. The slave then drives a reply byte on the MISO line to indicate that the command is acknowledged (0xFE) or not
(0xFF). The second byte on the MOSI line is the EZ address.

Memory Array Write

A write to a memory array index starts with a command byte (0x01) on the MOSI line indicating the master’s intent to write to
the memory array. The slave then drives a reply byte on the MISO line to indicate that the command was registered (0xFE) or
not (0xFF). Any additional bytes on the MOSI line are written to the memory array at locations indicated by the communicated
EZ address. The EZ address is automatically incremented by the slave as bytes are written into the memory array. When the
EZ address exceeds the maximum number of memory entries (256), it remains there and does not wrap around to 0. The EZ
base address is reset to the address written in the EZ Address Write phase on each slave selection.

Memory Array Read

A read from a memory array index starts with a command byte (0x02) on the MOSI line indicating the master’s intent to read
from the memory array. The slave then drives a reply byte on the MISO line to indicate that the command was registered
(0xFE) or not (0xFF). Any additional read data bytes on the MISO line are read from the memory array at locations indicated
by the communicated EZ address. The EZ address is automatically incremented by the slave as bytes are read from the
memory array. When the EZ address exceeds the maximum number of memory entries (256), it remains there and does not

SCLK

Wakeup byte (ignored)MOSI

MISO

SS0

0xFF

Wakeup event

Deep SleepActive DS -> A Active

TDEEPSLEEP

Data

Load TX buffer

Data

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 297

Serial Communications Block (SCB)

wrap around to 0. The EZ base address is reset to the address written in the EZ Address Write phase on each slave
selection.

Figure 26-9 illustrates the write of EZ address, write to a memory array and read from a memory array operations in the
EZSPI protocol.

Figure 26-9. EZSPI Example

Command 0x00 EZ Address

Command 0x00 : Write EZ address

Command 0x01

Command 0x01 : Write DATA

Write DATA

Command 0x02

Command 0x02 : Read DATA

Read DATA

SCLK

MOSI

MISO

SCLK

MOSI

MISO

SCLK

MOSI

MISO

EZ address

EZ address (8 bits)

EZ buffer
(32 bytes SRAM)

EZ address

Write
DATA

Read
DATA

LEGEND :
CPOL : Clock Polarity 0x00 : Write EZ address
CPHA : Clock Phase 0x01 : Write DATA
SCLK : SPI Interface Clock 0x02 : Read DATA
MISO : SPI Master-In-Slave-Out 0xFE : slave ready
MOSI : SPI Master-Out-Slave-In 0xFF : slave busy

SS

SS

SS

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 298

Serial Communications Block (SCB)

Configuring SCB for EZSPI Mode

By default, the SCB is configured for non-EZ mode of
operation. To configure the SCB for EZSPI mode, set the
register bits in the following order:

1. Select EZ mode by writing ‘1’ to the EZ_MODE bit (bit
10) of the SCB_CTRL register.

2. Set the EC_AM and EC_OP modes in the SCB_CTRL
register as appropriate.

3. Set the BYTE_MODE bit of the SCB_CTRL register to
‘1’.

4. Follow the steps in “Configuring SCB for SPI Motorola
Mode” on page 292.

5. Follow steps 2 to 4 mentioned in “Enabling and Initializ-
ing SPI” on page 302.

For more information on these registers, see the registers
TRM.

Active to Deep Sleep Transition

Before going to deep sleep ensure the master is not
currently transmitting to the slave. This can be done by
checking the BUS_BUSY bit in the SPI_STATUS register.

If the bus is not busy, disable the clock to the SCB by setting
the SDA_IN_FILT_TRIM[1] bit to ‘0’ in the I2C_CFG register.

Deep Sleep to Active Transition

■ EC_AM = 1, EC_OP = 0, EZ Mode. MISO transmits
0xFF until the internal clock is enabled. Data on MOSI is
ignored until the internal clock is enabled. Do not enable
the internal clock until clk_hf[0] is at the desired
frequency. After clk_hf[0] is at the desired frequency set
the SDA_IN_FILT_TRIM[1] bit to ‘1’ to enable the clock.
The external master needs to be aware that when it
reads 0xFF on MISO the device is not ready yet.

■ EC_AM = 1, EC_OP = 1, EZ Mode. Do not enable the
internal clock until clk_hf[0] is at the desired frequency.
After clk_hf[0] is at the desired frequency set the
SDA_IN_FILT_TRIM[1] bit to ‘1’ to enable the clock.

26.3.4.3 Command-Response Mode

The command-response mode is defined only for an SPI
slave. In the PSoC 6 MCU, only the deep sleep-capable
SCB supports this mode. This mode has a single memory
buffer, a base read address, a current read address, a base
write address, and a current write address that are used to
index the memory buffer. The base addresses are provided
by the CPU. The current addresses are used by the slave to
index the memory buffer for sequential accesses of the
memory buffer. The memory buffer holds 256 8-bit data
elements. The base and current addresses are in the range
[0, 255]. This mode is only supported by the Motorola mode
of operation.

The CPU writes and reads to the memory buffer through the
SCB_EZ_DATA registers. These accesses are word
accesses, but only the least significant byte of the word is
used.

The slave interface accesses the memory buffer using the
current addresses. At the start of a write transfer (SPI slave
selection), the base write address is copied to the current
write address. A data element write is to the current write
address location. After the write access, the current address
is incremented by ‘1’. At the start of a read transfer, the base
read address is copied to the current read address. A data
element read is to the current read address location. After
the read data element is transmitted, the current read
address is incremented by ‘1’.

If the current addresses equal the last memory buffer
address (address equals 255), the current addresses are
not incremented. Subsequent write accesses will overwrite
any previously written value at the last buffer address.
Subsequent read accesses will continue to provide the
(same) read value at the last buffer address. The bus
master should be aware of the memory buffer capacity in
command-response mode.

The base addresses are provided through
CMD_RESP_CTRL. The current addresses are provided
through CMD_RESP_STATUS. At the end of a transfer (SPI
slave de-selection), the difference between a base and
current address indicates how many read/write accesses
were performed. The block provides interrupt cause fields to
identify the end of a transfer. Command-response mode
operation is available in Active, Sleep, and Deep Sleep
power modes.

The command-response mode has two phases of operation:

■ Write phase – The write phase begins with a selection
byte, which has its last bit set to ‘0’ indicating a write.
The master writes 8-bit data elements to the slave’s
memory buffer following the selection byte. The slave’s
current write address is set to the slave’s base write
address. Received data elements are written to the
current write address memory location. After each
memory write, the current write address is incremented.

■ Read phase – The read phase begins with a selection
byte, which has its last bit set to ‘1’ indicating a read. The
master reads 8-bit data elements from the slave’s
memory buffer. The slave’s current read address is set
to the slave’s base read address. Transmitted data
elements are read from the current address memory
location. After each read data element is transferred, the
current read address is incremented.

During the reception of the first byte, the slave (MISO)
transmits either 0x62 (ready) or a value different from 0x62
(busy). When disabled or reset, the slave transmits 0xFF
(busy). The byte value can be used by the master to
determine whether the slave is ready to accept the SPI
request.

http://www.cypress.com/trm220777
http://www.cypress.com/trm220777
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 299

Serial Communications Block (SCB)

Figure 26-10. Command-Response Mode Example

Note that a slave’s base addresses are updated by the CPU
and not by the master.

Active to Deep Sleep Transition

Before going to deep sleep ensure the master is not
currently transmitting to the slave. This can be done by
checking the BUS_BUSY bit in the SPI_STATUS register.

If the bus is not busy, disable the clock to the SCB by setting
the SDA_IN_FILT_TRIM[1] bit to 0 in the I2C_CFG register.

Deep Sleep to Active Transition

EC_AM = 1, EC_OP = 1, CMD_RESP Mode.

Do not enable the internal clock until clk_hf[0] is at the
desired frequency. When clk_hf[0] is at the desired
frequency, set the SDA_IN_FILT_TRIM[1] bit to ‘1’ to enable
the clock.

Configuring SCB for CMD_RESP Mode

By default, the SCB is configured for non-CMD_RESP mode
of operation. To configure the SCB for CMD_RESP mode,
set the register bits in the following order:

1. Select the CMD_RESP mode by writing ‘1’ to the
CMD_RESP_MODE bit (bit 12) of the SCB_CTRL
register.

2. Set the EC_AM and EC_OP modes to ‘1’ in the
SCB_CTRL register.

3. Set the BYTE_MODE bit in the SCB_CTRL register.

4. Follow the steps in “Configuring SCB for SPI Motorola
Mode” on page 292.

5. Follow steps 2 to 4 mentioned in“Enabling and
Initializing SPI” on page 302.

For more information on these registers, see the registers
TRM.

write phase (command byte 0x00)

LEGEND:
 spi_clk: SPI interface clock
 spi_select: SPI slave select

spi_mosi: SPI Master Out / Slave In
 spi_miso: SPI Master In / Slave Out

0x00: write CMD_RESP data
 0x01: read CMD_RESP data
 !0x62: slave not ready

0x62: slave ready

spi_clk

spi_select

spi_mosi

spi_miso

read phase (command byte 0x01)

spi_clk

spi_select

spi_mosi

spi_miso

0x01

0x00 write data

read data

ready (0x62 byte)

SRAM

Memory
of n x 8-bits

curr_wr_addrbase_wr_addr

+1

curr_rd_addrbase_rd_addr +1

ready (0x62 byte)

http://www.cypress.com/trm220777
http://www.cypress.com/trm220777
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 300

Serial Communications Block (SCB)

26.3.5 Clocking and Oversampling

26.3.5.1 Clock Modes

The SCB SPI supports both internally and externally clocked
operation modes. Two bitfields (EC_AM_MODE and
EC_OP MODE) in the SCB_CTRL register determine the
SCB clock mode. EC_AM_MODE indicates whether SPI
slave selection is internally (0) or externally (1) clocked.
EC_OP_MODE indicates whether the rest of the protocol
operation (besides SPI slave selection) is internally (0) or
externally (1) clocked.

An externally-clocked operation uses a clock provided by
the external master (SPI SCLK). Note: In the PSoC 6 MCU
only the Deep Sleep-capable SCB supports externally-
clocked mode of operation and only for SPI slave mode.

An internally-clocked operation uses the programmable
clock dividers. For SPI, an integer clock divider must be
used for both master and slave. For more information on
system clocking, see the Clocking System chapter on
page 221.

The SCB_CTRL bitfields EC_AM_MODE and
EC_OP_MODE can be configured in the following ways.

■ EC_AM_MODE is ‘0’ and EC_OP_MODE is ‘0’: Use this
configuration when only Active mode functionality is
required.

❐ FIFO mode: Supported.

❐ EZ mode: Supported.

❐ Command-response mode: Not supported. The
slave (MISO) transmits a value different from a ready
(0x62) byte during the reception of the first byte if
command-response mode is attempted in this
configuration.

■ EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘0’: Use this
configuration when both Active and Deep Sleep
functionality are required. This configuration relies on the
externally-clocked functionality to detect the slave
selection and relies on the internally-clocked
functionality to access the memory buffer.

The “hand over” from external to internal functionality
relies on a busy/ready byte scheme. This scheme relies
on the master to retry the current transfer when it
receives a busy byte and requires the master to support
busy/ready byte interpretation. When the slave is
selected, INTR_SPI_EC.WAKE_UP is set to ‘1’. The
associated Deep Sleep functionality interrupt brings the
system into Active power mode.

❐ FIFO mode: Supported. The slave (MISO) transmits
0xFF until the CPU is awoken and the TX FIFO is
populated. Any data on the MOSI line will be
dropped until clk_scb is enabled see “Deep Sleep to
Active Transition” on page 299 for more details

❐ EZ mode: Supported. In Deep Sleep power mode,
the slave (MISO) transmits a busy (0xFF) byte during

the reception of the command byte. In Active power
mode, the slave (MISO) transmits a ready (0xFE)
byte during the reception of the command byte.

❐ CMD_RESP mode: Not supported. The slave trans-
mits (MISO) a value different from a ready (0x62)
byte during the reception of the first byte.

■ EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘1’. Use this
mode when both Active and Deep Sleep functionality are
required. When the slave is selected,
INTR_SPI_EC.WAKE_UP is set to ‘1’. The associated
Deep Sleep functionality interrupt brings the system into
Active power mode. When the slave is deselected,
INTR_SPI_EC.EZ_STOP and/or
INTR_SPI_EC.EZ_WRITE_STOP are set to ‘1’.

❐ FIFO mode: Not supported.

❐ EZ mode: Supported.

❐ CMD_RESP mode: Supported.

If EC_OP_MODE is ‘1’, the external interface logic accesses
the memory buffer on the external interface clock (SPI
SCLK). This allows for EZ and CMD_RESP mode
functionality in Active and Deep Sleep power modes.

In Active system power mode, the memory buffer requires
arbitration between external interface logic (on SPI SCLK)
and the CPU interface logic (on system peripheral clock).
This arbitration always gives the highest priority to the
external interface logic (host accesses). The external
interface logic takes two serial interface clock/bit periods for
SPI. During this period, the internal logic is denied service to
the memory buffer. The PSoC 6 MCU provides two
programmable options to address this “denial of service”:

■ If the BLOCK bitfield of SCB_CTRL is ‘1’: An internal
logic access to the memory buffer is blocked until the
memory buffer is granted and the external interface logic
has completed access. This option provides normal SCB
register functionality, but the blocking time introduces
additional internal bus wait states.

■ If the BLOCK bitfield of SCB_CTRL is ‘0’: An internal
logic access to the memory buffer is not blocked, but
fails when it conflicts with an external interface logic
access. A read access returns the value 0xFFFF:FFFF
and a write access is ignored. This option does not
introduce additional internal bus wait states, but an
access to the memory buffer may not take effect. In this
case, the following failures are detected:

❐ Read Failure: A read failure is easily detected
because the returned value is 0xFFFF:FFFF. This
value is unique as non-failing memory buffer read
accesses return an unsigned byte value in the range
0x0000:0000-0x0000:00ff.

❐ Write Failure: A write failure is detected by reading
back the written memory buffer location, and con-
firming that the read value is the same as the written
value.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 301

Serial Communications Block (SCB)

For both options, a conflicting internal logic access to the memory buffer sets INTR_TX.BLOCKED field to ‘1’ (for write
accesses) and INTR_RX.BLOCKED field to ‘1’ (for read accesses). These fields can be used as either status fields or as
interrupt cause fields (when their associated mask fields are enabled).

If a series of read or write accesses is performed and CTRL.BLOCKED is ‘0’, a failure is detected by comparing the “logical-
or” of all read values to 0xFFFF:FFFF and checking the INTR_TX.BLOCKED and INTR_RX.BLOCKED fields to determine
whether a failure occurred for a series of write or read operations.

26.3.5.2 Using SPI Master to Clock Slave

In a normal SPI Master mode transmission, the SCLK is generated only when the SCB is enabled and data is being
transmitted. This can be changed to always generate a clock on the SCLK line while the SCB is enabled. This is used when
the slave uses the SCLK for functional operations other than just the SPI functionality. To enable this, write ‘1’ to the
SCLK_CONTINUOUS (bit 5) of the SCB_SPI_CTRL register.

26.3.5.3 Oversampling and Bit Rate

SPI Master Mode

The SPI master does not support externally clocked mode. In internally clocked mode, the logic operates under internal clock.
The internal clock has higher frequency than the interface clock (SCLK), such that the master can oversample its input
signals (MISO).

The OVS (bits [3:0]) of the SCB_CTRL register specify the oversampling. The oversampling rate is calculated as the value in
OVS register + 1. In SPI master mode, the valid range for oversampling is 4 to 16, when MISO is used; if MISO is not used
then the valid range is 2 to 16. The bit rate is calculated as follows.

Equation 26-1

Hence, with clk_scb at 100 MHz, the maximum bit rate is 25 Mbps with MISO, or 50 Mbps without MISO.

The numbers above indicate how fast the SCB hardware can run SCLK. It does not indicate that the master will be able to
correctly receive data from a slave at those speeds. To determine that, the path delay of MISO must be calculated. It can be
calculated using the following equation:

Equation 26-2

Where:

tSCLK is the period of the SPI clock

tSCLK_PCB_D is the SCLK PCB delay from master to slave

tDSO is the total internal slave delay, time from SCLK edge at slave pin to MISO edge at slave pin

tSCLK_PCB_D is the MISO PCB delay from slave to master

tDSI is the master setup time

Most slave datasheets will list tDSO, It may have a different name; look for MISO output valid after SCLK edge. Most master
datasheets will also list tDSI, or master setup time. tSCLK_PCB_D and tSCLK_PCB_D must be calculated based on specific
PCB geometries.

Table 26-3. SPI Modes Compatibility

Internally clocked (IC) Externally clocked (EC) (Deep Sleep SCB only)

FIFO EZ CMD_RESP FIFO EZ CMD_RESP

SPI master Yes No No No No No

SPI slave Yes Yes No Yesa

a. In SPI slave FIFO mode, the external-clocked logic does selection detection, then triggers an interrupt to wake up the CPU. Writes will be ignored and reads
will return 0xFF until the CPU is ready and the FIFO is populated.

Yes Yes

Bit Rate = clk_scb/OVS

1
2
---tSCLK t SCLK_PCB_D tDSO tSCLK_PCB_D tDSI+ + +

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 302

Serial Communications Block (SCB)

If after doing these calculations the desired speed cannot be achieved, then consider using the MISO late sample feature of
the SCB. This can be done by setting the SPI_CTRL.LATE_MISO_SAMPLE register. Late sampling addresses the round-trip
delay associated with transmitting SCLK from the master to the slave and transmitting MISO from the slave to the master.
MISO late sample tells the SCB to sample the incoming MISO signal on the next edge of SCLK, thus allowing for ½ SCLK
cycle more timing margin, see Figure 26-11.

Figure 26-11. MISO Sampling Timing

This changes the equation to:

Equation 26-3

Because late sample allows for better timing, leave it enabled all the time. The tDSI specification in the PSoC 6 MCU

datasheet assumes late sample is enabled.

Note: The SPI_CTRL.LATE_MISO_SAMPLE is set to ‘0’ by default.

SPI Slave Mode

In SPI slave mode, the OVS field (bits [3:0]) of SCB_CTRL register is not used. The data rate is determined by Equation 26-2
and Equation 26-3. Late MISO sample is determined by the external master in this case, not by
SPI_CTRL.LATE_MISO_SAMPLE.

For PSoC 6 MCUs, tDSO is given in the device datasheet. For internally-clocked mode, it is proportional to the frequency of

the internal clock. For example it may be 20 ns + 3 *tCLK_SCB. Assuming 0 ns PCB delays, and a 0 ns external master tDSI

Equation 26-1 can be re-arranged to tCLK_SCB  ((tSCLK) – 40 ns)/6.

26.3.6 Enabling and Initializing SPI

The SPI must be programmed in the following order:

1. Program protocol specific information using the SCB_SPI_CTRL register. This includes selecting the sub-modes of the
protocol and selecting master-slave functionality. EZSPI and CMD_RESP can be used with slave mode only.

2. Program the OVS field and configure clk_scb as appropriate. See the Clocking System chapter on page 221 for more
information on how to program clocks and connect it to the SCB.

3. Configure SPI GPIO by setting appropriate drive modes and HSIOM settings.

4. Select the desired Slave Select line and polarity in the SCB_SPI_CTRL register.

5. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL registers:

a. Specify the data frame width. This should always be 8 for EZSPI and CMD_RESP.

b. Specify whether MSb or LSb is the first bit to be transmitted/received. This should always be MSb first for EZSPI and
CMD_RESP.

6. Program the transmitter and receiver FIFOs using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers respec-
tively, as shown in SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL registers. Only for FIFO mode.

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift registers.

7. Enable the block (write a ‘1’ to the ENABLED bit of the SCB_CTRL register). After the block is enabled, control bits should
not be changed. Changes should be made after disabling the block; for example, to modify the operation mode (from

CPOL: 0 , CPHA: 0

spi_clk

spi_ mosi
MSb LSb

spi_ select

spi_ miso
MSb LSb

late MISO sample

normal MISO sample

tSCLK tSCLK_PCB_D tDSO tSCLK_PCB_D tDSI+ + +

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 303

Serial Communications Block (SCB)

Motorola mode to TI mode) or to go from externally clocked to internally clocked operation. The change takes effect only
after the block is re-enabled. Note: Re-enabling the block causes re-initialization and the associated state is lost (for
example, FIFO content).

26.3.7 I/O Pad Connection

26.3.7.1 SPI Master

Figure 26-12 and Table 26-4 list the use of the I/O pads for SPI Master.

Figure 26-12. SPI Master I/O Pad Connections

Normal
output mode

spi_ctlspi_clk_out_en

spi_clk_out

spi_clk_inspi_clk

Input only

spi_miso spi_miso_in

0

don t care

spi_clk_out

spi_clk_out_en

spi_clk_in

spi_miso_out_en

spi_miso_out

spi_miso_in

Normal
output mode

spi_select_out_en

spi_select_out

spi_select_inspi_select

spi_select_out

spi_select_out_en

spi_select_in

Normal
output mode

spi_mosi_out_en

spi_mosi_out

spi_mosi_inspi_mosi

spi_mosi_out

spi_mosi_out_en

spi_mosi_in

spi_ctl

spi_ctl

spi_ctl

Table 26-4. SPI Master I/O Pad Connection Usage

I/O Pads Drive Mode On-chip I/O Signals Usage

spi_clk Normal output mode
spi_clk_out_en

spi_clk_out
Transmit a clock signal

spi_select Normal output mode
spi_select_out_en

spi_select_out
Transmit a select signal

spi_mosi Normal output mode
spi_mosi_out_en

spi_mosi_out
Transmit a data element

spi_miso Input only spi_miso_in Receive a data element

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 304

Serial Communications Block (SCB)

26.3.7.2 SPI Slave

Figure 26-13 and Table 26-5 list the use of I/O pads for SPI Slave.

Figure 26-13. SPI Slave I/O Pad Connections

Open_Drain is set in the TX_CTRL register. In this mode the SPI MISO pin is actively driven low, and then high-z for driving
high. This means an external pull-up is required for the line to go high. This mode is useful when there are multiple slaves on
the same line. This helps to avoid bus contention issues.

26.3.7.3 Glitch Avoidance at System Reset

The SPI outputs are in high-impedance digital state when the device is coming out of system reset. This can cause glitches
on the outputs. This is important if you are concerned with SPI master SS0 – SS3 or SCLK output pins activity at either device
startup or when coming out of Hibernate mode. External pull-up or pull-down resistor can be connected to the output pin to
keep it in the inactive state.

Table 26-5. SPI Slave I/O Signal Description

I/O Pads Drive Mode On-chip I/O Signals Usage

spi_clk Input mode spi_clk_in Receive a clock signal

spi_select Input mode spi_select_in Receive a select signal

spi_mosi Input mode spi_mosi_in Receive a data element

spi_miso Normal output mode
spi_miso_out_en
spi_miso_out

Transmit a data element

Input only

spi_ctl0

don t care

spi_clk_in
spi_clk

Normal output mode
Or

Open-drain mode

spi_miso
spi_miso_in

spi_clk_out

spi_clk_out_en

spi_clk_in

spi_miso_out_en

spi_miso_out

spi_miso_in

Input only

0

don t care

spi_select_in
spi_select

spi_select_out

spi_select_out_en

spi_select_in

Input only

0

don t care

spi_mosi_inspi_mosi

spi_mosi_out

spi_mosi_out_en

spi_mosi_in

spi_ec_miso_out_en

spi_ec_miso_out

i2c_ic_block_ec

spi_ctl

spi_ctl

spi_ctl

spi_ec_ctl

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 305

Serial Communications Block (SCB)

26.3.7.4 Median Filter

This parameter applies a three-tap digital median filter on the input line. The master has one input line: MISO, and the slave
has three input lines: SCLK, MOSI, and SS. This filter reduces the susceptibility to errors. However, minimum oversampling
factor value is increased. The default value is ‘Disabled’. To enable the median filter write a ‘1’ to RX_CTRL.MEDIAN.

26.3.8 SPI Registers

The SPI interface is controlled using a set of 32-bit control and status registers listed in Table 26-6. Some of these registers
are used specifically with the Deep Sleep SCB; for more information on these registers, see the registers TRM.

Table 26-6. SPI Registers

Register Name Operation

SCB_CTRL Enables the SCB, selects the type of serial interface (SPI, UART, I2C), and selects internally and externally
clocked operation, and EZ and non-EZ modes of operation.

SCB_STATUS (Deep Sleep
SCB only)

In EZ mode, this register indicates whether the externally clocked logic is potentially using the EZ memory.

SCB_SPI_CTRL
Configures the SPI as either a master or a slave, selects SPI protocols (Motorola, TI, National) and clock-
based submodes in Motorola SPI (modes 0,1,2,3), selects the type of SS signal in TI SPI.

SCB_SPI_STATUS Indicates whether the SPI bus is busy and sets the SPI slave EZ address in the internally clocked mode.

SCB_TX_CTRL Specifies the data frame width and specifies whether MSb or LSb is the first bit in transmission.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clears the transmitter FIFO and shift registers, and performs the FREEZE opera-
tion of the transmitter FIFO.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_FIFO_RD
Holds the data frame read from the receiver FIFO. Reading a data frame removes the data frame from the
FIFO - behavior is similar to that of a POP operation. This register has a side effect when read by software:
a data frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data frame read from the receiver FIFO. Reading a data frame does not remove the data frame
from the FIFO; behavior is similar to that of a PEEK operation.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides
whether the transmitter FIFO holds the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_EZ_DATA (Deep Sleep
SCB only)

Holds the data in EZ memory location

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 306

Serial Communications Block (SCB)

26.4 UART

The Universal Asynchronous Receiver/Transmitter (UART)
protocol is an asynchronous serial interface protocol. UART
communication is typically point-to-point. The UART
interface consists of two signals:

■ TX: Transmitter output

■ RX: Receiver input

Additionally, two side-band signals are used to implement
flow control in UART. Note that the flow control applies only
to TX functionality.

■ Clear to Send (CTS): This is an input signal to the
transmitter. When active, the receiver signals to the
transmitter that it is ready to receive.

■ Ready to Send (RTS): This is an output signal from the
receiver. When active, it indicates that the receiver is
ready to receive data.

Not all SCBs support UART mode; refer to the device
datasheet for details.

26.4.1 Features

■ Supports UART protocol

❐ Standard UART

❐ Multi-processor mode

■ SmartCard (ISO7816) reader

■ IrDA

■ Supports Local Interconnect Network (LIN)

❐ Break detection

❐ Baud rate detection

❐ Collision detection (ability to detect that a driven bit
value is not reflected on the bus, indicating that
another component is driving the same bus)

■ Data frame size programmable from 4 to 16 bits

■ Programmable number of STOP bits, which can be set
in terms of half bit periods between 1 and 4

■ Parity support (odd and even parity)

■ Median filter on RX input

■ Programmable oversampling

■ Start skipping

■ Hardware flow control

26.4.2 General Description

Figure 26-14 illustrates a standard UART TX and RX.

Figure 26-14. UART Example

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start and
stop bits indicate the start and end of data transmission. The
parity bit is sent by the transmitter and is used by the
receiver to detect single bit errors. Because the interface
does not have a clock (asynchronous), the transmitter and
receiver use their own clocks; thus, the transmitter and
receiver need to agree on the baud rate.

By default, UART supports a data frame width of eight bits.
However, this can be configured to any value in the range of
4 to 9. This does not include start, stop, and parity bits. The
number of stop bits can be in the range of 1 to 4. The parity
bit can be either enabled or disabled. If enabled, the type of
parity can be set to either even parity or odd parity. The
option of using the parity bit is available only in the Standard
UART and SmartCard UART modes. For IrDA UART mode,
the parity bit is automatically disabled.

Note: UART interface does not support external clocking
operation. Hence, UART operates only in the Active and
Sleep system power modes. UART also supports only the
FIFO buffer mode.

26.4.3 UART Modes of Operation

26.4.3.1 Standard Protocol

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit
value is always ‘0’, the data bits values are dependent on
the data transferred, the parity bit value is set to a value
guaranteeing an even or odd parity over the data bits, and
the stop bit value is ‘1’. The parity bit is generated by the
transmitter and can be used by the receiver to detect single
bit transmission errors. When not transmitting data, the TX
line is ‘1’ – the same value as the stop bits.

Because the interface does not have a clock, the transmitter
and receiver must agree upon the baud rate. The transmitter
and receiver have their own internal clocks. The receiver
clock runs at a higher frequency than the bit transfer
frequency, such that the receiver may oversample the
incoming signal.

The transition of a stop bit to a start bit is represented by a
change from ‘1’ to ‘0’ on the TX line. This transition can be
used by the receiver to synchronize with the transmitter
clock. Synchronization at the start of each data transfer
allows error-free transmission even in the presence of
frequency drift between transmitter and receiver clocks. The
required clock accuracy is dependent on the data transfer
size.

The stop period or the amount of stop bits between
successive data transfers is typically agreed upon between
transmitter and receiver, and is typically in the range of 1 to
3-bit transfer periods.

UART UART

Tx

Rx
Tx

Rx

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 307

Serial Communications Block (SCB)

Figure 26-15 illustrates the UART protocol.

Figure 26-15. UART, Standard Protocol Example

The receiver oversamples the incoming signal; the value of the sample point in the middle of the bit transfer period (on the
receiver’s clock) is used. Figure 26-16 illustrates this.

Figure 26-16. UART, Standard Protocol Example (Single Sample)

Alternatively, three samples around the middle of the bit transfer period (on the receiver’s clock) are used for a majority vote
to increase accuracy; this is enabled by enabling the MEDIAN filter in the SCB_RX_CTRL register. Figure 26-17 illustrates
this.

Figure 26-17. UART, Standard Protocol (Multiple Samples)

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)

LEGEND:
Tx / Rx : Transmit or Receive line

Tx / Rx

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

Tx clock

Rx clock

Tx / Rx

LEGEND:
Tx / Rx : Transmit or Receive line

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

Tx clock

Rx clock

Tx / Rx

LEGEND:
Tx / Rx : Transmit or Receive line

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 308

Serial Communications Block (SCB)

Parity

This functionality adds a parity bit to the data frame and is used to identify single-bit data frame errors. The parity bit is always
directly after the data frame bits.

The transmitter calculates the parity bit (when UART_TX_CTRL.PARITY_ENABLED is 1) from the data frame bits, such that
data frame bits and parity bit have an even (UART_TX_CTRL.PARITY is 0) or odd (UART_TX_CTRL.PARITY is 1) parity. The
receiver checks the parity bit (when UART_RX_CTRL.PARITY_ENABLED is 1) from the received data frame bits, such that
data frame bits and parity bit have an even (UART_RX_CTRL.PARITY is 0) or odd (UART_RX_CTRL.PARITY is 1) parity.

Parity applies to both TX and RX functionality and dedicated control fields are available.

■ Transmit functionality: UART_TX_CTRL.PARITY and UART_TX_CTRL.PARITY_ENABLED.

■ Receive functionality: UART_RX_CTRL.PARITY and UART_RX_CTRL.PARITY_ENABLED.

When a receiver detects a parity error, the data frame is either put in RX FIFO
(UART_RX_CTRL.DROP_ON_PARITY_ERROR is 0) or dropped (UART_RX_CTRL.DROP_ON_PARITY_ERROR is 1).

The following figures illustrate the parity functionality (8-bit data frame).

Figure 26-18. UART Parity Examples

Start Skipping

Start skipping applies only to receive functionality. The standard UART mode supports “start skipping”. Regular receive
operation synchronizes on the START bit period (a 1 to 0 transition on the UART RX line), start skipping receive operation
synchronizes on the first received data frame bit, which must be a ‘1’ (a 0 to 1 transition on UART RX).

Start skipping is used to allow for wake up from system Deep Sleep mode using UART. The process is described as follows:

1. Before entering Deep Sleep power mode, UART receive functionality is disabled and the GPIO is programmed to set an
interrupt cause to ‘1’ when UART RX line has a ‘1’ to ‘0’ transition (START bit).

2. While in Deep Sleep mode, the UART receive functionality is not functional.

3. The GPIO interrupt is activated on the START bit and the system transitions from Deep Sleep to Active power mode.

4. The CPU enables UART receive functionality, with UART_RX_CTRL.SKIP_START bitfield set to ‘1’.

5. The UART receiver synchronizes data frame receipt on the next ‘0’ to ‘1’ transition. If the UART receive functionality is
enabled in time, this is the transition from the START bit to the first received data frame bit.

6. The UART receiver proceeds with normal operation; that is, synchronization of successive data frames is on the START
bit period.

Figure 26-19 illustrates the process.

uart_tx/uart_rx

parity enabled, even parity

STOPSTARTSTOP 1 0 1 0 1 0 1 0 0

P

1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit

uart_tx/uart_rx

parity enabled, even parity

STOPSTARTSTOP 1 1 1 0 1 0 1 0 1

P

uart_tx/uart_rx

parity enabled, odd parity

STOPSTARTSTOP 1 0 1 0 1 0 1 0 1

P

uart_tx/uart_rx

parity enabled, odd parity

STOPSTARTSTOP 1 1 1 0 1 0 1 0 0

P

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 309

Serial Communications Block (SCB)

Figure 26-19. UART Start Skip and Wakeup from Deep Sleep

Note that the above process works only for lower baud rates. The Deep Sleep to Active power mode transition and CPU
enabling the UART receive functionality should take less than 1-bit period to ensure that the UART receiver is active in time to
detect the ‘0’ to ‘1’ transition.

In step 4 of the above process, the firmware takes some time to finish the wakeup interrupt routine and enable the UART
receive functionality before the block can detect the input rising edge on the UART RX line.

If the above steps cannot be completed in less than 1 bit time, first send a “dummy” byte to the device to wake it up before
sending real UART data. In this case, the SKIP_START bit can be left as 0. For more information on how to perform this in
firmware, visit the UART section of the PDL.

Break Detection

Break detection is supported in the standard UART mode. This functionality detects when UART RX line is low (0) for more
than UART_RX_CTRL.BREAK_WIDTH bit periods. The break width should be larger than the maximum number of low (0) bit
periods in a regular data transfer, plus an additional 1-bit period. The additional 1-bit period is a minimum requirement and
preferably should be larger. The additional bit periods account for clock inaccuracies between transmitter and receiver.

For example, for an 8-bit data frame with parity support, the maximum number of low (0) bit periods is 10 (START bit, 8 ‘0’
data frame bits, and one ‘0’ parity bit). Therefore, the break width should be larger than 10 + 1 = 11
(UART_RX_CTRL.BREAK_WIDTH can be set to 11).

Note that the break detection applies only to receive functionality. A UART transmitter can generate a break by temporarily
increasing TX_CTRL.DATA_WIDTH and transmitting an all zeroes data frame. A break is used by the transmitter to signal a
special condition to the receiver. This condition may result in a reset, shut down, or initialization sequence at the receiver.

Break detection is part of the LIN protocol. When a break is detected, the INTR_RX.BREAK_DETECT interrupt cause is set
to ‘1’. Figure 26-20 illustrates a regular data frame and break frame (8-bit data frame, parity support, and a break width of 12-
bit periods).

Figure 26-20. UART – Regular Frame and Break Frame

uart_rx

1st bit

STARTIDLE/STOP D

1 Setup IOSS/GPIO

power mode Active ActiveDeep SleepA -> DS DS -> A

5

3 IOSS/GPIO wake up interrupt

4 CPU enables Rx functionality

UART RX synchronizes2 UART not operational

START

6
UART Rx
synchronizes

uart_rx

Regular frame

1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit

STOPSTARTSTOP

7th bit 8th bit 9th bit

Break frame (12 low/0-bit periods)

uart_rx STOPSTARTSTOP

D D D D D D D D P

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__scb.html

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 310

Serial Communications Block (SCB)

Flow Control

The standard UART mode supports flow control. Modem flow control controls the pace at which the transmitter transfers data
to the receiver. Modem flow control is enabled through the UART_FLOW_CTRL.CTS_ENABLED register field. When this
field is ‘0’, the transmitter transfers data when its TX FIFO is not empty. When ‘1’, the transmitter transfers data when UART
CTS line is active and its TX FIFO is not empty.

Note that the flow control applies only to TX functionality. Two UART side-band signal are used to implement flow control:

■ UART RTS (uart_rts_out): This is an output signal from the receiver. When active, it indicates that the receiver is ready to
receive data (RTS: Ready to Send).

■ UART CTS (uart_cts_in): This is an input signal to the transmitter. When active, it indicates that the transmitter can trans-
fer data (CTS: Clear to Send).

The receiver’s uart_rts_out signal is connected to the transmitter’s uart_cts_in signal. The receiver’s uart_rts_out signal is de-
rived by comparing the number of used receive FIFO entries with the UART_FLOW_CTRL.TRIGGER_LEVEL field. If the
number of used receive FIFO entries are less than UART_FLOW_CTRL.TRIGGER_LEVEL, uart_rts_out is activated.

Typically, the UART side-band signals are active low. However, sometimes active high signaling is used. Therefore, the
polarity of the side-band signals can be controlled using bitfields UART_FLOW_CTRL.RTS_POLARITY and
UART_FLOW_CTRL.CTS_POLARITY. Figure 26-21 gives an overview of the flow control functionality.

Figure 26-21. UART Flow Control Connection

UART Multi-Processor Mode

The UART_MP (multi-processor) mode is defined with single-master-multi-slave topology, as Figure 26-22 shows. This mode
is also known as UART 9-bit protocol because the data field is nine bits wide. UART_MP is part of Standard UART mode.

Figure 26-22. UART MP Mode Bus Connections

The main properties of UART_MP mode are:

■ Single master with multiple slave concept (multi-drop network).

■ Each slave is identified by a unique address.

■ Using 9-bit data field, with the ninth bit as address/data flag (MP bit). When set high, it indicates an address byte; when
set low it indicates a data byte. A data frame is illustrated in Figure 26-23.

■ Parity bit is disabled.

uart_rx_ctl

Rx FIFO

Transmitter (Tx)

< uart_rts_out

UART_FLOW_CTRL.RTS_POLARITY

uart_rx_in

uart_tx_ctl

uart_cts_in

UART_FLOW_CTRL.CTS_POLARITY

UART_FLOW_CTRL.TRIGGER_LEVEL[]

uart_tx_out

Tx FIFO

UART_FLOW_CTRL.CTS_ENABLED

Receiver (Rx)

UART MP
Master

UART MP
Slave 1

UART MP
Slave 2

UART MP
Slave 3

Tx

RxTx TxTx

Rx

RxRx

Master Tx

Master Rx

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 311

Serial Communications Block (SCB)

Figure 26-23. UART MP Address and Data Frame

The SCB can be used as either master or slave device in UART_MP mode. Both SCB_TX_CTRL and SCB_RX_CTRL
registers should be set to 9-bit data frame size. When the SCB works as UART_MP master device, the firmware changes the
MP flag for every address or data frame. When it works as UART_MP slave device, the MP_MODE field of the
SCB_UART_RX_CTRL register should be set to ‘1’. The SCB_RX_MATCH register should be set for the slave address and
address mask. The matched address is written in the RX_FIFO when ADDR_ACCEPT field of the SCB_CTRL register is set
to ‘1’. If the received address does not match its own address, then the interface ignores the following data, until next address
is received for compare.

Configuring the SCB as Standard UART Interface

To configure the SCB as a standard UART interface, set various register bits in the following order:

1. Configure the SCB as UART interface by writing ‘10b’ to the MODE field (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a Standard protocol by writing ‘00’ to the MODE field (bits [25:24]) of the
SCB_UART_CTRL register.

3. To enable the UART MP Mode or UART LIN Mode, write ‘1’ to the MP_MODE (bit 10) or LIN_MODE (bit 12) respectively
of the SCB_UART_RX_CTRL register.

4. Follow steps 2 to 4 described in “Enabling and Initializing the UART” on page 316.

For more information on these registers, see the registers TRM.

26.4.3.2 UART Local Interconnect Network (LIN) Mode

The LIN protocol is supported by the SCB as part of the standard UART. LIN is designed with single-master-multi-slave
topology. There is one master node and multiple slave nodes on the LIN bus. The SCB UART supports both LIN master and
slave functionality. The LIN specification defines both physical layer (layer 1) and data link layer (layer 2). Figure 26-24
illustrates the UART_LIN and LIN transceiver.

Figure 26-24. UART_LIN and LIN Transceiver

LIN protocol defines two tasks:

■ Master task: This task involves sending a header packet to initiate a LIN transfer.

■ Slave task: This task involves transmitting or receiving a response.

The master node supports master task and slave task; the slave node supports only slave task, as shown in Figure 26-25.

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field

UART LIN

LIN Transceiver

UART LIN

LIN Transceiver

LIN Master 1 LIN Slave 1 LIN Slave 2

Tx Rx Tx Rx

LIN BUS

UART LIN

LIN Transceiver

Tx Rx

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 312

Serial Communications Block (SCB)

Figure 26-25. LIN Bus Nodes and Tasks

LIN Frame Structure

LIN is based on the transmission of frames at pre-determined moments of time. A frame is divided into header and response
fields, as shown in Figure 26-26.

■ The header field consists of:

❐ Break field (at least 13 bit periods with the value ‘0’).

❐ Sync field (a 0x55 byte frame). A sync field can be used to synchronize the clock of the slave task with that of the mas-
ter task.

❐ Identifier field (a frame specifying a specific slave).

■ The response field consists of data and checksum.

Figure 26-26. LIN Frame Structure

In LIN protocol communication, the least significant bit (LSb) of the data is sent first and the most significant bit (MSb) last.
The start bit is encoded as zero and the stop bit is encoded as one. The following sections describe all the byte fields in the
LIN frame.

Break Field

Every new frame starts with a break field, which is always generated by the master. The break field has logical zero with a
minimum of 13 bit times and followed by a break delimiter. The break field structure is as shown in Figure 26-27.

Figure 26-27. LIN Break Field

Sync Field

This is the second field transmitted by the master in the header field; its value is 0x55. A sync field can be used to synchronize
the clock of the slave task with that of the master task for automatic baud rate detection. Figure 26-28 shows the LIN sync
field structure.

Figure 26-28. LIN Sync Field

Master Node

Master Task

Slave Task

Slave Node Slave Node

LIN bus

Slave Task Slave Task

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 313

Serial Communications Block (SCB)

Protected Identifier (PID) Field

A protected identifier field consists of two sub-fields: the
frame identifier (bits 0-5) and the parity (bit 6 and bit 7). The
PID field structure is shown in Figure 26-29.

■ Frame identifier: The frame identifiers are divided into
three categories

❐ Values 0 to 59 (0x3B) are used for signal carrying
frames

❐ 60 (0x3C) and 61 (0x3D) are used to carry diagnostic
and configuration data

❐ 62 (0x3E) and 63 (0x3F) are reserved for future pro-
tocol enhancements

■ Parity: Frame identifier bits are used to calculate the
parity

Figure 26-29 shows the PID field structure.

Figure 26-29. PID Field

Data. In LIN, every frame can carry a minimum of one byte
and maximum of eight bytes of data. Here, the LSb of the
data byte is sent first and the MSb of the data byte is sent
last.

Checksum. The checksum is the last byte field in the LIN
frame. It is calculated by inverting the 8-bit sum along with
carryover of all data bytes only or the 8-bit sum with the
carryover of all data bytes and the PID field. There are two
types of checksums in LIN frames. They are:

■ Classic checksum: the checksum calculated over all the
data bytes only (used in LIN 1.x slaves).

■ Enhanced checksum: the checksum calculated over all
the data bytes along with the protected identifier (used in
LIN 2.x slaves).

LIN Frame Types

The type of frame refers to the conditions that need to be
valid to transmit the frame. According to the LIN
specification, there are five different types of LIN frames. A
node or cluster does not have to support all frame types.

Unconditional Frame. These frames carry the signals and
their frame identifiers (of 0x00 to 0x3B range). The
subscriber will receive the frames and make it available to
the application; the publisher of the frame will provide the
response to the header.

Event-Triggered Frame. The purpose of an event-
triggered frame is to increase the responsiveness of the LIN
cluster without assigning too much of the bus bandwidth to
polling of multiple slave nodes with seldom occurring
events. Event-triggered frames carry the response of one or

more unconditional frames. The unconditional frames
associated with an event triggered frame should:

■ Have equal length

■ Use the same checksum model (either classic or
enhanced)

■ Reserve the first data field to its protected identifier

■ Be published by different slave nodes

■ Not be included directly in the same schedule table as
the event-triggered frame

Sporadic Frame. The purpose of the sporadic frames is to
merge some dynamic behavior into the schedule table
without affecting the rest of the schedule table. These
frames have a group of unconditional frames that share the
frame slot. When the sporadic frame is due for transmission,
the unconditional frames are checked whether they have
any updated signals. If no signals are updated, no frame will
be transmitted and the frame slot will be empty.

Diagnostic Frames. Diagnostic frames always carry
transport layer, and contains eight data bytes.

The frame identifier for diagnostic frame is:

■ Master request frame (0x3C), or

■ Slave response frame (0x3D)

Before transmitting a master request frame, the master task
queries its diagnostic module to see whether it will be
transmitted or whether the bus will be silent. A slave
response frame header will be sent unconditionally. The
slave tasks publish and subscribe to the response according
to their diagnostic modules.

Reserved Frames. These frames are reserved for future
use; their frame identifiers are 0x3E and 0x3F.

LIN Go-To-Sleep and Wake-Up

The LIN protocol has the feature of keeping the LIN bus in
Sleep mode, if the master sends the go-to-sleep command.
The go-to-sleep command is a master request frame (ID =
0x3C) with the first byte field is equal to 0x00 and rest set to
0xFF. The slave node application may still be active after the
go-to-sleep command is received. This behavior is
application specific. The LIN slave nodes automatically
enter Sleep mode if the LIN bus inactivity is more than four
seconds.

Wake-up can be initiated by any node connected to the LIN
bus – either LIN master or any of the LIN slaves by forcing
the bus to be dominant for 250 µs to 5 ms. Each slave
should detect the wakeup request and be ready to process
headers within 100 ms. The master should also detect the
wakeup request and start sending headers when the slave
nodes are active.

To support LIN, a dedicated (off-chip) line driver/receiver is
required. Supply voltage range on the LIN bus is 7 V to 18 V.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 314

Serial Communications Block (SCB)

Typically, LIN line drivers will drive the LIN line with the value
provided on the SCB TX line and present the value on the
LIN line to the SCB RX line. By comparing TX and RX lines
in the SCB, bus collisions can be detected (indicated by the
SCB_UART_ARB_LOST field of the SCB_INTR_TX
register).

26.4.3.3 SmartCard (ISO7816)

ISO7816 is asynchronous serial interface, defined with
single-master-single slave topology. ISO7816 defines both
Reader (master) and Card (slave) functionality. For more
information, refer to the ISO7816 Specification. Only the
master (reader) function is supported by the SCB. This
block provides the basic physical layer support with
asynchronous character transmission. The UART_TX line is
connected to SmartCard I/O line by internally multiplexing
between UART_TX and UART_RX control modules.

The SmartCard transfer is similar to a UART transfer, with
the addition of a negative acknowledgement (NACK) that

may be sent from the receiver to the transmitter. A NACK is
always ‘0’. Both master and slave may drive the same line,
although never at the same time.

A SmartCard transfer has the transmitter drive the start bit
and data bits (and optionally a parity bit). After these bits, it
enters its stop period by releasing the bus. Releasing results
in the line being ‘1’ (the value of a stop bit). After one bit
transfer period into the stop period, the receiver may drive a
NACK on the line (a value of ‘0’) for one bit transfer period.
This NACK is observed by the transmitter, which reacts by
extending its stop period by one bit transfer period. For this
protocol to work, the stop period should be longer than one
bit transfer period. Note that a data transfer with a NACK
takes one bit transfer period longer, than a data transfer
without a NACK. Typically, implementations use a tristate
driver with a pull-up resistor, such that when the line is not
transmitting data or transmitting the Stop bit, its value is ‘1’.

Figure 26-30 illustrates the SmartCard protocol.

Figure 26-30. SmartCard Example

The communication Baud rate while using SmartCard is given as:

Baud rate = Fscbclk/Oversample

Configuring SCB as UART SmartCard Interface

To configure the SCB as a UART SmartCard interface, set various register bits in the following order; note that ModusToolbox
does all this automatically with the help of GUIs. For more information on these registers, see the registers TRM.

1. Configure the SCB as UART interface by writing ‘10b’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a SmartCard protocol by writing ‘01’ to the MODE (bits [25:24]) of the
SCB_UART_CTRL register.

3. Follow steps 2 to 4 described in “Enabling and Initializing the UART” on page 316.

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7 data bits, 1 parity bit, 2 stop bits) without NACK
Tx / Rx

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK

LEGEND:
Tx / Rx : Transmit or Receive line

Tx / Rx

STOPNACK

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38770
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 315

Serial Communications Block (SCB)

26.4.3.4 Infrared Data Association (IrDA)

The SCB supports the IrDA protocol for data rates of up to 115.2 kbps using the UART interface. It supports only the basic
physical layer of IrDA protocol with rates less than 115.2 kbps. Hence, the system instantiating this block must consider how
to implement a complete IrDA communication system with other available system resources.

The IrDA protocol adds a modulation scheme to the UART signaling. At the transmitter, bits are modulated. At the receiver,
bits are demodulated. The modulation scheme uses a Return-to-Zero-Inverted (RZI) format. A bit value of ‘0’ is signaled by a
short ‘1’ pulse on the line and a bit value of ‘1’ is signaled by holding the line to ‘0’. For these data rates (<=115.2 kbps), the
RZI modulation scheme is used and the pulse duration is 3/16 of the bit period. The sampling clock frequency should be set
16 times the selected baud rate, by configuring the SCB_OVS field of the SCB_CTRL register. In addition, the PSoC 6 MCU
SCB supports a low-power IrDA receiver mode, which allows it to detect pulses with a minimum width of 1.41 µs.

Different communication speeds under 115.2 kbps can be achieved by configuring clk_scb frequency. Additional allowable
rates are 2.4 kbps, 9.6 kbps, 19.2 kbps, 38.4 kbps, and 57.6 kbps. Figure 26-31 shows how a UART transfer is IrDA
modulated.

Figure 26-31. IrDA Example

Configuring the SCB as a UART IrDA Interface

To configure the SCB as a UART IrDA interface, set various register bits in the following order; note that ModusToolbox does
all this automatically with the help of GUIs. For more information on these registers, see the registers TRM.

1. Configure the SCB as a UART interface by writing ‘10b’ to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as IrDA protocol by writing ‘10’ to the MODE (bits [25:24]) of the SCB_UART_C-
TRL register.

3. Enable the Median filter on the input interface line by writing ‘1’ to MEDIAN (bit 9) of the SCB_RX_CTRL register.

4. Configure the SCB as described in “Enabling and Initializing the UART” on page 316.

� � PARIDLE START STOP START

Two successive data transfers (7 data bits, 1 parity bit, 2 stop bits)
Tx / Rx

�� � � � �� � �

IrDA
Tx / Rx

LEGEND:
Tx / Rx : Transmit or Receive line

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 316

Serial Communications Block (SCB)

26.4.4 Clocking and Oversampling

The UART protocol is implemented using clk_scb as an
oversampled multiple of the baud rate. For example, to
implement a 100-kHz UART, clk_scb could be set to 1 MHz
and the oversample factor set to ‘10’. The oversampling is
set using the SCB_CTRL.OVS register field. The
oversampling value is SCB_CTRL.OVS + 1. In the UART
standard sub-mode (including LIN) and the SmartCard sub-
mode, the valid range for the OVS field is [7, 15].

In UART transmit IrDA sub-mode, this field indirectly
specifies the oversampling. Oversampling determines the
interface clock per bit cycle and the width of the pulse. This
sub-mode has only one valid OVS value–16 (which is a
value of 0 in the OVS field of the SCB_CTRL register); the
pulse width is roughly 3/16 of the bit period (for all bit rates).

In UART receive IrDA sub-mode (1.2, 2.4, 9.6, 19.2, 38.4,
57.6, and 115.2 kbps), this field indirectly specifies the
oversampling. In normal transmission mode, this pulse is
approximately 3/16 of the bit period (for all bit rates). In low-
power transmission mode, this pulse is potentially smaller
(down to 1.62 µs typical and 1.41 µs minimal) than 3/16 of
the bit period (for less than 115.2 kbps bit rates).

Pulse widths greater than or equal to two SCB input clock
cycles are guaranteed to be detected by the receiver. Pulse
widths less than two clock cycles and greater than or equal
to one SCB input clock cycle may be detected by the
receiver. Pulse widths less than one SCB input clock cycle
will not be detected by the receiver. Note that the
SCB_RX_CTRL.MEDIAN should be set to ‘1’ for IrDA
receiver functionality.

The SCB input clock and the oversampling together
determine the IrDA bit rate. Refer to the registers TRM for
more details on the OVS values for different baud rates.

26.4.5 Enabling and Initializing the UART

The UART must be programmed in the following order:

1. Program protocol specific information using the
UART_TX_CTRL, UART_RX_CTRL, and
UART_FLOW_CTRL registers. This includes selecting
the submodes of the protocol, transmitter-receiver
functionality, and so on.

2. Program the generic transmitter and receiver information
using the SCB_TX_CTRL and SCB_RX_CTRL
registers.

a. Specify the data frame width.

b. Specify whether MSb or LSb is the first bit to be
transmitted or received.

3. Program the transmitter and receiver FIFOs using the
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL
registers, respectively.

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift
registers.

4. Enable the block (write a ‘1’ to the ENABLE bit of the
SCB_CTRL register). After the block is enabled, control
bits should not be changed. Changes should be made
after disabling the block; for example, to modify the
operation mode (from SmartCard to IrDA). The change
takes effect only after the block is re-enabled. Note that
re-enabling the block causes re-initialization and the
associated state is lost (for example FIFO content).

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 317

Serial Communications Block (SCB)

26.4.6 I/O Pad Connection

26.4.6.1 Standard UART Mode

Figure 26-32 and Table 26-7 list the use of the I/O pads for the Standard UART mode.

Figure 26-32. Standard UART Mode I/O Pad Connections

26.4.6.2 SmartCard Mode

Figure 26-33 and Table 26-8 list the use of the I/O pads for the SmartCard mode.

Figure 26-33. SmartCard Mode I/O Pad Connections

Table 26-7. UART I/O Pad Connection Usage

I/O Pads Drive Mode On-chip I/O Signals Usage

uart_tx Normal output mode
uart_tx_out_en

uart_tx_out
Transmit a data element

uart_rx Input only uart_rx_in Receive a data element

uart_rx_ctl

Normal
output mode

uart_tx_ctl1

uart_tx_out

uart_tx_in
uart_tx

Input only

uart_rx
uart_rx_in

0

don t care

uart_tx_out

uart_tx_out_en

uart_tx_in

uart_rx_out_en

uart_rx_out

uart_rx_in

Table 26-8. SmartCard Mode I/O Pad Connections

I/O Pads Drive Mode
On-chip I/O

Signals
Usage

uart_tx
Open drain with
pull-up

uart_tx_in
Used to receive a data element.

Receive a negative acknowledge-ment of a transmitted data element

uart_tx_out_en
uart_tx_out

Transmit a data element.

Transmit a negative acknowledgement to a received data element.

Open drain
(pull-up)

uart_tx_out_en

uart_tx_out

uart_tx_in
uart_tx

uart_tx_ctl

uart_rx_ctluart_rx_out_en

uart_rx_out

uart_rx_in

uart_tx_in

uart_tx_out

uart_tx_out_en

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 318

Serial Communications Block (SCB)

26.4.6.3 LIN Mode

Figure 26-34 and Table 26-9 list the use of the I/O pads for LIN mode.

Figure 26-34. LIN Mode I/O Pad Connections

26.4.6.4 IrDA Mode

Figure 26-35 and Table 26-10 list the use of the I/O pads for IrDA mode.

Figure 26-35. IrDA Mode I/O Pad Connections

Table 26-9. LIN Mode I/O Pad Connections

I/O Pads Drive Mode
On-chip I/O

Signals
Usage

uart_tx
Normal output
mode

uart_tx_out_en
uart_tx_out

Transmit a data element.

uart_rx Input only uart_rx_in Receive a data element.

Normal
output mode

uart_tx_ctl1

uart_tx_out

uart_tx_inuart_tx

Input only

uart_rx
uart_rx_in

0

don t care

uart_rx_ctl

uart_tx_out

uart_tx_out_en

uart_tx_in

uart_rx_out_en

uart_rx_out

uart_rx_in

LIN
transceiver

chip

LIN

Table 26-10. IrDA Mode I/O Pad Connections

I/O Pads Drive Mode
On-chip I/O

Signals
Usage

uart_tx
Normal output
mode

uart_tx_out_en
uart_tx_out

Transmit a data element.

uart_rx Input only uart_rx_in Receive a data element.

Normal
output mode

uart_tx_ctl1

uart_tx_out

uart_tx_inuart_tx

Input only

uart_rx
uart_rx_in

0

don t care

uart_rx_ctl

uart_tx_out

uart_tx_out_en

uart_tx_in

uart_rx_out_en

uart_rx_out

uart_rx_in

IrDA
transducer

module

IrDA

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 319

Serial Communications Block (SCB)

26.4.7 UART Registers

The UART interface is controlled using a set of 32-bit registers listed in Table 26-11. For more information on these registers,
see the registers TRM.

Table 26-11. UART Registers

Register Name Operation

SCB_CTRL Enables the SCB; selects the type of serial interface (SPI, UART, I2C)

SCB_UART_CTRL
Used to select the sub-modes of UART (standard UART, SmartCard, IrDA), also used for local loop back
control.

SCB_UART_RX_STATUS
Used to specify the BR_COUNTER value that determines the bit period. This is used to set the accuracy
of the SCB clock. This value provides more granularity than the OVS bit in SCB_CTRL register.

SCB_UART_TX_CTRL
Used to specify the number of stop bits, enable parity, select the type of parity, and enable retransmission
on NACK.

SCB_UART_RX_CTRL
Performs same function as SCB_UART_TX_CTRL but is also used for enabling multi processor mode,
LIN mode drop on parity error, and drop on frame error.

SCB_TX_CTRL Used to specify the data frame width and to specify whether MSb or LSb is the first bit in transmission.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_UART_FLOW_CONTROL Configures flow control for UART transmitter.

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 320

Serial Communications Block (SCB)

26.5 Inter Integrated Circuit (I2C)

This section explains the I2C implementation in the PSoC 6 MCU. For more information on the I2C protocol specification, refer
to the I2C-bus specification available on the NXP website.

26.5.1 Features

This block supports the following features:

■ Master, slave, and master/slave mode

■ Standard-mode (100 kbps), fast-mode (400 kbps), and fast-mode plus (1000 kbps) data-rates

■ 7-bit slave addressing

■ Clock stretching

■ Collision detection

■ Programmable oversampling of I2C clock signal (SCL)

■ Auto ACK when RX FIFO not full, including address

■ General address detection

■ FIFO Mode

■ EZ and CMD_RESP modes

26.5.2 General Description

Figure 26-36 illustrates an example of an I2C communication network.

Figure 26-36. I2C Interface Block Diagram

The standard I2C bus is a two wire interface with the following lines:

■ Serial Data (SDA)

■ Serial Clock (SCL)

I2C devices are connected to these lines using open collector or open-drain output stages, with pull-up resistors (Rp). A
simple master/slave relationship exists between devices. Masters and slaves can operate as either transmitter or receiver.
Each slave device connected to the bus is software addressable by a unique 7-bit address.

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

http://www.nxp.com

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 321

Serial Communications Block (SCB)

26.5.3 External Electrical Connections

As shown in Figure 26-37, the I2C bus requires external pull-up resistors. The pull-up resistors (RP) are primarily determined
by the supply voltage, bus speed, and bus capacitance. For detailed information on how to calculate the optimum pull-up
resistor value for your design Cypress recommends using the UM10204 I2C-bus specification and user manual Rev. 6,
available from the NXP website at www.nxp.com.

Figure 26-37. Connection of Devices to the I2C Bus

For most designs, the default values shown inTable 26-12 provide excellent performance without any calculations. The
default values were chosen to use standard resistor values between the minimum and maximum limits.

These values work for designs with 1.8 V to 5.0 V VDD, less than 200 pF bus capacitance (CB), up to 25 µA of total input
leakage (IIL), up to 0.4 V output voltage level (VOL), and a max VIH of 0.7 * VDD. Calculation of custom pull-up resistor values
is required if your design does not meet the default assumptions, you use series resistors (RS) to limit injected noise, or you
want to maximize the resistor value for low power consumption. Calculation of the ideal pull-up resistor value involves finding
a value between the limits set by three equations detailed in the NXP I2C specification. These equations are:

Equation 26-4

Equation 26-5

Equation 26-6

Equation parameters:

■ VDD = Nominal supply voltage for I2C bus

■ VOL = Maximum output low voltage of bus devices

■ IOL= Low-level output current from I2C specification

■ TR = Rise time of bus from I2C specification

■ CB = Capacitance of each bus line including pins and PCB traces

■ VIH = Minimum high-level input voltage of all bus devices

■ VNH = Minimum high-level input noise margin from I2C specification

■ IIH = Total input leakage current of all devices on the bus

Table 26-12. Recommended Default Pull-up Resistor Values

Standard Mode (0 – 100 kbps) Fast Mode (0 – 400 kbps) Fast Mode Plus (0 – 1000 kbps) Units

4.7 k, 5% 1.74 k, 1% 620, 5% 

Device 1

SDA (Serial Data Line)

SCL (Serial Clock Line)

Device 2

Rp Rp

+VDD

pull-up
resistors

RPMIN = (VDD(max) – VOL(max)) / IOL(min)

RPMAX = TR(max) / 0.8473 x CB(max)

RPMAX = VDD(min) – (VIH(min) + VNH(min)) / IIH(max)

http://www.nxp.com

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 322

Serial Communications Block (SCB)

The supply voltage (VDD) limits the minimum pull-up resistor
value due to bus devices maximum low output voltage (VOL)
specifications. Lower pull-up resistance increases current
through the pins and can therefore exceed the spec
conditions of VOH. Equation 26-4 is derived using Ohm's law
to determine the minimum resistance that will still meet the
VOL specification at 3 mA for standard and fast modes, and
20 mA for fast mode plus at the given VDD.

Equation 26-5 determines the maximum pull-up resistance
due to bus capacitance. Total bus capacitance is comprised
of all pin, wire, and trace capacitance on the bus. The higher
the bus capacitance the lower the pull-up resistance
required to meet the specified bus speeds rise time due to
RC delays. Choosing a pull-up resistance higher than
allowed can result in failing timing requirements resulting in
communication errors. Most designs with five of fewer I2C
devices and up to 20 centimeters of bus trace length have
less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor
value is total bus leakage calculated in Equation 26-6. The
primary source of leakage is I/O pins connected to the bus.
If leakage is too high, the pull-ups will have difficulty
maintaining an acceptable VIH level causing communication
errors. Most designs with five or fewer I2C devices on the
bus have less than 10 µA of total leakage current.

26.5.4 Terms and Definitions

Table 26-13 explains the commonly used terms in an I2C
communication network.

26.5.4.1 Clock Stretching

When a slave device is not yet ready to process data, it may
drive a ‘0’ on the SCL line to hold it down. Due to the
implementation of the I/O signal interface, the SCL line
value will be ‘0’, independent of the values that any other
master or slave may be driving on the SCL line. This is
known as clock stretching and is the only situation in which
a slave drives the SCL line. The master device monitors the
SCL line and detects it when it cannot generate a positive
clock pulse (‘1’) on the SCL line. It then reacts by delaying
the generation of a positive edge on the SCL line, effectively
synchronizing with the slave device that is stretching the
clock. The SCB on the PSoC 6 MCU can and will stretch the
clock.

26.5.4.2 Bus Arbitration

The I2C protocol is a multi-master, multi-slave interface. Bus
arbitration is implemented on master devices by monitoring
the SDA line. Bus collisions are detected when the master
observes an SDA line value that is not the same as the
value it is driving on the SDA line. For example, when
master 1 is driving the value ‘1’ on the SDA line and master
2 is driving the value ‘0’ on the SDA line, the actual line
value will be ‘0’ due to the implementation of the I/O signal
interface. Master 1 detects the inconsistency and loses
control of the bus. Master 2 does not detect any
inconsistency and keeps control of the bus.

26.5.5 I2C Modes of Operation

I2C is a synchronous single master, multi-master, multi-slave
serial interface. Devices operate in either master mode,
slave mode, or master/slave mode. In master/slave mode,
the device switches from master to slave mode when it is
addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving the
clock on the SCL line. Table 26-14 illustrates the I2C modes
of operation.

Table 26-13. Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master
The device that initiates a transfer, generates
clock signals, and terminates a transfer

Slave The device addressed by a master

Multi-master
More than one master can attempt to control
the bus at the same time

Arbitration

Procedure to ensure that, if more than one
master simultaneously tries to control the bus,
only one is allowed to do so and the winning
message is not corrupted

Synchronization
Procedure to synchronize the clock signals of
two or more devices

Table 26-14. I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-master Supports more than one master on the bus

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 323

Serial Communications Block (SCB)

Table 26-15 lists some common bus events that are part of
an I2C data transfer. The Write Transfer and Read Transfer
sections explain the I2C bus bit format during data transfer.

With all of these modes, there are two types of transfer -
read and write. In write transfer, the master sends data to
slave; in read transfer, the master receives data from slave.

26.5.5.1 Write Transfer

■ A typical write transfer begins with the master generating

a START condition on the I2C bus. The master then

writes a 7-bit I2C slave address and a write indicator (‘0’)
after the START condition. The addressed slave
transmits an acknowledgment byte by pulling the data
line low during the ninth bit time.

■ If the slave address does not match any of the slave
devices or if the addressed device does not want to
acknowledge the request, it transmits a no
acknowledgment (NACK) by not pulling the SDA line
low. The absence of an acknowledgement, results in an
SDA line value of ‘1’ due to the pull-up resistor
implementation.

■ If no acknowledgment is transmitted by the slave, the
master may end the write transfer with a STOP event.
The master can also generate a repeated START
condition for a retry attempt.

■ The master may transmit data to the bus if it receives an
acknowledgment. The addressed slave transmits an
acknowledgment to confirm the receipt of every byte of
data written. Upon receipt of this acknowledgment, the
master may transmit another data byte.

■ When the transfer is complete, the master generates a
STOP condition.

Figure 26-38. Master Write Data Transfer

Table 26-15. I2C Bus Events Terminology

Bus Event Description

START
A HIGH to LOW transition on the SDA line while
SCL is HIGH

STOP
A LOW to HIGH transition on the SDA line while
SCL is HIGH

ACK

The receiver pulls the SDA line LOW and it
remains LOW during the HIGH period of the clock
pulse, after the transmitter transmits each byte.
This indicates to the transmitter that the receiver
received the byte properly.

NACK

The receiver does not pull the SDA line LOW and
it remains HIGH during the HIGH period of clock
pulse after the transmitter transmits each byte.
This indicates to the transmitter that the receiver
did not receive the byte properly.

Repeated
START

START condition generated by master at the end
of a transfer instead of a STOP condition

DATA
SDA status change while SCL is LOW (data
changing), and no change while SCL is HIGH
(data valid)

M Sb L S bSDA

SCL

START Slave address (7 bits) W rite ACK ACKData (8 b its) STO P

W rite data transfer (M aster w rites the data)

LEG EN D :

SDA: Seria l Data L ine

SCL: Seria l C lock Line (a lways driven by the m aster)

S lave Transm it / M aster R eceive

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 324

Serial Communications Block (SCB)

26.5.5.2 Read Transfer

Figure 26-39. Master Read Data Transfer

■ A typical read transfer begins with the master generating
a START condition on the I2C bus. The master then
writes a 7-bit I2C slave address and a read indicator (‘1’)
after the START condition. The addressed slave
transmits an acknowledgment by pulling the data line
low during the ninth bit time.

■ If the slave address does not match with that of the
connected slave device or if the addressed device does
not want to acknowledge the request, a no
acknowledgment (NACK) is transmitted by not pulling
the SDA line low. The absence of an acknowledgment,
results in an SDA line value of ‘1’ due to the pull-up
resistor implementation.

■ If no acknowledgment is transmitted by the slave, the
master may end the read transfer with a STOP event.
The master can also generate a repeated START
condition for a retry attempt.

■ If the slave acknowledges the address, it starts
transmitting data after the acknowledgment signal. The
master transmits an acknowledgment to confirm the
receipt of each data byte sent by the slave. Upon receipt
of this acknowledgment, the addressed slave may
transmit another data byte.

■ The master can send a NACK signal to the slave to stop
the slave from sending data bytes. This completes the
read transfer.

■ When the transfer is complete, the master generates a
STOP condition.

■ When the slave transmits a NACK, even if a new byte is
written into the TX FIFO it will wait for the NACK to
complete.

26.5.6 I2C Buffer Modes

I2C can operate in three different buffered modes – FIFO,
EZ, and CMD_RESP modes. The buffer is used in different
ways in each of the modes. The following subsections
explain each of these buffered modes in detail.

26.5.6.1 FIFO Mode

The FIFO mode has a TX FIFO for the data being
transmitted and an RX FIFO for the data being received.
Each FIFO is constructed out of the SRAM buffer. The
FIFOs are either 64 elements deep with 16-bit data
elements or 128 elements deep with 8-bit data elements.
The width of the data elements are configured using the
CTRL.BYTE_MODE bitfield of the SCB. For I2C, put the
FIFO in BYTE mode because all transactions are a byte
wide.

The FIFO mode operation is available only in Active and
Sleep power modes, not in the Deep Sleep power mode.
However, on the Deep Sleep-capable SCB the slave
address can be used to wake the device from sleep.

A write access to the transmit FIFO uses register
TX_FIFO_WR. A read access from the receive FIFO uses
register RX_FIFO_RD.

Transmit and receive FIFO status information is available
through status registers TX_FIFO_STATUS and
RX_FIFO_STATUS. When in debug mode, a read from this
register behaves as a read from the
SCB_RX_FIFO_RD_SILENT register; that is, data will not
be removed from the FIFO.

Each FIFO has a trigger output. This trigger output can be
routed through the trigger mux to various other peripheral on
the device such as DMA or TCPWMs. The trigger output of
the SCB is controlled through the TRIGGER_LEVEL field in
the RX_CTRL and TX_CTRL registers.

■ For a TX FIFO a trigger is generated when the number
of entries in the transmit FIFO is less than
TX_FIFO_CTRL.TRIGGER_LEVEL.

■ For the RX FIFO a trigger is generated when the number
of entries in the FIFO is greater than the
RX_FIFO_CTRL.TRIGGER_LEVEL.

Note that the DMA has a trigger deactivation setting. For the
SCB this should be set to 16.

Active to Deep Sleep Transition

MSb LSb

START Slave address (7 bits) Read ACK NACKData (8 bits) STOP

Read data transfer (Master reads the data)

SDA

SCL

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line (always driven by the master)

Slave Transmit / Master Receive

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 325

Serial Communications Block (SCB)

Before going to deep sleep ensure that all active
communication is complete. This can be done by checking
the BUS_BUSY bit in the I2C_Status register.

Ensure that the TX and RX FIFOs are empty as any data will
be lost during deep sleep.

Before going to deep sleep the clock to the SCB needs to be
disabled. This can be done by setting the
SDA_IN_FILT_TRIM[1] bit in the I2C_CFG register to ‘0’.

Deep Sleep to Active Transition

EC_AM = 1, EC_OP = 0, FIFO Mode.

The following descriptions only apply to slave mode.

Master Write:

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 0,
I2C_CTRL.S_READY_ADDR_ACK = 1. The clock is
stretched until SDA_IN_FILT_TRIM[1] is set to ‘1’. After
that bit is set to 1, the clock stretch will be released

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 0,
I2C_CTRL.S_READY_ADDR_ACK = 0. The clock is
stretched until SDA_IN_FILT_TRIM[1] is set to ‘1’, and
S_ACK or S_NACK is set in the I2C_S_CMD register.

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 1,
I2C_CTRL.S_READY_ADDR_ACK = x. The incoming
address is NACK’d until SDA_IN_FILT_TRIM[1] is set to
‘1’. After that bit is set to 1, the slave will respond with an
ACK to a master address.

Master Read:

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 0,
I2C_CTRL.S_READY_ADDR_ACK = x. The incoming
address is stretched until SDA_IN_FILT_TRIM[1] is set
to ‘1’. After that bit is set to 1, the clock stretch will be
released.

■ I2C_CTRL.S_NOT_READY_ADDR_NACK = 1,
I2C_CTRL.S_READY_ADDR_ACK = x. The incoming
address is NACK’d until SDA_IN_FILT_TRIM[1] is set to
‘1’. After that bit is set to 1, the slave will ACK.

Note: When doing a repeated start after a write, wait
until the UNDERFLOW interrupt status is asserted
before setting the I2C_M_CMD.START bit and writing
the new address into the TX_FIFO. Otherwise, the
address in the FIFO will be sent as data and not as an
address.

26.5.6.2 EZI2C Mode

The Easy I2C (EZI2C) protocol is a unique communication
scheme built on top of the I2C protocol by Cypress. It uses a
meta protocol around the standard I2C protocol to
communicate to an I2C slave using indexed memory
transfers. This removes the need for CPU intervention.

The EZI2C protocol defines a single memory buffer with an
8-bit address that indexes the buffer (256-entry array of 8-bit
per entry is supported) located on the slave device. The EZ

address is used to address these 256 locations. The CPU
writes and reads to the memory buffer through the
EZ_DATA registers. These accesses are word accesses,
but only the least significant byte of the word is used.

The slave interface accesses the memory buffer using the
current address. At the start of a transfer (I2C START/
RESTART), the base address is copied to the current
address. A data element write or read operation is to the
current address location. After the access, the current
address is incremented by ‘1’.

If the current address equals the last memory buffer address
(255), the current address is not incremented. Subsequent
write accesses will overwrite any previously written value at
the last buffer address. Subsequent read accesses will
continue to provide the (same) read value at the last buffer
address. The bus master should be aware of the memory
buffer capacity in EZ mode.

The I2C base and current addresses are provided through
I2C_STATUS. At the end of a transfer, the difference
between the base and current addresses indicates how
many read or write accesses were performed. The block
provides interrupt cause fields to identify the end of a
transfer. EZI2C can be implemented through firmware or
hardware. All SCBs can implement EZI2C through a
firmware implementation in both Active and Sleep power
modes. The Deep Sleep SCB can implement a hardware-
and firmware-based EZI2C with a Deep Sleep power mode.
This document focuses on hardware-implemented EZI2C;
for more information on software implementation, see the
PDL.

EZI2C distinguishes three operation phases:

■ Address phase: The master transmits an 8-bit address
to the slave. This address is used as the slave base and
current address.

■ Write phase: The master writes 8-bit data element(s) to
the slave’s memory buffer. The slave’s current address
is set to the slave’s base address. Received data
elements are written to the current address memory
location. After each memory write, the current address is
incremented.

■ Read phase: The master reads 8-bit data elements from
the slave’s memory buffer. The slave’s current address
is set to the slave’s base address. Transmitted data
elements are read from the current address memory
location. After each memory read, the current address is
incremented.

Note that a slave’s base address is updated by the master
and not by the CPU.

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/group__group__scb.html

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 326

Serial Communications Block (SCB)

Figure 26-40. EZI2C Write and Read Data Transfer

Active to Deep Sleep Transition

Before going to deep sleep ensure that all active communication is complete. This can be done by checking the BUS_BUSY
bit in the I2C_Status register.

Ensure that the TX and RX FIFOs are empty as any data will be lost during deep sleep.

Before going to deep sleep the clock to the SCB needs to be disabled. This can be done by setting the
SDA_IN_FILT_TRIM[1] bit in the I2C_CFG register to ‘0’.

Deep Sleep to Active Transition

EC_AM = 1, EC_OP = 0, EZ Mode.

■ S_NOT_READY_ADDR_NACK = 0, S_READY_ADDR_ACK = 1. The clock is stretched until SDA_IN_FILT_TRIM[1] is
set to ‘1’. After that bit is set to 1, the clock stretch will be released.

■ S_NOT_READY_ADDR_NACK = 1, S_READY_ADDR_ACK = x. The incoming address is NACK’d until
SDA_IN_FILT_TRIM[1] is set to ‘1’. After that bit is set to 1, the slave will ACK.

LEGEND :

MSb LSbSDA

SCL

START Slave address (7 bits) Write ACK ACKEZ address (8 bits) STOP

Write data transfer (single write data)

MSb LSb

START Slave address (7 bits) Read ACK NACKRead Data (8 bits) STOP

Read data transfer (single read data)

SDA

SCL

SDA: Serial Data Line

SCL: Serial Clock Line (always driven by the master)

Slave Transmit / Master Receive

Write Data (8 bits) ACK

EZ address

Address

Data

EZ Buffer
(32 bytes SRAM)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 327

Serial Communications Block (SCB)

26.5.6.3 Command-Response Mode

This mode has a single memory buffer, a base read
address, a current read address, a base write address, and
a current write address that are used to index the memory
buffer. The base addresses are provided by the CPU. The
current addresses are used by the slave to index the
memory buffer for sequential accesses of the memory
buffer. The memory buffer holds 256 8-bit data elements.
The base and current addresses are in the range [0 to 255].

The CPU writes and reads to the memory buffer through the
SCB_EZ_DATA registers. These are word accesses, but
only the least significant byte of the word is used.

The slave interface accesses the memory buffer using the
current addresses. At the start of a write transfer (I2C
START/RESTART), the base write address is copied to the
current write address. A data element write is to the current
write address location. After the write access, the current
address is incremented by ‘1’. At the start of a read transfer,
the base read address is copied to the current read address.
A data element read is to the current read address location.
After the read data element is transmitted, the current read
address is incremented by ‘1’.

If the current addresses equal the last memory buffer
address (255), the current addresses are not incremented.
Subsequent write accesses will overwrite any previously
written value at the last buffer address. Subsequent read
accesses will continue to provide the (same) read value at

the last buffer address. The bus master should be aware of
the memory buffer capacity in command-response mode.

The base addresses are provided through
CMD_RESP_CTRL. The current addresses can be viewed
in CMD_RESP_STATUS. At the end of a transfer (I2C stop),
the difference between a base and current address
indicates how many read/write accesses were performed.
This block provides interrupts to identify the end of a
transfer, which can be found in SCB8_INTR_I2C_EC and
SCB8_INTR_SPI_EC register sections. Command-
response mode operation is available in Active, Sleep, and
Deep Sleep power modes. The command-response mode
has two phases of operation:

■ Write phase - The write phase begins with a START/
RESTART followed by the slave address with read/write
bit set to ‘0’ indicating a write. The slave’s current write
address is set to the slave’s base write address.
Received data elements are written to the current write
address memory location. After each memory write, the
current write address is incremented.

■ Read phase - The read phase begins with a START/
RESTART followed by the slave address with read/write
bit set to ‘1’ indicating a read. The slave’s current read
address is set to the slave’s base read address.
Transmitted data elements are read from the current
address memory location. After each read data element
is transferred, the current read address is incremented.

Figure 26-41. I2C Command-Response Mode

Note: A slave’s base addresses are updated by the CPU and not by the master.

S address W PI2C bus A Adata

write data (8 bits)

write phase

LEGEND:
 S: Start
 RS: Repeated start
 P: Stop
 A: ACK
 N: NACK

SRAM

read data (8 bits)

Pdata NS address R A

read phase

I2C bus

Memory of
256 x 8-bits

curr_wr_addrbase_wr_addr

+1
written by CPU

curr_rd_addrbase_rd_addr +1

written by CPU

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 328

Serial Communications Block (SCB)

26.5.7 Clocking and Oversampling

The SCB I2C supports both internally and externally clocked
operation modes. Two bitfields (EC_AM_MODE and
EC_OP MODE) in the SCB_CTRL register determine the
SCB clock mode. EC_AM_MODE indicates whether I2C
address matching is internally (0) or externally (1) clocked.
I2C address matching comprises the first part of the I2C
protocol. EC_OP_MODE indicates whether the rest of the
protocol operation (besides I2C address matching) is
internally (0) or externally (1) clocked. The externally
clocked mode of operation is supported only in the I2C slave
mode.

An internally-clocked operation uses the programmable
clock dividers. For I2C, an integer clock divider must be
used for both master and slave. For more information on
system clocking, see the Clocking System chapter on
page 221. The internally-clocked mode does not support the
command-response mode.

The SCB_CTRL bitfields EC_AM_MODE and
EC_OP_MODE can be configured in the following ways.

■ EC_AM_MODE is ‘0’ and EC_OP_MODE is ‘0’: Use this
configuration when only Active mode functionality is
required.

❐ FIFO mode: Supported.

❐ EZ mode: Supported.

❐ Command-response mode: Not supported. The
slave NACKs every slave address.

■ EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘0’: Use this
configuration when both Active and Deep Sleep
functionality are required. This configuration relies on the
externally clocked functionality for the I2C address
matching and relies on the internally clocked
functionality to access the memory buffer. The “hand
over” from external to internal functionality relies either
on an ACK/NACK or clock stretching scheme. The
former may result in termination of the current transfer
and relies on a master retry. The latter stretches the
current transfer after a matching address is received.
This mode requires the master to support either NACK
generation (and retry) or clock stretching. When the I2C
address is matched, INTR_I2C_EC.WAKE_UP is set to
‘1’. The associated Deep Sleep functionality interrupt
brings the system into Active power mode.

❐ FIFO mode: See “Deep Sleep to Active Transition”
on page 325

❐ EZ mode: See “Deep Sleep to Active Transition” on
page 326.

❐ CMD_RESP mode: Not supported. The slave
NACKs every slave address.

■ EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘1’. Use this
mode when both Active and Deep Sleep functionality are
required. When the slave is selected,
INTR_I2C_EC.WAKE_UP is set to ‘1’. The associated

Deep Sleep functionality interrupt brings the system into
Active power mode. When the slave is deselected,
INTR_I2C_EC.EZ_STOP and/or
INTR_I2C_EC.EZ_WRITE_STOP are set to ‘1’.

❐ FIFO mode: Not supported.

❐ EZ mode: Supported.

❐ CMD_RESP mode: Supported.

An externally-clocked operation uses a clock provided by
the serial interface. The externally clocked mode does not
support FIFO mode. If EC_OP_MODE is ‘1’, the external
interface logic accesses the memory buffer on the external
interface clock (I2C SCL). This allows for EZ and
CMD_RESP mode functionality in Active and Deep Sleep
power modes.

In Active system power mode, the memory buffer requires
arbitration between external interface logic (on I2C SCL) and
the CPU interface logic (on system peripheral clock). This
arbitration always gives the highest priority to the external
interface logic (host accesses). The external interface logic
takes one serial interface clock/bit periods for the I2C.
During this period, the internal logic is denied service to the
memory buffer. The PSoC 6 MCU provides two
programmable options to address this “denial of service”:

■ If the BLOCK bitfield of SCB_CTRL is ‘1’: An internal
logic access to the memory buffer is blocked until the
memory buffer is granted and the external interface logic
has completed access. For a 100-kHz I2C interface, the
maximum blocking period of one serial interface bit
period measures 10 µs (approximately 208 clock cycles
on a 48 MHz SCB input clock). This option provides
normal SCB register functionality, but the blocking time
introduces additional internal bus wait states.

■ If the BLOCK bitfield of SCB_CTRL is ‘0’: An internal
logic access to the memory buffer is not blocked, but
fails when it conflicts with an external interface logic
access. A read access returns the value 0xFFFF:FFFF
and a write access is ignored. This option does not
introduce additional internal bus wait states, but an
access to the memory buffer may not take effect. In this
case, following failures are detected:

❐ Read Failure: A read failure is easily detected, as the
returned value is 0xFFFF:FFFF. This value is unique
as non-failing memory buffer read accesses return
an unsigned byte value in the range 0x0000:0000-
0x0000:00FF.

❐ Write Failure: A write failure is detected by reading
back the written memory buffer location, and con-
firming that the read value is the same as the written
value.

For both options, a conflicting internal logic access to the
memory buffer sets INTR_TX.BLOCKED field to ‘1’ (for write
access-es) and INTR_RX.BLOCKED field to ‘1’ (for read
accesses). These fields can be used as either status fields

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 329

Serial Communications Block (SCB)

or as interrupt cause fields (when their associated mask
fields are enabled).

If a series of read or write accesses is performed and
CTRL.BLOCKED is ‘0’, a failure is detected by comparing
the logical OR of all read values to 0xFFFF:FFFF and
checking the INTR_TX.BLOCKED and
INTR_RX.BLOCKED fields to determine whether a failure
occurred for a (series of) write or read operation(s).

26.5.7.1 Glitch Filtering

The PSoC 6 MCU SCB I2C has analog and digital glitch
filters. Analog glitch filters are applied on the i2c_scl_in and

i2c_sda_in input signals (AF_in) to filter glitches of up to 50
ns. An analog glitch filter is also applied on the i2c_sda_out
output signal (AF_out). Analog glitch filters are enabled and
disabled in the SCB.I2C_CFG register. Do not change the
_TRIM bitfields; only change the _SEL bitfields in this
register.

Digital glitch filters are applied on the i2c_scl_in and
i2c_sda_in input signals (DF_in). The digital glitch filter is
enabled in the SCB.RX_CTRL register via the MEDIAN
bitfield.

Figure 26-42. I2C Glitch Filtering Connection

The following table lists the useful combinations of glitch filters.

When operating in EC_OP_MODE = 1, the 100-kHz, 400-kHz, and 1000-kHz modes require the following settings for AF_out:

26.5.7.2 Oversampling and Bit Rate

Internally-clocked Master

The PSoC 6 MCU implements the I2C clock as an oversampled multiple of the SCB input clock. In master mode, the block
determines the I2C frequency. Routing delays on the PCB, on the chip, and the SCB (including analog and digital glitch filters)
all contribute to the signal interface timing. In master mode, the block operates off clk_scb and uses programmable
oversampling factors for the SCL high (1) and low (0) times. For high and low phase oversampling, see

Table 26-16. Glitch Filter Combinations

AF_in AF_out DF_in Comments

0 0 1 Used when operating in internally-clocked mode and in master in fast-mode plus (1-MHz speed mode)

1 0 0 Used when operating in internally-clocked mode (EC_OP_MODE is '0')

1 1 0 Used when operating in externally-clocked mode (EC_OP_MODE is '1'). Only slave mode.

AF_in AF_out DF_in

1 1 0

100-kHz mode: I2C_CFG.SDA_OUT_FILT_SEL = 3

400-kHz mode: I2C_CFG.SDA_OUT_FILT_SEL = 3

1000-kHz mode: I2C_CFG.SDA_OUT_FILT_SEL = 1

i2c_scl_in
i2c_scl

i2c_ctl

i2c_ec_ctli2c_ec_scl_out

i2c_scl_in

i2c_scl_in

i2c_ic_scl_out

i2c_sda_in

i2c_ic_sda_out

i2c_ec_sda_out

AF_in

i2c_sda_in

i2c_sda_in
i2c_sda AF_in

AF_out

DF_in

DF_in

i2c_scl_out

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 330

Serial Communications Block (SCB)

I2C_CTRL.LOW_PHASE_OVS and I2C_CTRL.HIGH_PHASE_OVS registers. For simple manipulation of the oversampling
factor, see the SCB_CTRL.OVS register.

Table 26-17 assumes worst-case conditions on the I2C bus. The following equations can be used to determine the settings for
your own system. This will involve measuring the rise and fall times on SCL and SDA lines in your system.

tCLK_SCB(Min) = (tLOW + tF)/LOW_PHASE_OVS

If clk_scb is any faster than this, the tLOW of the I2C specification will be violated. tF needs to be measured in your system.

tCLK_SCB(Max) = (tVD – tRF – 100 ns)/3 (When analog filter is enabled and digital disabled)

tCLK_SCB(Max) = (tVD – tRF)/4 (When analog filter is disabled and analog filter is enabled)

tRF is the maximum of either the rise or fall time. If clk_scb is slower than this frequency, tVD will be violated.

I2C Master Clock Synchronization

The HIGH_PHASE_OVS counter does not start counting until the SCB detects that the SCL line is high. This is not the same
as when the SCB sets the SCL high. The differences are explained by three delays:

1. Delay from SCB to I/O pin

2. I2C bus tR

3. Input delay (filters and synchronization)

Figure 26-43. I2C SCL Turnaround Path

If the above three delays combined are greater than one clk_scb cycle, then the high phase of the SCL will be extended. This
may cause the actual data rate on the I2C bus to be slower than expected. This can be avoided by:

■ Decreasing the pull-up resistor, or decreasing the bus capacitance to reduce tR.

■ Reducing the I2C_CTRL.HIGH_PHASE_OVS value.

Table 26-17. I2C Frequency and Oversampling Requirements in I2C Master Mode

AF_in AF_out DF_in Mode
Supported
Frequency

LOW_PHASE_OVS HIGH_PHASE_OVS
clk_scb

Frequency

0 0 1

100 kHz [62, 100] kHz [9, 15] [9, 15] [1.98-3.2] MHz

400 kHz [264, 400] kHz [13, 5] [7, 15] [8.45-10] MHz

1000 kHz [447, 1000] kHz [8, 15] [5, 15] [14.32-25.8] MHz

1 0 0

100 kHz [48, 100] kHz [7, 15] [7, 15] [1.55-3.2] MHz

400 kHz [244, 400] kHz [12, 15] [7, 15] [7.82-10] MHz

1000 kHz Not supported

SCL_out

SCL_bus

SCL_in

1 2 3

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 331

Serial Communications Block (SCB)

Internally-clocked Slave

In slave mode, the I2C frequency is determined by the incoming I2C SCL signal. To ensure proper operation, clk_scb must be
significantly higher than the I2C bus frequency. Unlike master mode, this mode does not use programmable oversampling
factors.

tCLK_SCB(Max) = (tVD – tRF – 100 ns) / 3 (When analog filter is enabled and digital disabled)

tCLK_SCB(Max) = (tVD – tRF) / 4 (When analog filter is disabled and analog filter is enabled)

tRF is the maximum of either the rise or fall time. If clk_scb is slower than this frequency, tVD will be violated.

The minimum period of clk_scb is determined by one of the following equations:

tCLK_SCB(MIN) = (tSU;DAT(min) + tRF) /16

or

tCLK_SCB(Min) = (0.6 * tF – 50 ns)/2 (When analog filter is enabled and digital disabled)

tCLK_SCB(Min) = (0.6 * tF)/3 (When analog filter is disabled and digital enabled)

The result that yields the largest period from the two sets of equations above should be used to set the minimum period of
clk_scb.

Master-Slave

In this mode, when the SCB is acting as a master device, the block determines the I2C frequency. When the SCB is acting as
a slave device, the block does not determine the I2C frequency. Instead, the incoming I2C SCL signal does.

To guarantee operation in both master and slave modes, choose clock frequencies that work for both master and slave using
the tables above.

26.5.8 Enabling and Initializing the I2C

The following section describes the method to configure the I2C block for standard (non-EZ) mode and EZI2C mode.

26.5.8.1 Configuring for I2C FIFO Mode

The I2C interface must be programmed in the following order.

1. Program protocol specific information using the SCB_I2C_CTRL register. This includes selecting master - slave function-
ality.

2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL registers.

3. Set the SCB_CTRL.BYTE_MODE to ‘1’ to enable the byte mode.

4. Program the SCB_CTRL register to enable the I2C block and select the I2C mode. For a complete description of the I2C
registers, see the registers TRM.

26.5.8.2 Configuring for EZ and CMD_RESP Modes

To configure the I2C block for EZ and CMD_RESP modes, set the following I2C register bits

Table 26-18. SCB Input Clock Requirements in I2C Slave Mode

AF_in AF_out DF_in Mode clk_scb Frequency Range

0 0 1

100 kHz [1.98-12.8] MHz

400 kHz [8.45-17.14] MHz

1000 kHz [14.32-44.77] MHz

1 0 0

100 kHz [1.55-12.8] MHz

400 kHz [7.82-15.38] MHz

1000 kHz [15.84-89.0] MHz

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 332

Serial Communications Block (SCB)

1a. Select the EZI2C mode by writing ‘1’ to the EZ_MODE bit (bit 10) of the SCB_CTRL register.

1b. Select CMD_RESP mode by writing a 1 to the CMD_RESP bit (bit 12) of the SCB_CTRL register.

2. Set the S_READY_ADDR_ACK (bit 12) and S_READY_DATA_ACK (bit 13) bits of the SCB_I2C_CTRL register.

Note: For all modes clk_scb must also be configured. For information on configuring a peripheral clock and connecting it to
the SCB consult the Clocking System chapter on page 221.

The GPIO must also be connected to the SCB; see the following section for more details.

26.5.9 I/O Pad Connections

Figure 26-44. I2C I/O Pad Connections

When configuring the I2C SDA/SCL lines, the following sequence must be followed. If this sequence is not followed, the I2C
lines may initially have overshoot and undershoot.

1. Set SCB_CTRL_MODE to ‘0’.

2. Configure HSIOM for SCL and SDA to connect to the SCB.

3. Set TX_CTRL.OPEN_DRAIN to ‘1’.

4. Configure I2C pins for high-impedance drive mode.

5. Configure SCB for I2C

6. Enable SCB

7. Configure I2C pins for Open Drain Drives Low.

Table 26-19. I2C I/O Pad Descriptions

I/O Pads Drive Mode On-chip I/O Signals Usage

i2c_scl Open drain with external pull-up
i2c_scl_in Receive a clock

i2c_scl_out Transmit a clock

i2c_sda Open drain with external pull-up
i2c_sda_in Receive data

i2c_sda_out Transmit data

Open drain
(pull-up)

1

i2c_scl_in
i2c_scl

i2c_ctl

i2c_ec_ctl

i2c_ec_scl_out

i2c_scl_in

i2c_scl_in

i2c_ic_scl_out

i2c_ic_block_ec

i2c_sda_in

i2c_ic_sda_out

i2c_ec_sda_out

Filter

i2c_sda_inOpen drain
(pull-up)

1

i2c_sda_in
i2c_sda Filter

Filter

oe

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 333

Serial Communications Block (SCB)

26.5.10 I2C Registers

The I2C interface is controlled by reading and writing a set of configuration, control, and status registers, as listed in
Table 26-20.

Note: Detailed descriptions of the I2C register bits are available in the registers TRM.

Table 26-20. I2C Registers

Register Function

SCB_CTRL Enables the SCB block and selects the type of serial interface (SPI, UART, I2C). Also used to select inter-
nally and externally clocked operation and EZ and non-EZ modes of operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver FIFO status.

SCB_I2C_STATUS
Indicates bus busy status detection, read/write transfer status of the slave/master, and stores the EZ slave
address.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.

SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.

SCB_STATUS
Indicates whether the externally clocked logic is using the EZ memory. This bit can be used by software to
determine whether it is safe to issue a software access to the EZ memory.

SCB_I2C_CFG Configures filters, which remove glitches from the SDA and SCL lines.

SCB_TX_CTRL Specifies the data frame width; also used to specify whether MSb or LSb is the first bit in transmission.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and FREEZE operation of the
transmitter FIFO.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides
if the transmitter FIFO holds the valid data.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO;
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK.

SCB_EZ_DATA Holds the data in an EZ memory location.

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 334

Serial Communications Block (SCB)

26.6 SCB Interrupts

SCB supports interrupt generation on various events. The interrupts generated by the SCB block vary depending on the
mode of operation.

Note: To avoid being triggered by events from previous transactions, whenever the firmware enables an interrupt mask
register bit, it should clear the interrupt request register in advance.

Note: If the DMA is used to read data out of RX FIFO, the NOT_EMPTY interrupt may never trigger. This can occur when
clk_peri (clocking DMA) is running much faster than the clock to the SCB. As a workaround to this issue, set the
RX_FIFO_CTRL.TRIGGER_LEVEL to ‘1’ (not 0); this will allow the interrupt to fire.

The following register definitions correspond to the SCB interrupts:

■ INTR_M: This register provides the instantaneous status of the interrupt sources. A write of ‘1’ to a bit will clear the
interrupt.

■ INTR_M_SET: A write of ‘1’ into this register will set the interrupt.

■ INTR_M_MASK: The bit in this register masks the interrupt sources. Only the interrupt sources with their masks enabled
can trigger the interrupt.

■ INTR_M_MASKED: This register provides the instantaneous value of the interrupts after they are masked. It provides
logical and corresponding request and mask bits. This is used to understand which interrupt triggered the event.

Note: While registers corresponding to INTR_M are used here, these definitions can be used for INTR_S, INTR_TX,
INTR_RX, INTR_I2C_EC, and INTR_SPI_EC.

Figure 26-45 shows the physical interrupt lines. All the interrupts are OR'd together to make one interrupt source that is the
OR of all six individual interrupts. All the externally-clocked interrupts make one interrupt line called interrupt_ec, which is the
OR'd signal of interrupt_i2C_ec and interrupt_spi_ec. All the internally-clocked interrupts make one interrupt line called
interrupt_ic, which is the OR'd signal of interrupt_master, interrupt_slave, interrupt_tx, and interrupt_rx. The Active
functionality interrupts are generated synchronously to clk_peri while the Deep Sleep functionality interrupts are generated
asynchronously to clk_peri.

Table 26-21. SCB Interrupts

Interrupt Functionality
Active/Deep

Sleep
Registers

interrupt_master I2C master and SPI master functionality Active

INTR_M,
INTR_M_SET,
INTR_M_MASK,
INTR_M_MASKED

interrupt_slave I2C slave and SPI slave functionality Active

INTR_S,
INTR_S_SET,
INTR_S_MASK,
INTR_S_MASKED

interrupt_tx UART transmitter and TX FIFO functionality Active

INTR_TX,
INTR_TX_SET,
INTR_TX_MASK,
INTR_TX_MASKED

interrupt_rx UART receiver and RX FIFO functionality Active

INTR_RX,
INTR_RX_SET,
INTR_RX_MASK,
INTR_RX_MASKED

interrupt_i2c_ec Externally clocked I2C slave functionality Deep Sleep
INTR_I2C_EC,
INTR_I2C_EC_MASK,
INTR_I2C_EC_MASKED

interrupt_spi_ec Externally clocked SPI slave functionality Deep Sleep
INTR_ISPI_EC,
INTR_SPI_EC_MASK,
INTR_SPI_EC_MASKED

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 335

Serial Communications Block (SCB)

Figure 26-45. Interrupt Lines

26.6.1 SPI Interrupts

The SPI interrupts can be classified as master interrupts, slave interrupts, TX interrupts, RX interrupts, and externally clocked
(EC) mode interrupts. Each interrupt output is the logical OR of the group of all possible interrupt sources classified under the
section. For example, the TX interrupt output is the logical OR of the group of all possible TX interrupt sources. This signal
goes high when any of the enabled TX interrupt sources are true. The SCB also provides an interrupt cause register (SCB_
INTR_CAUSE) that can be used to determine interrupt source. The interrupt registers are cleared by writing ‘1’ to the
corresponding bitfield. Note that certain interrupt sources are triggered again as long as the condition is met even if the
interrupt source was cleared. For example, the TX_FIFO_EMPTY is set as long as the transmit FIFO is empty even if the
interrupt source is cleared. For more information on interrupt registers, see the registers TRM. The SPI supports interrupts on
the following events:

■ SPI Master Interrupts

❐ SPI master transfer done – All data from the TX FIFO are sent. This interrupt source triggers later than TX_FI-
FO_EMPTY by the amount of time it takes to transmit a single data element. TX_FIFO_EMPTY triggers when the last
data element from the TX FIFO goes to the shifter register. However, SPI Done triggers after this data element is
transmitted. This means SPI Done will be asserted one SCLK clock cycle earlier than the completion of data element
reception.

■ SPI Slave Interrupts

❐ SPI Bus Error – Slave deselected at an unexpected time in the SPI transfer. The firmware may decide to clear the TX
and RX FIFOs for this error.

❐ SPI slave deselected after any EZSPI transfer occurred.

❐ SPI slave deselected after a write EZSPI transfer occurred.

■ SPI TX

❐ TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL.

❐ TX FIFO not full – At least one data element can be written into the TX FIFO.

❐ TX FIFO empty – The TX FIFO is empty.

❐ TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

❐ TX FIFO underflow – Hardware attempts to read from an empty TX FIFO. This happens when the SCB is ready to
transfer data and EMPTY is ‘1’.

❐ TX FIFO trigger – Less entries in the TX FIFO than the value specified by TX_FIFO_CTRL.TRIGGER_LEVEL.

■ SPI RX

❐ RX FIFO has more entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL.

❐ RX FIFO full - RX FIFO is full.

❐ RX FIFO not empty - RX FIFO is not empty. At least one data element is available in the RX FIFO to be read.

❐ RX FIFO overflow - Hardware attempt to write to a full RX FIFO.

❐ RX FIFO underflow - Firmware attempts to read from and empty RX FIFO.

Interrupt Lines

INTR_M_MASKED[...]

INTR_S_MASKED[...]

INTR_TX_MASKED[...]

INTR_RX_MASKED[...]

Interrupt_master

Interrupt_slave

Interrupt_tx

Interrupt_rx

Interrupt_i2c_ec

Interrupt_spi_ec

Interrupt_ic

Interrupt_ec

Interrupt

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 336

Serial Communications Block (SCB)

❐ RX FIFO trigger - More entries in the RX FIFO than the value specified by RX_FIFO_CTRL.TRIGGER_LEVEL.

■ SPI Externally Clocked

❐ Wake up request on slave select – Active on incoming slave request (with address match). Only set when EC_AM is
‘1’.

❐ SPI STOP detection at the end of each transfer – Activated at the end of every transfer (I2C STOP). Only set for a
slave request with an address match, in EZ and CMD_RESP modes, when EC_OP is ‘1’.

❐ SPI STOP detection at the end of a write transfer – Activated at the end of a write transfer (I2C STOP). This event is
an indication that a buffer memory location has been written to. For EZ mode, a transfer that only writes the base
address does not activate this event. Only set for a slave request with an address match, in EZ and CMD_RESP
modes, when EC_OP is ‘1’.

❐ SPI STOP detection at the end of a read transfer – Activated at the end of a read transfer (I2C STOP). This event is an
indication that a buffer memory location has been read from. Only set for a slave request with an address match, in EZ
and CMD_RESP modes when EC_OP is ‘1’.

Figure 26-46 and Figure 26-47 show how each of the interrupts are triggered. Figure 26-46 shows the TX buffer and the
corresponding interrupts while Figure 26-47 shows all the corresponding interrupts for the RX buffer. The FIFO has 256 split
into 128 bytes for TX and 128 bytes for RX instead of the 8 bytes shown in the figures. For more information on how to
implement and clear interrupts, see the SPI (SCB_SPI_PDL) datasheet and the PDL.

Figure 26-46. TX Interrupt Source Operation

Component Started Write 1 byte Write 1 more byte Write 4 more bytes Write 3 more bytes

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

SPI Done = 0

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO Empty = 0 (W1C)

TX FIFO Level = 1

TX FIFO Not F ull = 1

SPI Done = 0

TX FIFO

Level = 4

Used = 1

TX Shifter

TX FIFO Empty = 1

TX FIFO Level = 0 (W1C)

TX FIFO Not F ull = 1

SPI Done = 0

TX FIFO

Level = 4

Used = 5

TX Shifter

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty = 0

TX FIFO Level = 0

TX FIFO Not F ull = 0 (W1C)

SPI Done = 0

Transmit 1 byte Transmit 3 more bytes Transmit 4 more bytes Transmit 7 more bits Transmit last bit

TX FIFO Empty = 0

TX FIFO Level = 1

TX FIFO Not F ull = 1

SPI Done = 0

TX FIFO

Level = 4

Used = 4

TX Shifter

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not F ull = 1

SPI Done = 0

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not F ull = 1

SPI Done =1

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty = 0

TX FIFO Level = 0

TX FIFO Not F ull = 1

SPI Done = 0

Used = 7

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not F ull = 1

TX FIFO Underflo w = 1

Used = 0

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not F ull = 1

SPI Done = 0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 337

Serial Communications Block (SCB)

Figure 26-47. RX Interrupt Source Operation

26.6.2 UART Interrupts

The UART interrupts can be classified as TX interrupts and RX interrupts. Each interrupt output is the logical OR of the group
of all possible interrupt sources classified under the section. For example, the TX interrupt output is the logical OR of the
group of all possible TX interrupt sources. This signal goes high when any of the enabled TX interrupt sources are true. The
SCB also provides an interrupt cause register (SCB_ INTR_CAUSE) that can be used to determine interrupt source. The
interrupt registers are cleared by writing ‘1’ to the corresponding bitfield. Note that certain interrupt sources are triggered
again as long as the condition is met even if the interrupt source was cleared. For example, the TX_FIFO_EMPTY is set as
long as the transmit FIFO is empty even if the interrupt source is cleared. For more information on interrupt registers, see the
registers TRM. The UART block generates interrupts on the following events:

■ UART TX

❐ TX FIFO has fewer entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL.

❐ TX FIFO not full – TX FIFO is not full. At least one data element can be written into the TX FIFO.

❐ TX FIFO empty – The TX FIFO is empty.

❐ TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

Component Started Recevice 1 byte Receive 4 more byte Receive 3 more bytes Receive 3 more bytes

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

Used = 5

RX Shifter

RX FIFO

Level = 4

RX Shifter

RX FIFO

Level = 4

Dropped

RX Shifter

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 1

RX FIFO Oveflow = 1

Read 1 byte Read 3 more bytes Read 4 more bytes

RX FIFO

Level = 4

Used = 4

RX Shifter

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

RX Shifter
Used = 7

RX FIFO Not Empty = 0

RX FIFO Level = 0

RX FIFO Full = 0

RX FIFO Not Empty = 1

RX FIFO Level = 0

RX FIFO Full = 0

RX FIFO Not Empty = 1

RX FIFO Level =1

RX FIFO Full = 0

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 1

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 0 (W1C)

RX FIFO Not Empty = 1

RX FIFO Level = 0 (W1C)

RX FIFO Full = 0

RX FIFO Not Empty = 0 (W1C)

RX FIFO Level = 0

RX FIFO Full = 0

http://www.cypress.com/trm220777
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 338

Serial Communications Block (SCB)

❐ TX FIFO underflow – Hardware attempts to read from an empty TX FIFO. This happens when the SCB is ready to
transfer data and EMPTY is ‘1’.

❐ TX NACK – UART transmitter receives a negative acknowledgment in SmartCard mode.

❐ TX done – This happens when the UART completes transferring all data in the TX FIFO and the last stop field is trans-
mitted (both TX FIFO and transmit shifter register are empty).

❐ TX lost arbitration – The value driven on the TX line is not the same as the value observed on the RX line. This condi-
tion event is useful when transmitter and receiver share a TX/RX line. This is the case in LIN or SmartCard modes.

■ UART RX

❐ RX FIFO has more entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL.

❐ RX FIFO full – RX FIFO is full. Note that received data frames are lost when the RX FIFO is full.

❐ RX FIFO not empty – RX FIFO is not empty.

❐ RX FIFO overflow – Hardware attempts to write to a full RX FIFO.

❐ RX FIFO underflow – Firmware attempts to read from an empty RX FIFO.

❐ Frame error in received data frame – UART frame error in received data frame. This can be either a start of stop bit
error:
Start bit error: After the beginning of a start bit period is detected (RX line changes from 1 to 0), the middle of the start
bit period is sampled erroneously (RX line is ‘1’). Note: A start bit error is detected before a data frame is received.
Stop bit error: The RX line is sampled as ‘0’, but a ‘1’ was expected. A stop bit error may result in failure to receive
successive data frames. Note: A stop bit error is detected after a data frame is received.

❐ Parity error in received data frame – If UART_RX_CTL.DROP_ON_PARITY_ERROR is ‘1’, the received frame is
dropped. If UART_RX_CTL.DROP_ON_PARITY_ERROR is ‘0’, the received frame is sent to the RX FIFO. In Smart-
Card sub mode, negatively acknowledged data frames generate a parity error. Note that firmware can only identify the
erroneous data frame in the RX FIFO if it is fast enough to read the data frame before the hardware writes a next data
frame into the RX FIFO.

❐ LIN baud rate detection is completed – The receiver software uses the UART_RX_STATUS.BR_COUNTER value to
set the clk_scb to guarantee successful receipt of the first LIN data frame (Protected Identifier Field) after the synchro-
nization byte.

❐ LIN break detection is successful – The line is ‘0’ for UART_RX_CTRL.BREAK_WIDTH + 1 bit period. Can occur at
any time to address unanticipated break fields; that is, “break-in-data” is supported. This feature is supported for the
UART standard and LIN submodes. For the UART standard submodes, ongoing receipt of data frames is not affected;
firmware is expected to take proper action. For the LIN submode, possible ongoing receipt of a data frame is stopped
and the (partially) received data frame is dropped and baud rate detection is started. Set to ‘1’, when event is detected.
Write with '1' to clear bit.

Figure 26-48 and Figure 26-49 show how each of the interrupts are triggered. Figure 26-48 shows the TX buffer and the
corresponding interrupts while Figure 26-49 shows all the corresponding interrupts for the RX buffer. The FIFO has 256 split
into 128 bytes for TX and 128 bytes for RX instead of the 8 bytes shown in the figures. For more information on how to
implement and clear interrupts see the UART (SCB_UART_PDL) datasheet and the PDL.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 339

Serial Communications Block (SCB)

Figure 26-48. TX Interrupt Source Operation

Component Started Write 1 byte Write 1 more byte Write 4 more bytes Write 3 more bytes

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not Full = 1

UART Done = 0

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO Empty = 0 (W1C)

TX FIFO Level = 1

TX FIFO Not F ull = 1

UART Do ne = 0

TX FIFO

Level = 4

Used = 1

TX Shifter

TX FIFO Empty = 1

TX FIFO Level = 0 (W1C)

TX FIFO Not F ull = 1

UART Do ne = 0

TX FIFO

Level = 4

Used = 5

TX Shifter

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty = 0

TX FIFO Level = 0

TX FIFO Not F ull = 0 (W1C)

UART Do ne = 0

Transmit 1 byte Transmit 3 more bytes Transmit 4 more bytes Transmit last bit

TX FIFO Empty = 0

TX FIFO Level = 1

TX FIFO Not F ull = 1

UART Do ne = 0

TX FIFO

Level = 4

Used = 4

TX Shifter

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not F ull = 1

UART Do ne = 0

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not F ull = 1

UART Do ne =1

TX FIFO

Level = 4

Used = 0

TX Shifter

TX FIFO

Level = 4

TX Shifter

TX FIFO Empty = 0

TX FIFO Level = 0

TX FIFO Not F ull = 1

UART Do ne = 0

Used = 7

TX FIFO Empty = 1

TX FIFO Level = 1

TX FIFO Not F ull = 1

UART Done = 0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 340

Serial Communications Block (SCB)

Figure 26-49. RX Interrupt Source Operation

Component Started Recevice 1 byte Receive 4 more byte Receive 3 more bytes Receive 3 more bytes

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

Used = 5

RX Shifter

RX FIFO

Level = 4

RX Shifter

RX FIFO

Level = 4

Dropped

RX Shifter

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 1

RX FIFO Oveflow = 1

Read 1 byte Read 3 more bytes Read 4 more bytes

RX FIFO

Level = 4

Used = 4

RX Shifter

RX FIFO

Level = 4

Used = 0

RX Shifter

RX FIFO

Level = 4

RX Shifter
Used = 7

RX FIFO Not Empty = 0

RX FIFO Level = 0

RX FIFO Full = 0

RX FIFO Not Empty = 1

RX FIFO Level = 0

RX FIFO Full = 0

RX FIFO Not Empty = 1

RX FIFO Level =1

RX FIFO Full = 0

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 1

RX FIFO Not Empty = 1

RX FIFO Level = 1

RX FIFO Full = 0 (W1C)

RX FIFO Not Empty = 1

RX FIFO Level = 0 (W1C)

RX FIFO Full = 0

RX FIFO Not Empty = 0 (W1C)

RX FIFO Level = 0

RX FIFO Full = 0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 341

Serial Communications Block (SCB)

26.6.3 I2C Interrupts

I2C interrupts can be classified as master interrupts, slave interrupts, TX interrupts, RX interrupts, and externally clocked (EC)
mode interrupts. Each interrupt output is the logical OR of the group of all possible interrupt sources classified under the
section. For example, the TX interrupt output is the logical OR of the group of all possible TX interrupt sources. This signal
goes high when any of the enabled TX interrupt sources are true. The SCB also provides an interrupt cause register (SCB_
INTR_CAUSE) that can be used to determine interrupt source. The interrupt registers are cleared by writing ‘1’ to the
corresponding bitfield. Note that certain interrupt sources are triggered again as long as the condition is met even if the
interrupt source was cleared. For example, the TX_FIFO_EMPTY is set as long as the transmit FIFO is empty even if the
interrupt source is cleared. For more information on interrupt registers, see the registers TRM. The I2C block generates
interrupts for the following conditions.

■ I2C Master

❐ I2C master lost arbitration – The value driven by the master on the SDA line is not the same as the value observed on
the SDA line.

❐ I2C master received NACK – When the master receives a NACK (typically after the master transmitted the slave
address or TX data).

❐ I2C master received ACK – When the master receives an ACK (typically after the master transmitted the slave
address or TX data).

❐ I2C master sent STOP – When the master has transmitted a STOP.

❐ I2C bus error – Unexpected stop/start condition is detected.

■ I2C Slave

❐ I2C slave lost arbitration – The value driven on the SDA line is not the same as the value observed on the SDA line
(while the SCL line is ‘1’). This should not occur; it represents erroneous I2C bus behavior. In case of lost arbitration,
the I2C slave state machine aborts the ongoing transfer. Software may decide to clear the TX and RX FIFOs in case of
this error.

❐ I2C slave received NACK – When the slave receives a NACK (typically after the slave transmitted TX data).

❐ I2C slave received ACK – When the slave receives an ACK (typically after the slave transmitted TX data).

❐ I2C slave received STOP – I2C STOP event for I2C (read or write) transfer intended for this slave (address matching is
performed). When STOP or REPEATED START event is detected. The REPEATED START event is included in this
interrupt cause such that the I2C transfers separated by a REPEATED START can be distinguished and potentially
treated separately by the firmware. Note that the second I2C transfer (after a REPEATED START) may be to a differ-
ent slave address.
The event is detected on any I2C transfer intended for this slave. Note that an I2C address intended for the slave
(address matches) will result in an I2C_STOP event independent of whether the I2C address is ACK'd or NACK'd.

❐ I2C slave received START – When START or REPEATED START event is detected. In the case of an externally-
clocked address matching (CTRL.EC_AM_MODE is ‘1’) and clock stretching is performed (until the internally-clocked
logic takes over) (I2C_CTRL.S_NOT_READY_ADDR_NACK is ‘0’), this field is not set. Firmware should use
INTR_S_EC.WAKE_UP, INTR_S.I2C_ADDR_MATCH, and INTR_S.I2C_GENERAL.

❐ I2C slave address matched – I2C slave matching address received. If CTRL.ADDR_ACCEPT, the received address
(including the R/W bit) is available in the RX FIFO. In the case of externally-clocked address matching
(CTRL.EC_AM_MODE is ‘1’) and internally-clocked operation (CTRL.EC_OP_MODE is '0'), this field is set when the
event is detected.

❐ I2C bus error – Unexpected STOP/START condition is detected

■ I2C TX

❐ TX trigger – TX FIFO has fewer entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL.

❐ TX FIFO not full – At least one data element can be written into the TX FIFO.

❐ TX FIFO empty – The TX FIFO is empty.

❐ TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

❐ TX FIFO underflow – Hardware attempts to read from an empty TX FIFO.

■ I2C RX

❐ RX FIFO has more entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL.

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 342

Serial Communications Block (SCB)

❐ RX FIFO is full – The RX FIFO is full.

❐ RX FIFO is not empty – At least one data element is available in the RX FIFO to be read.

❐ RX FIFO overflow – Hardware attempts to write to a full RX FIFO.

❐ RX FIFO underflow – Firmware attempts to read from an empty RX FIFO.

■ I2C Externally Clocked

❐ Wake up request on address match – Active on incoming slave request (with address match). Only set when EC_AM
is ‘1’.

❐ I2C STOP detection at the end of each transfer – Only set for a slave request with an address match, in EZ and
CMD_RESP modes, when EC_OP is ‘1’.

❐ I2C STOP detection at the end of a write transfer – Activated at the end of a write transfer (I2C STOP). This event is an
indication that a buffer memory location has been written to. For EZ mode, a transfer that only writes the base address
does not activate this event. Only set for a slave request with an address match, in EZ and CMD_RESP modes, when
EC_OP is ‘1’.

❐ I2C STOP detection at the end of a read transfer – Activated at the end of a read transfer (I2C STOP). This event is an
indication that a buffer memory location has been read from. Only set for a slave request with an address match, in EZ
and CMD_RESP modes, when EC_OP is ‘1’.

For more information on how to implement and clear interrupts see the I2C (SCB_I2C_PDL) datasheet and the PDL.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 343

27. Serial Memory Interface (SMIF)

The SMIF block implements a single-SPI, dual-SPI, quad-SPI, or octal-SPI communication to interface with external memory
chips. The SMIF block’s primary use case is to set up the external memory and have it mapped to the PSoC 6 MCU memory
space using the hardware. This mode of operation, called the XIP mode, allows the bus masters in the PSoC 6 MCU to
directly interact with the SMIF for memory access to an external memory location.

27.1 Features

The Serial Memory Interface (SMIF) block provides a master interface to serial memory devices that supports the following
functionality.

■ Interfacing up to four memory devices (slaves) at a time

■ SPI protocol

❐ SPI mode 0: clock polarity (CPOL) and clock phase (CPHA) are both ‘0’

❐ Support for single, dual, quad, and octal SPI protocols

❐ Support for dual-quad SPI mode: the use of two quad SPI memory devices to increase data bandwidth for SPI read
and write transfers

❐ Support for configurable MISO sampling time and programmable receiver clock

■ Support for device capacities in the range of 64 KB to 128 MB

■ eXecute In Place (XIP) enables mapping the external memory into an internal memory address

■ Command mode enables using the SMIF block as a simple communication hardware

■ Supports a 4-KB read cache in memory mapped (XIP) mode

■ Supports on-the-fly 128-bit encryption and decryption

27.2 Architecture

Figure 27-1 shows a high-level block diagram of the SMIF hardware in PSoC 6 MCUs. Notice that the block is divided into
multiple clock domains. This enables multiple domains to access the SMIF and still enable maintaining an asynchronous
clock for the communication interface.

The SMIF block can also generate DMA triggers and interrupt signals. This allows events in the SMIF block to trigger actions
in other parts of the system.

The SMIF interface is implemented using eight data lines, four slave select lines, and a clock line.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 344

Serial Memory Interface (SMIF)

The access to the SMIF block can be by two modes: Command mode or XIP mode. The Command mode gives access to the
SMIF’s peripheral registers and the internal FIFOs. This mode is used when the user code is responsible for constructing the
command structure for the external memory. Typically, this mode is used when the SMIF writes to an external flash memory.
The MMIO interface is also used to configure the SMIF hardware block, including configuring the device registers that set up
the XIP operation of the SMIF block.

The XIP mode of operation maps the external memory space to a range of addresses in the PSoC 6 MCU’s address space.
Refer to the registers TRM for details. When this address range is accessed, the hardware automatically generates the
commands required to initiate the associated transfer from the external memory. The typical use case for the XIP mode is to
execute code placed in external memory. Thus executing code from external memory is seamless.

Figure 27-1. SMIF Hardware Block Diagram

 SMIF

 FIFOs

Memory interface logic

Tx state machine Rx state machine

cl
k_

if_
rx

d
om

ai
n

data[7:0]

Mode multiplexer

MMIO

XIP

Cryptography

MMIO AHB-Lite
interface

cl
k_

if_
tx

d
om

ai
n

cl
k_

hf
do

m
ai

n

cl
k_

sl
o

w
do

m
ai

n

cl
k_

sy
s

do
m

ai
n

IOSS

tr_tx_req

tr_rx_req

interrupt

Port arbiter

XIP
AHB-Lite

interface 0

4 KB
cache cl

k_
fa

st
do

m
ai

n XIP
AHB-Lite

interface 1

4 KB
cache

 Capture
 Logic

cl
k_

if
do

m
ai

n

Tx data
FIFO

Rx data
FIFO

Tx command
FIFO

select[3:0]clk

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 345

Serial Memory Interface (SMIF)

The SMIF block has three AHB-Lite interfaces:

■ An AHB-Lite interface to access the SMIF’s MMIO
registers.

■ Two AHB-Lite interfaces to support execute-in-place
(XIP).

All interfaces provide access to external memory devices. At
any time, either the MMIO AHB-Lite interface or the two XIP
AHB-Lite interfaces have access to the memory interface
logic and external memory devices. The operation mode is
specified by SMIFn_CTL.XIP_MODE. The operation mode
should not be modified when the SMIF is busy
(STATUS.BUSY is ‘1’).

In the MMIO AHB-Lite interface, access is supported
through software writes to transmit (Tx) FIFOs and software
reads from receive (Rx) FIFOs. The FIFOs are mapped on
SMIF registers. This interface provides the flexibility to
implement any memory device transfer. For example,
memory device transfers to setup, program, or erase the
external memory devices.

In an XIP AHB-Lite interface, access is supported through
XIP: AHB-Lite read and write transfers are automatically (by
the hardware) translated in memory device read and write
transfers. This interface provides efficient implementation of
memory device read and write transfers, but does NOT
support other types of memory device transfers. To improve
XIP performance, the XIP AHB-Lite interface has a 4-KB
read cache.

As mentioned, Command mode and XIP mode are mutually
exclusive. The operation modes share Tx and Rx FIFOs and
memory interface logic. In Command mode, the Tx and Rx
FIFOs are accessed through the SMIF registers and under
software control. In XIP mode, the Tx and Rx FIFOs are
under hardware control. The memory interface logic is
controlled through the Tx and Rx FIFOs and is agnostic of
the operation mode.

27.2.1 Tx and Rx FIFOs

The SMIF block has two Tx FIFOs and one Rx FIFO. These
FIFOs provide an asynchronous clock domain transfer
between clk_hf logic and clk_if_tx/clk_if_rx memory
interface logic. The memory interface logic is completely
controlled through the Tx and Rx FIFOs.

■ The Tx command FIFO transmits memory commands to
the memory interface logic.

■ The Tx data FIFO transmits write data to the memory
interface transmit logic.

■ The Rx data FIFO receives read data from the memory
interface receive logic.

27.2.1.1 Tx Command FIFO

The Tx command FIFO consists of four 20-bit entries. Each
entry holds a command. A memory transfer consists of a
series of commands. In other words, a command specifies a

phase of a memory transfer. Four different types of
commands are supported:

■ Tx command. A memory transfer must start with a Tx
command. The Tx command includes a byte that is to be
transmitted over the memory interface. The Tx
command specifies the width of the data transfer (single,
dual, quad, or octal data transfer). The Tx command
specifies whether the command is for the last phase of
the memory transfer (explicit “last command” indication).
The Tx command specifies which of the four external
devices are selected (multiple devices can be selected
simultaneously); that is, the device selection as encoded
by the Tx command is used for the complete memory
transfer. The Tx command asserts the corresponding
slave select lines. This is the reason every memory
transfer should start with this command.

■ TX_COUNT command. The TX_COUNT command
specifies the number of bytes to be transmitted from the
Tx data FIFO. This command relies on the Tx data FIFO
to provide the bytes that are to be transmitted over the
memory interface. The TX_COUNT command specifies
the width of the data transfer and always constitutes the
last phase of the memory transfer (implicit “last
command” indication - de-asserts the slave select). Note
that the TX_COUNT command does not assert the slave
select lines. This must be done by a Tx command
preceding it.

■ RX_COUNT command. The RX_COUNT command
specifies the number of bytes to be received from the Rx
data FIFO. This command relies on the Rx data FIFO to
accept the bytes that are received over the memory
interface. The RX_COUNT command specifies the width
of the data transfer and always constitutes the last
phase of the memory transfer (implicit “last command”
indication - de-asserts the slave select). Note that the
RX_COUNT command does not assert the slave select
lines. This must be done by a Tx command preceding it.

■ DUMMY_COUNT command. The DUMMY_COUNT
command specifies a number of dummy cycles. Dummy
cycles are used to implement a turn-around (TAR) time
in which the memory master changes from a transmitter
driving the data lines to a receiver receiving on the same
data lines. The DUMMY_COUNT command never
constitutes the last phase of the memory transfer
(implicit NOT “last command” indication - de-asserts the
slave select); that is, it must be followed by another
command. Note that the DUMMY COUNT command
does not assert the slave select lines. This must be done
by a Tx command preceding it.

Together, the four command types can be used to construct
any SPI transfer. The Tx command FIFO is used by both the
memory interface transmit and receive logic. This ensures
lockstep operation. The Tx command is a representation of
a queue of commands that are to be processed.

The software will write the sequence of commands into the
Tx command FIFO to generate a sequence responsible for

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 346

Serial Memory Interface (SMIF)

the communication with slave device. The software can read
the number of used Tx command FIFO entries through the
TX_CMD_FIFO_STATUS.USED[2:0] register field.

The software can write to the Tx command FIFO through the
MMIO TX_CMD_FIFO_WR register. If software attempts to
write to a full Tx command FIFO, the MMIO CTL.BLOCK
field specifies the behavior:

■ If CTL.BLOCK is ‘0’, an AHB-Lite bus error is generated.

■ If CTL.BLOCK is ‘1’, the AHB-Lite write transfer is
extended until an entry is available. This increases
latency.

27.2.1.2 Tx Data FIFO

The Tx data FIFO consists of eight 8-bit entries. A Tx
command FIFO TX_COUNT command specifies the
number of bytes to be transmitted; that is, specifies the
number of Tx data FIFO entries used. The Tx data FIFO is
used by the memory interface transmit logic.

Software can read the number of used Tx data FIFO entries
through the TX_DATA_FIFO_STATUS.USED[3:0] register
field.

Software can write to the Tx data FIFO through the
TX_DATA_FIFO_WR1, TX_DATA_FIFO_WR2, and
TX_DATA_FIFO_WR4 registers:

■ The TX_DATA_FIFO_WR1 register supports a write of a
single byte to the FIFO.

■ The TX_DATA_FIFO_WR2 register supports a write of
two bytes to the FIFO.

■ The TX_DATA_FIFO_WR4 register supports a write of
four bytes to the FIFO. If software attempts to write more
bytes than available entries in the Tx data FIFO, the
MMIO CTL.BLOCK field specifies the behavior:

■ If CTL.BLOCK is ‘0’, an AHB-Lite bus error is generated.

■ If CTL.BLOCK is ‘1’, the AHB-Lite write transfer is
extended until the required entries are available.

27.2.1.3 Rx Data FIFO

The Rx data FIFO consists of eight 8-bit entries. A Tx
command FIFO RX_COUNT command specifies the
number of bytes to be received; that is, specifies the number
of Rx data FIFO entries used. The memory interface
transmit logic will stop generating the SPI clock when the Rx
data FIFO is full. This is how flow control is achieved.

Software can read the number of used Rx data FIFO entries
through the RX_DATA_FIFO_STATUS.USED[3:0] register
field.

Software can read from the Rx data FIFO through the MMIO
RX_DATA_FIFO_RD1, RX_DATA_FIFO_RD2, and
RX_DATA_FIFO_RD4 registers:

■ The RX_DATA_FIFO_RD1 register supports a read of a
single byte from the FIFO.

■ The RX_DATA_FIFO_RD2 register supports a read of
two bytes from the FIFO.

■ The RX_DATA_FIFO_RD4 register supports a read of
four bytes from the FIFO. If software attempts to read
more bytes than available in the Rx data FIFO, the
MMIO CTL.BLOCK field specifies the behavior:

■ If BLOCK is ‘0’, an AHB-Lite bus error is generated and
hard fault occurs.

If BLOCK is ‘1’, the AHB-Lite read transfer is extended until
the bytes are available.

Software can also read the first byte of the RX data FIFO
without changing the status of the FIFO through the
RX_DATA_FIFO_RD1_SILENT register.

27.2.2 Command Mode

If CTL.XIP_MODE is ‘0’, the SMIF is in Command mode.
Software generates SPI transfers by accessing the Tx
FIFOs and Rx FIFO. Software writes to the Tx FIFOs and
reads from the Rx FIFO. The Tx command FIFO has
formatted commands (Tx, TX_COUNT, RX_COUNT, and
DUMMY_COUNT) that are described in the registers TRM.

Software should ensure that it generates correct memory
transfers and accesses the FIFOs correctly. For example, if
a memory transfer is generated to read four bytes from a
memory device, software should read the four bytes from
the Rx data FIFO. Similarly, if a memory transfer is
generated to write four bytes to a memory device, software
should write the four bytes to the Tx command FIFO or Tx
data FIFO.

Incorrect software behavior can lock up the memory
interface. For example, a memory transfer to read 32 bytes
from a memory device, without software reading the Rx data
FIFO will lock up the memory transfer as the memory
interface cannot provide more than eight bytes to the Rx
data FIFO (the Rx data FIFO has eight entries). This will
prevent any successive memory transfers from taking place.
Hence, the software should make sure that it read the FIFOs
to avoid congestion. Note that a locked up memory transfer
due to Tx or Rx FIFO states is still compliant to the memory
bus protocol (but undesirable): the SPI protocol allows
shutting down the interface clock in the middle of a memory
transfer.

27.2.3 XIP Mode

If CTL.XIP_MODE is ‘1’, the SMIF is in XIP mode. Hardware
automatically (without software intervention) generates
memory transfers by accessing the Tx FIFOs and Rx FIFO.
Hardware supports only memory read and write transfers.
Other functionality such as status reads are not supported.
This means operations such as writing into a flash device
may not be supported by XIP mode. This is because the
writing operation into a flash memory involves not only a

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 347

Serial Memory Interface (SMIF)

write command transfer, but also a status check to verify the
status of the operation.

■ Hardware generates a memory read transfer for an
AHB-Lite read transfer (to be precise: only for AHB-Lite
read transfers that miss in the cache).

■ Hardware generates a memory write transfer for an
AHB-Lite write transfer.

Each slave device slot has a set of associated device
configuration registers. To access a memory device in XIP
mode, the corresponding device configuration registers
(SMIFn_DEVICEn) should be initialized. The device
configuration register sets up the following parameters for
memory:

■ Write enable (WR_EN): Used to disable writes in XIP
mode.

■ Crypto enable (CRYPTO_EN): When enabled, all read
access to the memory is decrypted and write access
encrypted automatically.

■ Data Select (DATA_SEL): Selects the data lines to be
used (Connecting SPI Memory Devices on page 350).

■ Base address and size: Sets up the mapped memory
space. Any access in this space is converted to the
access to the external memory automatically.

■ Read and write commands: Used to communicate with
the external memory device. These commands are
defined by multiple settings.

As different memory devices support different types of
memory read and write commands, you must provide the
hardware with device specifics, such that it can perform the
automatic translations. To this end, each memory device
has a set of MMIO registers that specify its memory read
and write transfers. This specification includes:

■ Presence and value of the SPI command byte.

■ Number of address bytes.

■ Presence and value of the mode byte.

■ Number of dummy cycles.

■ Specified data transfer widths.

The XIP interface logic produces an AHB-Lite bus error
under the following conditions:

■ The SMIF is disabled (SMIFn_CTL.ENABLED is ‘0’).

■ The SMIF is not in XIP_MODE (SMIFn_CTL.XIP_MODE
is ‘0’).

■ The transfer request is not in a memory region.

■ The transfer is a write and the identified memory region
does not support writes
(SMIFn_DEVICEn_CTL.WR_EN is ‘0’).

■ In XIP mode (CTL.XIP_MODE is ‘1’) and dual quad SPI
mode (ADDR_CTL.DIV2 is ‘1’) or the transfer address is
not a multiple of 2.

■ In XIP mode (CTL.XIP_MODE is ‘1’) and dual quad SPI
mode (ADDR_CTL.DIV2 is ‘1’), the transfer size is not a
multiple of 2.

27.2.4 Cache

To improve XIP performance, the XIP AHB-Lite interface
has a cache. The cache is defined as follows:

■ 4 KB capacity.

■ Read-only cache. Write transfers bypass the cache. A
write to an address, which is prefetched in the cache,
invalidates the associated cache subsector. If there is a
write to a memory in Command mode then you must
invalidate the cache while switching back to XIP mode.

■ Four-way set associative, with a least recently used
(LRU) replacement scheme.

Each XIP interface implements a 4-KB cache memory,
enabled by default. Any XIP access can be cached if a
cache is enabled. There are separate cache registers for the
slow cache (in the clk_slow domain) and fast cache (in the
clk_fast domain). The cache can be enabled using the
SLOW_CA_CTL[ENABLED] or FAST_CA_CTL[ENABLED]
registers. Read transfers that “hit” are processed by the
cache. Read transfers that “miss” result in a XIP memory
read transfer.

If CA_CTL.PREF_EN is ‘1’, prefetching is enabled and if
CA_CTL.PREF_EN is ‘0’, prefetching is disabled. If prefetch
is enabled, a cache miss results in a 16 B (subsector) refill
for the missing data AND a 16 B prefetch for the next
sequential data (independent of whether this data is already
in the cache or not).

Cache coherency is not supported by the hardware. For
example, an XIP interface 0 write to an address in the XIP
interface 0 cache invalidates (clears) the associated cache
subsector in the XIP interface 0 cache, but not in the XIP
interface 1 cache. This means XIP interface 1 cache now
has outdated data. The user code can manually invalidate
cache by using the SLOW_CA_CMD[INV] or
FAST_CA_CMD[INV] register.

Caches should also be invalidated upon mode transitions.
For example, in Command mode, a write to an address in
the cache interface will cause the data in the cache interface
to be outdated. The cache should be invalidated when
transitioning to XIP mode to ensure that only valid data is
used.

27.2.5 Arbitration

The SMIF provides two AHB-Lite slave interfaces to CPUSS
(one fast interface and one slow interface). Both interfaces
have a cache (as described in 27.2.4 Cache) and can
generate XIP requests to the external memory devices.

An arbitration component (as shown in Figure 27-1)
arbitrates between the two interfaces. Arbitration is based

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 348

Serial Memory Interface (SMIF)

on the master identifier of the AHB-Lite transfer. The
arbitration priority is specified by a system wide priority.
Each master identifier has a 2-bit priority level (“0” is the
highest priority level and “3” is the lowest priority level).
Master identifiers with the same priority level are within the
same priority group. Within a priority group, round-robin
arbitration is performed.

27.2.6 Deselect Delay

The SMIF supports configuration of deselect delay between
transfers. The SMIFn_CTL.DESELECT_DELAY field
controls the minimum number of interface cycles to hold the
chip select line inactive.

27.2.7 Cryptography

In XIP mode, a cryptography component supports on-the-fly
encryption for write data and on-the-fly decryption for read
data. The use of on-the-fly cryptography is determined by a
device’s MMIO CTL.CRYPTO_EN field. In Command mode,
the cryptography component is accessible through a
register interface to support offline encryption and
decryption.

The usage scenario for cryptography is: data is encrypted in
the external memory devices. Therefore, memory read and
write data transfers require decryption and encryption
functionality respectively. By storing data encrypted in the
external memory devices (nonvolatile devices), leakage of
sensitive data is avoided.

Encryption and decryption are based on the AES-128
forward block cipher: advanced encryption standard block
cipher with a 128-bit key. KEY[127:0] is a secret (private)
key programmed into the CRYPTO_KEY3, …,
CRYPTO_KEY0 registers. These registers are software
write-only: a software read returns “0”. In the SMIF
hardware, by applying AES-128 with KEY[127:0] on a
plaintext PT[127:0], we get a ciphertext CT[127:0].

In XIP mode, the XIP address is used as the plaintext PT[].
The resulting ciphertext CT[] is used on-the-fly and not
software accessible. The XIP address is extended with the
CRYPTO_INPUT3, …, CRYPTO_INPUT0 registers.

In Command mode, the MMIO CRYPTO_INPUT3, …,
CRYPTO_INPUT0 registers provide the plaintext PT[]. The
resulting ciphertext CT[] is provided through the MMIO
CRYPTO_OUTPUT3, …, CRYPTO_OUTPUT0 registers.

Figure 27-2 illustrates the functionality in XIP and Command
modes.

Figure 27-2. Cryptography in XIP and Command Modes

In XIP mode, the resulting ciphertext CT[] (of the encrypted address) is XOR’d with the memory transfer’s read data or write
data. Note that the AES-128 block cipher is on the address of the data and not on the data itself. For memory read transfers,
this means that as long as the latency of the memory transfer’s read data is longer than the AES-128 block cipher latency, the
on-the-fly decryption does not add any delay. Figure 27-3 illustrates the complete XIP mode functionality.

The XIP mode only encrypts the address and XORs with the data; to implement the same in Command mode, you must
provide the address as the PT[] into the crypto_INPUTx registers.

AES-128
forward block

cipher

XIP mode

{CRYPTO_KEY3,
CRYPTO_KEY2,
CRYPTO_KEY1,
CRYPTO_KEY0}

ciphertext CT[127:0]

AES-128
forward block

cipher

MMIO mode

{CRYPTO_INPUT3,
CRYPTO_INPUT2,
CRYPTO_INPUT1,
CRYPTO_INPUT0}

{CRYPTO_KEY3,
CRYPTO_KEY2,
CRYPTO_KEY1,
CRYPTO_KEY0}

{CRYPTO_OUTPUT3,
CRYPTO_OUTPUT2,
CRYPTO_OUTPUT1,
CRYPTO_OUTPUT0}

{CRYPTO_INPUT3,
CRYPTO_INPUT2,
CRYPTO_INPUT1,

A[31:4],
CRYPT0_INPUT0.INPUT[3:0]}

On-the-fly
usage

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 349

Serial Memory Interface (SMIF)

Figure 27-3. XIP Mode Functionality

27.3 Memory Device Signal
Interface

The SMIF acts as a master for SPI applications. SPI
requires the definition of clock polarity and phase. In SPI
mode, the SMIF supports a single clock polarity and phase
configuration:

■ Clock polarity (CPOL) is ‘0’: the base value of the clock
is 0.

■ Clock phase (CPHA) is ‘0’: driving of data is on the
falling edge of the clock; capturing of data is specified by
CTL.CLOCK_IF_RX_SEL.

The above configuration is also known as SPI configuration
0 and is supported by SPI memory devices.

27.3.1 Specifying Memory Devices

The SMIF requires that the memory devices are defined for
their operation in XIP mode. The SMIF supports up to four
memory devices. Each memory device is defined by a set of
registers. The memory device specific register structure
includes:

■ The device base address and capacity. The ADDR
register specifies the memory device’s base address in
the PSoC 6 MCU address space and the MASK register
specifies the memory device’s size/capacity. If a memory
device is not present or is disabled, the ADDR and
MASK registers specify a memory device with 0 B
capacity. Typically, the devices’ address regions in the
PSoC 6 MCU address space are non-overlapping
(except for dual-quad SPI mode) to ensure that the
activation of select signals is mutually exclusive.

■ The device data signal connections (as described in
Connecting SPI Memory Devices on page 350).

■ The definition of a read transfer to support XIP mode.

■ The definition of a write transfer to support XIP mode.

Each memory device uses a dedicated device select signal:
memory device 0 uses select[0], memory device 1 uses
select[1], and so on. In other words, there is a fixed, one-to-
one connection between memory device, register set, and
select signal connection.

In XIP mode, the XIP AHB-Lite bus transfer address is
compared with the device region. If the address is within the
device region, the device select signal is activated. If an XIP
AHB-Lite bus transfer address is within multiple regions (this
is possible if the device regions overlap), all associated
device select signals are activated. This overlap enables
XIP in dual-quad SPI mode: the command, address, and
mode bytes can be driven to two quad SPI devices
simultaneously.

In XIP mode, dual quad SPI mode requires the
ADDR_CTL.DIV2 field of the selected memory devices to be
set to ‘1’. When this field is ‘1’, the transfer address is
divided by 2 and the divided by 2 address is provided to the
memory devices.

In dual quad SPI mode, each memory device contributes a
4-bit nibble for each 8-bit byte. However, both memory
devices are quad SPI memories with a byte interface.
Therefore, the transfer size must be a multiple of 2.

The XIP_ALIGNMENT_ERROR interrupt cause is set under
the following conditions (in XIP mode and when
ADDR_CTL.DIV2 is ‘1’):

■ The transfer address is not a multiple of 2. In this case
the divided by 2 address for the memory devices is
incorrect.

■ The transfer size is not a multiple of 2. In this case, the
memory devices contribute only a nibble of a byte. This
is not supported as the memory devices have a byte
interface.

AES-128
forward block

cipher

{CRYPTO_INPUT3,
CRYPTO_INPUT2,
CRYPTO_INPUT1,

A[31:4],
CRYPT0_INPUT0.INPUT[3:0]}

{CRYPTO_KEY3,
CRYPTO_KEY2,
CRYPTO_KEY1,
CRYPTO_KEY0}

ciphertext CT[127:0]

encrypted read data encrypted write data

decrypted read data decrypted write data

128 128

128128

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 350

Serial Memory Interface (SMIF)

27.3.2 Connecting SPI Memory Devices

Memory device I/O signals (SCK, CS, SI/IO0, SO/IO1, IO2, IO3, IO4, IO5, IO6, IO7) are connected to the SMIF I/O signals
(clk, select[3:0], and spi_data[7:0]). Not all memory devices provide the same number of I/O signals.

Table 27-1 illustrates that each memory has a single clock signal SCK, a single (low active) select signal (CS), and multiple
data signals (IO0, IO1, …).

Each memory device has a fixed select signal connection (to select[3:0]).

Each memory device has programmable data signal connections (to data[7:0]): the CTL.DATA_SEL[1:0] field specifies how a
device’s data signals are connected. The CTL.DATA_SEL[1:0] is responsible for configuring the selection of data lines to be
used by a slave. This is not to be confused with the select lines that are used for addressing the four slaves of the SMIF
master. This information is used by the SMIF interface to drive out data on the correct spi_data[] outputs and capture data
from the correct spi_data[] inputs. If multiple device select signals are activated, the same data is driven to all selected
devices simultaneously.

Not all data signal connections are legal/supported. Supported connections are dependent on the type of memory device.

Memory devices can:

■ Use shared data signal connections.

■ Use dedicated data signal connections. This reduces the load on the data lines allowing faster signal level changes, which
in turn allows for a faster I/O interface.

Note that dual-quad SPI mode requires dedicated data signals to enable read and/or write data transfer from and to two quad
SPI devices simultaneously.

Figure 27-4 illustrates memory device 0, which is a single SPI memory with data signals connections to spi_data[1:0].

Table 27-1. Memory Device I/O Signals

Memory Device IO Signals

Single SPI memory SCK, CS, SI, SO. This memory device has two data signals (SI and SO).

Dual SPI memory SCK, CS, IO0, IO1. This memory device has two data signals (IO0, IO1).

Quad SPI memory SCK, CS, IO0, IO1, IO2, IO3. This memory device has four data signals (IO0, IO1, IO2, IO3).

Octal SPI memory
SCK, CS, IO0, IO1, IO2, IO3, IO4, IO5, IO6, IO7. This memory device has eight data signals (IO0, IO1, IO2,
IO3, IO4, IO5, IO6, IO7).

Table 27-2. Data Signal Connections

DATA_SEL[1:0] Single SPI Device Dual SPI Device Quad SPI Device Octal SPI Device

0
spi_data[0] = SI

spi_data[1] = SO

spi_data[0] = IO0

spi_data[1] = IO1

spi_data[0] = IO0

…

spi_data[3] = IO3

spi_data[0] = IO0

…

spi_data[7] = IO7

1
spi_data[2] = SI

spi_data[3] = SO

spi_data[2] = IO0

spi_data[3] = IO1
Illegal Illegal

2
spi_data[4] = SI

spi_data[5] = SO

spi_data[4] = IO0

spi_data[5] = IO1

spi_data[4] = IO0

…

spi_data[7] = IO3

Illegal

3
spi_data[6] = SI

spi_data[7] = SO

spi_data[6] = IO0

spi_data[7] = IO1
Illegal Illegal

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 351

Serial Memory Interface (SMIF)

Figure 27-4. Single SPI Memory Device 0 Connected to spi_data[1:0]

Because of the pin layout, you might want to connect a memory device to specific data lines. Figure 27-5 illustrates memory
device 0, which is a single SPI memory with data signals connections to spi_data[7:6].

Figure 27-5. Single SPI Memory Device 0 Connected to spi_data[7:6]

Figure 27-6 illustrates memory devices 0 and 1, both of which are single SPI memories. Each device uses dedicated data
signal connections. The device address regions in the PSoC 6 MCU address space must be non-overlapping to ensure that
the activation of select[0] and select[1] are mutually exclusive.

Device 0: SPI
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

CTL.DATA_SEL[1:0] = 0

Device 0: SPI
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[6]

spi_data[7]

CTL.DATA_SEL[1:0] = 3

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 352

Serial Memory Interface (SMIF)

Figure 27-6. Single SPI Memory Devices 0 and 1 - Dedicated Data Signal

Figure 27-7 illustrates memory devices 0 and 1, both of which are single SPI memories. Both devices use shared data signal
connections. The devices’ address regions in the PSoC 6 MCU address space must be non-overlapping to ensure that the
activation of select[0] and select[1] are mutually exclusive. Note that this solution increases the load on the data lines, which
may result in a slower I/O interface.

Figure 27-7. Single SPI Memory Devices 0 and 1 - Shared Data Signal

Figure 27-8 illustrates memory device 0, which is a quad SPI memory with data signals connections to spi_data[7:4].

Device 0: SPI
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

Device 1: SPI
memorySCK

CS

SI

SO

spi_select[1]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 3

spi_data[6]

spi_data[7]

Device 0: SPI
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

Device 1: SPI
memorySCK

CS

SI

SO

spi_select[1]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 353

Serial Memory Interface (SMIF)

Figure 27-8. Quad SPI Memory Device 0

Figure 27-9 illustrates memory devices 0 and 1, device 0 is a single SPI memory and device 1 is a quad SPI memory. Each
device uses dedicated data signal connections. The device address regions in the PSoC 6 MCU address space must be non-
overlapping to ensure that the activation of select[0] and select[1] are mutually exclusive.

Figure 27-9. Single SPI Memory 0 and Quad SPI Memory 1 - Dedicated Data Signal

Figure 27-10 illustrates memory devices 0 and 1, device 0 is a single SPI memory and device 1 is a quad SPI memory. Both
devices use shared data signal connections. The device address regions in the PSoC 6 MCU address space must be non-
overlapping to ensure that the activation of select[0] and select[1] are mutually exclusive.

SoC

SMIF
SCK

CS

SI/IO0

SO/IO1

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_data[2]

spi_data[3]

Device 0:
Quad SPI
memory

WP/IO2

HOLD/IO3

CTL.DATA_SEL[1:0] = 0

Device 0: SPI
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_select[1]

SCK

CS

SI/IO0

SO/IO1

Device 1:
Quad SPI
memory

WP/IO2

HOLD/IO3

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 2

spi_data[4]

spi_data[5]

spi_data[6]

spi_data[7]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 354

Serial Memory Interface (SMIF)

Figure 27-10. Single SPI Memory Device 0 and Quad SPI Memory Device 1 - Shared Data Signal

Figure 27-11 illustrates memory devices 0 and 1, both of which are quad SPI memories. Each device uses dedicated data
signal connections. The device address regions in the PSoC 6 MCU address space are the same to ensure that the activation
of select[0] and select[1] are the same (in XIP mode). This is known as a dual-quad configuration: during SPI read and write
transfers, each device provides a nibble of a byte.

Figure 27-11. Quad SPI Memory Devices 0 and 1

Figure 27-12 illustrates memory device 0, which is a octal SPI memory with data signals connections to spi_data[7:0].

Device 0: SPI
memory

SoC

SMIF
SCK

CS

SI

SO

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_select[1]

SCK

CS

SI/IO0

SO/IO1

Device 1:
Quad SPI
memory

WP/IO2

HOLD/IO3

spi_data[2]

spi_data[3]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 0

SoC

SMIF
SCK

CS

SI/IO0

SO/IO1

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_data[2]

spi_data[3]

Device 0:
Quad SPI
memory

WP/IO2

HOLD/IO3

SCK

CS

SI/IO0

SO/IO1

Device 1:
Quad SPI
memory

WP/IO2

HOLD/IO3

spi_data[4]

spi_data[5]

spi_data[6]

spi_data[7]

spi_select[1]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 2

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 355

Serial Memory Interface (SMIF)

Figure 27-12. Octal SPI Memory Device 0

27.3.3 SPI Data Transfer

SPI data transfer uses most-significant-bit (MSb) for the first data transfer. This means that for a byte B, consisting of bits b7,
b6, …, b0, bit b7 is transferred first, followed by bit b6, and so on. For dual, quad, dual quad, and octal SPI transfers, multiple
bits are transferred per cycle. For a single SPI device and device data signal connections to spi_data[1:0] (DATA_SEL is “0”),
Table 27-3 summarizes the transfer of byte B.

Note that in single SPI data transfer, the data signals are uni-directional: in the table, data[0] is exclusively used for write data
connected to the device SI input signal and data[1] is exclusively used for read data connected to the device SO output
signal.

Table 27-3. Single Data Transfer

Cycle Data Transfer

0
For a write transfer: b7 is transferred on data[0] and SI/IO0.

For a read transfer: b7 is transferred on data[1] and SO/IO1.

1
For a write transfer: b6 is transferred on data[0] and SI/IO0.

For a read transfer: b6 is transferred on data[1] and SO/IO1.

2
For a write transfer: b5 is transferred on data[0] and SI/IO0.

For a read transfer: b5 is transferred on data[1] and SO/IO1.

3
For a write transfer: b4 is transferred on data[0] and SI/IO0.

For a read transfer: b4 is transferred on data[1] and SO/IO1.

4
For a write transfer: b3 is transferred on data[0] and SI/IO0.

For a read transfer: b3 is transferred on data[1] and SO/IO1.

5
For a write transfer: b2 is transferred on data[0] and SI/IO0.

For a read transfer: b2 is transferred on data[1] and SO/IO1.

6
For a write transfer: b1 is transferred on data[0] and SI/IO0.

For a read transfer: b1 is transferred on data[1] and SO/IO1.

7
For a write transfer: b0 is transferred on data[0] and SI/IO0.

For a read transfer: b0 is transferred on data[1] and SO/IO1.

SoC

SMIF
SCK

CS

IO0

IO1

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_data[2]

spi_data[3]

Device 0:
Octal SPI
memory

IO2

IO3

CTL.DATA_SEL[1:0] = 0

IO4

IO5

IO6

IO7

spi_data[4]

spi_data[5]

spi_data[6]

spi_data[7]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 356

Serial Memory Interface (SMIF)

For a dual SPI device and device data signal connections to data[1:0] (DATA_SEL is “0”), Table 27-4 summarizes the transfer
of byte B.

For a quad SPI device and device data signal connections to data[3:0] (DATA_SEL is “0”), Table 27-5 summarizes the
transfer of byte B.

For a octal SPI device and device data signal connections to data[7:0] (DATA_SEL is “0”), Table 27-6 summarizes the transfer
of byte B.

In dual-quad SPI mode, two quad SPI devices are used.

■ The first device (the device with the lower device structure index) should have device data signal connections to data[3:0]
(DATA_SEL is 0).

■ The second device (the device with the higher device structure index) should have device data signal connection to
data[7:4] (DATA_SEL is 2).

The command and data phases of the SPI transfer use different width data transfers:

■ The command, address, and mode bytes use quad SPI data transfer.

■ The read data and write data use octal data transfer. Each device provides a nibble of each data byte: the first device
provides the lower nibble and the second device provides the higher nibble.

Table 27-7 summarizes the transfer of a read data and write data byte B.

27.3.4 Example of Setting up SMIF

Devices 0 and 1 are used to implement the dual-quad SPI mode. Both devices are 1 MB / 8 Mb; the address requires 3 bytes.
Device 0 has device data signal connections to data[3:0] and device 1 has device data signal connections to data[7:4].

Table 27-4. Dual Data Transfer

Cycle Data Transfer

0 b7, b6 are transferred on data[1:0] and IO1, IO0.

1 b5, b4 are transferred on data[1:0] and IO1, IO0.

2 b3, b2 are transferred on data[1:0] and IO1, IO0.

3 b1, b0 are transferred on data[1:0] and IO1, IO0.

Table 27-5. Quad Data Transfer

Cycle Data Transfer

0 b7, b6, b5, b4 are transferred on data[3:0] and IO3, IO2, IO1, IO0.

1 b3, b2, b1, b0 are transferred on data[3:0] and IO3, IO2, IO1, IO0.

Table 27-6. Octal Data Transfer

Cycle Data Transfer

0 b7, b6, b5, b4, b3, b2, b1, b0 are transferred on data[7:0] and IO7, IO6, IO5, IO4, IO3, IO2, IO1, IO0.

Table 27-7. Dual-quad SPI Mode, Octal Data Transfer

Cycle Data transfer

0
b7, b6, b5, b4 are transferred on data[7:4] and second device IO3, IO2, IO1, IO0.

b3, b2, b1, b0 are transferred on data[3:0] and first device IO3, IO2, IO1, IO0.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 357

Serial Memory Interface (SMIF)

Figure 27-13. Setting up SMIF

For dual quad SPI mode, the AHB-Lite bus transfer address is divided by two. Cryptography and write functionality are
disabled in the following example.
#define MASK_1MB 0xfff00000;
DEV0_ADDR = CPUSS_SMIF_BASE;
DEV0_MASK = MASK_1MB // MASK: 1 MB region
DEV0_CTL =(0 << SMIF_DEVICE_CTL_DATA_SEL_Pos) // DATA_SEL: data[3:0]
 | (0 << SMIF_DEVICE_CTL_CRYPTO_EN_Pos) // CRYPTO_EN
 | (0 << SMIF_DEVICE_CTL_WR_EN_Pos)); // WR_EN
DEV0_ADDR_CTL = (1 << SMIF_DEVICE_ADDR_CTL_DIV2_Pos) // DIV2: enabled
 | ((3-1) << SMIF_DEVICE_ADDR_CTL_SIZE2_Pos)); // SIZE: 3 B address

DEV1_ADDR = CPUSS_SMIF_BASE;
DEV1_MASK = 0xfff00000; // MASK: 1 MB region
DEV1_CTL = (2 << SMIF_DEVICE_CTL_DATA_SEL_Pos) // DATA_SEL: data[7:4]
 | (0 << SMIF_DEVICE_CTL_CRYPTO_EN_Pos) // CRYPTO_EN
 | (1 << SMIF_DEVICE_CTL_WR_EN_Pos)); // WR_EN
DEV1_ADDR_CTL = (1 << SMIF_DEVICE_ADDR_CTL_DIV2_Pos) // DIV2: enabled
 | ((3-1) << SMIF_DEVICE_ADDR_CTL_SIZE2_Pos)); // SIZE: 3 B address

For XIP read transfers, the 0xEB command/instruction is used (Figure 27-14 illustrates a two-byte transfer from devices 0 and
1 in dual quad SPI mode).

SoC

SMIF
SCK

CS

SI/IO0

SO/IO1

spi_clk

spi_select[0]

spi_data[0]

spi_data[1]

spi_data[2]

spi_data[3]

Device 0:
Quad SPI
memory

WP/IO2

HOLD/IO3

SCK

CS

SI/IO0

SO/IO1

Device 1:
Quad SPI
memory

WP/IO2

HOLD/IO3

spi_data[4]

spi_data[5]

spi_data[6]

spi_data[7]

spi_select[1]

CTL.DATA_SEL[1:0] = 0

CTL.DATA_SEL[1:0] = 2

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 358

Serial Memory Interface (SMIF)

Figure 27-14. Two-Bye Transfer in Dual Quad SPI Mode

The definition of a read transfer is as follows:
DEV0_RD_CMD_CTL = (1UL << SMIF_DEVICE_RD_CMD_CTL_PRESENT_Pos) // PRESENT
 | (0 << SMIF_DEVICE_RD_CMD_CTL_WIDTH_Pos) // WIDTH: single data transfer
 | 0xeb); // CODE
DEV0_RD_ADDR_CTL = (2 << SMIF_DEVICE_RD_ADDR_CTL_WIDTH_Pos)); // WIDTH: quad data transfer
DEV0_RD_MODE_CTL = (1UL << SMIF_DEVICE_RD_MODE_CTL_PRESENT_Pos) // PRESENT
 | (2 << SMIF_DEVICE_RD_MODE_CTL_WIDTH_Pos) // WIDTH: quad data transfer
 | 0x00); // CODE
DEV0_RD_DUMMY_CTL= (1UL << SMIF_DEVICE_RD_DUMMY_CTL_PRESENT_Pos) // PRESENT
 | ((4-1) << SMIF_DEVICE_RD_DUMMY_CTL_SIZE5_Pos)); // SIZE: 4 dummy cycles
DEV0_RD_DATA_CTL = (3 << SMIF_DEVICE_RD_DATA_CTL_WIDTH_Pos)); // WIDTH: octal data transfer

Note that the command uses single data transfer, the address and mode byte use quad data transfer, and the read data byte
uses octal data transfer.

27.4 Triggers

The SMIF has two level-sensitive triggers:

■ tr_tx_req is associated with the Tx data FIFO.

■ tr_rx_req is associated with the Rx data FIFO.

If the SMIF is enabled (CTL.ENABLED is ‘1’) and Command operation mode is selected (CTL.XIP_MODE is ‘0’), the trigger
functionality is enabled. If the SMIF is disabled (CTL.ENABLED is ‘0’) or the XIP operation mode is selected (CTL.XIP_MODE
is ‘1’), the triggers functionality is disabled. The trigger functionality is defined as follows:

■ The MMIO TX_DATA_FIFO_CTL.TRIGGER_LEVEL field specifies a number of FIFO entries. The tr_tx_req trigger is
active when the number of used Tx data FIFO entries is smaller or equal than the specified number; that is,
TX_DATA_FIFO_STATUS.USED  TRIGGER_LEVEL.

■ The MMIO RX_DATA_FIFO_CTL.TRIGGER_LEVEL field specifies a number of FIFO entries. The tr_rx_req trigger is
active when the number of used Rx data FIFO entries is greater than the specified number; that is,
RX_DATA_FIFO_STATUS.USED > TRIGGER_LEVEL.

0 7 8 13 14 19 20 21

4 dummy
 cycles

24 bit addressinstruction (0xeb)

0

1 1

spi_select[1]

spi_clk

spi_data[0]

spi_data[1]

2 2spi_data[2]

3 3spi_data[3]

8-bit data

0 0

mode

15 16

4 020 16 12

1 5 117 13

2 6 218 14

3 7 319 15

21

22

23

0xEB instruction, instruction 1 bit/cycle; address, mode, data 4 bits/cycle

0

5 5

spi_data[4]

spi_data[5]

6 6spi_data[6]

7 7spi_data[7]

4 44 020 16 12

1 5 117 13

2 6 218 14

3 7 319 15

21

22

23

octalquadsingle

spi_select[0]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 359

Serial Memory Interface (SMIF)

27.5 Interrupts

The SMIF has a single interrupt output with six interrupt causes:

■ INTR.TR_TX_REQ. This interrupt cause is activated in Command mode when the tr_tx_req trigger is activated.

■ INTR.TR_RX_REQ. This interrupt cause is activated in Command mode when the tr_rx_req trigger is activated.

■ INTR.XIP_ALIGNMENT_ERROR. This interrupt cause is activated in XIP mode when the selected device’s
ADDR_CTL.DIV2 field is ‘1’ and the AHB-Lite bus address is not a multiple of 2, or the requested transfer size is not a
multiple of 2. This interrupt cause identifies erroneous behavior in dual-quad SPI mode (the selected device
ADDR_CTL.DIV2 field is set to ‘1’).

■ INTR.TX_CMD_FIFO_OVERFLOW. This interrupt cause is activated in Command mode, on an AHB-Lite write transfer to
the Tx command FIFO (TX_CMD_FIFO_WR) with insufficient free entries.

■ INTR.TX_DATA_FIFO_OVERFLOW. This interrupt cause is activated in Command mode, on an AHB-Lite write transfer
to the Tx data FIFO (TX_DATA_FIFO_WR1, TX_DATA_FIFO_WR2, and TX_DATA_FIFO_WR4) with insufficient free
entries.

■ INTR.RX_DATA_FIFO_OVERFLOW. This interrupt cause is activated in Command mode, on an AHB-Lite read transfer
from the Rx data FIFO (RX_DATA_FIFO_RD1, RX_DATA_FIFO_RD2, and RX_DATA_FIFO_RD4) with insufficient free
entries.

27.6 Sleep Operation

The SMIF hardware is operational in the Sleep and Active power modes. In the Sleep power mode, only DMA driven
transactions can be performed because the CPU acting as the SPI master is not active.

27.7 Performance

Accesses to the external memory will have some latency, which is dependent upon the mode of SMIF operation, the amount
of data being transferred, caching, and cryptography. In Command mode, the number of interface clock cycles per transfer is
determined by the equation:

For example, in Figure 27-14, the equation to calculate the number of cycles would be (22 cycles = [8 bit instruction/1 single
width] + [24 bit address/4 width] + [8 bit mode/4 width] + 4 dummy cycles + [16 bit data/8 width]).

In XIP Mode, the performance is affected by the cache. For data reads that hit in the cache, the read will not incur any
interface cycles. Read operations that miss in the cache will occur as a normal SMIF read operation and, if prefetching is
enabled, will result in two 16 B cache sub-sector refills. Writes to external memory in XIP mode will occur as a normal SMIF
write operation.

Enabling cryptography may impact SMIF performance. The AES-128 block cipher has a typical latency of 13 clk_hf cycles.
This means that for transfers that take more than 13 cycles, the on-the-fly decryption does not add any delay. If the transfer is
less than 13 cycles, the transfer latency will be 13 cycles. When the cache is enabled, the 13-cycle latency for encryption is
incurred only once for every 16 B fetched for the cache.

Time to Transfer N bytes
opcode size

opcode width
---------------------------------- 
  address size

address width
------------------------------------ 
  mode size

mode width
----------------------------- 
  dummycycles

data size
data width
--------------------------- 
 + + + + 

 =
(in interface clock cycles)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 360

28. Timer, Counter, and PWM (TCPWM)

The Timer, Counter, Pulse Width Modulator (TCPWM) block in the PSoC 6 MCU uses a 16- or 32-bit counter, which can be
configured as a timer, counter, pulse width modulator (PWM), or quadrature decoder. The block can be used to measure the
period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM
signals, or decode quadrature signals. This chapter explains the features, implementation, and operational modes of the
TCPWM block.

28.1 Features
■ The TCPWM block supports the following operational modes:

❐ Timer-counter with compare

❐ Timer-counter with capture

❐ Quadrature decoding

❐ Pulse width modulation

❐ Pseudo-random PWM

❐ PWM with dead time

■ Up, Down, and Up/Down counting modes.

■ Clock prescaling (division by 1, 2, 4, ... 64, 128)

■ 16- or 32-bit counter widths

■ Double buffering of compare/capture and period values

■ Underflow, overflow, and capture/compare output signals

■ Supports interrupt on:

❐ Terminal count – Depends on the mode; typically occurs on overflow or underflow

❐ Capture/compare – The count is captured to the capture register or the counter value equals the value in the compare
register

■ Complementary output for PWMs

■ Selectable start, reload, stop, count, and capture event signals (events refer to peripheral generated signals that trigger
specific functions in each counter in the TCPWM block) for each TCPWM – with rising edge, falling edge, both edges, and
level trigger options

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 361

Timer, Counter, and PWM (TCPWM)

28.2 Architecture

Figure 28-1. TCPWM Block Diagram

The TCPWM block can contain up to 32 counters. Each counter can be 16- or 32-bit wide. The three main registers that
control the counters are:

■ TCPWM_CNT_CC is used to capture the counter value in CAPTURE mode. In all other modes this value is compared to
the counter value.

■ TCPWM_CNT_COUNTER holds the current counter value.

■ TCPWM_CNT_PERIOD holds the upper value of the counter. When the counter counts for n cycles, this field should be
set to n–1.

The number of 16- and 32-bit counters are device specific; refer to the device datasheet for details.

In this chapter, a TCPWM refers to the entire block and all the counters inside. A counter refers to the individual counter
inside the TCPWM. Within a TCPWM block the width of each counter is the same.

TCPWM has these interfaces:

■ I/O signal interface: Consists of input triggers (such as reload, start, stop, count, and capture) and output signals (such as
pwm, pwm_n, overflow (OV), underflow (UN), and capture/compare (CC)). All of these input signals are used to trigger an
event within the counter, such as a reload trigger generating a reload event. The output signals are generated by internal
events (underflow, overflow, and capture/compare) and can be connected to other peripherals to trigger events.

■ Interrupts: Provides interrupt request signals from each counter, based on TC or CC conditions.

The TCPWM block can be configured by writing to the TCPWM registers. See “TCPWM Registers” on page 396 for more
information on all registers required for this block.

28.2.1 Enabling and Disabling Counters in a TCPWM Block

A counter can be enabled by setting the corresponding bit of the TCPWM_CTRL_SET register. It can be disabled by setting
the bit in the TCPWM_CTRL_CLR register. These registers are used to avoid race-conditions on read-modify-write attempts
to the TCPWM_CTRL register, which controls the enable/disable fields of the counters.

Note: The counter must be configured before enabling it. Disabling the counter retains the values in the configuration
registers.

28.2.2 Clocking

Each TCPWM counter can have its own clock source and the only source for the clock is from the configurable peripheral
clock dividers generated by the clocking system; see the Clocking System chapter on page 221 for details. To select a clock
divider for a particular counter inside a TCPWM, use the CLOCK_CTL register from the PERI register space.

16
T

ri
gg

e
r

S
yn

ch
ro

n
iz

a
tio

n

T rigger inputs

underflow,
overflow,
cc_m atch (capture or com pare)

in terrupt
pwm ,
pwm _n

23
counter_en

For each
Counter i

Counter i

Event
G eneration

16-b it or 32-b it counter
Configuration

reg isters

1

2

i

...

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 362

Timer, Counter, and PWM (TCPWM)

In this section the clock to the counter will be called clk_counter. Event generation is performed on clk_counter. Another clock,
clk_sys is used for the pulse width of the output triggers. clk_sys is synchronous to clk_peri (see “CLK_PERI” on page 232),
but can be divided using CLOCK_CTL from the PERI_GROUP_STRUCT register space.

28.2.2.1 Clock Prescaling

clk_counter can be further divided inside each counter, with values of 1, 2, 4, 8…64, 128. This division is called prescaling.
The prescaling is set in the GENERIC field of the TCPWM_CNT_CTLR register.

Note: Clock prescaling is not available in quadrature mode and pulse width modulation mode with dead time.

28.2.2.2 Count Input

The counter increments or decrements on a prescaled clock in which the count input is active – “active count”.

When the count input is configured as level, the count value is changed on each prescaled clk_counter edge in which the
count input is high.

When the count input is configured as rising/falling the count value is changed on each prescaled clk_counter edge in which
an edge is detected on the count input.

The next section contains additional details on edge detection configuration.

Note: Count events are not supported in quadrature and pulse-width modulation pseudo-random modes; the clk_counter is
used in these cases instead of the active count prescaled clock.

Figure 28-2. Counter Clock Generation

Note: The count event and pre-scaled counter clock are AND together, which means that a count event must occur to
generate an active count pre-scaled counter clock.

28.2.3 Trigger Inputs

Each TCPWM block has 14 Trigger_In signals, which come from other on-chip resources such as other TCPWMs, SCBs, or
DMA. The Trigger_In signals are shared with all counters inside of one TCPWM block. Use the Trigger Mux registers to
configure which signals get routed to the Trigger_In for each TCPWM block. See the Trigger Multiplexer Block chapter on
page 273 for more details. Two constant trigger inputs ‘0’ and ‘1’ are available in addition to the 14 Trigger_In. For each
counter, the trigger input source is selected using the TCPWM_CNT_TR_CTRL0 register.

Each counter can select any of the 16 trigger signals to be the source for any of the following events:

■ Reload

■ Start

■ Stop/Kill

■ Count

■ Capture/swap

When starting a TCPWM for the first time it is recommended that a reload is used, because a reload will generate an overflow
or underflow on startup. If start is used, an overflow or underflow will not be generated on startup.

The TCPWM_CMD_RELOAD, TCPWM_CMD_STOP, TCPWM_CMD_START, and TCPWM_CMD_CAPTURE registers can
be used to trigger the reload, stop, start, and capture respectively from software.

The sections describing each TCPWM mode will describe the function of each input in detail.

Typical operation uses the reload input to initialize and start the counter and the stop input to stop the counter. When the
counter is stopped, the start input can be used to start the counter with its counter value unmodified from when it was
stopped.

clk_counter

not supported in all m odes

Pre-scaling pre-scaled
counter clock

count event

active count
pre-scaled

counter clock

Counter
functionality

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 363

Timer, Counter, and PWM (TCPWM)

If stop, reload, and start coincide, the following precedence relationship holds:

■ A stop has higher priority than a reload.

■ A reload has higher priority that a start.

As a result, when a reload or start coincides with a stop, the reload or start has no effect.

Before going to the counter each Trigger_IN can pass through a positive edge detector, negative edge detector, both edge
detector, or pass straight through to the counter. This is controlled using TCPWM_CNT_TR_CTRL1. In the quadrature mode,
edge detection is done using clk_counter. For all other modes, edge detection is done using the clk_peri.

Multiple detected events are treated as follows:

■ In the rising edge and falling edge modes, multiple events are effectively reduced to a single event. As a result, events
may be lost (see Figure 28-3).

■ In the rising/falling edge mode, an even number of events are not detected and an odd number of events are reduced to a
single event. This is because the rising/falling edge mode is typically used for capture events to determine the width of a
pulse. The current functionality will ensure that the alternating pattern of rising and falling is maintained (see Figure 28-4).

Figure 28-3. Multiple Rising Edge Capture

Figure 28-4. Multiple Both Edge Capture

C
O

U
N

T
E

R

PERIOD = 4

MODE = CAPTURE
UP_DOWN_MODE = COUNT_UP
CAPTURE_EDGE = RISING_EDGE

4

3

2

1

0

reload

CC
CC_BUFF

1

capture

3
1

CC_MATCH

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

Missed capture event

Even number of capture
events => no capture

C
O

U
N

T
E

R

PERIOD = 4

MODE = CAPTURE
UP_DOWN_MODE = COUNT_UP
CAPTURE_EDGE = BOTH_EDGES

4

3

2

1

0

reload

CC
CC_BUFF

capture

3

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

Odd number of capture
events => single capture

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 364

Timer, Counter, and PWM (TCPWM)

Figure 28-5. TCPWM Input Events

Notes:

■ All trigger inputs are synchronized to clk_peri.

■ When more than one event occurs in the same clk_counter period, one or more events may be missed. This can happen
for high-frequency events (frequencies close to the counter frequency) and a timer configuration in which a pre-scaled
(divided) clk_counter is used.

28.2.4 Trigger Outputs

Each counter can generate three trigger output events. These trigger output events can be routed through the trigger mux to
other peripherals on the device. The three trigger outputs are:

■ Overflow (OV): An overflow event indicates that in up-counting mode, COUNTER equals the PERIOD register, and is
changed to a different value.

■ Underflow (UN): An underflow event indicates that in down-counting mode, COUNTER equals 0, and is changed to a
different value.

■ Compare/Capture (CC): This event is generated when the counter is running and one of the following conditions occur:

❐ Counter equals the compare value. This event is either generated when the match is about to occur (COUNTER does
not equal the CC register and is changed to CC) or when the match is not about to occur (COUNTER equals CC and
is changed to a different value).

❐ A capture event has occurred and the CC/CC_BUFF registers are updated.

Note: These signals remain high only for two cycles of clk_sys.

28.2.5 Interrupts

The TCPWM block provides a dedicated interrupt output for each counter. This interrupt can be generated for a terminal
count (TC) or CC event. A TC is the logical OR of the OV and UN events.

Four registers are used to handle interrupts in this block, as shown in Table 28-1.

Table 28-1. Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR

(Interrupt request register)

0 TC This bit is set to ‘1’, when a terminal count is detected. Write '1' to clear this bit.

1 CC_MATCH
This bit is set to ‘1’ when the counter value matches capture/compare register value.
Write '1' to clear this bit.

TCPWM_CNT_INTR_SET

(Interrupt set request register)

0 TC
Write '1' to set the corresponding bit in the interrupt request register. When read, this reg-
ister reflects the interrupt request register status.

1 CC_MATCH
Write '1' to set the corresponding bit in the interrupt request register. When read, this reg-
ister reflects the interrupt request register status.

TCPWM_CNT_INTR_MASK

(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt request register.

1 CC_MATCH Mask bit for the corresponding CC_MATCH bit in the interrupt request register.

TCPWM_CNT_INTR_MASKED

(Interrupt masked request register)

0 TC Logical AND of the corresponding TC request and mask bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and mask bits.

TCPWM_CNT_TR_CTRL1

0

1

2

3

Rising edge detect

Falling edge detect

Rising or Falling
edge detect

No edge detect

0

TCPWM_CNT_TR_CTRL0

1

Trigger_In[14]

TCPWM_CMD registers
(software generated)

event

Trigger input sources

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 365

Timer, Counter, and PWM (TCPWM)

28.2.6 PWM Outputs

Each counter has two outputs, pwm (line_out) and pwm_n (line_compl_out) (complementary of pwm). Note that the OV, UN,
and CC conditions are used to drive pwm and pwm_n, by configuring the TCPWM_CNT_TR_CTRL2 register (Table 28-2)..

28.2.7 Power Modes

The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The configuration registers

and other logic are powered in Deep Sleep mode to keep the states of configuration registers. See Table 28-3 for details.

Table 28-2. Configuring Output for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE
Default Value = 3

1:0

0 Set pwm to '1

Configures output line on a compare
match (CC) event

1 Clear pwm to '0

2 Invert pwm

3 No change

OVERFLOW_MODE
Default Value = 3

3:2

0 Set pwm to '1

Configures output line on a overflow
(OV) event

1 Clear pwm to '0

2 Invert pwm

3 No change

UNDERFLOW_MODE
Default Value = 3

5:4

0 Set pwm to '1

Configures output line on a underflow
(UN) event

1 Clear pwm to '0

2 Invert pwm

3 No change

Table 28-3. Power Modes in TCPWM Block

Power Mode Block Status

CPU Active This block is fully operational in this mode with clock running and power switched on.

CPU Sleep The CPU is in sleep but the block is still functional in this mode. All counter clocks are on.

CPU Deep Sleep Both power and clocks to the block are turned off, but configuration registers retain their states.

System Hibernate In this mode, the power to this block is switched off. Configuration registers will lose their state.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 366

Timer, Counter, and PWM (TCPWM)

28.3 Operation Modes

The counter block can function in six operational modes, as shown in Table 28-4. The MODE [26:24] field of the counter
control register (TCPWM_CNTx_CTRL) configures the counter in the specific operational mode.

The counter can be configured to count up, down, and up/down by setting the UP_DOWN_MODE[17:16] field in the
TCPWM_CNT_CTRL register, as shown in Table 28-5.

Table 28-4. Operational Mode Configuration

Mode
MODE Field

[26:24]
Description

Timer 000
The counter increments or decrements by '1' at every clk_counter cycle in which a count event is detected.
The Compare/Capture register is used to compare the count.

Capture 010
The counter increments or decrements by '1' at every clk_counter cycle in which a count event is detected. A
capture event copies the counter value into the capture register.

Quadrature 011
Quadrature decoding. The counter is decremented or incremented based on two phase inputs according to
an X1, X2, or X4 decoding scheme.

PWM 100 Pulse width modulation.

PWM_DT 101 Pulse width modulation with dead time insertion.

PWM_PR 110
Pseudo-random PWM using a 16- or 32-bit linear feedback shift register (LFSR) to generate pseudo-random
noise.

Table 28-5. Counting Mode Configuration

Counting Modes
UP_DOWN_
MODE[17:16]

Description

UP Counting Mode 00
Increments the counter until the period value is reached. A Terminal Count (TC) and Over-
flow (OV) condition is generated when the counter changes from the period value.

DOWN Counting Mode 01
Decrements the counter from the period value until 0 is reached. A TC and Underflow (UN)
condition is generated when the counter changes from a value of ‘0’.

UP/DOWN Counting Mode 1 10
Increments the counter until the period value is reached, and then decrements the counter
until ‘0’ is reached. TC and UN conditions are generated only when the counter changes
from a value of ‘0’.

UP/DOWN Counting Mode 2 11

Similar to up/down counting mode 1 but a TC condition is generated when the counter
changes from ‘0’ and when the counter value changes from the period value. OV and UN
conditions are generated similar to how they are generated in UP and DOWN counting
modes respectively.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 367

Timer, Counter, and PWM (TCPWM)

28.3.1 Timer Mode

The timer mode can be used to measure how long an event takes or the time difference between two events. The timer
functionality increments/decrements a counter between 0 and the value stored in the PERIOD register. When the counter is
running, the count value stored in the COUNTER register is compared with the compare/capture register (CC). When the
counter changes from a state in which COUNTER equals CC, the cc_match event is generated.

Timer functionality is typically used for one of the following:

■ Timing a specific delay – the count event is a constant ‘1’.

■ Counting the occurrence of a specific event – the event should be connected as an input trigger and selected for the count
event.

Incrementing and decrementing the counter is controlled by the count event and the counter clock clk_counter. Typical
operation will use a constant ‘1’ count event and clk_counter without pre-scaling. Advanced operations are also possible; for
example, the counter event configuration can decide to count the rising edges of a synchronized input trigger.

Table 28-6 lists the trigger outputs and the conditions when they are triggered.

Table 28-6. Timer Mode Trigger Input Description

Trigger Inputs Usage

Reload

Sets the counter value and starts the counter. Behavior is dependent on UP_DOWN_MODE:

■ COUNT_UP: The counter is set to “0” and count direction is set to “up”.

■ COUNT_DOWN: The counter is set to PERIOD and count direction is set to “down”.

■ COUNT_UPDN1/2: The counter is set to “1” and count direction is set to “up”.
Can be used when the counter is running or not running.

Start

Starts the counter. The counter is not initialized by hardware. The current counter value is used. Behavior is
dependent on UP_DOWN_MODE. When the counter is not running:

■ COUNT_UP: The count direction is set to “up”.

■ COUNT_DOWN: The count direction is set to “down”.

■ COUNT_UPDN1/2: The count direction is not modified.
Note that when the counter is running, the start event has no effect.

Can be used when the counter is running or not running.

Stop Stops the counter.

Count Count event increments/decrements the counter.

Capture Not used.

Table 28-7. Timer Mode Supported Features

Supported Features Description

Clock pre-scaling Pre-scales the counter clock clk_counter.

One-shot

Counter is stopped by hardware, after a single period of the counter:

■ COUNT_UP: on an overflow event.

■ COUNT_DOWN, COUNT_UPDN1/2: on an underflow event.

Auto reload CC CC and CC_BUFF are exchanged on a cc_match event (when specified by CTRL.AUTO_RELOAD_CC)

Up/down modes

Specified by UP_DOWN_MODE:

■ COUNT_UP: The counter counts from 0 to PERIOD.

■ COUNT_DOWN: The counter counts from PERIOD to 0.

■ COUNT_UPDN1/2: The counter counts from 1 to PERIOD and back to 0.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 368

Timer, Counter, and PWM (TCPWM)

Note: Each output is only two clk_sys wide and is represented by an arrow in the timing diagrams in this chapter, for example
see Figure 28-7.

Figure 28-6. Timer Functionality

Notes:

■ The timer functionality uses only PERIOD (and not PERIOD_BUFF).

■ Do not write to COUNTER when the counter is running.

Figure 28-7 illustrates a timer in up-counting mode. The counter is initialized (to 0) and started with a software-based reload
event.

Notes:

■ PERIOD is 4, resulting in an effective repeating counter pattern of 4+1 = 5 clk_counter periods. The CC register is 2, and
sets the condition for a cc_match event.

■ When the counter changes from a state in which COUNTER is 4, overflow and tc events are generated.

■ When the counter changes from a state in which COUNTER is 2, a cc_match event is generated.

Table 28-8. Timer Mode Trigger Outputs

Trigger Outputs Description

cc_match (CC) Counter changes from a state in which COUNTER equals CC.

Underflow (UN) Counter is decrementing and changes from a state in which COUNTER equals “0”.

Overflow (OV) Counter is incrementing and changes from a state in which COUNTER equals PERIOD.

Table 28-9. Timer Mode Interrupt Outputs

Interrupt Outputs Description

tc

Specified by UP_DOWN_MODE:

■ COUNT_UP: The tc event is the same as the overflow event.

■ COUNT_DOWN: The tc event is the same as the underflow event.

■ COUNT_UPDN1: The tc event is the same as the underflow event.

■ COUNT_UPDN2: The tc event is the same as the logical OR of the overflow and underflow events.

cc_match (CC) Counter changes from a state in which COUNTER equals CC.

Table 28-10. Timer Mode PWM Outputs

PWM Outputs Description

pwm Not used.

pwm_n Not used.

Timer

Reload
Start
Stop

Count

clk_counter

cc_match
underflow
overflow

Trigger
generation

COUNTER

PERIOD

==

CC

CC_BUFF

==

tc

tr_cc_match
tr_underflow
tr_overflow

Interrupt
generation

interrupt

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 369

Timer, Counter, and PWM (TCPWM)

■ A constant count event of ‘1’ and clk_counter without prescaling is used in the following scenarios. If the count event is ‘0’
and a reload event is triggered, the reload will be registered only on the first clock edge when the count event is ‘1’. This
means that the first clock edge when the count event is ‘1’ will not be used for counting. It will be used for reload.

Figure 28-7. Timer in Up-counting Mode

Figure 28-8 illustrates a timer in “one-shot” operation mode. Note that the counter is stopped on a tc event.

Figure 28-8. Timer in One-shot Mode

Figure 28-9 illustrates clock pre-scaling. Note that the counter is only incremented every other counter cycle.

Figure 28-9. Timer Clock Pre-scaling

Figure 28-10 illustrates a counter that is initialized and started (reload event), stopped (stop event), and continued/started
(start event). Note that the counter does not change value when it is not running (STATUS.RUNNING).

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UP

4

3

2

1

0

COUNTER starts with 0 period is PERIOD+1

reload

no TC event CC event on leaving the
COUNTER value

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UP
ONE_SHOT = 1

4

3

2

1

0

reload

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UP
ONE_SHOT = 1
PRESCALE = DIV_BY_2

4

3

2

1

0

reload

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 370

Timer, Counter, and PWM (TCPWM)

Figure 28-10. Counter Start/Stopped/Continued

Figure 28-11 illustrates a timer that uses both CC and CC_BUFF registers. Note that CC and CC_BUFF are exchanged on a
cc_match event.

Figure 28-11. Use of CC and CC_BUFF Register Bits

Figure 28-12 illustrates a timer in down counting mode. The counter is initialized (to PERIOD) and started with a software-
based reload event.

Notes:

■ When the counter changes from a state in which COUNTER is 0, a UN and TC events are generated.

■ When the counter changes from a state in which COUNTER is 2, a cc_match event is generated.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 4+1 = 5 counter clock periods.

C
O

U
N

T
E

R
PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UP

4

3

2

1

0

RUNNING

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

reload
stop
start

C
O

U
N

T
E

R

PERIOD = 4

MODE = TIMER
UP_DOWN_MODE = COUNT_UP
AUTO_RELOAD_CC = 1

4

3

2

1

0

reload 03 CC
30 CC_BUFF

3
0

0
3

3
0

0
3

3
0

0
3

3
0

0
3

Compare/Capture (CC)

Underflow (UV)
Overflow (OV)

Terminal Count (TC)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 371

Timer, Counter, and PWM (TCPWM)

Figure 28-12. Timer in Down-counting Mode

Figure 28-13 illustrates a timer in up/down counting mode 1. The counter is initialized (to 1) and started with a software-based
reload event.

Notes:

■ When the counter changes from a state in which COUNTER is 4, an overflow is generated.

■ When the counter changes from a state in which COUNTER is 0, an underflow and tc event are generated.

■ When the counter changes from a state in which COUNTER is 2, a cc_match event is generated.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 2*4 = 8 counter clock periods.

Figure 28-13. Timer in Up/Down Counting Mode 1

Figure 28-14 illustrates a timer in up/down counting mode 1, with different CC values.

Notes:

■ When CC is 0, the cc_match event is generated at the start of the period (when the counter changes from a state in which
COUNTER is 0).

■ When CC is PERIOD, the cc_match event is generated at the middle of the period (when the counter changes from a
state in which COUNTER is PERIOD).

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_DOWN

4

3

2

1

0

COUNTER starts with PERIOD period is PERIOD+1

reload

no TC event CC event on leaving the
COUNTER value

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UPDN1

4

3

2

1

0

COUNTER starts with 1 period is 2*PERIOD

reload

no TC event CC event on leaving the
COUNTER value

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 372

Timer, Counter, and PWM (TCPWM)

Figure 28-14. Up/Down Counting Mode with Different CC Values

Figure 28-15 illustrates a timer in up/down counting mode 2. This mode is same as up/down counting mode 1, except for the
TC event, which is generated when either underflow or overflow event occurs.

Figure 28-15. Up/Down Counting Mode 2

28.3.1.1 Configuring Counter for Timer Mode

The steps to configure the counter for Timer mode of operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select Timer mode by writing ‘000’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16- or 32-bit period in the TCPWM_CNT_PERIOD register.

4. Set the 16- or 32-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the TCPW-
M_CNT_CC_BUFF register.

5. Set AUTO_RELOAD_CC field of the TCPWM_CNT_CTRL register, if required to swap values at every CC condition.

6. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register.

7. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register.

8. The timer can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the
ONE_SHOT[18] field of the TCPWM_CNT_CTRL register.

9. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, stop, capture, and
count).

10. Set the TCPWM_CNT_TR_CTRL1 register to select the edge of the trigger that causes the event (reload, start, stop, cap-
ture, and count).

11. If required, set the interrupt upon TC or CC condition.

12. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A reload trigger must be provided through firmware
(TCPWM_CMD_RELOAD register) to start the counter if the hardware reload signal is not enabled.

MODE = TIMER
UP_DOWN_MODE = COUNT_UPDN1

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4
CC

4

3

2

1

0

1 0 4reload

cc_matchسevent at the
start of the period

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = TIMER
UP_DOWN_MODE = COUNT_UPDN2

4

3

2

1

0

COUNTER starts with 1 period is 2*PERIOD

reload

no TC event CC event on leaving the
COUNTER value

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 373

Timer, Counter, and PWM (TCPWM)

28.3.2 Capture Mode

The capture functionality increments and decrements a counter between 0 and PERIOD. When the capture event is activated
the counter value COUNTER is copied to CC (and CC is copied to CC_BUFF).

The capture functionality can be used to measure the width of a pulse (connected as one of the input triggers and used as
capture event).

The capture event can be triggered through the capture trigger input or through a firmware write to command register
(TCPWM_CMD_CAPTURE).

Table 28-11. Capture Mode Trigger Input Description

Trigger Inputs Usage

reload

Sets the counter value and starts the counter. Behavior is dependent on UP_DOWN_MODE:

■ COUNT_UP: The counter is set to “0” and count direction is set to “up”.

■ COUNT_DOWN: The counter is set to PERIOD and count direction is set to “down”.

■ COUNT_UPDN1/2: The counter is set to “1” and count direction is set to “up”.
Can be used only when the counter is not running.

start

Starts the counter. The counter is not initialized by hardware. The current counter value is used. Behavior is
dependent on UP_DOWN_MODE:

■ COUNT_UP: The count direction is set to “up”.

■ COUNT_DOWN: The count direction is set to “down”.

■ COUNT_UPDN1/2: The count direction is not modified.
Can be used only when the counter is not running.

stop Stops the counter.

count Count event increments/decrements the counter.

capture Copies the counter value to CC and copies CC to CC_BUFF.

Table 28-12. Capture Mode Supported Features

Supported Features Description

Clock pre-scaling Pre-scales the counter clock clk_counter.

One-shot

Counter is stopped by hardware, after a single period of the counter:

■ COUNT_UP: on an overflow event.

■ COUNT_DOWN, COUNT_UPDN1/2: on an underflow event.

Up/down modes

Specified by UP_DOWN_MODE:

■ COUNT_UP: The counter counts from 0 to PERIOD.

■ COUNT_DOWN: The counter counts from PERIOD to 0.

■ COUNT_UPDN1/2: The counter counts from 1 to PERIOD and back to 0.

Table 28-13. Capture Mode Trigger Output Description

Trigger Outputs Description

cc_match (CC) CC is copied to CC_BUFF and counter value is copied to CC (cc_match equals capture event).

Underflow (UN) Counter is decrementing and changes from a state in which COUNTER equals “0”.

Overflow (OV) Counter is incrementing and changes from a state in which COUNTER equals PERIOD.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 374

Timer, Counter, and PWM (TCPWM)

Figure 28-16. Capture Functionality

Figure 28-17 illustrates capture behavior in the up counting mode.

Notes:

■ The capture event detection uses rising edge detection. As a result, the capture event is remembered until the next “active
count” pre-scaled counter clock.

■ When a capture event occurs, COUNTER is copied into CC. CC is copied to CC_BUFF.

■ A cc_match event is generated when the counter value is captured.

Figure 28-17. Capture in Up Counting Mode

Table 28-14. Capture Mode Interrupt Outputs

Interrupt Outputs Description

tc

Specified by UP_DOWN_MODE:

■ COUNT_UP: tc event is the same as the overflow event.

■ COUNT_DOWN: tc event is the same as the underflow event.

■ COUNT_UPDN1: tc event is the same as the underflow event.

■ COUNT_UPDN2: tc event is the same as the logical OR of the overflow and underflow events.

cc_match (CC) CC is copied to CC_BUFF and counter value is copied to CC (cc_match equals capture event).

Table 28-15. Capture Mode PWM Outputs

PWM Outputs Description

pwm Not used.

pwm_n Not used.

Capture
Reload

Start
Stop

Count
Capture

clk_counter

cc_match
underflow
overflowCOUNTER

PERIOD

==

CC

CC_BUFF

==

tc

Trigger
generation

tr_cc_match
tr_underflow
tr_overflow

Interrupt
generation

interrupt

C
O

U
N

T
E

R

PERIOD = 4

MODE = CAPTURE
UP_DOWN_MODE = COUNT_UP
CAPTURE_EDGE = RISING_EDGE

4

3

2

1

0

reload

CC
CC_BUFF

1 4
1

capture

3
4

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 375

Timer, Counter, and PWM (TCPWM)

When multiple capture events are detected before the next “active count” pre-scaled counter clock, capture events are
treated as follows:

■ In the rising edge and falling edge modes, multiple events are effectively reduced to a single event.

■ In the rising/falling edge mode, an even number of events is not detected and an odd number of events is reduced to a
single event.

This behavior is illustrated by Figure 28-18, in which a pre-scaler by a factor of 4 is used.

Figure 28-18. Multiple Events Detected before Active-Count

28.3.2.1 Configuring Counter for Capture Mode

The steps to configure the counter for Capture mode operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select Capture mode by writing ‘010’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register.

5. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register.

6. Counter can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the ONE_-
SHOT[18] field of the TCPWM_CNT_CTRL register.

7. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, stop, capture, and
count).

8. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (reload, start, stop, capture, and
count).

9. If required, set the interrupt upon TC or CC condition.

10. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A reload trigger must be provided through firmware
(TCPWM_CMD_RELOAD register) to start the counter if the hardware reload signal is not enabled.

missed capture event

C
O

U
N

T
E

R

PERIOD = 4

MODE = CAPTURE
UP_DOWN_MODE = COUNT_UP
CAPTURE_EDGE = RISING_EDGE

4

3

2

1

0

reload

CC
CC_BUFF

1

capture

3
1

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 376

Timer, Counter, and PWM (TCPWM)

28.3.3 Quadrature Decoder Mode

Quadrature functionality increments and decrements a counter between 0 and 0xFFFF or 0xFFFFFFFF (32-bit mode).
Counter updates are under control of quadrature signal inputs: index, phiA, and phiB. The index input is used to indicate an
absolute position. The phiA and phiB inputs are used to determine a change in position (the rate of change in position can be
used to derive speed). The quadrature inputs are mapped onto triggers (as described in Table 28-16).

Note: Clock pre-scaling is not supported and the count event is used as a quadrature input phiA. As a result, the quadrature
functionality operates on the counter clock (clk_counter), rather than on an “active count” prescaled counter clock.

Table 28-16. Quadrature Mode Trigger Input Description

Trigger Input Usage

reload/index
This event acts as a quadrature index input. It initializes the counter to the counter midpoint 0x8000 (16-bit)
or 0x8000000 (32-bit mode) and starts the quadrature functionality. Rising edge event detection or falling
edge detection mode must be used.

start/phiB
This event acts as a quadrature phiB input. Pass through (no edge detection) event detection mode must be
used.

stop Stops the quadrature functionality.

count/phiA
This event acts as a quadrature phiA input. Pass through (no edge detection) event detection mode must be
used.

capture Not used.

Table 28-17. Quadrature Mode Supported Features

Supported Features Description

Quadrature encoding

Three encoding schemes for the phiA and phiB inputs are supported (as specified by CTRL.QUADRA-
TURE_MODE):

X1 encoding.

X2 encoding.

X4 encoding.

Table 28-18. Quadrature Mode Trigger Output Description

Trigger Outputs Description

cc_match (CC) Counter value COUNTER equals 0 or 0xFFFF or 0xFFFFFFFF (32-bit mode) or a reload/index event.

Underflow (UN) Not used.

Overflow (OV) Not used.

Table 28-19. Quadrature Mode Interrupt Outputs

Interrupt Outputs Description

cc_match (CC) Counter value COUNTER equals 0 or 0xFFFF or 0xFFFFFFFF (32-bit mode) or a reload/index event.

tc Reload/index event.

Table 28-20. Quadrature Mode PWM Outputs

PWM Outputs Description

pwm Not used.

pwm_n Not used.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 377

Timer, Counter, and PWM (TCPWM)

Figure 28-19. Quadrature Functionality (16-bit example)

Quadrature functionality is described as follows:

■ A software-generated reload event starts quadrature operation. As a result, COUNTER is set to 0x8000 (16-bit) or
0x80000000 (32-bit), which is the counter midpoint (the COUNTER is set to 0x7FFF or 0x7FFFFFFF if the reload event
coincides with a decrement event; the COUNTER is set to 0x8001 or 0x80000001 if the reload event coincides with an
increment event). Note that a software-generated reload event is generated only once, when the counter is not running.
All other reload/index events are hardware-generated reload events as a result of the quadrature index signal.

■ During quadrature operation:

❐ The counter value COUNTER is incremented or decremented based on the specified quadrature encoding scheme.

❐ On a reload/index event, CC is copied to CC_BUFF, COUNTER is copied to CC, and COUNTER is set to 0x8000/
0x80000000. In addition, the tc and cc_match events are generated.

❐ When the counter value COUNTER is 0x0000, CC is copied to CC_BUFF, COUNTER (0x0000) is copied to CC, and
COUNTER is set to 0x8000/0x80000000. In addition, the cc_match event is generated.

❐ When the counter value COUNTER is 0xFFFF/0xFFFFFFFF, CC is copied to CC_BUFF, COUNTER (0xFFFF/
0xFFFFFFFF) is copied to CC, and COUNTER is set to 0x8000/0x80000000. In addition, the cc_match event is gen-
erated.

Note: When the counter reaches 0x0000 or 0xFFFF/0xFFFFFFFF, the counter is automatically set to 0x8000/0x80000000
without an increase or decrease event.

The software interrupt handler uses the tc and cc_match interrupt cause fields to distinguish between a reload/index event
and a situation in which a minimum/maximum counter value was reached (about to wrap around). The CC and CC_BUFF
registers are used to determine when the interrupt causing event occurred.

Note that a counter increment/decrement can coincide with a reload/index/tc event or with a situation cc_match event. Under
these circumstances, the counter value set to either 0x8000+1 or 0x80000000+1 (increment) or 0x8000–1 or 0x80000000–1
(decrement).

Counter increments (incr1 event) and decrements (decr1 event) are determined by the quadrature encoding scheme as
illustrated by Figure 28-20.

Quadrature

Reload/Index
Start/phiB

Stop
Count/phiA

clk_counter

cc_match
Trigger

generation
COUNTER

0x8000 (+/- 1)

==

CC

CC_BUFF

==

tc

tr_cc_match

0x0000

0xFFFF

Interrupt
generation

interrupt

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 378

Timer, Counter, and PWM (TCPWM)

Figure 28-20. Quadrature Mode Waveforms

Figure 28-21 illustrates quadrature functionality as a function of the reload/index, incr1, and decr1 events. Note that the first
reload/index event copies the counter value COUNTER to CC.

Figure 28-21. Quadrature Mode Reload/Index Timing

Figure 28-22 illustrate quadrature functionality for different event scenarios (including scenarios with coinciding events). In all
scenarios, the first reload/index event is generated by software when the counter is not yet running.

phiA

phiB

incr1

Quadrature decoding
QUADRATURE_MODE = X1

decr1

incr1

Quadrature decoding
QUADRATURE_MODE = X2

decr1

incr1

Quadrature decoding
QUADRATURE_MODE = X4

decr1

Two times the events of X1 mode

Four times the events of X1 mode

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X 0x8001 0x8002 0x8003

counter cycle

0xFFFE 0xFFFF 0x8001 0xFFFE 0xFFFF 0x8000

0xFFFF 0xFFFF

0xFFFF

X

Y X

0xFFFF

X

Quadrature decoding
increment behavior, no coinciding
reload and increment events

overflow without incr1 eventoverflow with incr1 event

RUNNING

XY

YZ

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 379

Timer, Counter, and PWM (TCPWM)

Figure 28-22. Quadrature Mode Timing Cases

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X 0x7FFFF 0x7ffe 0x7ffd

counter cycle

0x0001 0x0000 0x7FFF 0x0001 0x0000 0x8000

0x0000 0x0000

0x0000

0x0000

Quadrature decoding
decrement behavior, no coinciding
reload and decrement events

underflow without decr1 eventunderflow with decr1 event

RUNNING

X

Y X X

XY

YZ

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X 0x7FFF 0x7FFE 0x7FFD

counter cycle

0x0001 0x0000 0x8001

0x0000

Quadrature decoding
decrement/increment behavior, no
coinciding reload events

overflow with decr1 eventunderflow with incr1 event

0xFFFE 0xFFFF 0x7FFF

0xFFFF

0x0000

0x0000

RUNNING

X

Y X X

XY

YZ

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X 0x7FFF 0x7FFE 0x7FFD

counter cycle
Quadrature decoding
decrement/increment behavior,
coinciding reload events

reload event and
overflow with incr1 event

0x0001 0x0000 0x7FFF

0x0000

reload event and
underflow with decr1 event

0xFFFE 0xFFFF 0x8001

0xFFFF0x0000

0x0000

RUNNING

X

Y X X

XY

YZ

0x8000COUNTER

incr1
decr1

Reload / Index

CC

CC_BUFF

cc_match
tc

X

Y

Z

0x7FFF 0x7FFE 0x7FFF

counter cycleQuadrature decoding
decrement behavior and reload events

0x7FFE 0x7FFD 0x8000

0x7FFD0x7FFE

Y 0x7FFE

0x7FFF 0x7FFE 0x7FFD

reload event and
decr1 event coincide

RUNNING

X

Y

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 380

Timer, Counter, and PWM (TCPWM)

28.3.3.1 Configuring Counter for Quadrature Mode

The steps to configure the counter for quadrature mode of operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select Quadrature mode by writing ‘011’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required encoding mode by writing to the QUADRATURE_MODE[21:20] field of the TCPWM_CNT_CTRL regis-
ter.

4. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Index and Stop).

5. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Index and Stop).

6. If required, set the interrupt upon TC or CC condition.

7. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A reload trigger must be provided through firmware
(TCPWM_CMD_RELOAD register) to start the counter if the hardware reload signal is not enabled.

28.3.4 Pulse Width Modulation Mode

The PWM can output left, right, center, or asymmetrically-aligned PWM. The PWM signal is generated by incrementing or
decrementing a counter between 0 and PERIOD, and comparing the counter value COUNTER with CC. When COUNTER
equals CC, the cc_match event is generated. The pulse-width modulated signal is then generated by using the cc_match
event along with overflow and underflow events. Two pulse-width modulated signals “pwm” and “pwm_n” are output from the
PWM.

Table 28-21. PWM Mode Trigger Input Description

Trigger Inputs Usage

reload

Sets the counter value and starts the counter. Behavior is dependent on UP_DOWN_MODE:

■ COUNT_UP: The counter is set to “0” and count direction is set to “up”.

■ COUNT_DOWN: The counter is set to PERIOD and count direction is set to “down”.

■ COUNT_UPDN1/2: The counter is set to “1” and count direction is set to “up”.
Can be used only when the counter is not running.

start

Starts the counter. The counter is not initialized by hardware. The current counter value is used. Behavior is
dependent on UP_DOWN_MODE:

■ COUNT_UP: The count direction is set to “up”.

■ COUNT_DOWN: The count direction is set to “down”.

■ COUNT_UPDN1/2: The count direction is set to “up”.
Can be used only when the counter is not running.

stop/kill
Stops the counter or suppresses the PWM output, depending on PWM_STOP_ON_KILL and PWM_SYN-
C_KILL.

count Count event increments/decrements the counter.

capture/swap

This event acts as a swap event. When this event is active, the CC/CC_BUFF and PERIOD/PERIOD_BUFF
registers are exchanged on a tc event (when specified by CTRL.AUTO_RELOAD_CC and CTRL.AUTO_RE-
LOAD_PERIOD).

A swap event requires rising, falling, or rising/falling edge event detection mode. Pass-through mode is not
supported, unless the selected event is a constant '0' or '1'.

Note: When COUNT_UPDN2 mode exchanges PERIOD and PERIOD_BUFF at a tc event that coincides
with an OV event, software should ensure that the PERIOD and PERIOD_BUFF values are the same.

When a swap event is detected and the counter is running, the event is kept pending until the next tc event.
When a swap event is detected and the counter is not running, the event is cleared by hardware.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 381

Timer, Counter, and PWM (TCPWM)

Note that the PWM mode does not support dead time insertion. This functionality is supported by the separate PWM_DT
mode.

Table 28-22. PWM Mode Supported Features

Supported Features Description

Clock pre-scaling Pre-scales the counter clock “clk_counter”.

One-shot

Counter is stopped by hardware, after a single period of the counter:

■ COUNT_UP: on an overflow event.

■ COUNT_DOWN and COUNT_UPDN1/2: on an underflow event.

Compare Swap
CC and CC_BUFF are exchanged on a swap event and tc event (when specified by CTRL.AUTO_RE-
LOAD_CC).

Period Swap

PERIOD and PERIOD_BUFF are exchanged on a swap event and tc event (when specified by
CTRL.AUTO_RELOAD_PERIOD). Note: When COUNT_UPDN2/Asymmetric mode exchanges PERIOD
and PERIOD_BUFF at a tc event that coincides with an overflow event, software should ensure that the
PERIOD and PERIOD_BUFF values are the same.

Alignment (Up/Down modes)

Specified by UP_DOWN_MODE:

■ COUNT_UP: The counter counts from 0 to PERIOD. Generates a left-aligned PWM output.

■ COUNT_DOWN: The counter counts from PERIOD to 0. Generates a right-aligned PWM output.

■ COUNT_UPDN1/2: The counter counts from 1 to PERIOD and back to 0. Generates a center-aligned/
asymmetric PWM output.

Kill modes

Specified by PWM_STOP_ON_KILL and PWM_SYNC_KILL:

■ PWM_STOP_ON_KILL = ‘1’ (PWM_SYNC_KILL = don’t care): Stop on Kill mode. This mode
stops the counter on a stop/kill event. Reload or start event is required to restart counting.

■ PWM_STOP_ON_KILL = ‘0’ and PWM_SYNC_KILL = ‘0’: Asynchronous kill mode. This
mode keeps the counter running, but suppresses the PWM output signals and continues to
do so for the duration of the stop/kill event.

■ PWM_STOP_ON_KILL = ‘0’ and PWM_SYNC_KILL = ‘1’: Synchronous kill mode. This mode
keeps the counter running, but suppresses the PWM output signals and continues to do so
until the next tc event without a stop/kill event.

Table 28-23. PWM Mode Trigger Output Description

Trigger Output Description

cc_match (CC)

Specified by UP_DOWN_MODE:

■ COUNT_UP and COUNT_DOWN: The counter changes to a state in which COUNTER equals CC.

■ COUNT_UPDN1/2: counter changes from a state in which COUNTER equals CC.

Underflow (UN) Counter is decrementing and changes from a state in which COUNTER equals “0”.

Overflow (OV) Counter is incrementing and changes from a state in which COUNTER equals PERIOD.

Table 28-24. PWM Mode Interrupt Output Description

Interrupt Outputs Description

tc

Specified by UP_DOWN_MODE:

■ COUNT_UP: tc event is the same as the overflow event.

■ COUNT_DOWN: tc event is the same as the underflow event.

■ COUNT_UPDN1: tc event is the same as the underflow event.

■ COUNT_UPDN2: tc event is the same as the logical OR of the overflow and underflow events.

cc_match (CC)

Specified by UP_DOWN_MODE:

■ COUNT_UP and COUNT_DOWN: The counter changes to a state in which COUNTER equals CC.

■ COUNT_UPDN1/2: counter changes from a state in which COUNTER equals CC.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 382

Timer, Counter, and PWM (TCPWM)

Note that the cc_match event generation in COUNT_UP and COUNT_DOWN modes are different from the generation in
other functional modes or counting modes. This is to ensure that 0 percent and 100 percent duty cycles can be generated.

Figure 28-23. PWM Mode Functionality

The generation of PWM output signals is a multi-step process and is illustrated in Figure 28-24. The PWM output signals are
generated by using the underflow, overflow, and cc_match events. Each of these events can be individually set to INVERT,
SET, or CLEAR pwm_dt_input.

Note: An underflow and cc_match or an overflow and cc_match can occur at the same time. When this happens, underflow
and overflow events take priority over cc_match. For example, if overflow = SET and cc_match = CLEAR then pwm_dt_input
will be SET to ‘1’ first and then CLEARED to ‘0’ immediately after. This can be seen in Figure 28-26.

Figure 28-24. PWM Output Generation

PWM polarity and PWM_n polarity as seen in Figure 28-24, allow the PWM outputs to be inverted. PWM polarity is controlled
through CTRL.QUADRATURE_MODE[0] and PWM_n polarity is controlled through CTRL.QUADRATURE_MODE[1].

PWM behavior depends on the PERIOD and CC registers. The software can update the PERIOD_BUFF and CC_BUFF
registers, without affecting the PWM behavior. This is the main rationale for double buffering these registers.

Figure 28-25 illustrates a PWM in up counting mode. The counter is initialized (to 0) and started with a software-based reload
event.

Notes:

■ When the counter changes from a state in which COUNTER is 4, an overflow and tc event are generated.

■ When the counter changes to a state in which COUNTER is 2, a cc_match event is generated.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 4+1 = 5 counter clock periods.

Table 28-25. PWM Mode PWM Outputs

PWM Outputs Description

pwm PWM output.

pwm_n Complementary PWM output.

PWM

clk_counter

cc_match
underflow
overflow

Trigger
generation

COUNTER

PERIOD

==

CC

CC_BUFF

==

tc

tr_cc_match
tr_underflow
tr_overflow

PERIOD_BUFF

PWM
generation

no dead time insertion

pwm_dt_input

Reload
Start

Stop/Kill
Count

Capture/Swap

Interrupt
generation

interrupt

pwm_dt_input kill period

 pwm

pwm_n
pwm_n polarity

cc_match

underflow
overflow

TCPWM_CNT_TR_CTRL2

PWM
generation

Dead time
insertion

only supported in
PWM_DT mode

pwm polarity

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 383

Timer, Counter, and PWM (TCPWM)

Figure 28-25. PWM in Up Counting Mode

Figure 28-26 illustrates a PWM in up counting mode generating a left-aligned PWM. The figure also illustrates how a right-
aligned PWM can be created using the PWM in up counting mode by inverting the OVERFLOW_MODE and
CC_MATCH_MODE and using a CC value that is complementary (PERIOD+1 - pulse width) to the one used for left-aligned
PWM. Note that CC is changed (to CC_BUFF, which is not depicted) on a tc event. The duty cycle is controlled by setting the
CC value. CC = desired duty cycle x (PERIOD+1).

Figure 28-26. PWM Left- and Right-Aligned Outputs

Figure 28-27 illustrates a PWM in down counting mode. The counter is initialized (to PERIOD) and started with a software-
based reload event.

Notes:

■ When the counter changes from a state in which COUNTER is 0, an underflow and tc event are generated.

■ When the counter changes to a state in which COUNTER is 2, a cc_match event is generated.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 4+1 = 5 counter clock periods.

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = PWM
UP_DOWN_MODE = COUNT_UP

4

3

2

1

0

COUNTER starts with 0 period is PERIOD+1

reload

no tc event cc_match event on entering
the COUNTER value

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

4201

PERIOD = 4

CC5

Left aligned PWM
CC = pulse width
OVERFLOW_MODE = SET
CC_MATCH_MODE = CLEAR

pwm

Right aligned PWM
CC = (PERIOD+1) – pulse width
OVERFLOW_MODE = CLEAR
CC_MATCH_MODE = SET

pwm

MODE = PWM
UP_DOWN_MODE = COUNT_UP

4

3

2

1

0

reload

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 384

Timer, Counter, and PWM (TCPWM)

Figure 28-27. PWM in Down Counting Mode

Figure 28-28 illustrates a PWM in down counting mode with different CC values. The figure also illustrates how a right-aligned
PWM can be creating using the PWM in down counting mode. Note that the CC is changed (to CC_BUFF, which is not
depicted) on a tc event.

Figure 28-28. Right- and Left-Aligned Down Counting PWM

Figure 28-29 illustrates a PWM in up/down counting mode. The counter is initialized (to 1) and started with a software-based
reload event.

Notes:

■ When the counter changes from a state in which COUNTER is 4, an overflow is generated.

■ When the counter changes from a state in which COUNTER is 0, an underflow and tc event are generated.

■ When the counter changes from a state in which COUNTER is 2, a cc_match event is generated. Note that the actual
counter value COUNTER from before the reload event is NOT used, instead the counter value before the reload event is
considered to be 0.

■ PERIOD is 4, resulting in an effective repeating counter pattern of 2*4 = 8 counter clock periods.

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = PWM
UP_DOWN_MODE = COUNT_DOWN

4

3

2

1

0

period is PERIOD+1COUNTER starts with PERIOD

reload

no tc event cc_match event on entering
the COUNTER value

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

C
O

U
N

T
E

R

4201
PERIOD = 4
CC -1 / 0xFFFF

Right aligned PWM
CC = pulse width - 1
UNDERFLOW_MODE = CLEAR
CC_MATCH_MODE = SET

pwm

MODE = PWM
UP_DOWN_MODE = COUNT_DOWN

4

3

2

1

0

reload

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

Left aligned PWM
CC = PERIOD - pulse width
UNDERFLOW_MODE = SET
CC_MATCH_MODE = CLEAR

pwm

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 385

Timer, Counter, and PWM (TCPWM)

Figure 28-29. Up/Down Counting PWM

Figure 28-30 illustrates a PWM in up/down counting mode with different CC values. The figure also illustrates how a center-
aligned PWM can be creating using the PWM in up/down counting mode.

Note:

■ The actual counter value COUNTER from before the reload event is NOT used. Instead the counter value before the
reload event is considered to be 0. As a result, when the first CC value at the reload event is 0, a cc_match event is
generated.

■ CC is changed (to CC_BUFF, which is not depicted) on a tc event.

Figure 28-30. Up/Down Counting Center-Aligned PWM

Different stop/kill modes exist. The mode is specified by PWM_STOP_ON_KILL and PWM_SYNC_KILL.

The following three modes are supported:

■ PWM_STOP_ON_KILL is ‘1’ (PWM_SYNC_KILL is don’t care): Stop on Kill mode. This mode stops the counter on a stop/
kill event. Reload or start event is required to restart the counter. Both software and external trigger input can be selected
as stop kill. Edge detection mode is required.

■ PWM_STOP_ON_KILL is ‘0’ and PWM_SYNC_KILL is ‘0’: Asynchronous Kill mode. This mode keeps the counter
running, but suppresses the PWM output signals synchronously on the next count clock (“active count” pre-scaled
clk_counter) and continues to do so for the duration of the stop/kill event. Only the external trigger input can be selected
as asynchronous kill. Pass through detection mode is required.

C
O

U
N

T
E

R

PERIOD = 4

CC = 2

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN1

4

3

2

1

0

COUNTER starts with 1 period is 2*PERIOD

reload

no tc event cc_match event on leaving
the COUNTER value

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN1

C
O

U
N

T
E

R

PERIOD = 4

CC

4

3

2

1

0

0 1 4

Center aligned PWM
CC = PERIOD –pulse width/2
UNDERFLOW_MODE = CLEAR
OVERFLOW_MODE = SET
CC_MATCH_MODE = INVERT

pwm

reload

cc_match event at the
start of the period

overflow and cc_match
events coincide

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

3

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 386

Timer, Counter, and PWM (TCPWM)

■ PWM_STOP_ON_KILL is ‘0’ and PWM_SYNC_KILL is ‘1’: Synchronous Kill mode. This mode keeps the counter running,
but suppresses the PWM output signals synchronously on the next count clock (“active count” pre-scaled clk_counter)
and continues to do so until the next tc event without a stop/kill event. Only the external trigger input can be selected as
synchronous kill. Rising edge detection mode is required.

Figure 28-31, Figure 28-32. and Figure 28-33 illustrate the above three modes.

Figure 28-31. PWM Stop on Kill

Figure 28-32. PWM Async Kill

Figure 28-33. PWM Sync Kill

Figure 28-34 illustrates center-aligned PWM with PERIOD/PERIOD_BUFF and CC/CC_BUFF registers (up/down counting
mode 1). At the TC condition, the PERIOD and CC registers are automatically exchanged with the PERIOD_BUFF and
CC_BUFF registers. The swap event is generated by hardware trigger 1, which is a constant ‘1’ and therefore always active
at the TC condition. After the hardware exchange, the software handler on the tc interrupt updates PERIOD_BUFF and
CC_BUFF.

Right aligned PWM
PWM_STOP_ON_KILL = 1
STOP_EDGE = RISING_EDGE
pwm polarity = 0, pwm_n polarity = 0

pwm_dt_input

pwm

 pwm_n

tc
cc_match

kill

pwm and pwm_n set to programmed
polarity

kill event stops counter

pwm_dt_input

pwm

pwm_n

Right aligned PWM
PWM_STOP_ON_KILL = 0, PWM_SYNC_KILL = 0
STOP_EDGE = NON_EDGE_DET
pwm polarity = 0, pwm_n polarity = 0

tc
cc_match

kill

pwm and pwm_n set to programmed
polarity

counter does NOT stop

kill period equals kill event

pwm_dt_input

pwm

pwm_n

Right aligned PWM
PWM_STOP_ON_KILL = 0, PWM_SYNC_KILL = 1
STOP_EDGE = RISING_EDGE
pwm polarity = 0, pwm_n polarity = 0

tc
cc_match

kill

pwm and pwm_n set to programmed
polarity

counter does NOT stop

kill period ends at next tckill event detected (rising edge)
kill event disappears, but kill period

extended

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 387

Timer, Counter, and PWM (TCPWM)

Figure 28-34. PWM Mode CC Swap Event

The PERIOD swaps with PERIOD_BUFF on a terminal count. The CC swaps with CC_BUFF on a terminal count. Software
can then update PERIOD_BUFF and CC_BUFF so that on the next terminal count PERIOD and CC will be updated with the
values written into PERIOD_BUFF and CC_BUFF.

A potential problem arises when software updates are not completed before the next tc event with an active pending swap
event. For example, if software updates PERIOD_BUFF before the tc event and CC_BUFF after the tc event, swapping does
not reflect the CC_BUFF register update. To prevent this from happening, the swap event should be generated by software
through a register write after both the PERIOD_BUFF and CC_BUFF registers are updated. The swap event is kept pending
by the hardware until the next tc event occurs.

The previous section addressed synchronized updates of the CC/CC_BUFF and PERIOD/PERIOD_BUFF registers of a
single PWM using a software-generated swap event. During motor control, three PWMs work in unison and updates to all
period and compare register pairs should be synchronized. All three PWMs have synchronized periods and as a result have
synchronized tc events. The swap event for all three PWMs is generated by software through a single register write. The
software should generate the swap events after the PERIOD_BUFF and CC_BUFF registers of all three PWMs are updated.

Note: When the counter is not running ((temporarily) stopped or killed), the PWM output signal values are determined by their
respective polarity settings. When the counter is disabled the output values are low.

Figure 28-35. PWM Outputs When Killed

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN1

C
O

U
N

T
E

R

CC

4

3

2

1

0

0

Asymmetric PWM
CC = PERIOD – pulse width/2
UNDERFLOW_MODE = CLEAR
OVERFLOW_MODE = SET
CC_MATCH_MODE = INVERT

pwm

reload

CC_BUFF4
4

0 1
1

3

PERIOD4
PERIOD_BUFF5

5 3
3

5

34

upcounting and CC = 0
=> cc_matchҸevent at

underflow

SW update
4

5

SW update

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

pwm_dt_input

pwm

pwm_n

tc
cc_match

kill

Right aligned PWM
PWM_STOP_ON_KILL = 0, PWM_SYNC_KILL = 0
STOP_EDGE = NO_EDGE_DET
pwm polarity = 0, pwm_n polarity = 0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 388

Timer, Counter, and PWM (TCPWM)

28.3.4.1 Asymmetric PWM

This PWM mode supports the generation of an asymmetric PWM. For an asymmetric PWM, the pwm_dt_input pulse is not
necessarily centered in the middle of the period. This functionality is realized by having a different CC value when counting up
and when counting down. The CC and CC_BUFF values are exchanged on an overflow event.

The COUNT_UPDN2 mode should use the same period value when counting up and counting down. When PERIOD and
PERIOD_BUFF are swapped on a tc event (overflow or underflow event), care should be taken to ensure that:

■ Within a PWM period (tc event coincides with an overflow event), the period values are the same (an overflow swap of
PERIOD and PERIOD_BUFF should not change the period value; that is, PERIOD_BUFF should be PERIOD)

■ Between PWM periods (tc event coincides with an underflow event), the period value can change (an underflow swap of
PERIOD and PERIOD_BUFF may change the period value; that is, PERIOD_BUFF may be different from PERIOD).

Figure 28-36 illustrates how the COUNT_UPDN2 mode is used to generate an asymmetric PWM.

Notes:

■ When up counting, when CC value at the underflow event is 0, a cc_match event is generated.

■ When down counting, when CC value at the overflow event is PERIOD, a cc_match event is generated.

■ A tc event is generated for both an underflow and overflow event. The tc event is used to exchange the CC and CC_BUFF
values.

Figure 28-36. Asymmetric PWM

The previous waveform illustrated functionality when the CC values are neither “0” nor PERIOD. Corner case conditions in
which the CC values equal “0” or PERIOD are illustrated as follows.

Figure 28-37 illustrates how the COUNT_UPDN2 mode is used to generate an asymmetric PWM.

Notes:

■ When up counting, when CC value at the underflow event is 0, a cc_match event is generated.

■ When down counting, when CC value at the overflow event is PERIOD, a cc_match event is generated.

■ A tc event is generated for both an underflow and overflow event. The tc event is used to exchange the CC and CC_BUFF
values.

■ Software updates CC_BUFF and PERIOD_BUFF in an interrupt handler on the tc event (and overwrites the hardware
updated values from the CC/CC_BUFF and PERIOD/PERIOD_BUFF exchanges).

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN2

C
O

U
N

T
E

R

PERIOD = 4
CC

4

3

2

1

0

1 3

Asymmetric PWM
CC = PERIOD – pulse width/2
UNDERFLOW_MODE = CLEAR
OVERFLOW_MODE = SET
CC_MATCH_MODE = INVERT

pwm

reload
CC_BUFF3 1

1 3
3 1

1 3
3 1

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 389

Timer, Counter, and PWM (TCPWM)

Figure 28-37. Asymmetric PWM when Compare = 0 or Period

28.3.4.2 Configuring Counter for PWM Mode

The steps to configure the counter for the PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select PWM mode by writing ‘100b’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register.

4. Set the required 16/32-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the TCPW-
M_CNT_PERIOD_BUFF register to swap values, if required.

5. Set the 16/32-bit compare value in the TCPWM_CNT_CC register and buffer compare value in the TCPWM_CNT_C-
C_BUFF register to swap values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to con-
figure left-aligned, right-aligned, or center-aligned PWM.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, kill, swap, and count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (reload, start, kill, swap, and count).

10. pwm and pwm_n can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, OV, and
UN conditions.

11. If required, set the interrupt upon TC or CC condition.

12. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A reload trigger must be provided through firmware
(TCPWM_CMD_RELOAD register) to start the counter if the hardware reload signal is not enabled.

MODE = PWM
UP_DOWN_MODE = COUNT_UPDN2

C
O

U
N

T
E

R

CC

4

3

2

1

0

0 4

Asymmetric PWM
CC = PERIOD – pulse width/2
UNDERFLOW_MODE = CLEAR
OVERFLOW_MODE = SET
CC_MATCH_MODE = INVERT

pwm

reload

CC_BUFF4 5
5 0

4 0
3 3

3 3

PERIOD4 4
PERIOD_BUFF4 5

5 5
3

3 3
3

5

54 5

0 5

4

1

upcounting and CC = 0
=> cc_matchҸevent at

underflow

downcounting and CC =
PERIOD => cc_matchҸ

event at overflow

downcounting and CC =
PERIOD => cc_matchҸ

event at overflow

SW update SW update SW update SW update SW update

Compare/Capture (CC)

Underflow (UN)
Overflow (OV)

Terminal Count (TC)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 390

Timer, Counter, and PWM (TCPWM)

28.3.5 Pulse Width Modulation with Dead Time Mode

The PWM-DT functionality is the same as PWM functionality, except for the following differences:

■ PWM_DT supports dead time insertion; PWM does not support dead time insertion.

■ PWM_DT does not support clock pre-scaling; PWM supports clock pre-scaling.

Figure 28-38. PWM with Dead Time Functionality

Dead time insertion is a step that operates on a preliminary PWM output signal pwm_dt_input, as illustrated in Figure 28-38.

Figure 28-39 illustrates dead time insertion for different dead times and different output signal polarity settings.

PWM

clk_counter

cc_match
underflow
overflowCOUNTER

PERIOD

==

CC

CC_BUFF

==

tc

PERIOD_BUFF

no clock pre-scaling

Reload
Start

Stop/Kill
Count

Capture/Swap

Trigger
generation

tr_cc_match
tr_underflow
tr_overflow

PWM
generation

pwm_dt_input

Interrupt
generation

interrupt

pwm_dt_input kill period

 pwm

pwm_n
pwm_n polarity

cc_match

underflow
overflow

TCPWM_CNT_TR_CTRL2

PWM
generation

Dead time
insertion

only supported in
PWM_DT mode

pwm polarity

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 391

Timer, Counter, and PWM (TCPWM)

Figure 28-39. Dead-time Timing

Figure 28-40 illustrates how the polarity settings and stop/kill functionality combined control the PWM output signals “pwm”
and “pwm_n”.

Figure 28-40. Dead Time and Kill

pwm_dt_input

pwm

pwm_n

 pwm

 pwm_n

MODE = PWM_DT
dead time = 0
pwm polarity = 0
pwm_n polarity = 0

MODE = PWM_DT
dead time = 1
pwm polarity = 0
pwm_n polarity = 0

1dead time:

pwm

 pwm_n

MODE = PWM_DT
dead time = 2
pwm polarity = 0
pwm_n polarity = 0

2dead time:
pulse is gone

pwm

pwm_n

MODE = PWM_DT
dead time = 2
pwm polarity = 1
pwm_n polarity = 1

2dead time:

pwm_dt_input

pwm

pwm_n

Right aligned PWM
PWM_STOP_ON_KILL = 0, PWM_SYNC_KILL = 0
STOP_EDGE = NO_EDGE_DET
dead time = 1
pwm polarity = 0, pwm_n polarity = 1

tc
cc_match

kill

1dead time:

reload

RUNNING

counter not running counter temporarily killed

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 392

Timer, Counter, and PWM (TCPWM)

28.3.5.1 Configuring Counter for PWM with Dead Time Mode

The steps to configure the counter for PWM with Dead Time mode of operation and the affected register bits are as follows:

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select PWM with Dead Time mode by writing ‘101’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required dead time by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register.

4. Set the required 16/32-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the
TCPWM_CNT_PERIOD_BUFF register to swap values, if required.

5. Set the 16/32-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register to swap values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to
configure left-aligned, right-aligned, or center-aligned PWM.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, kill, swap, and count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (reload, start, kill, swap, and count).

10. pwm and pwm_n can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, OV, and
UN conditions.

11. If required, set the interrupt upon TC or CC condition.

12. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A reload trigger must be provided through firmware
(TCPWM_CMD_RELOAD register) to start the counter if the hardware reload signal is not enabled.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 393

Timer, Counter, and PWM (TCPWM)

28.3.6 Pulse Width Modulation Pseudo-Random Mode (PWM_PR)

The PWM_PR functionality changes the counter value using the linear feedback shift register (LFSR). This results in a
pseudo random number sequence. A signal similar to PWM signal is created by comparing the counter value COUNTER with
CC. The generated signal has different frequency/noise characteristics than a regular PWM signal.

Note: Event detection is on the peripheral clock, clk_peri.

Note: The count event is not used. As a result, the PWM_PR functionality operates on the pre-scaled counter clock
(clk_counter), rather than on an “active count” pre-scaled counter clock.

Table 28-26. PWM_PR Mode Trigger Inputs

Trigger Inputs Usage

reload
Same behavior as start event.

Can be used only when the counter is not running.

start
Starts the counter. The counter is not initialized by hardware. The current counter value is used. Behavior is
dependent on UP_DOWN_MODE.

Can be used only when the counter is not running.

stop/kill Stops the counter. Different stop/kill modes exist.

count Not used.

capture

This event acts as a swap event. When this event is active, the CC/CC_BUFF and PERIOD/PERIOD_BUFF
registers are exchanged on a tc event (when specified by CTRL.AUTO_RELOAD_CC and CTRL.AUTO_RE-
LOAD_PERIOD).

A swap event requires rising, falling, or rising/falling edge event detection mode. Pass-through mode is not
supported, unless the selected event is a constant '0' or '1'.

When a swap event is detected and the counter is running, the event is kept pending until the next tc event.
When a swap event is detected and the counter is not running, the event is cleared by hardware.

Table 28-27. PWM_PR Supported Features

Supported Features Description

Clock pre-scaling Pre-scales the counter clock, clk_counter.

One-shot
Counter is stopped by hardware, after a single period of the counter (counter value equals period value
PERIOD).

Auto reload CC
CC and CC_BUFF are exchanged on a swap event AND tc event (when specified by CTRL.AUTO_RE-
LOAD_CC).

Auto reload PERIOD
PERIOD and PERIOD_BUFF are exchanged on a swap event and tc event (when specified by
CTRL.AUTO_RELOAD_PERIOD).

Kill modes Specified by PWM_STOP_ON_KILL. See memory map for further details.

Table 28-28. PWM_PR Trigger Outputs

Trigger Outputs Description

cc_match (CC) Counter changes from a state in which COUNTER equals CC.

Underflow (UN) Not used.

Overflow (OV) Not used.

Table 28-29. PWM_PR Interrupt Outputs

Interrupt Outputs Description

cc_match (CC) Counter changes from a state in which COUNTER equals CC.

tc Counter changes from a state in which COUNTER equals PERIOD.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 394

Timer, Counter, and PWM (TCPWM)

Figure 28-41. PWM_PR Functionality

The PWM_PR functionality is described as follows:

■ The counter value COUNTER is initialized by software (to a value different from 0).

■ A reload or start event starts PWM_PR operation.

■ During PWM_PR operation:

❐ The counter value COUNTER is changed based on the LFSR polynomial: x16 + x14 + x13 + x11 + 1
(en.wikipedia.org/wiki/Linear_feedback_shift_register).

temp = (COUNTER >> (16-16)) ^ (COUNTER >> (16-14)) ^ (COUNTER >> (16-13)) ^ (COUNTER >> (16-11)) or

temp = (COUNTER >> 0) ^ (COUNTER >> 2) ^ (COUNTER >> 3) ^ (COUNTER >> 5);

(COUNTER = (temp << 15)) | (COUNTER >> 1)

This will result in a pseudo random number sequence for COUNTER. For example, when COUNTER is initialized to
0xACE1, the number sequence is: 0xACE1, 0x5670, 0xAB38, 0x559C, 0x2ACE, 0x1567, 0x8AB3… This sequence will

repeat itself after 216 – 1 or 65535 counter clock cycles.

❐ A 32-bit counter uses the LFSR polynomial: x^32 + x^30 + x^26 + x^25 + 1

❐ When the counter value COUNTER equals CC, a cc_match event is generated.

❐ When the counter value COUNTER equals PERIOD, a tc event is generated.

❐ On a tc event, the CC/CC_BUFF and PERIOD/PERIOD_BUFF can be conditionally exchanged under control of the
capture/swap event and the CTRL.AUTO_RELOAD_CC and CTRL.AUTO_RELOAD_PERIOD field (see PWM func-
tionality).

❐ The output pwm_dt_input reflects: COUNTER[14:0] < CC[15:0]. Note that only the lower 15 bits of COUNTER are
used for comparison, while the COUNTER itself can run up to 16- or 32-bit values. As a result, for CC greater or equal
to 0x8000, pwm_dt_input is always 1. The pwm polarity can be inverted (as specified by CTRL.QUADRATURE_-
MODE[0]).

As mentioned, different stop/kill modes exist. The mode is specified by PWM_STOP_ON_KILL (PWM_SYNC_KILL should be
‘0’ – asynchronous kill mode). The memory map describes the modes and the desired settings for the stop/kill event. The
following two modes are supported:

■ PWM_STOP_ON_KILL is ‘1’. This mode stops the counter on a stop/kill event.

■ PWM_STOP_ON_KILL is ‘0’. This mode keeps the counter running, but suppresses the PWM output signals immediately
and continues to do so for the duration of the stop/kill event.

Table 28-30. PWM_PR PWM Outputs

PWM Outputs Description

pwm PWM output.

pwm_n Complementary PWM output.

PWM_PR

Reload
Start

Stop/Kill
Capture/Swap

clk_counter

cc_match

COUNTER

PERIOD

==

CC

CC_BUFF

<

tc

PERIOD_BUFF

pwm_dt_input kill period

pwm
pwm polarity

pwm_n
pwm_n polarity

Trigger
generation

tr_cc_match

Interrupt
generation

interrupt

http://en.wikipedia.org/wiki/Linear_feedback_shift_register

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 395

Timer, Counter, and PWM (TCPWM)

Note that the LFSR produces a deterministic number sequence (given a specific counter initialization value). Therefore, it is
possible to calculate the COUNTER value after a certain number of LFSR iterations, n. This calculated COUNTER value can
be used as PERIOD value, and the tc event will be generated after precisely n counter clocks.

Figure 28-42 illustrates PWM_PR functionality.

Notes:

■ The grey shaded areas represent the counter region in which the pwm_dt_input value is ‘1’, for a CC value of 0x4000.
There are two areas, because only the lower 15 bits of the counter value are used.

■ When CC is set to 0x4000, roughly one-half of the counter clocks will result in a pwm_dt_input value of ‘1’.

Figure 28-42. PWM_PR Output

28.3.6.1 Configuring Counter for Pseudo-Random PWM Mode

The steps to configure the counter for pseudo-random PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing ‘1’ to the TCPWM_CTRL_CLR register.

2. Select pseudo-random PWM mode by writing ‘110’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required period (16 bit) in the TCPWM_CNT_PERIOD register and buffer period value in the TCPWM_CNT_PE-
RIOD_BUFF register to swap values, if required.

4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the TCPWM_CNT_C-
C_BUFF register to swap values.

5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

6. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (reload, start, kill, and swap).

7. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (reload, start, kill, and swap).

8. pwm and pwm_n can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, OV, and
UN conditions.

9. If required, set the interrupt upon TC or CC condition.

10. Enable the counter by writing ‘1’ to the TCPWM_CTRL_SET register. A reload trigger must be provided through firmware
(TCPWM_CMD_RELOAD register) to start the counter if the hardware reload signal is not enabled.

cc_match
tc

C
O

U
N

T
E

R

PERIOD = 0xe771

CC = 0x4000

MODE = PWM_PR

0

COUNTER is exactly
0xe771

reload
0xFFFF

pwm_dt_input

Only the lower 15 bits of the
counter value are used.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 396

Timer, Counter, and PWM (TCPWM)

28.4 TCPWM Registers

Table 28-31. List of TCPWM Registers

Register Comment Features

TCPWM_CTRL TCPWM control register Enables the counter block

TCPWM_CTRL_CLR TCPWM control clear register
Used to avoid race-conditions on read-modify-write
attempt to the CTRL register

TCPWM_CTRL_SET TCPWM control set register
Used to avoid race-conditions on read-modify-write
attempt to the CTRL register

TCPWM_CMD_CAPTURE TCPWM capture command register Generate a capture trigger input from software

TCPWM_CMD_RELOAD TCPWM reload command register Generate a reload trigger input from software

TCPWM_CMD_STOP TCPWM stop command register Generate a stop trigger input from software

TCPWM_CMD_START TCPWM start command register Generate a start trigger input from software

TCPWM_INTR_CAUSE TCPWM counter interrupt cause register Determines the source of the combined interrupt signal

TCPWM_CNT_CTRL Counter control register
Configures counter mode, encoding modes, one-shot
mode, swap mode, kill mode, dead time, clock pre-scal-
ing, and counting direction

TCPWM_CNT_STATUS Counter status register
Reads the direction of counting, dead time duration, and
clock pre-scaling; checks whether the counter is running

TCPWM_CNT_COUNTER Count register Contains the 16- or 32-bit counter value

TCPWM_CNT_CC Counter compare/capture register
Captures the counter value or compares the value with
counter value

TCPWM_CNT_CC_BUFF Counter buffered compare/capture register
Buffer register for counter CC register; swaps period
value

TCPWM_CNT_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNT_PERIOD_BUFF Counter buffered period register
Buffer register for counter period register; swaps compare
value

TCPWM_CNT_TR_CTRL0 Counter trigger control register 0 Selects trigger for specific counter events

TCPWM_CNT_TR_CTRL1 Counter trigger control register 1
Determine edge detection for specific counter input sig-
nals

TCPWM_CNT_TR_CTRL2 Counter trigger control register 2
Controls counter output lines upon CC, OV, and UN con-
ditions

TCPWM_CNT_INTR Interrupt request register Sets the register bit when TC or CC condition is detected

TCPWM_CNT_INTR_SET Interrupt set request register Sets the corresponding bits in interrupt request register

TCPWM_CNT_INTR_MASK Interrupt mask register Mask for interrupt request register

TCPWM_CNT_INTR_MASKED Interrupt masked request register Bitwise AND of interrupt request and mask registers

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 397

29. Inter-IC Sound Bus

The Inter-IC Sound Bus (I2S) is a serial bus interface standard used to connect digital audio devices together. The
specification is from Philips Semiconductor (I2S bus specification: February 1986, revised June 5, 1996). In addition to the
standard I2S format, the I2S block also supports the Left Justified (LJ) format and the Time Division Multiplexed (TDM) format.

29.1 Features

■ Supports standard Philips I2S, LJ, and eight-channel TDM digital audio interface formats

■ Supports both master and slave mode operation in all the digital audio formats

■ Supports independent operation of Receive (Rx) and Transmit (Tx) directions

■ Supports operating from an external master clock provided through an external IC such as audio codec

■ Provides configurable clock divider registers to generate the required sample rates

■ Supports data word length of 8-bit, 16-bit, 18-bit, 20-bit, 24-bit, and 32-bit per channel

■ Supports channel length of 8-bit, 16-bit, 18-bit, 20-bit, 24-bit, and 32-bit per channel (channel length fixed at 32-bit in TDM
format)

■ Provides two hardware FIFO buffers, one each for the Tx block and Rx block, respectively

■ Supports both DMA- and CPU-based data transfers

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 398

Inter-IC Sound Bus

29.2 Architecture

Figure 29-1. I2S Block Diagram

Figure 29-1 shows the high-level block diagram of the I2S block, which consists of two sub-blocks – I2S Transmitter (Tx) and
I2S Receiver (Rx). The digital audio interface format and master/slave mode configuration can be done independently for the
Tx and Rx blocks. In the master mode, the word select (ws) and serial data clock (sck) are generated by the I2S block in the
PSoC 6 MCU. In the slave mode, the ws and sck signals are inputs signals to the PSoC 6 MCU, and are generated by the
external master device. The I2S block configuration, control, and status registers, along with the FIFO data buffers are
accessible through the AHB bus. AHB bus masters such as CPU and DMA can access the I2S registers through the AHB
interface. Refer to the device datasheet for information on port pin assignments of the I2S block signals and AC/DC electrical
specifications.

29.3 Digital Audio Interface Formats

The I2S block supports the following digital audio interface formats.

■ Standard I2S format

■ Left Justified format

■ Time Division Multiplexed (TDM) format

The Tx and Rx sub-blocks can be independently configured to support one of the above formats in either master or slave
mode. The I2S_MODE bits in the I2S_TX_CTL and I2S_RX_CTL registers are used to configure the digital audio interface
format for the Tx and Rx blocks respectively. The MS (Master/Slave) bit in the I2S_TX_CTL and I2S_RX_CTL registers is
used to configure the blocks in master or slave mode.

29.3.1 Standard I2S Format

Figure 29-2 shows the timing diagrams for the different word length and channel length combinations in the standard I2S
digital audio format. In the standard I2S format, the word select signal (ws) is low for left channel data, and high for right
channel data. The ws signal transitions one bit-clock (sck) early relative to the start of the left/right channel data. All the serial
data (sd), ws signal transitions on the falling edge of the sck signal, and the read operations on the ws and sd lines are usually
done on the rising edge of sck. Therefore, the I2S Tx block writes to the serial data (tx_sdo) line on the falling edge of tx_sck,

PSoC 6 MCU

Audio subsystem

I2S

I2S
TX

tx_sck

tx_ws

tx_sdo

AHB bus

CPU Data Wire/
DMA SRAM

I2S
RX

rx_sck

rx_ws

rx_sdi

External IC
(for example, Audio

Codec, I2S Microphones)

clk_i2s_if

www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 399

Inter-IC Sound Bus

and the I2S Rx block reads the data (rx_sdi) on the rising edge of rx_sck. The serial data is transmitted most significant bit
(MSb) first. Depending on whether the block is in master or slave mode, the ws/sck signals are either generated by the block
(master mode) or input signals to the block (slave mode).

The I2S block supports configurable word length and channel length selection options. The word length for the Tx and Rx
blocks can be configured using the WORD_LEN bits in the I2S_TX_CTL and I2S_RX_CTL registers, respectively. The
channel length for the Tx and Rx blocks can be configured using the CH_LEN bits in the I2S_TX_CTL and I2S_RX_CTL
registers respectively. The channel length configuration should always be greater than or equal to the word length
configuration. Ensure that when the I2S Rx block is operated in slave mode, the master Tx device ensures that its channel
length configuration aligns with the I2S Rx block channel length setting. If there is channel length mismatch, the PSoC I2S Rx
block in slave mode will not operate correctly.

In the Tx block, when the channel length is greater than the word length, the unused bits can be transmitted either as ‘0’ or ‘1’.
This selection is made using the OVHDATA bit in the I2S_TX_CTL register. In the Rx block, when the word length is less than
32 bits, the unused most significant bits written to the 32-bit Rx FIFO register can either be set to ‘0’ or sign bit extended. This
selection is made using the BIT_EXTENSION bit in the I2S_RX_CTL register.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 400

Inter-IC Sound Bus

Figure 29-2. Standard I2S Format (Word Length and Channel Length Combination Timing Diagrams)

Table 29-1 lists the supported word length and channel length combinations.

7

Word Length = 8-bit mode

6 1 0SD
MSb LSb

15

Word Length = 16-bit mode

14 9 8SD
MSb

1 0
LSb

SD 23

Word Length = 24-bit mode

22

19

Word Length = 20-bit mode

18

17

Word Length = 18-bit mode

16 3 2 1 0

3 2 1 05 4

7 6 59 8 1 04

SD

SD

MSb

MSb

MSb

LSb

LSb

LSb

SD 31

Word Length = 32-bit mode

30 15 14 1317 16 9 812
MSb LSb

01

11 10

13 12

15 14

23 22

7 6 1 0
MSb LSb

15 14 9 8
MSb

1 0
LSb

23 22

19 18

17 16 3 2 1 0

3 2 1 05 4

7 6 59 8 1 04
MSb

MSb

MSb

LSb

LSb

LSb

31 30 15 14 1317 16 9 812
MSb LSb

01

11 10

13 12

15 14

23 220

SCK

WS

Left Channel
(Channel Length = 32-bit)

Right Channel
(Channel Length = 32-bit)

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

7

Word Length = 8-bit mode

6 1 0SD
MSb LSb

15

Word Length = 16-bit mode

14 9 8SD
MSb

1 0
LSb

SD 23

Word Length = 24-bit mode

22

19

Word Length = 20-bit mode

18

17

Word Length = 18-bit mode

16 3 2 1 0

3 2 1 05 4

7 6 59 8 1 04

SD

SD

MSb

MSb

MSb

LSb

LSb

LSb
11 10

13 12

15 14

7 6 1 0
MSb LSb

15 14 9 8
MSb

1 0
LSb

23 22

19 18

17 16 3 2 1 0

3 2 1 05 4

7 6 59 8 1 04
MSb

MSb

MSb

LSb

LSb

LSb
11 10

13 12

15 14

SCK

WS

Left Channel
(Channel Length = 24-bit)

Right Channel
(Channel Length = 24-bit)

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

11 10 9 8 7 6 3 2 1 05 4
LSb

7

Word Length = 8-bit mode

6 1 0SD
MSb LSb

15

Word Length = 16-bit mode

14 9 8SD
MSb

19

Word Length = 20-bit mode

18

17

Word Length = 18-bit mode

16

SD

SD

MSb

MSb
11 10

13 12

7 6 1
MSb

15 14 9
MSb

19 18

17 16

MSb

MSb
11

13

SCK

WS

Left Channel
(Channel Length = 20-bit)

Right Channel
(Channel Length = 20-bit)

~

~

~

~

~

~

9 8 7 6 3 2 1 05 4
LSb

7 6 3 2 1 05 4
LSb

11 10 9 8 7 6 3 2 1 05 4
LSb

0
LSb

8

10

12

9 8 7 6 3 2 1 05 4
LSb

7 6 3 2 1 05 4
LSb

~

~

~

~

~

~

(1) Channel Length = 32-bits

(2) Channel Length = 24-bits

(3) Channel Length = 20-bits

(4) Channel Length = 8-bits

7

Word Length = 8-bit mode

6SD
MSb

3 2 1 05 4
LSb

0

0 7 6
MSb

3 2 1 05 4
LSb

7

SCK

WS

Left Channel
(Channel Length = 8-bit)

Right Channel
(Channel Length = 8-bit)

01

1

1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 401

Inter-IC Sound Bus

29.3.2 Left Justified (LJ) Format

Figure 29-3 shows the timing diagrams for the Left Justified interface format using the 32-bit channel length and 32-bit word
length configuration as an example. The only differences between the standard I2S and LJ formats are:

■ In the standard I2S format, WS signal is low for left channel data and high for right channel data. In the LJ format, WS
signal is high for left channel data and low for right channel data.

■ In the standard I2S format, WS signal transitions one bit-clock (sck) early relative to the start of the channel data
(coincides with LSb of the previous channel). In the LJ format, there is no early transition, and the WS signal transitions
coincide with the start of the channel data.

Apart from these differences, all the features explained in the standard I2S format section apply to the LJ format as well.

Figure 29-3. Left Justified Digital Audio Format

29.3.3 Time Division Multiplexed (TDM) Format

Figure 29-4 shows the timing diagrams for the two types of Time Division Multiplexed (TDM) formats supported by the I2S
block. The differences between the standard I2S/LJ formats and the TDM format are as follows:

■ Standard I2S/LJ formats support only two channels (left/right) per frame, while TDM format supports up to eight channels
per frame.

■ In the TDM format, channel length for all eight channels is fixed at 32 bits. In the standard I2S/LJ formats, the channel
length is configurable. The word length per channel is configurable similar to the standard I2S and the data is also
transmitted most significant bit first. Similar to I2S, when the word length per channel is less than the 32-bit channel length
for Tx block, the OVHDATA bit in the I2S_TX_CTL register is used to fill the unused least significant channel data bits with
either all zeros or all ones

■ In the TDM format, all eight channels of data are always present in a frame, and thus the frame width is fixed at 256 bits.
You have the option to configure the number of active channels in a frame by configuring the CH_NR bits in the
I2S_TX_CTL and I2S_RX_CTL registers. In the standard I2S/LJ format, the CH_NR should always be configured for two
channels. The number of active channels in the TDM format can be less than or equal to eight channels. The unused
(inactive) channels always follow the active channels in a frame. As an example, if CH_NR is set for four channels, CH0 to
CH3 are the active channels and CH4 to CH7 are the unused channels. The OVHDATA bit in the I2S_TX_CTL register is
used to fill the unused channels with either all zeros or all ones.

Table 29-1. Word Length and Channel Length Combinations

Word Length

8-bit 16-bit 18-bit 20-bit 24-bit 32-bit

Channel Length

32-bit Valid Valid Valid Valid Valid Valid

24-bit Valid Valid Valid Valid Valid Invalid

30-bit Valid Valid Valid Valid Invalid Invalid

18-bit Valid Valid Valid Invalid Invalid Invalid

16-bit Valid Valid Invalid Invalid Invalid Invalid

8-bit Valid Invalid Invalid Invalid Invalid Invalid

31

Word Length = 32-bit mode

30 15 14 1317 16 9 812
MSb LSb

31 30 15 14 1317 16 9 812
MSb LSb

31
MSb

01 01

Left Channel Right Channel

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 402

Inter-IC Sound Bus

■ The pulse width of the word select (WS) signal in the TDM format can be configured to be either one bit clock (sck) wide
or one channel wide. The selection is made using the WS_PULSE bit in the I2S_TX_CTL and I2S_RX_CTL registers. The
pulse width is fixed to one channel width in the I2S/LJ format.

■ Two types of TDM formats are supported. In TDM mode A, the WS rising edge signal to signify the start of frame coincides
with the start of CH0 data. In TDM mode B, the WS rising edge signal to signify the start of frame is one bit clock (sck)
early, relative to the start of CH0 data (coincides with the last bit of the previous frame). The selection between the two
TDM formats is made using the I2S_MODE bits in the I2S_TX_CTL and I2S_RX_CTL registers.

Figure 29-4. TDM Digital Audio Interface Format

29.4 Clocking Polarity and Delay Options

The I2S block supports configurable clock polarity and delay options to alleviate any timing issues in the system involving
PCB signal propagation delays, and delays associated with internal device signal routing.

When the I2S Tx block operates in the slave mode, the tx_sck and tx_ws signals are input signals to the PSoC 6 MCU, and
the tx_sdo output signal is transmitted off the tx_sck falling edge. The tx_sdo signal is sampled by the external master device
Rx block on the subsequent tx_sck rising edge. Timing issues arise if the tx_sdo signal reaching the master side Rx block
does not meet the setup and hold time requirements for input data on the master side. The I2S Tx block in the PSoC 6 MCU
has an option to advance the serial data transmission by 0.5 SCK cycles when the B_CLOCK_INV bit in the I2S_TX_CTL
register is set. This feature can be used if there are timing issues while operating the I2S Tx block in slave mode.

Similarly, when the I2S Rx block operates in the master mode, the rx_sck and rx_ws signals are output signals from the
PSoC 6 MCU, and the rx_sdi signal is transmitted by the external master device on the falling edge of rx_sck. The PSoC I2S
Rx block samples the rx_sdi signal on the subsequent rx_sck rising edge. Timing issues arise if the rx_sdi signal reaching the
PSoC block does not meet the setup and hold time requirements for input data. The I2S Rx block has an option to delay the
serial data capture by 0.5 SCK cycles when the B_CLOCK_INV bit in the I2S_RX_CTL register is set. This feature can be
used if there are timing issues while operating the I2S Rx block in master mode.

In addition to these clock delay options, there is also an option to invert the outgoing bit clock (sck) in master mode by setting
the SCKO_POL bit in the I2S_TX_CTL and I2S_RX_CTL registers. Similarly, in the slave mode, there is an option to invert
the incoming bit clock (sck) by setting the SCKI_POL bit in the I2S_TX_CTL and I2S_RX_CTL registers.

Refer to the registers TRM for detailed description of the B_CLOCK_INV, SCKI_POL, and SCKO_POL register
configurations.

SCK

WS

SD CH1 CH6 CH0CH7CH7 CH0

Channel
(Channel Length = 32-bits)

Frame
(Frame Length = 256-bits)

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Pulse width is 1 SCK period or 1 channel length

TDM mode A format

CH0

SCK

WS

SD CH1 CH6 CH7CH7 CH0

Channel
(Channel Length = 32-bits)

Frame
(Frame Length = 256-bits)

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Pulse width is 1 SCK period or 1 channel length

TDM mode format B

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 403

Inter-IC Sound Bus

29.5 Interfacing with Audio Codecs

The I2S block in the PSoC 6 MCU interfaces with an audio codec device based on the choice of codec device and the end
application requirements. Some scenarios and the connection diagrams are as follows:

■ Codecs with separate ws and sck signals for the Rx and Tx directions: To interface with these codecs, the connections
between the PSoC I2S block and the codec device will be as shown in Figure 29-1 where the PSoC I2S Tx signals
(tx_sck, tx_ws, tx_sdo) connect to the codec Rx signals, and the PSoC I2S Rx signals (rx_sck, rx_ws, rx_sdi) connect to
the codec Tx signals. The direction of sck (tx_sck, rx_sck) and ws (tx_ws, rx_ws) signals depends on which device is the
master and which device is the slave.

■ Codecs with common ws and sck signals for both Rx and Tx directions: There are two possible configurations to interface
these codecs with the PSoC 6 MCU as shown in Figure 29-5. In both configurations, the sck signals (tx_sck, rx_sck,
codec_sck) are shorted externally. The same goes for the ws signal connections as well (tx_ws, rx_ws, codec_ws).
Ensure that only one block is driving the sck and ws lines. So when the codec acts as the slave device, the PSoC I2S Rx
block should be in the master mode, and the PSoC I2S Tx block should be in the slave mode (or PSoC I2S Rx as slave
and PSoC I2S Tx as master). When the codec acts as the master device, both the PSoC I2S Rx and PSoC I2S Tx blocks
should be in slave mode.

Figure 29-5. Interfacing with Codecs having Common ws and sck Signals

29.6 Clocking Features

The I2S unit has three clock inputs.

Figure 29-6 shows the clocking divider structure in the I2S block. In the master mode, the sck and ws signals are generated
either using the clk_audio_i2s internal clock or the clk_i2s_if external clock. Refer to the device datasheet for the port pin
assignment of clk_i2s_if clock. The CLOCK_SEL bit in the I2S_CLOCK_CTL register controls the selection between internal
and external clocks.

Table 29-2. Clock Inputs

Signal DESCRIPTION

clk_sys_i2s
System clock. This clock is used for the AHB slave Interface, control, status, and interrupt registers, and also
clocks the DMA trigger control logic.

clk_audio_i2s
I2S internal clock. This clock is used for I2S transmitter (Tx)/receiver (Rx) blocks; it is asynchronous with the
clk_sys_i2s. This clock is connected to the CLK_HF[1] high-frequency clock in the device. Refer to the
Clocking System chapter on page 221 for more details on high frequency clocks.

clk_i2s_if
I2S external clock. This clock is provided from an external I2S bus host through a port pin. It is used in place
of the clk_audio_i2s clock to synchronize I2S data to the clock used by the external I2S bus host.

PSoC

I2S
Transmitter

(Slave)

tx_sck

tx_ws

tx_sdo

I2S
Receiver
(Master)

rx_sck

rx_ws

rx_sdi

I2S

Codec
(Tx Slave,
Rx Slave) codec_sck

codec_rx_sdi

codec_ws

codec_tx_sdo

PSoC

I2S
Transmitter

(Slave)

tx_sck

tx_ws

tx_sdo

I2S
Receiver
(Slave)

rx_sck

rx_ws

rx_sdi

I2S

Codec
(Tx Master,
Rx Master) codec_sck

codec_rx_sdi

codec_ws

codec_tx_sdo

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 404

Inter-IC Sound Bus

Figure 29-6. Clocking Divider Structure

There are two stages of clock dividers in the I2S block as follows.

■ The first stage clock divider is used to generate the internal I2S master clock (MCLK_SOC). The input clock to the first
stage divider is either clk_audio_i2s or clk_i2s_if. The first stage clock divider is configured using the CLOCK_DIV bits in
I2S_CLOCK_CTL register. Divider values from 1 to 64 are supported.

■ The second stage clock divider is used to generate the sck signals. The input clock is the output from the first stage clock
divider. This divider value is fixed at ‘8’ (FTX_SCK = FRX_SCK = FMCLK_SOC/8). The word select (ws) signal frequency
depends on the sck frequency, and the configured channel length value.

When in slave mode, the internal clock (MCLK_SOC) frequency should still be eight times the frequency of the input serial
clock. You must choose the appropriate clock source and the CLOCK_DIV divider value to guarantee this condition is met in
the slave mode of operation. Usually, when the PSoC I2S block operates in the slave mode, the host sends a master clock
which is an integral multiple of the sampling rate. This master clock can be routed to the clk_i2s_if port pin. The CLOCK_DIV
divider value can then be adjusted to ensure that the MCLK_SOC is eight times the input SCK frequency.

Table 29-3 gives an example of the clock divider settings for operating the I2S block at the standard sampling rates in the
standard I2S format. Note that the first stage divider values in the table are the register field values – the actual divider values
are one more than the configured register values as explained in the clock divider section. Refer to the device datasheet for
details on maximum values of SCK frequency, and the output sampling rates.

Table 29-3. I2S Divider Values for Standard Audio Sampling Rates in Standard I2S Format

Sampling Rate
(SR) (kHz)

WORD_LEN
(bits)

SCK
(2*WORD_LEN*SR)

(MHz)

CLK_HF1
(or clk_i2s_if)

(MHz)

(CLK_HF[1])/SCK
(Total Divider

Ratio)

CLK_CLOCK_DIV
(First Divider)

 Second Stage
Divider

(Fixed at 8)

8 32 0.512

49.152

96 11

8

16 32 1.024 48 5

32 32 2.048 24 2

48 32 3.072 16 1

44.1 32 2.8224 45.1584 32 3

CLOCK_DIV
(1st stage divider)

Divider range: 1 to 64

2nd stage divider

(Divider value fixed at 8)

MCLK_SOC

SCK signal to Tx,
Rx blocks

(MCLK_SOC / 8)

clk_audio_i2s
(CLK_HF[1])

clk_i2s_if

CLOCK_SEL bit in
I2S_CLOCK_CTL register

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 405

Inter-IC Sound Bus

29.7 FIFO Buffer and DMA
Support

The I2S block has two FIFO buffers - one each for the Tx
block and Rx block, respectively. The ordering format of the
channel data in both Tx and Rx FIFOs depends on the
configured digital audio format. This ordering format should
be considered when writing to the Tx FIFO or reading from
the Rx FIFO. In the standard I2S and LJ digital audio
formats, the ordering of the data is (L, R, L, R, L, ...) where L
refers to the left channel data and R refers to the right
channel data. In the TDM format with the number of active
channels set to four, the data order will be (CH0, CH1, CH2,
CH3, CH0, CH1, CH2, CH3, CH0,). If the number of
active channels is set to eight, the cycle will repeat after
CH0–CH7 data.

I2S Tx FIFO: The I2S Tx block has a hardware FIFO of
depth 256 elements where each element is 32-bit wide. In
addition to this 256-element FIFO, the I2S block has an
internal transmit buffer that can store four 32-bit data to be
transmitted. This four-element buffer is used as an
intermediary to hold data to be transferred on the I2S bus,
and is not exposed to the AHB BUS interface.

The TX FIFO can be paused by setting the TX_PAUSE bit in
I2S_CMD. When the TX_PAUSE bit is set, the data sent
over I2S is “0”, instead of TX FIFO data. To resume normal
operation, the TX_PAUSE bit must be cleared.

The I2S_TX_FIFO_CTL register is used for FIFO control
operations. The TRIGGER_LEVEL bits in the
I2S_TX_FIFO_CTL register can be used to generate a
transmit trigger event when the Tx FIFO has less entries
than the value configured in the TRIGGER_LEVEL bits.

The FIFO freeze operation can be enabled by setting the
FREEZE bit in the I2S_TX_FIFO_CTL register. When the
FREEZE bit is set and the Tx block is operational
(TX_START bit in I2S_CMD is set), hardware reads from the
Tx FIFO do not remove the FIFO entries. Also, the Tx FIFO
read pointer will not be advanced. Any writes to the
I2S_TX_FIFO register will increment the Tx FIFO write
pointer; when the Tx FIFO becomes full, the internal write
pointer stops incrementing. The freeze operation may be
used for firmware debug purposes. This operation is not
intended for normal operation. To return to normal operation
after using the freeze operation, the I2S must be reset by
clearing the TX_ENABLED bit in the I2S_CTL register, and
then setting the bit again.

The CLEAR bit in the I2S_TX_FIFO_CTL register is used to
clear the Tx FIFO by resetting the read/write pointers
associated with the FIFO. Write accesses to the Tx FIFO
using the I2S_TX_FIFO_WR or I2S_TX_FIFO_WR_SILENT
registers are not allowed while the CLEAR bit is set.

The I2S_TX_FIFO_STATUS register provides FIFO status
information. This includes number of used entries in the Tx
FIFO and the current values of the Tx FIFO read/write

pointers. This register can be used for debug purposes. The
I2S Tx FIFO read pointer is updated whenever the data is
transferred from the Tx FIFO to the internal transmit buffer.
Tx FIFO write pointer is updated whenever the data is
written to the I2S_TX_FIFO_WR register, either through the
CPU or the DMA controller.

For Tx FIFO data writes using the CPU, the hardware can
be used to trigger an interrupt event for any of the FIFO
conditions such as TX_TRIGGER, TX_NOT_FULL, and
TX_EMPTY. As part of the interrupt handler, the CPU can
write to the I2S_TX_FIFO_WR register. The recommended
method is to write (256 - TRIGGER_LEVEL) words to the
I2S_TX_FIFO_WR register every time the TX_TRIGGER
interrupt event is triggered. In addition, interrupt events can
be generated for FIFO overflow/underflow conditions.

For DMA-based Tx data transfers, the I2S Tx DMA trigger
signal (tr_i2s_tx_req) can be enabled by writing ‘1’ to the
TX_REQ_EN bit in I2S_TR_CTL register. The trigger signal
output will become high whenever the Tx FIFO has less
entries than that configured in the TRIGGER_LEVEL field.
The DMA channel can be configured to transfer up to (256 -
TRIGGER_LEVEL) words from the applicable source
address (such as Flash and SRAM regions). The destination
address of the DMA should always be the
I2S_TX_FIFO_WR register address, with the destination
address increment feature disabled in the DMA channel
configuration. This FIFO address increment logic is handled
internally to adjust the write pointer, and the DMA should not
increment the destination address. For more details on DMA
channel configuration, refer to the DMA Controller chapter
on page 85.

The data in the I2S_TX_FIFO is always right-aligned. The
I2S_TX_FIFO_WR format for different word length
configurations is provided in Figure 29-7.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 406

Inter-IC Sound Bus

Figure 29-7. I2S_TX_FIFO_WR Register Format for Different Word Lengths

I2S Rx FIFO: The I2S Rx block has a hardware FIFO of
depth 256 elements where each element is 32-bit wide. In
addition to this 256-element FIFO, the I2S block has an
internal receive buffer that can store four 32-bit data to be
received. This four-element buffer is used as an
intermediary to hold data received on the I2S bus, and is not
exposed to the AHB BUS interface.

The I2S_RX_FIFO_CTL register is used for FIFO control
operations. The TRIGGER_LEVEL bits in the
I2S_RX_FIFO_CTL register is used to generate a receive
trigger event when the Rx FIFO has more entries than the
value configured in the TRIGGER_LEVEL bits. In the
standard I2S/LJ format, the TRIGGER_LEVEL bits can be
configured up to the allowed maximum value of 253. In the
TDM format, the maximum value of TRIGGER_LEVEL is
[254–CH_NR) where CH_NR is the number of active
channels in the TDM frame.

The FIFO freeze operation can be enabled by setting the
FREEZE bit in the I2S_RX_FIFO_CTL register. When the
FREEZE bit is set and the Rx block is operational
(RX_START bit in the I2S_CMD register is set), hardware
will not write to the Rx FIFO. Also, the Rx FIFO write pointer
will not be advanced. Any reads from the I2S_RX_FIFO
register will increment the Rx FIFO read pointer; when the
Rx FIFO becomes empty, the internal read pointer stops
incrementing. The freeze operation may be used for
firmware debug purposes. This operation is not intended for
normal operation. To return to normal operation after using
the freeze operation, the I2S must be reset by clearing the
RX_ENABLED bit in the I2S_CTL register and then setting
the bit again.

The CLEAR bit in I2S_RX_FIFO_CTL register is used to
clear the Rx FIFO by resetting the read/write pointers
associated with the FIFO. Read accesses from the Rx FIFO
using the I2S_RX_FIFO_RD or I2S_RX_FIFO_RD_SILENT
registers are not allowed while the CLEAR bit is set.

The I2S_RX_FIFO_STATUS register provides FIFO status
information. This includes number of used entries in the Rx
FIFO and the current values of the Rx FIFO read/write
pointers. This register can be used for debug purposes. The
I2S Rx FIFO write pointer is updated whenever the data is
transferred to the Rx FIFO from the internal receive buffer.
Rx FIFO read pointer is updated whenever the data is read

from the I2S_RX_FIFO_RD register, either through the CPU
or the DMA controller. For debug purposes, the
I2S_RX_FIFO_RD_SILENT register is available, which
always returns the top element of the Rx FIFO without
updating the read pointer.

For Rx FIFO data reads using the CPU, the hardware can
be used to trigger an interrupt event for any of the FIFO
conditions such as RX_TRIGGER, RX_NOT_EMPTY, and
RX_FULL. As part of the interrupt handler, the CPU can
read from the I2S_RX_FIFO_RD register. The
recommended method is to read (TRIGGER_LEVEL + 1)
words from the I2S_RX_FIFO_RD register every time the
RX_TRIGGER interrupt event is triggered. In addition,
interrupt events can be generated for FIFO overflow/
underflow conditions.

For DMA-based Rx data transfers, the I2S Rx DMA trigger
signal (tr_i2s_rx_req) can be enabled by writing ‘1’ to the
RX_REQ_EN bit in the I2S_TR_CTL register. The trigger
signal output will become high whenever the Rx FIFO has
more entries than that configured in the TRIGGER_LEVEL
field. The DMA channel can be configured to transfer up to
(TRIGGER_LEVEL + 1) words to the applicable destination
address (such as SRAM regions). The source address of
the DMA should always be the I2S_RX_FIFO_RD register
address, with the source address increment feature
disabled in the DMA channel configuration. This FIFO
address increment logic is handled internally to adjust the
read pointer, and the DMA should not increment the source
address. For more details on DMA channel configuration,
refer to the DMA Controller chapter on page 85.

The data in the I2S_RX_FIFO is always right aligned. The
I2S_RX_FIFO_RD format for different word length
configurations is provided in Figure 29-8. Note that the
unused most significant bits are either set as ‘0’ or sign-bit
extended depending on the BIT_EXTENSION bit in the
I2S_RX_CTL register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

write data format of I2S_TX_FIFO

Word Length = 24-bit mode

Word Length = 20-bit mode

Word Length = 18-bit mode

Word Length = 16-bit mode

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSb LSb

LSb

LSb

LSb

MSb

MSb

MSb

fixed "0"

fixed "0"

fixed "0"

fixed "0"

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 407

Inter-IC Sound Bus

Figure 29-8. I2S_RX_FIFO_RD Register Format for Different Word Lengths

29.8 Interrupt Support

The I2S block has one interrupt output signal that goes to the interrupt controller in the CPU. Refer to the Interrupts chapter on
page 55 for details on the vector number of the I2S interrupt and the procedure to configure the interrupt priority, vector
address, and enabling/disabling. The I2S interrupt can be triggered under any of the following events - TX_TRIGGER,
TX_NOT_FULL, TX_EMPTY, TX_OVERFLOW, TX_UNDERFLOW, TX_WD, RX_TRIGGER, RX_NOT_EMPTY, RX_FULL,
RX_OVERFLOW, RX_UNDERFLOW, or RX_WD. Each of the interrupt events can be individually enabled/disabled to
generate an interrupt condition. The I2S_INTR_MASK register is used to enable the required events by writing ‘1’ to the
corresponding bit. Irrespective of the INTR_MASK settings, if any of the events occur, the corresponding event status bit will
be set by the hardware in the I2S_INTR register. The I2S_INTR_MASKED register is the bitwise AND of the
I2S_INTR_MASK and I2S_INTR registers. The final I2S interrupt signal is the logical OR of all the bits in the
I2S_INTR_MASKED register. So only those events that are enabled in the I2S_INTR_MASK register are propagated as
interrupt events to the interrupt controller. Interrupts can also be triggered in software by writing to the corresponding bits in
I2S_INTR_SET register. Figure 29-9 illustrates the interrupt signal generation.

Figure 29-9. Interrupt Signal Generation

In the interrupt service routine (ISR), the I2S_INTR_MASKED register should be read to know the events that triggered the
interrupt event. Multiple events can trigger the interrupt because the final interrupt signal is the logical OR output of the
events. The ISR should do the tasks corresponding to each interrupt event that was triggered. At the end of the ISR, the value
read in the I2S_INTR_MASKED register earlier should be written to the I2S_INTR register to clear the bits whose interrupt
events were processed in the ISR. Unless the bits are not cleared by writing ‘1’ to the I2S_INTR register, the interrupt signal
will always be high. A dummy read of the I2S_INTR register should be done for the earlier register write to take effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

read data format of I2S_RX_FIFO

Word Length = 24-bit mode

Word Length = 20-bit mode

Word Length = 18-bit mode

Word Length = 16-bit mode

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSb LSb

LSb

LSb

LSb

MSb

MSb

MSb

fixed "0"

fixed "0"

fixed "0"

fixed "0"

not Bit extension

"1" 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0"1""1""1""1""1""1""1""1"Bit extension

"0" 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0"0""0""0""0""0""0""0""0"

not Bit extension

"1"Bit extension 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"1""1""1""1""1""1""1""1""1"

"0""0""0""0""0""0""0""0""0"

"1""1""1"

"0""0""0""0"

not Bit extension

Bit extension 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"1" "1""1""1""1""1""1""1""1""1"

"0""0""0""0""0""0""0""0""0"

"1""1""1"

"0""0""0""0"

"1" "1"

"0""0"

not Bit extension

Bit extension 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"1" "1""1""1""1""1""1""1""1""1"

"0""0""0""0""0""0""0""0""0"

"1""1""1"

"0""0""0""0"

"1" "1"

"0""0"

"1" "1"

"0""0"

INTR_SET.XXX

OR

HW event for an interrupt

AND
INTR_I2S_MASK.XXX

D Q
INTR.XXX

Interrupt_I2SOR

Other interrupt signals
(INTR_I2S & INTR_I2S_MASK)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 408

Inter-IC Sound Bus

29.9 Watchdog Timer

The Tx and Rx blocks have independent watchdog timers, which can be used to generate an interrupt event if the Word
Select (WS) input is idle for more than the configured time period. This feature is available only in the slave mode of operation
where the external master drives the WS input lines (tx_ws, rx_ws). This feature can be used to detect any signal
transmission issues, master device issues, or if the master has halted communication. If the master drives the same word
select signal to both the tx_ws and rx_ws lines, then only one of the watchdog timers can be enabled to cause the interrupt
event. Although the following explanation covers Tx watchdog, the same explanation applies to Rx watchdog as well.

To enable the Tx watchdog timer feature, WD_EN bit in the I2S_TX_CTL register should be set. The watchdog timer reload
value (32-bit timer) is configured by writing to the I2S_TX_WATCHDOG register. A value of zero written to the
I2S_TX_WATCHDOG register will also disable the watchdog timer. Figure 29-10 illustrates the watchdog behavior when the
timer is enabled. The timer runs off the CLK_PERI system clock. Refer to the Clocking System chapter on page 221 for
details on generation of CLK_PERI. The timer starts running when WD_EN and TX_START bits are set. The timer reload
happens either on a rising edge event on tx_ws input signal, or when the timer values reaches zero. When the timer value
reaches zero, the TX_WD interrupt event is generated. The TX_WD bit in the I2S_INTR_MASK register should be set to
enable interrupt generation by the watchdog timer interrupt event. The interrupt event can be cleared by writing ‘1’ to the
TX_WD bit in the I2S_INTR register.

Figure 29-10. Watchdog Timer Working
tx_ws (input to PSoC 6 MCU)

(or rx_ws)

watchdog timer for tx
(or rx)

I2S_TX_WATCHDOG
(or I2S_RX_WATCHDOG)

time
Interrupt event of the

 wachdog occurs

Reloads watchdog timer
on rising edge of tx_ws
(or rx_ws)

Interrupt Event (TX_WD)
(or RX_WD)

Reloads watchdog timer
when timer value is 0.
Interrupt event generated

Timer Value

0

Interrupt event
cleared in software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 409

30. PDM-PCM Converter

The PDM-PCM unit accepts a stereo or mono serial data stream (pulse modulated 1-bit stream) coming from external digital
PDM microphones. The PDM-PCM converter consists of a fifth order cascaded integrator comb (CIC) filter followed by a
decimator, and a final stage high-pass filter. This block simplifies the conversion process by exposing the different
configuration settings as registers, which you can program to meet the application needs. The entire PDM-PCM conversion
process is handled in hardware; the PCM output data streaming can be done using the DMA controller thus freeing up the
CPU bandwidth from performing periodic audio streaming activities.

30.1 Features
■ Supports Mono/Stereo mode pulse density modulation (PDM) to pulse code modulation (PCM) conversion

■ Accepts 1-bit PDM input and can generate 16-, 18-, 20-, or 24-bit PCM digital data output

■ Configurable PDM microphone clock frequency

■ Ability to generate standard audio sampling rates by adjusting the decimation rate and clock divider values

■ Digital volume control: Programmable gain amplifier (PGA) control from –12 dB to +10.5 dB in 1.5-dB steps

■ Smooth PGA and soft-mute control

■ Hardware receive buffer: 24-bit wide, 255-element FIFO with support for DMA controller-based data transfer

■ Optional high-pass filter to remove DC and low-frequency noise

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 410

PDM-PCM Converter

30.2 Architecture

Figure 30-1. Block Diagram

Figure 30-1 shows the block diagram of the PDM-PCM converter. Refer to the device datasheet for information on port pin
assignments of the PDM block signals, electrical specifications, and the interrupt vector number.

30.2.1 Enable/Disable Converter

The PDM-PCM converter can be powered ON or OFF by using the ENABLED bit in the PDM_CTL register. The block can be
turned OFF when not used to save power. When the block is powered off by writing ‘0’ to the ENABLED bit, the non-retention
registers lose their current values. Refer to the registers TRM to know which registers are retention and non-retention type.
When the block is enabled again, the non-retention registers are reset to their default values. User firmware should ensure
that all non-retention registers are configured as required after the ENABLED bit is set, and before the PDM-PCM conversion
is started by setting the STREAM_EN bit in the PDM_CMD register. See Operating Procedure on page 416 for the
recommended procedure to configure this PDM-PCM converter before starting the PDM-PCM conversion.

30.2.2 Clocking Features

The block uses the CLK_HF[1] root high-frequency clock for performing the PDM-PCM conversion process. Refer to the
Clocking System chapter on page 221 for details on selecting the clock source for CLK_HF[1], and configuring the divider
registers to generate CLK_HF[1].

Figure 30-2. PDM-PCM Clocking Dividers

Figure 30-2 shows the clock divider structure in the block. The block has three stages of clock dividers to generate the clock
(PDM_CKO), which goes to the external PDM microphone clock input.

1. The first stage clock divider (CLK_CLOCK_DIV field in the PDM_CLOCK_CTL register) is used to generate the actual
clock signal (PDM_CLK) that goes to the PDM-PCM converter. The input is CLK_HF[1]; the CLK_CLOCK_DIV can be a
value between 0 and 3 (divider value between 1 and 4).

fPDM_CLK = fCLK-HF[1] / (CLK_CLOCK_DIV + 1)

2. The second stage clock divider (MCLKQ_CLOCK_DIV field in the PDM_CLOCK_CTL register) is used to generate the
internal master clock and can take a value between 0 and 3 (divider value between 1 and 4). The input clock is pdm_clk
and the output of the divider is MCLKQ.

PSoC

Audio subsystem

PDM-PCM Converter

AHB bus

CPU Data Wire/
DMA SRAM

PDM_DATA
 PDM Microphone

(Left)

PDM_CKO
clk

data
L/R Select VDD

 PDM Microphone
(Right)

clk

data

L/R Select GND

CLK_CLOCK_DIV
(1st stage divider)

Divider range: 1 to 4

CLK_HF[1]
MCLKQ_CLOCK_DIV

(2nd stage divider)

Divider range: 1 to 4

CKO_CLOCK_DIV
(3rd stage divider)

Divider range: 2 to 16

PDM_CLK MCLKQ PDM_CKO

To external PDM
Microphone

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 411

PDM-PCM Converter

fMCLKQ = fPDM_CLK / (MCLKQ_CLOCK_DIV + 1)

3. The third stage clock divider (CKO_CLOCK_DIV field in the PDM_CLOCK_CTL register) is used to generate the clock
that goes to the PDM microphone clock (PDM_CKO) through the output pin of the PSoC 6 MCU. The input clock is
MCLKQ. The divider register can be between 1 and 15 (divider value between 2 and 16).

fPDM_CKO = fMCLKQ / (CKO_CLOCK_DIV + 1), if CKO_CLOCK_DIV 1

fPDM_CKO = fMCLKQ / 2, if CKO_CLOCK_DIV = 0

30.2.3 Over-Sampling Ratio

Over-sampling ratio (OSR) is the ratio between the frequency of the PDM microphone clock (fPDM_CKO) and the output PCM

sampling rate frequency (fS). The OSR is determined by the SINC_RATE bits in the PDM_CLOCK_CTL register. The relation

is as follows.

OSR = fPDM_CKO / fS = 2 x SINC_RATE

Table 30-1 gives an example of the PDM clock divider and SINC_RATE register configurations to generate the PCM output at
standard sampling rates. Note that the PDM divider values in the table are the register field values – the actual divider values
are one more than the configured register values as explained in the clock divider section. Refer to the device datasheet for
details on maximum values of PDM_CKO frequency, PDM_CLK frequency, and the output sampling rates.

There are various methods to generate the CLK_HF[1]
frequencies listed in the table depending on the clocking
options available on the device. Refer to the Clocking
System chapter on page 221 for details on the clocking
options available in the device, including the clock sources
and PLL/FLL circuitry. For example, an external crystal
oscillator (ECO) can be used in conjunction with a phase-
locked loop (PLL) to generate the CLK_HF[1] at the desired
frequency of 49.152 MHz or 45.1584 MHz.

One possible combination of PLL divider values to generate
the 49.152 MHz frequency from a 17.2032 MHz ECO are:
REFERENCE_DIV = 7, FEEDBACK_DIV = 100,
OUTPUT_DIV = 5. One possible combination of PLL divider
values to generate the 45.1584 MHz frequency from a
17.2032 MHz ECO are: REFERENCE_DIV = 8,
FEEDBACK_DIV = 105, OUTPUT_DIV = 5.

30.2.4 Mono/Stereo Microphone Support

The PDM-PCM converter supports mono-left, mono-right,
stereo, and swapped stereo modes of operation. The
operation mode is controlled by the PDM_CH_SET and
SWAP_LR bits in the PDM_MODE_CTL register. The
register settings for the different operation modes are given

in Table 30-2. The table also lists the invalid register
settings, which you must not use in the firmware.

Table 30-1. PDM Clock Divider Values for Standard Audio Sampling Rates

Sampling
Rate (SR)

(kHz)

SINC_RATE
(= OSR/2)

PDM_CKO
(=2*SINC_RATE*SR)

(MHz)

CLK_HF1
(MHz)

(CLK_HF[1])/
(PDM_CKO)

(Total Divider
Ratio)

CLK_CLOCK_DIV
(First Divider)

MCLKQ_CLOCK
_DIV

(Second
Divider)

CKO_CLOCK_
DIV

(Third Divider)

8 32 0.512

49.152

96 1 3 11

16 32 1.024 48 1 3 5

32 32 2.048 24 0 3 5

48 32 3.072 16 0 1 7

44.1 32 2.8224 45.1584 32 0 1 7

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 412

PDM-PCM Converter

Figure 30-3 shows the timing diagrams for the different operating modes.

Figure 30-3. PDM Mono/Stereo Timing

To alleviate uncertain board delay impact on PDM_IN setup
and hold timing constraints, the PDM-PCM provides
CKO_DELAY bits in the PDM_MODE_CTL register to add
extra delay for the PDM_CKO path to internal sampler.
CKO_DELAY can be a value between 0 and 7. A value of ‘0’
implies that internal sampling of PDM data is advanced by
three PDM_CLK clock cycles for the PDM_CKO transition.
A value of ‘7’ implies that internal sampling of PDM data is
delayed by four PDM_CLK clock cycles for the PDM_CKO
transition. Refer to the registers TRM for details on the
meaning of different CKO_DELAY values.

Note: Variations have been observed in the
recommendation for left/right sampling logic among the

different PDM microphone manufacturers. The SWAP_LR
bit in the PDM-PCM converter ensures that you can adjust
the sampling logic according to the microphone datasheet
recommendations. Refer to the PDM microphone
manufacturer datasheet for the exact timing details. Also, in
stereo mode, use the same manufacturer for both the left/
right PDM microphones to ensure the timing behavior is
uniform for both channels.

Table 30-2. Operation Mode Register Settings

Register Setting Operation Mode

PCM_CH_SET = 0, SWAP_LR = 0 or 1 Recording OFF

PCM_CH_SET = 1, SWAP_LR = 0
Mono-Left recording mode. Only the left microphone channel is sampled on the rising
edge of PDM_CKO. FIFO buffer contains only left channel data.

PCM_CH_SET = 2, SWAP_LR = 1
Mono-Right recording mode. Only the right microphone channel is sampled on the falling
edge of PDM_CKO. FIFO buffer contains only right channel data.

PCM_CH_SET = 3, SWAP_LR = 0
Stereo recording mode. The right microphone channel is sampled on the falling edge of
PDM_CKO and left channel on rising edge. FIFO buffer contains data in L/R format (left
channel followed by right channel)

PCM_CH_SET = 3, SWAP_LR = 1
Swapped Stereo recording mode. The right microphone channel is sampled on the rising
edge of PDM_CKO and left channel on falling edge. FIFO buffer contains data in L/R for-
mat (left channel followed by right channel)

PCM_CH_SET = 1, SWAP_LR = 1 or
PCM_CH_SET = 2, SWAP_LR = 0

Invalid setting (not supported). Do not operate the PDM-PCM converter in these configu-
ration settings.

PDM_CKO

PDM_DATA L R L R L R

Stereo mode (PCM_CH_SET = 3, SWAP_LR = 0)

PDM_CKO

PDM_DATA R L R L R L

Swapped Stereo mode (PCM_CH_SET = 3, SWAP_LR = 1)

PDM_CKO

PDM_DATA L L L

Mono left mode (PCM_CH_SET = 1, SWAP_LR = 0)

PDM_CKO

PDM_DATA R R R

Mono right mode (PCM_CH_SET = 2, SWAP_LR = 1)

http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 413

PDM-PCM Converter

30.2.5 Hardware FIFO Buffers and DMA
Controller Support

The PDM-PCM converter has a hardware FIFO depth of
255 elements where each element is 24-bit wide.

The PDM_RX_FIFO_CTL register is used for FIFO control
operations. Refer to the register description in the registers
TRM for more details. The TRIGGER_LEVEL field in the
PDM_RX_FIFO_CTL register is used to generate a receive
trigger event (interrupt event, DMA trigger signal) when the
Rx FIFO has more entries than the value configured in the
TRIGGER_LEVEL field. The TRIGGER_LEVEL field can be
configured up to 254 in the mono microphone recording
mode and up to 253 in the stereo microphone recording
mode.

The FIFO freeze operation can be enabled by setting the
FREEZE bit in the PDM_RX_FIFO_CTL register. When the
FREEZE bit is set and the Rx block is operational
(STREAM_EN bit in the PDM_CMD register is set),
hardware will not write to the Rx FIFO. Also, the Rx FIFO
write pointer will not be advanced. Any reads from the
PDM_RX_FIFO_RD register will increment the Rx FIFO
read pointer; when the Rx FIFO becomes empty, the internal
read pointer stops incrementing. The freeze operation may
be used for firmware debug purposes. This operation is not
intended for normal operation. To return to normal operation
after using the freeze operation, the PDM-PCM must be
reset by clearing the ENABLED bit in PDM_CTL register,
and then setting the bit again.

The CLEAR bit in the PDM_RX_FIFO_CTL register is used
to clear the Rx FIFO by resetting the read/write pointers
associated with the FIFO. Read accesses from the Rx FIFO
using PDM_RX_FIFO_RD or PDM_RX_FIFO_RD_SILENT
registers are not allowed while the CLEAR bit is set.

The PDM_RX_FIFO_STATUS register provides FIFO status
information. This includes number of used entries in the Rx
FIFO and the current values of the Rx FIFO read/write
pointers. This register can be used for debug purposes. The
Rx FIFO write pointer is updated whenever the data is
transferred to the Rx FIFO from the internal receive buffer.
Rx FIFO read pointer is updated whenever the data is read
from the PDM_RX_FIFO_RD register, either through the
CPU or the DMA controller. For debug purposes, the
PDM_RX_FIFO_RD_SILENT register is available, which
always returns the top element of the Rx FIFO without
updating the read pointer.

For Rx FIFO data reads using the CPU, the hardware can
be used to trigger an interrupt event for any of the FIFO
conditions such as RX_TRIGGER and RX_NOT_EMPTY.
As part of the interrupt handler, the CPU can read from the
PDM_RX_FIFO_RD register. The recommended method is
to read (TRIGGER_LEVEL + 1) words from the
PDM_RX_FIFO_RD register every time the RX_TRIGGER
interrupt event is triggered. In addition, interrupt events can
be generated for FIFO overflow and underflow conditions.

For DMA-based data transfers, the DMA trigger signal
(tr_pdm_rx_req) can be enabled by writing ‘1’ to the
RX_REQ_EN bit in the PDM_TR_CTL register. The trigger
signal output will become high whenever the Rx FIFO has
more entries than that configured in the TRIGGER_LEVEL
field. Refer to the Trigger Multiplexer Block chapter on
page 273 for details on how to connect the DMA trigger
signal to a particular DMA channel. The DMA channel can
be configured to transfer up to (TRIGGER_LEVEL + 1)
words to the applicable destination address (such as SRAM
regions). The source address of the DMA should always be
the PDM_RX_FIFO_RD register address, with the source
address increment feature disabled in the DMA channel
configuration. This FIFO address increment logic is handled
internally to adjust the read pointer, and the DMA should not
increment the source address. For more details on DMA
channel configuration, refer to the DMA Controller chapter
on page 85.

The successive data read from the PDM_RX_FIFO_RD
follows the Left 1/Right 1/Left 2/Right 2/… format in stereo
and swapped stereo modes of operation. For mono left and
mono right recording modes, the data read from FIFO
contains either the left channel data (mono left mode) or the
right channel data (mono right mode).

The data in the PDM_RX_FIFO_RD is always right-aligned.
The PDM_TX_FIFO_RD format for different word length
configurations is provided in Figure 30-4. Note that the
unused most significant bits are either set as ‘0’ or sign-bit
extended depending on the BIT_EXTENSION field setting in
the PDM_DATA_CTL register.

http://www.cypress.com/trm220777
http://www.cypress.com/trm220777
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 414

PDM-PCM Converter

Figure 30-4. FIFO Register Structure

30.2.6 Interrupt Support

The block has one output signal (interrupt_pdm) that goes to the interrupt controller in the CPU. Refer to the device datasheet
for details on the vector number of the PDM-PCM interrupt. Refer to the Interrupts chapter on page 55 for the procedure to
configure the interrupt priority, vector address, and enabling/disabling.

The PDM interrupt can be triggered under any of the following events – RX_TRIGGER, RX_NOT_EMPTY, RX_OVERFLOW,
or RX_UNDERFLOW. Table 30-3 lists the trigger conditions and details of these events.

Each of the interrupt events can be individually enabled or disabled to generate the interrupt condition. The
PDM_INTR_MASK register is used to enable the required events by writing ‘1’ to the corresponding bit.

Irrespective of the INTR_MASK settings, if any event occurs, the corresponding event status bit will be set by the hardware in
the PDM_INTR register. The PDM_INTR_MASKED register is the bitwise AND of the PDM_INTR_MASK and PDM_INTR
registers. The final PDM interrupt signal is the logical OR of all the bits in the PDM_INTR_MASKED register. So only those
events that are enabled in the PDM_INTR_MASK register are propagated as interrupt events to the interrupt controller.

Interrupt events can also be triggered in software by writing to the corresponding bits in PDM_INTR_SET register.

Figure 30-5 illustrates the interrupt signal generation from the PDM-PCM block as explained above. Only the RX_TRIGGER
interrupt generation is highlighted in the figure; the remaining interrupt events also follow the same generation logic.

Table 30-3. Interrupt Event Trigger Condition

Interrupt Event Trigger Condition

RX_TRIGGER
The PDM Rx FIFO has more entries than the value specified in the TRIGGER_LEVEL field in the PDM_RX-
_FIFO_CTL register. At least (TRIGGER_LEVEL + 1) words can be read from the PDM_RX_FIFO_RD reg-
ister in the interrupt service routine.

RX_NOT_EMPTY The PDM Rx FIFO has at least one word that can be read from the PDM_RX_FIFO_RD register.

RX_OVERFLOW

The PDM Rx FIFO content is overwritten by the PDM-PCM converter due to the number of unread words
exceeding the 256 word buffer capacity. The output PCM data after the overflow condition is discarded and
not transferred to the FIFO. This event can be used to detect bandwidth constraints in the end application
due to DMA or the interrupt used for data transfer not getting the required priority for executing the data
transfers.

RX_UNDERFLOW
Attempt to read from an empty PDM Rx FIFO. This can happen due to incorrect configuration of the DMA or
the interrupt service routine code used to do the data transfer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

read data format of PDM_RX_FIFO

WORD_LEN = 24-bit mode
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSb LSb

LSbMSb

fixed "0"

fixed "0"

BIT_EXTENSION = 0

"1" 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0"1""1""1""1""1""1""1""1"BIT_EXTENSION = 1
(Sign Bit Extension)

"0" 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0"0""0""0""0""0""0""0""0"

"1" 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"1""1""1""1""1""1""1""1""1"

"0""0""0""0""0""0""0""0""0"

"1""1""1"

"0""0""0""0"
BIT_EXTENSION = 1

(Sign Bit Extension)

WORD_LEN = 20-bit mode

BIT_EXTENSION = 0

www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 415

PDM-PCM Converter

Figure 30-5. PDM Interrupt Signal Generation

In the interrupt service routine (ISR) corresponding to the
interrupt vector number of interrupt_pdm, the
PDM_INTR_MASKED register should be read to know the
events that triggered the interrupt event. Multiple events can
trigger the interrupt because the final interrupt signal is the
logical OR output of the events. The ISR should do the tasks
corresponding to each interrupt event that was triggered. At
the end of the ISR, the value read in the
PDM_INTR_MASKED register earlier should be written to
the PDM_INTR register to clear the bits whose interrupt
events were processed in the ISR. A dummy read of the
PDM_INTR register should be done for the earlier register
write to PDM_INTR to take effect.

All of the interrupt event bits in PDM_INTR register will
continue to indicate the event condition regardless of the
true state until that bit is cleared (for example, when set, the
RX_OVERFLOW bit will continue to indicate an
OVERFLOW state until the RX_OVERFLOW bit is cleared
regardless of the true state of the FIFO. A mere FIFO read
of the FIFO will not clear the RX_OVERFLOW bit.). Unless
the PDM_INTR bits that are used to generate the interrupt
are not cleared by writing ‘1’ to the PDM_INTR bits, the
interrupt signal will always be high.

30.2.7 Digital Volume Gain

The PDM-PCM converter supports independent digital
volume control on the left/right channels with a range from –
12.5 dB to +10.5 dB in steps of 1.5 dB. It is programmed by
configuring the PGA_R and PGA_L bits in the PDM_CTL
register. PGA gain may be changed on the fly during normal
operation, or as a one-time setting before starting the PDM-
PCM conversion process.

30.2.8 Smooth Gain Transition

To reduce zipper or clip noise during on-the-fly gain
transition or during soft mute operation, a built-in volume
smoother is implemented with fine gain steps and fine time
steps that enable soft ramp up or ramp down of the volume
levels. Two fine gain options of 0.13 dB and 0.26 dB step
sizes are available. The fine gain is set by the STEP_SEL
bit in the PDM_CTL register. In addition to the fine gain
steps, a time step is available for the fine gain change in
terms of the number of sample cycles. The time step can be

configured to a value between 64 sample periods and 512
sample periods using the S_CYCLES bits in the
PDM_MODE_CTL register. So the STEP_SEL and
S_CYCLES bit settings together determine the rate at which
PGA gain or the soft mute transitions take effect.

30.2.9 Soft Mute

The PDM-PCM contains a built-in software-controlled mute
function that digitally attenuates signals to imperceptible
levels or zero. When mute function is enabled by setting the
SOFT_MUTE bit in the PDM_CTL register, the
corresponding PCM output is decreased from current level
to mute state through predefined granular gain step per time
constant transition. The STEP_SEL bit setting determines
the gain step and the S_CYCLES bits determine the time
constant. During soft-mute, the block is still ON and the
PCM data streaming is operational; the DMA or CPU-based
data transfer also happens as usual. Only the PCM output
level is muted. When mute function is disabled by setting
SOFT_MUTE = 0, the mute function is OFF and the PDM-
PCM returns to normal operation where output signal level
goes up to normal with current PGA gain.

30.2.10 Word Length and Sign Bit
Extension

The PCM output word length can be configured for either
16-bits, 18-bits, 20-bits, or 24-bits using WORD_LEN bits in
the PDM_DATA_CTL register. Irrespective of the word
length setting, the PCM output is always read from the FIFO
data buffer register (PDM_RX_FIFO_RD) as a 32-bit value.
The unused most significant bits in the 32-bit value can
either be sign extended or extended by ‘0’ by using the
BIT_EXTENSION bit in the PDM_DATA_CTL register.

30.2.11 High-Pass Filter

The PDM-PCM converter has a final stage high-pass filter
(HPF) that blocks DC offset and low-frequency noise in
signal band. The HPF is enabled when the HPF_EN_N bit in
the PDM_MODE_CTL register is zero, and disabled when
the HPF_EN_N bit is 1.

PDM_INTR_SET.RX_TRIGGER
(Register bit, Software triggered event)

OR

RX_TRIGGER
(Hardware event signal)

AND
PDM_INTR_MASK.RX_TRIGGER

(Register bit)

PDM_INTR.RX_TRIGGER
(Register bit)

interrupt_pdm
(To interrupt controller)

OR

Other interrupt Trigger events
(RX_OVERFLOW etc)

(PDM_INTR & PDM_INTR_MASK)

PDM_INTR_MASKED.RX_TRIGGER
(Register bit)

PDM_INTR_MASKED.xxx
(Register bits)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 416

PDM-PCM Converter

The filter response for HPF is characterized as:

The HPF operates at the final PCM output sampling rate.
HPF_GAIN is a 4-bit gain configuration setting in the
PDM_MODE_CTL register. In default mode, HPF_GAIN =
0xB, so the HPF can be formulated by polynomial:

The HPF_GAIN setting can be tuned to adjust HPF cutoff
corner frequency for better system configuration.

30.2.12 Enable/Disable Streaming

The PDM-PCM conversion process can be dynamically
enabled/disabled by using the STREAM_EN bit in the
PDM_CMD register.

30.2.13 Power Modes

The PDM-PCM can operate in Active and Sleep CPU
modes while in LP or ULP system power modes. It is not
operational in system Deep Sleep or Hibernate power
modes. When the device transitions from Deep Sleep/
Hibernate power modes to the LP/ULP power modes, the
non-retention registers lose their previous configuration
values. So the non-retention registers must be appropriately
configured before enabling the PDM-PCM again for LP/ULP
mode operation. One option is to store the non-retention
register values in SRAM before entering Deep Sleep/
Hibernate modes. When returning to the LP/ULP modes, the
SRAM values can be copied to the registers after enabling
the PDM-PCM by setting the ENABLED bit in the PDM_CTL
register. Refer to the registers TRM to identify the non-
retention registers for the PDM.

30.3 Operating Procedure

30.3.1 Initial Configuration

The sequence of steps for initial configuration of the PDM-
PCM converter before starting the conversion process is as
follows:

1. Configure the clock dividers and decimation rate in the
PDM_CLOCK_CTL register. This register configuration
should be done before enabling the PDM-PCM con-
verter. If the ENABLED bit in the PDM_CTL register is
set, it should be cleared before changing the clock con-
figuration.

2. Enable the block; set the PGA gain and fine gain step
setting as required by writing to the PDM_CTL register.

3. Configure the PDM_MODE_CTL and PDM_DATA_CTL
registers as required.

4. Configure the Rx FIFO trigger level setting by writing to
the TRIGGER_LEVEL bits in the PDM_RX_FIFO_CTL
register. The CLEAR and FREEZE bits in PDM_RX_FI-
FO_CTL are not set for normal operation.

5. Configure the events that must generate the interrupt by
setting the corresponding bits in the PDM_INTR_MASK
register, and clearing the remaining bits.

6. Configure the interrupt PDM interrupt vector and enable
the interrupt vector. See the Interrupts chapter on
page 55 for details.

7. If a DMA-based data transfer is required, connect the
PDM DMA trigger signal (tr_pdm_rx_req) to the trigger
input of the required DMA channel. See the Trigger Mul-
tiplexer Block chapter on page 273 for details on how to
connect to the DMA channel trigger input. Configure the
DMA channel as required - the source address of the
DMA descriptor is PDM_RX_FIFO_RD register with the
source address increment feature disabled and the
source data length is word type (32-bits). The DMA
channel can be used to transfer (TRIGGER_LEVEL + 1)
words from the PDM_RX_FIFO_RD register whenever
the trigger signal becomes high. The destination address
configuration depends on the application requirements.
See the DMA Controller chapter on page 85 for details
on DMA channel configuration.

8. Enable the DMA trigger signal generation by setting the
RX_REQ_EN bit in the PDM_TR_CTL register.

30.3.2 Interrupt Service Routine (ISR)
Configuration

The code for the PDM interrupt service routine should have
the following flow:

1. The events that triggered the interrupt can be found by
reading the PDM_INTR_MASKED register in the ISR. All
the bits that are set causes the interrupt event. The reg-
ister value should also be in a variable “var”.

2. For each of the event bits that are set in PDM_IN-
TR_MASKED, appropriate application level tasks can be
executed. For example, the RX_TRIGGER event can be
used for CPU-based data transfers if a DMA-based data
transfer is not used. DMA transfers should use the tr_pd-
m_rx_req trigger signal (by setting the RX_REQ_EN bit
in the PDM_TR_CTL register). The DMA trigger should
not use the RX_TRIGGER interrupt event to reduce
CPU usage for data transfer. The RX_OVERFLOW
event can be used to take appropriate counter measures
such as giving higher priority to PDM-PCM DMA chan-
nel. The RX_UNDERFLOW event typically indicates
wrong data transfer logic in the application – either in the
CPU-based data transfer code or in the DMA channel
configuration used to transfer data.

3. After the event conditions have been processed, the
“var” value read from PDM_INTR_MASKED should be
written to the PDM_INTR register to clear the events that
are set in the register. Due to the buffered write logic, the

H z 
1 z

1–
–

1 1 2
HPF_GAIN–

– z 1–
–

--=

H z 
1 z

1–
–

1 0.99951z
1–

–
------------------------------------=

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 417

PDM-PCM Converter

PDM_INTR register should also be read after the write
process to ensure the write process is completed in the
slower peripheral clock domain.

30.3.3 Enabling / Disabling Streaming

The PDM-PCM conversion process starts after the
STREAM_EN bit is set in the PDM_CMD register.
Depending on the application needs, the streaming can be
dynamically started and stopped using the STREAM_EN bit.
Clear the Rx FIFO before starting the streaming process to
reset the read/write pointers and FIFO state. The procedure
to clear the FIFO is to write a ‘1’ to the CLEAR bit in
PDM_RX_FIFO_CTL followed by writing a ‘0’ to the CLEAR
bit. When the CLEAR bit is set, all the data entries in the Rx
FIFO are cleared by resetting the internal read/write
pointers. Read accesses to the PDM_RX_FIFO_RD and
PDM_RX_FIFO_RD_SILENT registers are prohibited when
the CLEAR bit is 1. Therefore, the CLEAR bit should be
cleared before starting the streaming operation.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 418

31. Universal Serial Bus (USB) Device Mode

The PSoC 6 MCU USB block can act as a USB device that communicates with a USB host. The USB block is available as a
fixed-function digital block in the PSoC 6 MCU. It supports full-speed communication (12 Mbps) and is designed to be compli-
ant with the USB Specification Revision 2.0. USB devices can be designed for plug-and-play applications with the host and
also support hot swapping. This chapter details the PSoC 6 MCU USB block and transfer modes. For details about the USB
specification, see the USB Implementers Forum website.

31.1 Features
The USB in the PSoC 6 MCU has the following features:

■ Complies with USB Specification 2.0

■ Supports full-speed peripheral device operation with a signaling bit rate of 12 Mbps

■ Supports eight data endpoints and one control endpoint

■ Provides shared 512-byte buffer for data endpoints

■ Provides dedicated 8-byte memory for control endpoint (EP0)

■ Supports four types of transfers – bulk, interrupt, isochronous, and control

■ Supports bus- and self-powered configurations

■ Enables USB suspend mode for low power

■ Supports three types of logical transfer modes:

❐ No DMA mode (Mode 1)

❐ Manual DMA mode (Mode 2)

❐ Automatic DMA mode (Mode 3)

■ Supports maximum packet size of 512 bytes using Mode 1 and Mode 2, and maximum packet size of 1023 bytes for iso-
chronous transfer using Mode 3

■ Provides integrated 22- USB termination resistors on D+ and D– lines, and 1.5-k pull-up resistor on the D+ line

■ Supports USB 2.0 Link Power Management (LPM)

■ Can be configured using the USB Device Configurator available with the ModusToolbox software

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 419

Universal Serial Bus (USB) Device Mode

31.2 Architecture
Figure 31-1 illustrates the device architecture of the USB block in PSoC 6 MCUs. It consists of the USB Physical Layer (USB
PHY), Serial Interface Engine (SIE), and the local 512-byte memory buffer.

Figure 31-1. USB Device Block Diagram

31.2.1 USB Physical Layer (USB PHY)

The USB PHY allows physical layer communication with the
USB host through the D+, D–, and VBUS pins. It handles
the differential mode communication with the host, VBUS
detection, and monitoring events such as SE0 on the USB
bus.

31.2.2 Serial Interface Engine (SIE)

The SIE handles the decoding and creating of data and con-
trol packets during transmit and receive. It decodes the USB
bit streams into USB packets during receive, and creates
USB bit streams during transmit. The following are the fea-
tures of the SIE:

■ Conforms to USB Specification 2.0

■ Supports one device address

■ Supports eight data endpoints and one control endpoint

■ Supports interrupt trigger events for each endpoint

■ Integrates an 8-byte buffer in the control endpoint

The registers for the SIE are mainly used to configure the
data endpoint operations and the control endpoint data buf-
fers. This block also controls the interrupt events available
for each endpoint.

31.2.3 Arbiter

The Arbiter handles access of the SRAM memory by the
endpoints. The SRAM memory can be accessed by the
CPU, DMA, or SIE. The arbiter handles the arbitration
between the CPU, DMA, and SIE. The arbiter consists of the
following blocks:

■ SIE Interface Module

■ CPU/DMA Interface

■ Memory Interface

■ Arbiter Logic

The arbiter registers are used to handle the endpoint config-
urations, read address, and write address for the endpoints.
It also configures the logical transfer type required for each
endpoint.

31.2.3.1 SIE Interface Module

This module handles all the transactions with the SIE. The
SIE reads data from the SRAM memory and transmits to the
host. Similarly, it writes the data received from the host to
the SRAM memory. These requests are registered in the
SIE Interface module and are handled by this module.

USB Block

Arbiter

Arbiter
Logic

Memory
Interface

CPU/DMA
Interface

SIE
Interface

SIE

CPU/DMA
Subsystem

512 Bytes
SRAM

D+ D-

USB PHY

VBUS

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 420

Universal Serial Bus (USB) Device Mode

31.2.3.2 CPU/DMA Interface Block

This module handles all transactions with the CPU and
DMA. The CPU requests for reads and writes to the SRAM
memory for each endpoint. These requests are registered in
this interface and are handled by the block. When the DMA
is configured, this interface is responsible for all transactions
between the DMA and USB. The block supports the DMA
request line for each data endpoint. The behavior of the
DMA depends on the type of logical transfer mode config-
ured in the configuration register.

31.2.3.3 Memory Interface

The memory interface is used to control the interface
between the USB and SRAM memory unit. The maximum
memory size supported is 512 bytes organized as 256 × 16-
bit memory unit. This is a dedicated memory for the USB.
The memory access can be requested by the SIE or by the
CPU/DMA. The SIE Interface block and the CPU/DMA Inter-
face block handle these requests.

31.2.3.4 Arbiter Logic

This is the main block of the arbiter. It is responsible for arbi-
trations for all the transactions that happen in the arbiter. It
arbitrates the CPU, DMA, and SIE access to the memory
unit and the registers. This block also handles memory man-
agement, which is either ‘Manual’ or ‘Automatic’. In Manual
memory management, the read and write address manipu-
lations are done by the firmware. In Automatic management,
all the memory handling is done by the block itself. This
block takes care of the buffer size allocation. It also handles
common memory area. This block also handles the interrupt
requests for each endpoint.

31.3 Operation

31.3.1 USB Clocking Scheme

The USB device block should be clocked at 48 MHz with an

accuracy of ±0.25%. In the PSoC 6 MCU, CLK_HF3 is the
clock source. The USB device block also requires a 100-kHz
peripheral clock for USB bus reset timing. The required USB
clock can be generated using one of the following clocking
schemes:

■ IMO (trimmed with USB) -> PLL -> CLK_HF3

■ ECO (with the required accuracy) -> FLL -> CLK_HF3

■ ECO (with the required accuracy) -> PLL -> CLK_HF3

■ Use external clock (EXTCLK) with the required accuracy

31.3.2 USB PHY

The USB includes the transmitter and receiver (transceiver),
which corresponds to the USB PHY. Figure 31-2 shows the
PHY architecture. The USB PHY also includes the pull-up
resistor on the D+ line to identify the device as full-speed
type to the host. The PHY integrates the 22- series termi-
nation resistors on the USB line. The signal between the
USB device and the host is a differential signal. The receiver
receives the differential signal from the host and converts it
to a single-ended signal for processing by the SIE. The
transmitter converts the single-ended signal from the SIE to
the differential signal, and transmits it to the host. The differ-
ential signal is given to the upstream devices at a nominal
voltage range of 0 V to 3.3 V.

31.3.2.1 Power Scheme

The USB PHY is powered by the VBUS power pad of the
PSoC 6 MCU. The VBUS pad can be driven either by the
host VBUS (bus-powered) or an external power supply (self-
powered).

The USB PHY needs a nominal voltage of 3.3 V for its com-
munication with the host.

Figure 31-2. USB PHY Architecture

22 

VDDUSB

D+

D-

Upstream
Host/Hub

USB D+ Pull Up
Enable Logic

22 

Transmitter
Logic

Receiver
Logic

1.5 K

GPIO Mode
Logic

Bus (Host) powered
or Self Powered

ten
td
dpi
dmi

rd
dpo

dmo
rse0

PSoC 6 MCU

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 421

Universal Serial Bus (USB) Device Mode

31.3.2.2 VBUS Detection

USB devices can either be bus-powered (power sourced
from the host) or self-powered (power sourced from an
external power supply). The VDDUSB power pad pin pow-
ers the USB PHY and USB I/Os (D+ and D– pins). The pres-
ence of VBUS can be detected using the following steps:

1. Enable the interrupt on VDDUSB power pad. For this
write ‘1’ to the VDDIO_ACTIVE[5] bit of VDD_IN-
TR_MASK register.

2. VDDIO_ACTIVE[5] bit of the supply detection interrupt
register (VDD_INTR) is set to ‘1’ whenever a change to
supply is detected. Clear the interrupt cause by writing
‘1’ to the bitfield.

3. Check the status of the VDD_ACTIVE[5] bit of the exter-
nal power supply detection register (VDD_ACTIVE). The
bit is set to ‘1’ when there is supply and ‘0’ when there is
no supply.

31.3.2.3 USB D+ Pin Pull-up Enable Logic

When a USB device is self-powered, the USB specification
warrants that the device enable the pull-up resistor on its D+
pin to identify itself as a full-speed device to the host. When
the host VBUS is removed, the device should disable the
pull-up resistor on the D+ line to not back power the host.
The USB PHY includes an internal 1.5-k pull-up resistor on
the D+ line to indicate to the host that the PSoC 6 MCU is a
full-speed device. The pull-up resistor can be enabled or
disabled by configuring the DP_UP_EN bit in the
USBLPM_POWER_CTRL register.

31.3.2.4 Transmitter and Receiver Logic

The transceiver block transmits and receives USB differen-
tial signals with an upstream device, and includes the USB
D+ pull-up resistor used to maintain an idle state on the bus.
Output data is differentially transmitted to upstream devices
at a nominal voltage of 3.3 V. The differential inputs
received from upstream devices are converted into single-
ended data and sent to the core logic at a nominal voltage of
1.8 V. The D+ and D– pins are terminated with 22- resis-
tors to meet the USB impedance specification.

31.3.2.5 GPIO Mode Logic

The D+ and D– pins can be used either as GPIO pins or
USB I/O pins. This is controlled by the IOMODE bit of the
USBDEV_USBIO_CR1 register. This bit should be set HIGH
for GPIO functionality and LOW for USB operation.

31.3.2.6 Link Power Management (LPM)

The USB PHY supports link power management (LPM),
which is similar to the suspend mode, but has transitional
latencies in tens of microseconds between power states,
compared to the greater than 20 ms latency associated with
suspend/resume modes. For more details on LPM, refer to
the USB 2.0 specification. The following features are sup-
ported for LPM.

■ The LPM_CTL register should be configured to enable/
disable LPM, type of response when LPM is enabled,

and the response when a sub PID other than the LPM
token is received from the host.

■ The LPM_STAT register stores the values of the Best
Effort Service Latency (BESL) and the remote wakeup
feature as sent by the host. The firmware should read
this register on the LPM interrupt event and enter the
appropriate low-power mode (Deep Sleep or Sleep)
based on the BESL value from the host.

31.3.3 Endpoints

The SIE and arbiter support eight data endpoints (EP1 to
EP8) and one control endpoint (EP0). The data endpoints
share the SRAM memory area of 512 bytes. The endpoint
memory management can be either manual or automatic.
The endpoints are configured for direction and other config-
uration using the SIE and arbiter registers. The endpoint
read address and write address registers are accessed
through the arbiter.

The endpoints can be individually made active. In the Auto
Management mode, the register EP_ACTIVE is written to
control the active state of the endpoint. The endpoint activa-
tion cannot be dynamically changed during runtime. In Man-
ual Memory Management mode, the firmware decides the
memory allocation, so it is not required to specify the active
endpoints. The EP_ACTIVE register is ignored during the
manual memory management mode. The EP_TYPE regis-
ter is used to control the transfer direction (IN, OUT) for the
endpoints. The control endpoint has separate eight bytes for
its data (EP0_DR registers).

31.3.4 Transfer Types

The PSoC 6 MCU USB supports full-speed transfers and is
compliant with the USB 2.0 specification. It supports four
types of transfers:

■ Interrupt Transfer

■ Bulk Transfer

■ Isochronous Transfer

■ Control Transfer

For further details about these transfers, refer to the USB
2.0 specification.

31.3.5 Interrupt Sources

The USB device block generates 14 interrupts to the CPU.
These interrupts are mapped to three general-purpose
interrupt lines – INTR_LO, INTR_MED, and INTR_HI. Each
of these three interrupt lines has an associated status
register, which identifies the cause of the interrupt event.
These are the USBLPM_INTR_CAUSE_LO,
USBLPM_INTR_CAUSE_MED, and
USBLPM_INTR_CAUSE_HI registers. The routing of these
interrupts is controlled by the USBLPM_INTR_LVL_SEL
register fields.

The following events generate an interrupt on one of the
three interrupt lines:

■ USB start of frame (SOF) event

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 422

Universal Serial Bus (USB) Device Mode

■ USB bus reset event

■ Eight data endpoint (EP1 – EP8) interrupt events

■ Control endpoint (EP0) interrupt event

■ Link power management (LPM) event

■ Resume event

■ Arbiter Interrupt event

31.3.5.1 USB Start of Frame (SOF) Event

The SOF interrupt is generated upon receiving an SOF
packet from the USB host. The SOF interrupt is enabled
using the SOF_INTR_MASK bitfield in the USBLPM_IN-
TR_SIE_MASK register.

■ The SOF interrupt status is reflected in the SOF_INTR
status bit in the USBLPM_INTR_SIE status register.

■ The SOF interrupt status is also available in the
SOF_INTR_MASKED bit of the
USBLPM_INTR_SIE_MASKED register – this bit is the
logical AND of the corresponding SOF bits in the
USBLPM_INTR_SIE_MASK register and the
USBLPM_INTR_SIE register.

■ If there is no SOF interrupt for 3 ms, the USB device
goes into SUSPEND state.

31.3.5.2 USB Bus Reset Event

The USB bus reset interrupt is generated when a USB bus
reset condition occurs. The bus reset interrupt is enabled by
setting the BUS_RESET_INTR_MASK bit in the
USBLPM_INTR_SIE_MASK register.

■ The bus reset interrupt status is reflected in the
BUS_RESET_INTR bit in the USBLPM_INTR_SIE sta-
tus register.

■ The bus reset interrupt status is also available in the
BUS_RESET_INTR_MASKED bit of the
USBLPM_INTR_SIE_MASKED register – this bit is the
logical AND of the corresponding bus reset bits in the
USBLPM_INTR_SIE_MASK register and the
USBLPM_INTR_SIE register.

■ The SIE logic triggers the counter to start running on the
divided version of CLK_PERI when an SE0 condition is
detected on the USB bus. When the counter reaches the
count value configured in the USBDEV_BUS_RST_CNT
register, the bus reset interrupt is triggered. Typically,
divided CLK_PERI is set to 100 kHz and USB-
DEV_BUS_RST_CNT is set to ‘10’.

31.3.5.3 Data Endpoint Interrupt Events

These are eight interrupt events corresponding to each data
endpoint (EP1-EP8). Each of the endpoint interrupt events
can be enabled/disabled by using the corresponding bit in
the USBDEV_SIE_EP_INT_EN register. The interrupt sta-
tus of each endpoint can be known by reading the USB-
DEV_SIE_EP_INT_SR status register. An endpoint whose
interrupt is enabled can trigger the interrupt on the following
events:

■ Successful completion of an IN/OUT transfer

■ NAK-ed IN/OUT transaction if the corresponding
NAK_INT_EN bit in the SIE_EPx_CR0 register is set

■ When there is an error in the transaction, the
ERR_IN_TXN bit in the SIE_EPx_CR0 register is set
and interrupt is generated.

■ If the STALL bit in SIE_EPx_CR0 is set, then stall events
can generate interrupts. This stall event can occur if an
OUT packet is received for an endpoint whose mode bits
in SIE_EPx_CR0 are set to ACK_OUT or if an IN packet
is received with mode bits set to ACK_IN.

31.3.5.4 Control Endpoint Interrupt Event

The interrupt event corresponding to the control endpoint
(EP0) is generated under the following events:

■ Successful completion of an IN/OUT transfer

■ When a SETUP packet is received on the control end-
point

The EP0 interrupt is setup using the EP0_INTR_SET bit of
the USBLPM_INTR_SIE_SET register.

31.3.5.5 Link Power Management (LPM)
Event

Generated whenever the LPM token packet is received. The
LPM interrupt is enabled by setting the LPM_INTR_MASK
bit in the USBLPM_INTR_SIE_MASK register. The LPM
interrupt status is reflected in the LPM_INTR status bit in the
USBLPM_INTR_SIE status register.

The LPM interrupt status is also available in the LPM_IN-
TR_MASKED bit of the USBLPM_INTR_SIE_MASKED reg-
ister; this bit is the logical AND of the corresponding LPM
bits in the USBLPM_INTR_SIE_MASK and USBLPM_IN-
TR_SIE registers.

The firmware needs to read the USBLPM_LPM_STAT reg-
ister to read the BESL remote wakeup values and appropri-
ately enter the desired low-power mode. Enter the low-
power mode in the main code. The exit from LPM is identical
to the resume event wakeup in the case of suspend mode.

31.3.5.6 RESUME Interrupt

The RESUME interrupt is asserted by the USB block when it
detects ‘0’ on the DP pad. The RESUME interrupt is enabled
by setting the RESUME_INTR_MASK bitfield of the
USBLPM_INTR_SIE_MASK register.

■ The RESUME interrupt status is reflected in the
RESUME_INTR status bit in the USBLPM_INTR_SIE
status register.

■ The RESUME interrupt status is also available in the
RESUME_INTR_MASKED bit of the USBLPM_IN-
TR_SIE_MASKED register – this bit is the logical AND of
the corresponding RESUME bits in the USBLPM_IN-
TR_SIE_MASK register and the USBLPM_INTR_SIE
register.

The RESUME interrupt is an Active mode interrupt and not
available in Deep Sleep or Hibernate mode.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 423

Universal Serial Bus (USB) Device Mode

31.3.5.7 Arbiter Interrupt Event

The arbiter interrupt can arise from five possible sources.
Each interrupt source is logically ANDed with its corre-
sponding ENABLE bit and the results are logically ORed to
result in a single arbiter interrupt event.

The arbiter interrupt event can arise under any of the follow-
ing five scenarios:

■ DMA Grant

■ IN Buffer Full

■ Buffer Overflow

■ Buffer Underflow

■ DMA Termin

DMA Grant

This event is applicable in Mode 2 or Mode 3. (See Logical
Transfer Modes on page 424 for details on DMA modes).
This event is triggered when the DMA controller pulses the
Burstend signal corresponding to that endpoint, for which a
DMA request had been raised to the DMA controller earlier.
The request may have been either a manual DMA request
or an automatic arbiter DMA request. A common grant sta-
tus exists for both modes of requests. This grant status indi-
cates completion of the DMA transaction. This status
indication can be used by firmware to determine when the
next manual DMA request can be raised. Multiple requests
raised for the same endpoint before the DMA grant status is
set will be dropped by the block. Only the first of multiple
requests will be transmitted to DMA controller.

IN Buffer Full

This event status can occur in any of the DMA modes (Mode
1, 2, or 3) and is applicable only for IN endpoints.

■ Store and Forward Mode (Modes 1 and 2): This status is
set when the entire packet data is transferred to the local
memory. The check is that data written for the particular
endpoint is equal to the programmed byte count for that
endpoint in the USBDEV_SIE_EPx_CNT0 and USB-
DEV_SIE_EPx_CNT1 registers.

■ Cut Through Mode (Mode 3): In this mode, the IN buffer
full status is set when the IN endpoint’s dedicated buffer
is filled with the packet data. The size of this buffer is
determined by the value programmed in bits [3:0] of the
USBDEV_BUF_SIZE register. This status indication can
be used to determine when the mode value in the USB-
DEV_SIE_EPx_CR0 register can be programmed to
acknowledge an IN token for that endpoint.

Buffer Overflow

This event status is active only in the Cut Through Mode
(Mode 3). The following conditions can cause this bit to be
set:

■ Data overflow on the endpoint dedicated buffer space

❐ In an IN endpoint, the dedicated buffer can overflow
if the DMA transfer writes a larger number of bytes
than the space available in the dedicated buffer. Until

an IN token is received for that endpoint, it cannot
use the common buffer area, hence resulting in an
overflow of data. The possible causes of this buffer
overflow can be incorrect programming of either the
DMA transfer descriptor transfer size or the USB-
DEV_BUF_SIZE register.

❐ In an OUT endpoint, the dedicated buffer can over-
flow if two OUT transactions occur consecutively.
The data from the previous transaction is still present
in the common area and the current ongoing trans-
action fills up the OUT endpoint’s dedicated buffer
space and overflows. The possible causes of this
overflow can be the overall DMA bandwidth con-
straint due to other DMA transactions or reduced
size of the dedicated OUT buffer size.

■ Common area data overflow

❐ In an IN endpoint, the common area overflow occurs
when the DMA transfer writes a larger number of
bytes than the space available in the common area.
This situation may arise due to incorrect
programming of either the DMA transfer descriptor
transfer size or the USBDEV_DMA_THRESH and
USBDEV_DMA_THRESH_MSB registers.

❐ In an OUT endpoint, the common area overflow
occurs when the data written to the common area
has not yet been read and new data overwrites the
existing data.

Buffer Underflow

This event is applicable only in the Cut Through mode
(Mode 3). This underflow condition can occur only for an IN
endpoint. The underflow condition can occur either in the
dedicated buffer space or common buffer space. The under-
flow condition on the dedicated buffer space can either be
due to the reduced dedicated IN buffer size or DMA band-
width constraint. The underflow condition can occur on the
common buffer space due to DMA bandwidth constraint
and/or lower DMA channel priority.

DMA Termin

This status is set when USBDEV generates a dma_termin
signal to indicate the total programmed/ received bytes that
are written/read by the DMA controller. This status indication
can be used by the firmware to reprogram the IN/OUT end-
point for the next transfer. For an OUT endpoint, this indi-
cates that the OUT packet data is available in the system
memory for further processing by the application.

31.3.6 DMA Support

Each of the eight data endpoints has one DMA channel
available to transfer data between the endpoint buffer and
the SRAM memory. The USB generates the DMA request
signals (usb.dma_req[7:0]) to the respective DMA channels
to initiate the data transfer for the endpoint. This goes to the
Trigger Group 13 multiplexer as input triggers that can be
routed to one of the trigger inputs of the DMA block. The
Burstend signals from the DMA channel to the correspond-

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 424

Universal Serial Bus (USB) Device Mode

ing endpoint is routed using the Trigger Group 9 multiplexer.
For more details, see the DMA Controller chapter on
page 85 and Trigger Multiplexer Block chapter on page 273.

31.4 Logical Transfer Modes
The USB block in PSoC 6 MCUs supports two types of logi-
cal transfers. The logical transfers can be configured using
the register setting for each endpoint. Any of the logical
transfer methods can be adapted to support the three types
of data transfers (Interrupt, Bulk, and Isochronous) men-
tioned in the USB 2.0 specification. The control transfer is
mandatory in any USB device.

The logical transfer mode is a combination of memory man-
agement and DMA configurations. The logical transfer
modes are related to the data transfer within the USB (to

and from the SRAM memory unit for each endpoint). It does
not represent the transfer methods between the device and
the host (the transfer types specified in the USB 2.0 specifi-
cation).

The USB supports two basic types of transfer modes:

■ Store and Forward mode

❐ Manual Memory Management with No DMA Access
(Mode 1)

❐ Manual Memory Management with Manual DMA
Access (Mode 2)

■ Cut Through mode

❐ Automatic Memory Management with Automatic
DMA Access (Mode 3)

Table 31-1 gives a comparison of the two transfer modes.

Every endpoint has a set of registers that need to be handled during the modes of operation, as detailed in Table 31-2.

Table 31-1. USB Transfer Modes

Feature Store and Forward Mode Cut Through Mode

SRAM Memory Usage Requires more memory Requires less memory

SRAM Memory Manage-
ment

Manual Auto

SRAM Memory Sharing
512 bytes of SRAM shared between endpoints.
Sharing is done by firmware.

Each endpoint is allocated a lesser share of memory auto-
matically by the block. The remaining memory is available
as “common area.” This common area is used during the
transfer.

IN Command
Entire packet present in SRAM memory before
the IN command is received.

Memory filled with data only when SRAM IN command is
received. Data is given to host when enough data is avail-
able (based on DMA configuration). Does not wait for the
entire data to be filled.

OUT Command
Entire packet is written to SRAM memory on OUT
command. After entire data is available, it is cop-
ied from SRAM memory to the USB device.

Waits only for enough bytes (depends on DMA configura-
tion) to be written in SRAM memory. When enough bytes
are present, it is immediately copied from SRAM memory to
the USB device.

Transfer of Data
Data is transferred when all bytes are written to
the memory.

Data is transferred when enough bytes are available. It
does not wait for the entire data to be filled.

Types Based on DMA
No DMA mode

Manual DMA mode
Only Auto DMA mode

Supported Transfer Types Ideal for interrupt and bulk transfers Ideal for Isochronous transfer

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 425

Universal Serial Bus (USB) Device Mode

In Manual memory management, the endpoint read and endpoint write address registers are updated by the firmware. So the
memory allocation can be done by the user. The memory allocation decides which endpoints are active; that is, you can
decide to share the 512 bytes for all the eight endpoints or a lesser number of endpoints.

In Automatic memory management, the endpoint read and endpoint write address registers are updated by the USB block.
The block assigns memory to the endpoints that are activated using the USBDEV_EP_ACTIVE register. The size of memory
allocated depends on the value in the USBDEV_BUF_SIZE register. The remaining memory, after allocation, is called the
common area memory and is used for data transfer.

In all of these modes, either the 8-bit endpoint data register or the 16-bit endpoint data register can be used to read/write to
the endpoint buffer. While transferring data to the 16-bit data registers, ensure that the corresponding SRAM memory
address locations are also 16-bit aligned.

In the following text, the algorithm for the IN and OUT transaction for each mode is discussed. An IN transaction is when the
data is read by the USB host (for example, PC). An OUT transaction is when the data is written by the USB host to the USB
device. The choice of using the DMA and memory management can be configured using the USBDEV_ARB_EPx_CFG reg-
ister.

Table 31-2. Endpoint Registers

Register Comment Content Usage

USBDEV_ARB_RWx_WA
Endpoint Write
Address Register

Address of the SRAM
This register indicates the SRAM location to which the data in
the data register is to be written.

USBDEV_ARB_RWx_RA
Endpoint Read
Address Register

Address of the SRAM
This register indicates the SRAM location from which the data
must be read and stored to the data register.

USBDEV_ARB_RWx_DR
Endpoint Data Regis-
ter

8-Bit Data

Data register is read/written to perform any transaction.

IN command: Data written to the data register is copied to the
SRAM location specified by the WA register. After write, the
WA value is automatically incremented to point to the next
memory location.

OUT command: Data available in the SRAM location pointed
by the USBDEV_ARB_RWx_RA register is read and stored to
the DR. When the DR is read, the value of USBDEV_ARB_R-
Wx_RA is automatically incremented to point to the next
SRAM memory location that must be read.

USBDEV_SIE_EPx-
_CNT0 and USB-
DEV_SIE_EPx_CNT1

Endpoint Byte Count
Register

Number of Bytes

Holds the number of bytes that can be transferred.

IN command: Holds the number of bytes to be transferred to
host.

OUT command: Holds the maximum number of bytes that
can be received. The firmware programs the maximum num-
ber of bytes that can be received for that endpoint. The SIE
updates the register with the number of bytes received for the
endpoint.

“Mode” bits in USB-
DEV_SIE_EPx_CR0

Mode Values Response to the Host
Controls how the USB device responds to the USB traffic and
the USB host. Some examples of modes are ACK, NAK, and
STALL.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 426

Universal Serial Bus (USB) Device Mode

31.4.1 Manual Memory Management with No DMA Access

All operations in this mode are controlled by the CPU and works in a store-and-forward operation mode. An entire packet is
transferred to the memory and a mode bit (such as ACK IN or ACK OUT) is set by the CPU. The SIE responds appropriately
to an IN/OUT token received from the host. All memory space management is handled by the CPU.

Figure 31-3. No DMA Access IN Transaction Figure 31-4. No DMA Access OUT Transaction

31.4.2 Manual Memory Management with DMA Access

This mode is similar to the No DMA Access except that write/read of packets is performed by the DMA. A DMA request for an
endpoint is generated by setting the DMA_CFG bit in the USBDEV_ARB_EPx_CFG register. When the DMA service is
granted and is done (DMA_GNT), an arbiter interrupt can be programmed to occur. The transfer is done using a single DMA
cycle or multiple DMA cycles. After completion of every DMA cycle, the arbiter interrupt (DMA_GNT) is generated. Similarly,
when all the data bytes (programmed in byte count) are written to the memory, the arbiter interrupt occurs and the IN_BUF_-
FULL bit is set.

Set Base address to WA

Set Packet size in the Endpoint byte
count register

Write to data to Endpoint Data
Register

Is all data written
 to SRAM

Write to RA register(= initial WA
register)

Set mode in CR0 register

Is IN
Token Received?

USB block reads Data stored at RA
and transmit to Host.
RA++

Is all data
Transmitted?

Set the mode as NAK for the last
byte in transfer. Status bit set by

the block

Wait

No

Yes

No

Yes

Responds
Automatically

With ACK

Interrupt
Generated

No

Yes

Set Base address to WA

Set Packet size in the Endpoint byte
count register

Set mode in CR0 register

Is OUT
Token Received?

Write RA value (= initial WA value)

Wait

No

Yes

Data received from host
Written to SRAM location WA

WA++

Is all data
written to
SRAM?

No

SIE sets mode to NAK. Updates byte count with
actual no. of data received abd sets the data valid

bit

USB block reads data at RA
location and writes to data register

Is all data
Read from

SRAM?

Yes

Yes

End

Responds automatically
 with ACK

SIE Data
Interrupt

Generated

Data register is
Read by the CPU, RA++ is

automatically done

No

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 427

Universal Serial Bus (USB) Device Mode

Figure 31-5 and Figure 31-6 show the flow charts for manual DMA IN and OUT transactions respectively.

Figure 31-5. Manual DMA IN Transaction

Write WA register
 (based on required memory allocation)

Set Packet size in the Endpoint byte
count register

DMA writes data to Endpoint Data
Register
WA++

Is all data
 written

 to SRAM

Write to RA register(= initial WA
register)

Set mode in CR0 register

Is IN
Token Received?

USB block reads Data stored at
RA and transmit to Host.

RA++

Is all data
Transmitted?

Set the mode as NAK for the last
byte in transfer. Status bit set by

the block

Wait
No

Yes

No

Yes

Responds
Automatically

With ACK

Interrupt
Generated

Set the DMA request in
USBDEV_ARB_EPx_CFG register

No

Yes

Value automatically written to
the SRAM specified by WA

End

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 428

Universal Serial Bus (USB) Device Mode

Figure 31-6. Manual DMA OUT Transaction

31.4.3 Automatic DMA Mode

This is the Automatic memory management mode with auto
DMA access. The CPU programs the initial buffer size
requirement for IN/OUT packets and informs the arbiter
block of the endpoint configuration details for the particular
application. The block then controls memory partitioning and
handling of all memory pointers. During memory allocation,
each active IN endpoint (set by the USBDEV_EP_ACTIVE
and USBDEV_EP_TYPE registers) is allocated a small
amount of memory configured using the USBDEV_BUF_-
SIZE register (32 bytes for each of the eight endpoints). The

remaining memory (256 bytes) is left as common area and
is common for all endpoints.

In this mode, the memory requirement is less and it is suit-
able for full-speed isochronous transfers up to 1023 bytes.

When an IN command is sent by the host, the device
responds with the data present in the dedicated memory
area for that endpoint. It simultaneously issues a DMA
request for more data for that EP. This data fills up the com-
mon area. The device does not wait for the entire packet of
data to be available. It waits only for the (USBDEV_DMA_-
THRES_MSB, USBDEV_DMA_THRES) number of data
available in the SRAM memory and begins the transfer from
the common area.

Similarly, when an OUT command is received, the data for
the OUT endpoint is written to the common area. When
some data (greater than USBDEV_DMA_THRES_MSB,
USBDEV_DMA_THRES) is available in the common area,
the arbiter block initiates a DMA request and the data is
immediately written to the device. The device does not wait
for the common area to be filled.

This mode requires configuration of the
USBDEV_DMA_THRES and
USBDEV_DMA_THRES_MSB registers to hold the number
of bytes that can be transferred in one DMA transfer (32
bytes). Similarly, the burst count of the DMA should always
be equal to the value set in the USBDEV_DMA_THRES
registers. Apart from the DMA configuration, this mode also
needs the configuration of the USBDEV_BUF_SIZE for the
IN and the OUT buffers and the USBDEV_EP_ACTIVE and
the USBDEV_EP_TYPE registers.

Each DMA channel has two descriptors and both of them
are used in this mode. Each descriptor is considered as a
data chunk of 32 bytes and it executes according to the trig-
ger mechanism. The descriptors are chained and hence 64
bytes can be transferred without firmware interaction. When
both descriptors complete the endpoint DMA done interrupt
and the DMA error interrupt triggers (due to the lack of data
to transfer). The descriptors are updated to advance the
source SRAM (IN endpoint) or destination SRAM (OUT end-
point) pointer locations and then enabled again. This
sequence continues till all data is transferred.

The steps for IN and OUT transactions using automatic
DMA mode are shown in Figure 31-7 and Figure 31-8.

Write WA register
(based on the required memory allocation)

Set Packet size in the Endpoint byte
count register

Set mode in CR0 register

Is OUT
Token Received?

Write RA value (= initial WA value)

Wait

No

Yes

Data received from host
Written to SRAM location WA

WA++

Is all data
written to
SRAM?

No

SIE sets mode to NAK. Updates byte count with
actual no. of data received abd sets the data valid

bit

Yes

Responds automatically with
ACK

SIE Data
Interrupt

Generated

USB block reads data at RA
location and writes to data register

Is all data
Read from

SRAM?

No

Yes

End

Data register is
Read by the CPU, RA++ is

automatically done

Configure DMA request

DMA Grant Arbiter
Interrupted generated

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 429

Universal Serial Bus (USB) Device Mode

Figure 31-7. IN Transaction using Automatic DMA Mode

Set Packet size in the Endpoint byte
count register

Set IN_DATA_RDY for the endpoint in
ARB_EP1_CFG register

Is the endpoint
Buffer full?

Block automatically raises
interrupt for DMA

DMA writes to Data register

Update mode value in the Mode
register

Is IN Command
received?

Is the complete
data available
in the memory

SIE reads data from SRAM (specified
by location RA) and transmits to host

Is all data
in buffer

transmitted?

Wait

No

Yes

No

Yes

Yes

Set the data valid bits

End

No

Yes

RA++

Raise a DMA Request

SIE reads data from SRAM (specified
by location RA) and transmits to host

Is all data
in buffer

transmitted?

Yes

RA++
No

Is data in Common Area>
(DMA THRES, DMA THRES MSB)

Wait

Initiate PHUB
transfer

Block transfer data available
in Common Area

Set the data valid bits

End

The process is
continued till all

 the data is
transferred

No

Yes

In the mean time, the PHUB
initiates the transaction. The

data from the device is copied to
the common area. The data

from the USB is written to the
SRAM by the DMA

This memory location is very limited. The
memory location is filled initially to make sure
the host does not stall when an IN command is
sent. When an IN command is received the
PHUB initiates the copy of data from device to
common area. This initialization would take
some time. The data in the end point buffer is
transmitted until the data is copied to the
common area

Data automatically read and
written to SRAM pointed by WA.

WA++

IN_BUF_FULL Interrupt
generated

Block automatically sends the
ACK (Configured as Mode

value)

No

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 430

Universal Serial Bus (USB) Device Mode

Figure 31-8. OUT Transaction using Automatic DMA Mode

31.4.4 Control Endpoint Logical Transfer

The control endpoint has a special logical transfer mode. It does not share the 512 bytes of memory. Instead, it has a dedi-
cated 8-byte register buffer (USBDEV_EP0_DRx registers). The IN and OUT transaction for the control endpoint is detailed in
the following figures.

Write maximum bytes to Byte Count register

Program the Mode register for the
endpoint

Is OUT
Token Received?

USB Block writes the data from
SRAM to the Data register

Wait

No

Yes

The DMA writes the received data to the
SRAM in location specified by WA

DMA request is
raised

Yes

Is all data
from SRAM

copied to device?

End

Is data in
SRAM>(DMA_THRES,DMA_TH

RES_MSB)?

No
WA++

Set the data valid
bits

No

Yes

The process is
continued till all

the data is transferred

Data in the Data register is read
and given to the USB device by

the DMA. RA is incremented
automatically

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 431

Universal Serial Bus (USB) Device Mode

Figure 31-9. Control Endpoint IN Transaction Figure 31-10. Control Endpoint OUT Transaction

Set the mode bits to ACK
the IN token

Is SETUP
token received?

The block ACKs it

Generates Interrupt and sets the bit in EP0_CR register to
indicate that SETUP token was received

No

Yes

Read the status bit and data valid
bit

Is Data Valid?

Read the EP0_DRx register to find the
type of request

Copy the required data to the EP0_DRx
registers

Set the data valid bit and the mode bits.
Also update the byte count value

Is IN
Token Received?

No

The block transmits the data from the
EP0_DRx registers

The block sets the mode value to NAK all
further IN tokens

Block generates interrupt on receiving
ACK from host and sets the IN byte

received bit

Are all bytes
transferred?

End

No

No

Yes

Yes

Yes

Program the mode bits for
ACK_OUT

Is SETUP
token received?

The block ACKs it

Generates Interrupt and sets the bit in EP0_CR
register to indicate that SETUP token was received

No

Yes

Read the data valid bit in
EP0_CNT

Is Data Valid?

Read the EP0_DRx register to find the
type of request

Update the mode bits to ACK an
OUT token

Is OUT
Token Received?

No

The block stores the received byte to the
EP0_DRx registers and ACK the received

byte

Interrupt generated

Read the status and data valid bits

Are all bytes
transferred?

End

No

No

Yes

Yes

Is data
Valid?

Set the mode bit to NAK all OUT tokens
till all bytes have been received

No

Yes

Yes

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 432

Universal Serial Bus (USB) Device Mode

31.5 USB Power Modes
The USB supports two modes of operation:

■ Active mode: In this mode, the USB is powered up and clocks are turned on.

■ Low-power (Deep Sleep) mode: In this mode, all clocks except the low-frequency clock are turned off.

Before entering low-power mode, the firmware should enable the GPIO interrupt (falling edge interrupt) on the D+ pin. The
USB suspend mode can be determined by monitoring the SOF interrupt; this means, if there is no SOF interrupt from the USB
for more than 3 ms, the USB goes into suspend mode and the block can be put into low-power mode by the firmware.

If there is any activity on the USB bus, D+ will be pulled low, which will cause a CPU interrupt. This interrupt can be used to
wake up the USB device.

31.6 USB Device Registers

Name Description

USBDEV_EP0_DR Control endpoint EP0 data register

USBDEV_CR0 USB control 0 register

USBDEV_CR1 USB control 1 register

USBDEV_SIE_EP_INT_EN USB SIE data endpoint interrupt enable register

USBDEV_SIE_EP_INT_SR USB SIE data endpoint interrupt status

USBDEV_SIE_EPx_CNT0 Non-control endpoint count register

USBDEV_SIE_EPx_CNT1 Non-control endpoint count register

USBDEV_SIE_EPx_CR0 Non-control endpoint's control register

USBDEV_USBIO_CR0 USBIO control 0 register

USBDEV_USBIO_CR2 USBIO control 2 register

USBDEV_USBIO_CR1 USBIO control 1 register

USBDEV_DYN_RECONFIG USB dynamic reconfiguration register

USBDEV_SOF0 Start of frame register

USBDEV_SOF1 Start of frame register

USBDEV_OSCLK_DR0 Oscillator lock data register 0

USBDEV_OSCLK_DR1 Oscillator lock data register 1

USBDEV_EP0_CR Endpoint0 control register

USBDEV_EP0_CNT Endpoint0 count register

USBDEV_ARB_RWx_WA
Endpoint write address value register. Pointer value increments by 1 when
accessed by CPU/debugger

USBDEV_ARB_RWx_WA_MSB Endpoint write address value register

USBDEV_ARB_RWx_RA
Endpoint read address value register. Pointer value increments by 1 when
accessed by CPU/debugger

USBDEV_ARB_RWx_RA_MSB Endpoint read address value register

USBDEV_ARB_RWx_DR Endpoint data register

USBDEV_BUF_SIZE Dedicated endpoint buffer size register

USBDEV_EP_ACTIVE Endpoint active indication register

USBDEV_EP_TYPE Endpoint type (IN/OUT) indication register

USBDEV_ARB_EPx_CFG Endpoint configuration register

USBDEV_ARB_EPx_INT_EN Endpoint interrupt enable register

USBDEV_ARB_EPx_SR Endpoint interrupt enable register

USBDEV_ARB_CFG Arbiter configuration register

USBDEV_USB_CLK_EN USB block clock enable register

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 433

Universal Serial Bus (USB) Device Mode

USBDEV_ARB_INT_EN Arbiter interrupt enable register

USBDEV_ARB_INT_SR Arbiter interrupt status register

USBDEV_CWA Common area write address register

USBDEV_CWA_MSB Endpoint read address value register

USBDEV_DMA_THRES DMA burst / threshold configuration register

USBDEV_DMA_THRES_MSB DMA burst / threshold configuration register

USBDEV_BUS_RST_CNT Bus reset count register

USBDEV_MEM_DATA Data register

USBDEV_SOF16 Start of frame register

USBDEV_OSCLK_DR16 Oscillator lock data register

USBDEV_ARB_RWx_WA16
Endpoint write address value register. Pointer value increments by 2 when
accessed by CPU/debugger

USBDEV_ARB_RWx_RA16
Endpoint read address value register. Pointer value increments by 2 when
accessed by CPU/debugger

USBDEV_ARB_RWx_DR16 Endpoint data register

USBDEV_DMA_THRES16 DMA burst / threshold configuration register

USBLPM_POWER_CTL Power control register

USBLPM_USBIO_CTL USB IO control register

USBLPM_FLOW_CTL Flow control register

USBLPM_LPM_CTL LPM control register

USBLPM_LPM_STAT LPM status register

USBLPM_INTR_SIE USB SOF, BUS RESET, and EP0 interrupt status register

USBLPM_INTR_SIE_SET USB SOF, BUS RESET, and EP0 interrupt set register

USBLPM_INTR_SIE_MASK USB SOF, BUS RESET,, and EP0 interrupt mask register

USBLPM_INTR_SIE_MASKED USB SOF, BUS RESET, and EP0 interrupt masked register

USBLPM_INTR_LVL_SEL Select interrupt level for each interrupt source register

USBLPM_INTR_CAUSE_HI High-priority interrupt cause register

USBLPM_INTR_CAUSE_MED Medium-priority interrupt cause register

USBLPM_INTR_CAUSE_LO Low-priority interrupt cause register

Name Description

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 434

32. Universal Serial Bus (USB) Host

The USB subsystem in PSoC 6 MCUs can be configured to function as a USB host. The USB host in the PSoC 6 MCU sup-
ports both full-speed (12 Mbps) and low-speed (1.5 Mbps) devices and is designed to be complaint with the USB Specifica-
tion Revision 2.0. This chapter details the PSoC 6 MCU USB and its operations. For details about the USB specification, refer
to the USB Implementers Forum website.

32.1 Features
The USB host in the PSoC 6 MCU has the following features:

■ Automatic detection of device connection or disconnection

■ Automatic detection of full-speed or low-speed transfer

■ Supports USB bus reset function

■ Supports IN, OUT, SETUP. and SOF tokens

■ Supports Bulk, Control, Interrupt, and Isochronous transfer

■ Automatic detection of handshake packet for OUT token and automatic sending of handshake packet for IN token (exclud-
ing STALL)

■ Supports a maximum packet length of up to 256 bytes

■ Supports action against errors (CRC error, toggle error, and timeout)

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

http://www.usb.org/
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 435

Universal Serial Bus (USB) Host

32.2 Architecture
Figure 32-1. USB Host Block Diagram

32.2.1 USB Physical Layer (USB PHY)

The USB includes the transmitter and receiver (transceiver),
which corresponds to the USB PHY. This module allows
physical layer communication with the USB device through
the D+, D–, and VDDUSB pins. It handles differential mode
communication with the device. The USB PHY also includes
pull-down resistors on the D+ and D– lines. Differential
signaling is used between the USB host and the device. The
host controller unit receives the differential signal from the
device and converts it to a single-ended signal. While
transmitting, the host controller unit converts the single-
ended signal to the differential signal, and transmits it to the
device. The differential signal is at a nominal voltage range
of 0 V to 3.3 V.

32.2.2 Clock Control Block

This block controls the gated clocks – system clock and
USB clock. The USB host requires a clock frequency of
48 MHz. USB host compliance requires a clock source with
an accuracy of ±0.25 percent. One way of doing this is to
use Clk_HF[3] sourced from an highly accurate ECO. The
PLL can be used to generate the required 48-MHz clock
from the ECO. Refer to the Clocking System chapter on
page 221 for details on generation of clock required for USB
operation.

32.2.3 Interrupt Control Block

This block controls the interrupts associated with USB host
operations. The USB host block has three general-purpose
interrupt signals: USBHOST_INTR_USBHOST_LO,
USBHOST_INTR_USBHOST_MED, and
USBHOST_INTR_USBHOST_HI. There are 11 interrupt
trigger events associated with USB host operation that can

be mapped to any of the three interrupt lines. Each of these
three interrupt lines has a status register to identify the
interrupt source. These are the
USBHOST_INTR_USBHOST_CAUSE_LO,
USBHOST_INTR_USBHOST_CAUSE_MED, and
USBHOST_INTR_USBHOST_CAUSE_HI,
USBHOST_INTR_USBHOST_EP_CAUSE_LO,
USBHOST_INTR_USBHOST_EP_CAUSE_MED and
USBHOST_INTR_USBHOST_EP_CAUSE_HI registers.

32.2.4 Endpoint n (n=1, 2)

The USB host has two endpoints. The maximum buffer size
of endpoint 1 is 256 bytes and that of endpoint 2 is 64 bytes.
The endpoint buffers are used to send and receive data. If
endpoint 1 is used as the transmitter, endpoint 2 must be
used as the receiver and vice-versa. The DIR bit of the
USBHOST_HOST_EPn_CTL (n=1, 2) register is used to
configure the endpoint as an IN buffer (DIR=0) or OUT buf-
fer (DIR=1).

32.2.5 DMA Request (DREQ) Control

The USB host supports data transfer using DMA. DMA
operation is enabled by configuring the USB-
HOST_HOST_DMA_ENBL register. There are two DMA
transfer modes: Automatic data transfer mode and packet
transfer mode. The DMAE bit of the USB-
HOST_HOST_EPn_CTL (n=1, 2) register is used to set the
mode of DMA transfer. The Host Endpoint Block register
(USBHOST_HOST_EPn_BLK; n=1, 2) sets the total num-
ber of bytes for DMA transfer.

Control / Status Registers
Interrupt
Control
Block

Clock
Control
Block

Interrupt
Signals

System Clock
(at least 13 MHz)

DREQ
Signals

USB Clock
(48 MHz)

Endpoint Block

Endpoint 1

R
eg

is
te

rs FFs

FIFO Control

x2

Endpoint 2

R
e

g
is

te
rs

FIFO Control

FFs
DREQ

Control

Host
Controller

Unit

U
S

B
 P

H
Y

D+

D-

VDDUSB

x2

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 436

Universal Serial Bus (USB) Host

32.3 USB Host Operations
To operate the USB as a host, the following settings are required:

■ Enable the pull-down resistors on both D+ and D– pins. To enable the pull-down resistors, set the DP_DOWN_EN bit and
DM_DOWN_EN bit of the power control register (USBLPM_POWER_CTL) to ‘1’.

■ Set both the HOST and ENABLE bits of the Host Control 0 register (USBHOST_HOST_CTL0) to ‘1’.

■ Set the USTP bit of the Host Control 1 register (USBHOST_HOST_CTL1) to ‘0’.

■ Supply the operating clock for USB (48 MHz ± 0.25%). In the PSoC 6 MCU, CLK_HF3 is the clock source. The required
USB clock can be generated using one of the following clocking schemes:

❐ IMO (trimmed with USB) -> PLL -> CLK_HF3

❐ ECO (with the required accuracy) -> PLL -> CLK_HF3

❐ Use external clock (EXTCLK) with the required accuracy.

32.3.1 Detecting Device Connection

When an external USB device is not connected, both the D+ and D– pins are set to logic LOW by the pull-down resistors. In
the unconnected state, CSTAT bit of the USBHOST_HOST_STATUS register is '0' and the TMODE bit is undefined. If an
external USB device is connected, then the CSTAT bit is set to '1'.

When a device is detected, the CNNIRQ bit of the Interrupt USB host (USBHOST_INTR_USBHOST) register is set to '1'. A
device can be detected either by the method of interrupt or by polling. If '1' is set to the CNNIRQM bit of the Interrupt USB
host (USBHOST_INTR_USBHOST_MASK) register, a device connection interrupt occurs. To clear this interrupt, write '1' to
the CNNIRQ bit of USBHOST_INTR_USBHOST register. When detecting a device connection by polling, set the CNNIRQM
bit of the USBHOST_INTR_USBHOST_MASK register to '0' and check when the CNNIRQ bit of
USBHOST_INTR_USBHOST changes to '1'.

Figure 32-2. Device Connection

32.3.2 Obtaining Transfer Speed of the USB Device

To obtain the possible transfer speed of the remote USB device after detecting a connection, check the value of the TMODE
bit of the USBHOST_HOST_STATUS register. The following shows the relationships between the transfer speed and the
value of the TMODE bit of USBHOST_HOST_STATUS.

■ If TMODE=1, then the device is a full-speed device

■ If TMODE=0, then the device is a low-speed device

Figure 32-3 shows the flow chart for device connection detection and obtaining the transfer speed.

USB DP

USB DM

CSTAT bit of
HOST_STATUS

2.5us or more

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 437

Universal Serial Bus (USB) Host

Figure 32-3. Device Connection and Transfer Speed Detection Flow Chart

32.3.3 USB Bus Reset

The USB bus is reset by sending SE0 for 10 ms or more if the URST bit of the USBHOST_HOST_STATUS register is set to
'1'. After the USB bus is reset, the URST bit of HOST_STATUS is set to '0', and the URIRQ bit of
USBHOST_INTR_USBHOST is set to '1'. If the URIRQM bit of the USBHOST_INTR_USBHOST_MASK register is then set
to '1', an interrupt occurs. To clear this interrupt, write '1' to the URIRQ bit of USBHOST_INTR_USBHOST.

Figure 32-4 shows the timing diagram for USB bus reset.

START

Enable pull down resistors on D+ and D -
POWER_CTL.DP_DOWN_EN=1
POWER_CTL.DM_DOWN_EN=1

Enable Host operation
HOST_CTL0.HOST=1

HOST_CTL0.ENABLE=1

Enable USB Host Clock and release the reset for USB host
HOST_CTL1.USTP=0
HOST_CTL1.RST=0

If
INTR_USBHOST.CNNIRQ=1

If
HOST_STATUS.TMODE=1

USB device is Full speed
HOST_CTL1.CLKSEL=0

USB device is Low speed
HOST_CTL1.CLKSEL=1

END

Yes

No

Yes

No

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 438

Universal Serial Bus (USB) Host

Figure 32-4. Device Reset Timing Diagram

32.3.4 USB Packets

Exchange of information between the host and the device takes place in the form of packets, which are always initiated by the
host. There are three types of USB packets:

■ Token

■ Data

■ Handshake

The following sections explain about the settings required to initiate the packets by the PSoC 6 MCU USB host.

32.3.4.1 Token Packet

Endpoint 1 and Endpoint 2 buffers are used to send and receive data. If the DIR bit of the USBHOST_HOST_EP1_CTL
register is '1', the Endpoint 1 buffer is an OUT buffer. If the DIR bit of the USBHOST_HOST_EP2_CTL register is '0', then the
Endpoint 2 buffer is an IN buffer. Both the endpoints should never be configured as an OUT buffer or IN buffer
simultaneously, which implies that if Endpoint 1 is an OUT buffer then Endpoint 2 must be an IN buffer and vice-versa.

Use the following settings to process a token packet:

IN Token

1. Set the BFINI bit of the USBHOST_HOST_EP1_CTL and USBHOST_HOST_EP2_CTL registers to '1'.

2. Set the DIR bit of the USBHOST_HOST_EP1_CTL and USBHOST_HOST_EP2_CTL registers. Note that if Endpoint 1 is
an OUT buffer then Endpoint 2 must be an IN buffer and vice-versa.

3. Set the BFINI bit of the USBHOST_HOST_EP1_CTL and USBHOST_HOST_EP2_CTL registers to ‘0’.

4. Specify the target address in the USBHOST_HOST_ADDR register.

5. Specify the maximum number of bytes for the packet in the PKSn (n = 1, 2) bit field.

6. Specify the target endpoint, token (IN token), and toggle data in the USBHOST_HOST_TOKEN register.

7. Check if the token transfer is complete; the CMPIRQ bit will be set to ‘1’. To clear this interrupt, write ‘1’ to the CMPIRQ bit
of the USBHOST_INTR_USBHOST register. Note that the interrupt is triggered only if the CMPIRQM bit of the
USBHOST_INTR_USBHOST_MASK register is ‘1’.

8. Check for token packet transfer errors using the USBHOST_HOST_ERR register. Handle the errors, if any, appropriately.

9. Read the EPnDRQ (n = 1 or 2) bit of the USBHOST_INTR_HOST_EP register. A value of ‘1’ indicates that the packet
transfer ended normally. Clear the EPnDRQ bit by writing ‘1’.

Pin D+

Pin D-

URST bit of
USBHOST_HOST_STATUS

CSTAT bit of
USBHOST_HOST_STATUS

URIRQ bit of
USBHOST_INTR_USBHOST

CNNIRQ bit of
USBHOST_INTR_USBHOST

10 ms or more

2.5 µs or moreWrite ش� to the URST bit of
USBHOST_HOST_STATUS

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 439

Universal Serial Bus (USB) Host

10. Read data received from USBHOST_HOST_EPn_RWn_DR register (n =1, 2).

OUT and SETUP Tokens

1. Set the BFINI bit of the USBHOST_HOST_EP1_CTL and USBHOST_HOST_EP2_CTL registers to ‘1’.

2. Set the DIR bit of the USBHOST_HOST_EP1_CTL and USBHOST_HOST_EP2_CTL registers. Note that if Endpoint 1 is
an OUT buffer then Endpoint 2 must be an IN buffer and vice-versa.

3. Set the BFINI bit of the USBHOST_HOST_EP1_CTL and USBHOST_HOST_EP2_CTL registers to ‘0’.

4. Specify the target address in the USBHOST_HOST_ADDR register.

5. Specify the maximum number of bytes for the packet in the PKSn (n = 1, 2) bit field.

6. Write the data to be sent to the Endpoint n (n = 1 or 2) buffer. Use USBHOST_HOST_EPn_WR1_DR for 1-byte data and
USBHOST_HOST_EPn_WR2_DR for 2-byte data. Also, set the EPnDRQ (n = 1 or 2) bit of the USBHOST_IN-
TR_HOST_EP register as ‘1’.

7. Specify the target endpoint, token (OUT token), and toggle data in the USBHOST_HOST_TOKEN register.

8. Check if the token transfer is complete; the CMPIRQ bit will be set to ‘1’. To clear this interrupt, write ‘1’ to the CMPIRQ bit
of the USBHOST_INTR_USBHOST register. Note that the interrupt is triggered only if the CMPIRQM bit of the USB-
HOST_INTR_USBHOST_MASK register is ‘1’.

9. Check for token packet transfer errors using the USBHOST_HOST_ERR register. Handle the errors, if any, appropriately.

The USB PHY sends a token packet in the order of sync, token, address, endpoint, CRC5, and EOP based on the specified
token; however, sync, CRC5, and EOP are sent automatically. After one packet is sent, the CMPIRQ bit of the
USBHOST_INTR_USBHOST register is set to ‘1’. The TKNEN bit of the USBHOST_HOST_TOKEN register is set to ‘000’. At
this time, if the CMPIRQM bit of USBHOST_INTR_USBHOST_MASK register is '1', an interrupt occurs. To clear this
interrupt, write '1' to the CMPIRQ bit of the USBHOST_INTR_USBHOST register.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 440

Universal Serial Bus (USB) Host

Figure 32-5. IN Token Flow Chart Figure 32-6. SETUP/OUT Token Flow Chart

Specify the target address in
HOST_ADDR

Configure the packet size for the endpoints using
the

HOST_EPn_CTL (n=1,2) registers

HOST_TOKEN settings (specify Toggle data, Endpoint)
HOST_TOKEN.TKNEN = 0x02

INTR_USBHOST.CMPIRQ=1?
Check for token transfer

 completion

Is SOF Lost
HOST_ERR.LSTSOF=1?

Check for Time out error
HOST_ERR.TOUT=1?

Check for Handshake error
HOST_ERR.HS=00?

END

Error Processing

Check for toggle error
HOST_ERR.TGERR=1?

No

Yes

No

No

No

No

Is
INTR_HOST_EP.EPnDRQ=1

Read received data from
HOST_EPn_RWn_DR

Register (n=1,2)

INTR_HOST_EP.EPnDRQ = 0

No

Yes

START

Set the BFINI bit of HOST_EP1_CTL and HOST_EP2_CTL to ‘1'
Set DIR bit HOST_EP1_CTL and HOST_EP2_CTL to ‘1’ or ‘0’.

Set the BFINI bit of HOST_EP1_CTL and HOST_EP2_CTL to ‘0'

Yes

Yes

Yes

Yes

START

Specify the target address in
HOST_ADDR

Configure the packet size for the endpoints using
the

HOST_EPn_CTL (n=1,2) registers

HOST_TOKEN settings (specify Toggle data, Endpoint)
HOST_TOKEN.TKNEN = 0x01 for Setup Token
HOST_TOKEN.TKNEN = 0x03 for Out Token

INTR_USBHOST.CMPIRQ=1?
Check for token transfer

 completion

Is SOF Lost
HOST_ERR.LSTSOF=1?

Check for Time out error
HOST_ERR.TOUT=1?

Check for Handshake error
HOST_ERR.HS=00?

END

Error
Processing

Check for toggle error
HOST_ERR.TGERR=1?

No

Yes

No

No

Yes

Write data to HOST_EPn_RWn_DR
(n= 1,2)

Set INTR_HOST_EP.EPnDRQ=1
(n=1,2)

No

Yes

Yes

Yes

Set the BFINI bit of HOST_EP1_CTL and HOST_EP2_CTL to ‘1'
Set DIR bit HOST_EP1_CTL and HOST_EP2_CTL to ‘1’ or ‘0’.

Set the BFINI bit of HOST_EP1_CTL and HOST_EP2_CTL to ‘0'

Yes

No

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 441

Universal Serial Bus (USB) Host

When issuing an SOF token, specify the EOF time in the Host EOF Setup (USBHOST_HOST_EOF) register and the frame
number in the Host Frame Setup (USBHOST_HOST_FRAME) register respectively. Then, specify an SOF token code in the
TKNEN bit of the USBHOST_HOST_TOKEN register. After sync, SOF token, frame number, CRC5, and EOP are sent, the
SOFBUSY bit of the USBHOST_HOST_STATUS register is set to ‘1’, and the USBHOST_HOST_FRAME register is
incremented by one. The CMPIRQ bit of the USBHOST_INTR_USBHOST register is also set to ‘1’, causing the TKNEN bit of
the USBHOST_HOST_TOKEN register to be cleared to ‘000’. To clear a token completion interrupt, write ‘1’ to the CMPIRQ
bit of the Host Interrupt (USBHOST_HIRQ) register.

An SOF is automatically sent every 1 ms while the SOFBUSY bit of the USBHOST_HOST_STATUS register is ‘1’.
Figure 32-7 depicts steps to send an SOF token

Figure 32-7. SOF Token Flow Chart

The conditions (SOF stop conditions) to set the SOFBUSY bit of the USBHOST_HOST_STATUS register to ‘0’ are as fol-
lows:

■ Writing 0 to the SOFBUSY bit of USBHOST_HOST_STATUS

■ Resetting the USB bus

■ Writing 1 to the SUSP bit of USBHOST_HOST_STATUS

■ Disconnecting the USB device (when the CSTAT bit of USBHOST_HOST_STATUS is ‘0’)

The USBHOST_HOST_EOF register is used to prevent the SOF from being sent simultaneously with other tokens. If the
TKNEN bit of the USBHOST_HOST_TOKEN register is written within the time period specified by the
USBHOST_HOST_EOF register, the specified token is placed into the wait state. After the SOF is sent, the token in the wait
state is issued. The HOST_EOF Setup register specifies a 1-bit time as the time unit. When the EOF setting is shorter than
the 1-packet time, SOF may be sent doubly during execution of other tokens. In this case, the LSTSOF bit of the Host Error
Status (USBHOST_HOST_ERR) register is set to ‘1’ and SOF is not sent. If ‘1’ is set to the LSTSOF bit of the
USBHOST_HOST_ERR register, the value of the Host EOF Setup register must be increased.

Figure 32-8. SOF Timing

START

HOST_FRAME Setting

HOST_EOF Setting

HOST_TOKEN setting

INTR_USBHOST.CMPIRQ=1?

HOST_ERR.LSTSOF=1?

END

Error
Processing

Yes

No

Yes

No

1 ms

EOF setting time

SOF

EOF setting time

SOF

EOF > 1-packet time

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 442

Universal Serial Bus (USB) Host

32.3.4.2 Data Packet

Follow these steps to send or receive a data packet after
sending a token packet.

■ Transmitting data (host to device)

❐ Sync pattern is automatically sent.

❐ If the TGGL bit of USBHOST_HOST_TOKEN is 0,
DATA0 is sent. If the TGGL bit is 1, DATA1 is sent.

❐ If the DIR bit of the USBHOST_HOST_EP1_CTL
register is 1 (that is, if EP1 is an OUT endpoint),
select the Endpoint 1 buffer; otherwise, select the
Endpoint 2 buffer. Then, send all the target data.

❐ 16-bit CRC is automatically sent.

❐ 2-bit EOP is automatically sent.

❐ 1-bit J State is automatically sent.

■ Receiving data (device to host)

❐ Receive sync.

❐ Receive toggle data, and compare it with the value of
the TGGL bit of HOST_TOKEN.

❐ If the toggle data matches the value of the TGGL bit,
check the DIR bit of HOST_EP1_CTL. If the DIR bit
is 1, select the Endpoint 2 buffer; otherwise, select
the Endpoint 1 buffer. Then, distribute the received
data to the respective buffers.

❐ Verify the 16-bit CRC when EOF is received.

32.3.4.3 Handshake Packet

A handshake packet is used to notify the remote device of
the status of the local device. A handshake packet sends
either one of ACK, NAK, and STALL from the receiving side
when it is judged that the receiving side is ready to receive
data normally. If the USB circuit receives a handshake
packet, the type of the received handshake packet is set to
the HS bit of the USBHOST_HOST_ERR register.

32.3.5 Retry Function

When a NAK or CRC error occurs at the end of a packet, if
‘1’ is set to the RETRY bit of the Host Control 2
(USBHOST_HOST_CTL2) register, processing is retried
repeatedly for the period specified in the Host Retry Timer
Setup (USBHOST_HOST_RTIMER) register.

When an error other than STALL or device disconnection
occurs, the target token is retried if the RETRY bit of
HOST_CTL2 is 1. The conditions to end retry processing
are as follows.

■ The RETRY bit of HOST_CTL2 is set to 0.

■ ‘0’ is detected in the retry timer.

■ The interrupt flag is generated by SOF (SOFIRQ of
USBHOST_INTR_USBHOST = 1).

■ ACK is detected.

■ A device disconnection is detected.

The retry timer is activated when a token is sent while the
RETRY bit of HOST_CTL2 is ‘1’. The retry time is then dec-

remented by one when a 1-bit transfer clock (12 MHz in full-
speed mode) is output. When the retry timer reaches 0, the
target token is sent, and processing ends. If a token retry
occurs in the EOF area, the retry timer is stopped until SOF
is sent. After SOF is sent, the retry timer restarts with the
value that is set when the timer stopped.

32.3.6 Error Status

The USB host supports detection of the following types of
errors:

■ Stuffing Error

If 1 is writter to six successive bits, 0 is inserted into one
bit. If 1 is successively detected in seven bits, it is
regarded as a Stuffing error, and the STUFF bit of the
USBHOST_HOST_ERR register is set to 1. To clear this
status, write ‘1’ to the STUFF bit.

■ Toggle Error

When sending an IN token, the Toggle Data field of a
data packet is compared with the value of the TGGL bit
of the USBHOST_HOST_TOKEN register. If they do not
match, the TGERR bit of the USBHOST_HOST_ERR
register is set to 1. To clear the TGERR bit, write ‘1’ to
the TGERR bit of the USBHOST_HOST_ERR register.

■ CRC Error

When receiving an IN token, the data and CRC of the
received data packet are obtained with the CRC
polynomial G(X) = X16 + X15 + X2 + 1. If the remainder
is not 0x800D, it means that a CRC error has occurred,
and the CRC bit of the USBHOST_HOST_ERR register
is set to 1. To clear the CRC bit, write ‘1’ to the CRC bit
of USBHOST_HOST_ERR. For more details, refer to the
documentation: CRC in USB.

■ Time Out Error

The TOUT bit of the USBHOST_HOST_ERR register is
set and time out error is considered under any of the
following conditions:

❐ A data packet or handshake packet is not input in the
specified time

❐ SE0 is detected when receiving data

❐ Stuffing error is detected

To clear the TOUT bit, write 0 to the TOUT bit of the
USBHOST_HOST_ERR register.

■ Receive Error

The PKSn (n = 1, 2) bit of Endpoint Control register
(USBHOST_HOST_EPn_CTL; n=1, 2) indicates the
receiver packet size. When the received data exceeds
the specified receive packet size, the RERR bit of the
USBHOST_HOST_ERR register is set to 1. To clear the
RERR bit, write ‘1’ to the RERR bit of
USBHOST_HOST_ERR.

■ Lost SOF Error

When the LSTSOF bit of the USBHOST_HOST_ERR
register is set, it means that the SOF token cannot be

https://www.usb.org/sites/default/files/crcdes.pdf

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 443

Universal Serial Bus (USB) Host

sent because another token is in process. When this bit
is ‘0’, it means that no lost SOF error is detected.

32.3.7 End of Packet (EOP)

If a packet ends in the USB host, the CMPIRQ bit of the
USBHOST_INTR_USBHOST register is set to 1. At this

time, if the CMPIRQM bit of the
USBHOST_INTR_USBHOST_MASK register is 1, an
interrupt occurs.

When a packet ends, the interrupt is generated when the
TKNEN bit of the USBHOST_HOST_TOKEN register is set
as ‘001’ (SETUP token), ‘010’ (IN token), ‘011’ (OUT token),
or ‘100’ (SOF token).

Figure 32-9. EOP Interrupt Timing Diagram (for IN/OUT/SETUP token)

Figure 32-10. EOP Interrupt Timing Diagram (for SOF token)

32.3.8 Interrupt Sources

The USB host generates 11 interrupts to the CPU. These interrupts are mapped to three general-purpose interrupt lines:
USBHOST_INTR_LO, USBHOST_INTR_MED, and USBHOST_INTR_HI. Each of these three interrupt lines has an
associated status register, which identifies the cause of the interrupt event. These are
USBHOST_INTR_USBHOST_CAUSE_LO, USBHOST_INTR_USBHOST_CAUSE_MED,
USBHOST_INTR_USBHOST_CAUSE_HI, USBHOST_INTR_HOST_EP_CAUSE_LO,
USBHOST_INTR_HOST_EP_CAUSE_MED, and USBHOST_INTR_HOST_EP_CAUSE_HI.

J-ST DATA

CMPIRQ bit of INTR_USBHOST

Sync TKN ADR ENDP CRC5 EOP J-ST Sync TGGL CRC16 EOP J-ST Sync ACK EOP J-ST

J-ST : J State

TKN

ADR

ENDP

TGGL

: Token

: Address

: Endpoint

: Toggle

Write data to the
TKNEN bit of
HOST_TOKEN Token Packet Data Packet Handshake Packet

Write data to the TKNEN bit of HTOKEN.

J-ST Sync TKN FRAME CRC5 EOP J-ST

CMPIRQ bit
(HIRQ)

J-ST : J State
TKN : Token
FRAME : Frame Number

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 444

Universal Serial Bus (USB) Host

Figure 32-11. USB Host Interrupt Sources

The following events generate an interrupt on one of the three interrupt lines:

■ Start-of-frame (SOF) event

SOF interrupt is generated when an SOF token is sent. The SOF interrupt is enabled by setting the SOFIRQM bit of the
USBHOST_INTR_USBHOST_MASK register. The status of the SOF interrupt is reflected in the SOFIRQ bit of the
USBHOST_INTR_USBHOST register.

■ Device connection and disconnection events

The CNNIRQ bit of the USBHOST_INTR_USBHOST register is set to ‘1’ when a device connection is detected. The
interrupt can be enabled by setting the CNNIRQM bit of the USBHOST_INTR_USBHOST_MASK register.

When a device is disconnected, an interrupt is generated if the DIRQM bitfield of USBHOST_INTR_USBHOST_MASK is
set to ‘1’. The status of the device disconnection is reflected in the DIRQ bit of the USBHOST_INTR_USBHOST register.

■ USB bus reset event

The URIRQ bit of the USBHOST_INTR_USBHOST register is set when the USB bus reset ends. An interrupt is generated
if the URIRQM bit of the USBHOST_INTR_USBHOST_MASK register is set to ‘1’.

■ Token completion event

When token (IN, OUT, or SETUP token) processing is complete, the CMPIRQ bit of the USBHOST_INTR_USBHOST
register is set. An interrupt is generated if the CMPIRQM bit is set to ‘1’.

■ Interrupt on resume event

The RWKIRQ bit of the USBHOST_INTR_USBHOST register is set when the host enters the resume state from suspend
state. The RWKIRQ bit is set under the following conditions:

❐ The SUSP bit of the USBHOST_HOST_STATUS register is set to ‘0’.

❐ The D+/D– pins are placed in the K-state.

❐ A device connection/disconnection is detected.

An interrupt is generated on a resume event if the RWKIRQM bit of the USBHOST_INTR_USBHOST_MASK register is
set to ‘1’.

■ Interrupt on token cancellation

Interrupt Control/Status Registers

CM4
Interrupt

Controller

DIRQ

RWKIRQ

INTR_HI

INTR_MED

INTR_LO

CM0+
Interrupt

ControllerMUX

SOFIRQ

CNNIRQ

CMPIRQ

URIRQ

TCAN

EP2DRQ

EP1SPK

EP1DRQ

EP2SPK

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 445

Universal Serial Bus (USB) Host

An interrupt is generated when a token send is canceled based on the setting of the CANCEL bit in the Host Control 2
register (USBHOST_HOST_CTL2). If the CANCEL bit is set and if the target token is written to the
USBHOST_HOST_TOKEN register in the EOF area (specified in the Host EOF Setup register), the token send is
canceled.

■ Endpoint interrupts

The USB host has two endpoints: Endpoint1 and Endpoint2. Each endpoint can generate two interrupts. When the packet
transfer of an endpoint ends normally, the EPnDRQ (n=1or 2) bit of the USBHOST_INTR_HOST_EP register is set to ‘1’.
An interrupt can be triggered if the EPnDRQM (n=1or 2) bit of the USBHOST_INTR_HOST_EP_MASK register is set to
‘1’. If the packet size does not match the packet size specified in the PKS bit of the HOST_EPn_CTL (n=1 or 2) register,
the EPnSPK (n=1or 2) bit of the USBHOST_INTR_HOST_EP register is set. An interrupt can be configured by setting the
EPnSPKM (n=1or 2) bit of the USBHOST_INTR_HOST_EP_MASK register.

32.3.9 DMA Transfer Function

Data handled by the USB host can be transferred via DMA between the send/receive buffer and the internal RAM. There are
two modes of DMA transfer:

■ Packet transfer mode

■ Automatic buffer transfer mode

32.3.9.1 Packet Transfer Mode

The packet transfer mode transfers each packet according to the configured data size in DMA. This transfer mode can access
each buffer of the endpoints.

In the packet transfer mode the OUT direction transfer (host to device) involves the following sequence of steps:

1. After the EPnDRQ bit (n=1 or 2) of the USBHOST_INTR_HOST_EP register is set and the interrupt handling is entered,
configure the DMA register settings relevant to the number of transfers and block size corresponding to the data size to be
transferred in the next OUT packet; then, enable DMA to start the transfer.

2. After the DMA transfer, clear the EPnDRQ bit (n=1 or 2) of the USBHOST_INTR_HOST_EP register and the interrupt
cause flag of DMAC, and return from the interrupt handling.

Figure 32-12. Packet Transfer Mode: OUT Direction

Host Device OUT DATA0

ACKDevice Host

DMAE bit 0

DM_EPnDRQE bit
 (n=1 or 2)

EPnDRQ bit
 (n=1 or 2)

OUT DATA1

ACK

Write the data to the
HOST_EPn_RW1_DR or

HOST_Epn_RW2_DR by DMAC
(DATA0)

EPnDRQ bit
is cleared

by software

Write the data to the
HOST_EPn_RW1_DR or

HOST_Epn_RW2_DR by DMAC
(DATA1)

EPnDRQ bit
is cleared

by software

Generate the
interrupt of DMAC

Genarate the
interrupt of DMAC

OUT packet OUT packet

OUT token is
issued

OUT token is
issued

DMA is
configured and

enabled.

CMPIRQ is set to
1

CMPIRQ is set to
1

DM_EPnDRQ
E bit is

cleared by
software

DM_EPnDRQ
E bit is set by

software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 446

Universal Serial Bus (USB) Host

Figure 32-13. Packet Transfer Mode: IN Direction

The data transfer in the IN direction (device to host) involves the following sequence of steps:

1. After the EPnDRQ bit (n=1 or 2) of the USBHOST_INTR_HOST_EP register is set and the interrupt handling is entered,
check the transfer data size.

2. Configure the DMA register setting relevant to the number of transfers and block size corresponding to the transfer data
size, and then enable DMA to start the transfer.

3. After the transfer, clear the EPnDRQ bit (n=1 or 2) of the USBHOST_INTR_HOST_EP register and the interrupt source
flag of DMAC, and return from the interrupt handling.

32.3.9.2 Automatic Data Transfer Mode

Automatic data transfer mode is enabled by setting the DMAE bit of the USBHOST_HOST_EPn_CTL register (n=1 or 2).
When the EPnDRQ bit (n=1 or 2) of the USBHOST_INTR_HOST_EP register is set while DMAE is enabled, the DMA request
is automatically cleared when the data size corresponding to PKSn (n = 1, 2) bits of the USBHOST_HOST_EPn_CTL register
(n=1 or 2) has been transferred. Later, the same sequence is repeated until the data size configured in the DMA is reached.
In this mode, configuration by software is not required. Thus, this mode can transfer data automatically by a single setting. It
can also transfer even bytes; to transfer odd bytes, a software transfer sequence is required.

The data transfer in the OUT direction (host to device) must be processed in the following sequence:

1. Configure the DMA register setting relevant to the number of transfers and block size corresponding to the total data size,
and then enable DMA to start the transfer.

2. Set the packet size and total number of bytes for DMA transfer to PKS bits of the USBHOST_HOST_EPn_CTL (n=1 or 2)
register and BLK_NUM bits of the USBHOST_HOST_EPn_BLK (n=1 or 2) register, respectively.

3. Enable DMAE bit of the USBHOST_HOST_EPn_CTL (n=1 or 2) register and EPnDRQE bit of the Host DMA Enable
(USBHOST_HOST_DMA_ENBL) (n=1 or 2) register.

4. After the transfer, reconfigure the DMAC using an interrupt generated by the DMA controller, and clear the flag to return
from interrupt handling.

Host Device IN

DATA
0

ACK

Device Host

DMAE bit 0

DM_EPnDRQE
bit

 (n=1 or 2)
1

EPnDRQ bit
 (n=1 or 2)

IN

DATA1

ACK

Read the data from the
HOST_EPn_RW1_DR or

HOST_Epn_RW2_DR by DMAC
(DATA1)

EPnDRQ bit
is cleared

by software

Read the data from the
HOST_EPn_RW1_DR or

HOST_Epn_RW2_DR by DMAC
(DATA0)

EPnDRQ bit
is cleared

by software

Generate the
interrupt of DMAC

Generate the
interrupt of DMAC

IN packet IN packet

DMA is configured and DMA is
enabled.

After that, IN token is issued

DMA is configured and DMA is
enabled.

After that, IN token is issued

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 447

Universal Serial Bus (USB) Host

Figure 32-14. Automatic Data Transfer Mode: OUT Direction

To transfer the odd bytes of data via DMA, write the last byte of data by software transfer.

Figure 32-15. Odd Bytes Transfer in the OUT Direction

The data transfer in the IN direction (device to host) must be processed in the following sequence:

1. Configure the DMA register setting relevant to the number of transfers and block size corresponding to the total data size,
and then enable DMA to start the transfer.

2. Enable DMAE bit of the USBHOST_HOST_EPn_CTL (n = 1 or 2) register and EPnDRQE bit of the
USBHOST_HOST_DMA_ENBL (n = 1 or 2) register.

3. After the transfer, reconfigure the DMA controller using an interrupt generated by the DMAC and clear the flag to return
from interrupt handling.

Host Device OUT DATA0

ACKDevice Host

DMAE bit

EPnDRQ bit
(n=1 or 2)

OUT DATA1

ACK

Write the data to the
HOST_EPn_RW1_DR or

HOST_Epn_RW2_DR by DMAC
(DATA0)

EPnDRQ bit
cleared

automatically

Write the rest data to the
HOST_EPn_RW1_DR or

HOST_Epn_RW2_DR by DMAC
(DATA1)

EPnDRQ bit is
cleared

automatically

OUT packet Last OUT packet

DM_EPnDRQE
bit

 (n=1 or 2)

OUT token is
issued

DMA is configured
and DMA is

enabled.

CMPIRQ is set to
1

OUT token is
issued

CMPIRQ is set to
1

DMA Transfer (Write)

Write the data to the
HOST_Epn_RW1_DR by software

08 715

0x11
(byte 1)

0x22
(byte 2)

0x44
(byte 4)

0x33
(byte 3)

0x66
(byte 6)

0x55
(byte 5)

0x88
(byte 8)

0x77
(byte 7)

0x99
(byte 9)

Endpoint n Buffer

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 448

Universal Serial Bus (USB) Host

Figure 32-16. Automatic Data Transfer Mode: IN Direction

Figure 32-17. Odd Bytes Transfer in the IN Direction

To transfer the data size corresponding to odd number of bytes via DMA, either of the following methods can be used:

■ Use the software transfer only for the last data, and read the low-order byte (HOST_EPn_RW1_DR: n=1 or 2).

■ Transfer all the data + 1 byte via DMA, and discard the last data after an endian conversion.

IN

DATA0

ACK

DMAE bit 0

DM_EPnDRQE bit
(n=1 or 2)

1

EPnDRQ bit
 (n=1 or 2)

IN

DATA1

ACK

Read the data from the
HOST_EPn_RW1_DR or

HOST_Epn_RW2_DR by DMAC
(DATA1)

EPnDRQ bit is
cleared by

software

Read the data from the
HOST_EPn_RW1_DR or

HOST_Epn_RW2_DR by DMAC
(DATA0)

EPnDRQ bit is
cleared by

software

Genarate the interrupt
of DMAC

Generate the interrupt
of DMAC

IN packet IN packet

DMA is configured and DMA is enabled.
After that, IN token is issued

DMA is configured and DMA is enabled.
After that, IN token is issued

Host Device

Device Host

D
M

A
 T

ra
n

s
fe

r
(R

e
a

d
)

Read the data to the
HOST_EPn_RW1_DR by software

08 715

0x11
(byte 1)

0x22
(byte 2)

0x44
(byte 4)

0x33
(byte 3)

0x66
(byte 6)

0x55
(byte 5)

0x88
(byte 8)

0x77
(byte 7)

0x99
(byte 9)

D
M

A
 T

ra
n

s
fe

r
(R

e
a

d
)

08 715

0x11
(byte 1)

0x22
(byte 2)

0x44
(byte 4)

0x33
(byte 3)

0x66
(byte 6)

0x55
(byte 5)

0x88
(byte 8)

0x77
(byte 7)

0x99
(byte 9)

Endpoint n BufferEndpoint n Buffer

Undefined

The data is discarded

Transfer all of the data by DMATransfer the last data by software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 449

Universal Serial Bus (USB) Host

32.3.10 Suspend and Resume Operations

The USB host supports suspend and resume operations.

32.3.10.1 Suspend Operation

If the SUSP bit of the USBHOST_HOST_STATUS register is set, the following procedure is performed, and the USB circuit is
placed in the suspend state.

■ The USB bus is placed in the high-impedance state.

■ All circuit blocks with no clock required are stopped.

32.3.10.2 Resume Operation

The USB bus changes from the suspend state to the resume state to start processing when one of the following conditions is
satisfied.

■ SUSP bit of the USBHOST_HOST_STATUS register is set to ‘0’.

■ The D+ or D– pin is placed in the K-state mode by the device.

■ A device disconnection is detected.

■ A device connection is detected.

The host can start issuing tokens when RWKIRQ bit of the USBHOST_INTR_USBHOST register is set to ‘1’.

32.3.11 Device Disconnection

The device disconnection timer starts when both the D+ and D– pins are set to LOW. If both D+ and D– remain at LOW for
2.5 µs or more, the device is considered to be disconnected. This then sets the CSTAT bit of the USBHOST_HOST_STATUS
register as ‘0’ and the DIRQ bit of the USBHOST_INTR_USBHOST register as ‘1’. At this time, if the DIRQM bit of the
USBHOST_INTR_USBHOST_MASK register is 1, an interrupt occurs. To clear this interrupt, write '1' to the DIRQ bit of the
USBHOST_INTR_USBHOST register.

If the USB bus is reset, the device is considered to be disconnected. In this case, the CSTAT bit of the
USBHOST_HOST_STATUS register is set to ‘0’, but the DIRQ bit of the USBHOST_INTR_USBHOST register is not set to 1.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 450

Universal Serial Bus (USB) Host

32.4 USB Host Registers

Name Description

USBHOST_HOST_CTL0 Host control 0 register

USBHOST_HOST_CTL1 Host control 1 register

USBHOST_HOST_CTL2 Host control 2 register

USBHOST_HOST_ERR Host error status register

USBHOST_HOST_STATUS Host status register

USBHOST_HOST_FCOMP Host SOF interrupt frame compare register

USBHOST_HOST_RTIMER Host retry timer setup register

USBHOST_HOST_ADDR Host address register

USBHOST_HOST_EOF Host EOF setup register

USBHOST_HOST_FRAME Host frame setup register

USBHOST_HOST_TOKEN Host token endpoint register

USBHOST_HOST_EP1_CTL Host endpoint 1 control register

USBHOST_HOST_EP1_STATUS Host endpoint 1 status register

USBHOST_HOST_EP1_RW1_DR Host endpoint 1 data 1-byte register

USBHOST_HOST_EP1_RW2_DR Host endpoint 1 data 2-byte register

USBHOST_HOST_EP2_CTL Host endpoint 2 control register

USBHOST_HOST_EP2_STATUS Host endpoint 2 status register

USBHOST_HOST_EP2_RW1_DR Host endpoint 2 data 1-byte register

USBHOST_HOST_EP2_RW2_DR Host endpoint 2 data 2-byte register

USBHOST_HOST_LVL1_SEL Host interrupt level 1 selection register

USBHOST_HOST_LVL2_SEL Host interrupt level 2 selection register

USBHOST_INTR_USBHOST_CAUSE_HI Interrupt USB host cause high register

USBHOST_INTR_USBHOST_CAUSE_MED Interrupt USB host cause medium register

USBHOST_INTR_USBHOST_CAUSE_LO Interrupt USB host cause low register

USBHOST_INTR_HOST_EP_CAUSE_HI Interrupt USB host endpoint cause high register

USBHOST_INTR_HOST_EP_CAUSE_MED Interrupt USB host endpoint cause medium register

USBHOST_INTR_HOST_EP_CAUSE_LO Interrupt USB host endpoint cause low register

USBHOST_INTR_USBHOST Interrupt USB host register

USBHOST_INTR_USBHOST_SET Interrupt USB host set register

USBHOST_INTR_USBHOST_MASK Interrupt USB host mask register

USBHOST_INTR_USBHOST_MASKED Interrupt USB host masked register

USBHOST_INTR_HOST_EP Interrupt USB host endpoint register

USBHOST_INTR_HOST_EP_SET Interrupt USB host endpoint set register

USBHOST_INTR_HOST_EP_MASK Interrupt USB host endpoint mask register

USBHOST_INTR_HOST_EP_MASKED Interrupt USB host endpoint masked register

USBHOST_HOST_DMA_ENBL Host DMA enable register

USBHOST_HOST_EP1_BLK Host endpoint 1 block register

USBHOST_HOST_EP2_BLK Host endpoint 2 block register

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 451

33. LCD Direct Drive

The PSoC 6 MCU Liquid Crystal Display (LCD) drive system is a highly configurable peripheral that allows the device to
directly drive STN and TN segment LCDs.

33.1 Features
The PSoC 6 MCU LCD segment drive block has the following features:

■ Supports up to 61 segments and 8 commons

■ Supports Type A (standard) and Type B (low-power) drive waveforms

■ Any GPIO can be configured as a common or segment

■ Supports five drive methods:

❐ Digital correlation

❐ PWM at 1/2 bias

❐ PWM at 1/3 bias

❐ PWM at 1/4 bias

■ Ability to drive 3-V displays from 1.8 V VDD in Digital Correlation mode

■ Operates in Active, Sleep, and Deep Sleep modes

■ Digital contrast control

33.2 Architecture

33.2.1 LCD Segment Drive Overview

A segmented LCD panel has the liquid crystal material between two sets of electrodes and various polarization and reflector
layers. The two electrodes of an individual segment are called commons (COM) or backplanes and segment electrodes
(SEG). From an electrical perspective, an LCD segment can be considered as a capacitive load; the COM/SEG electrodes
can be considered as the rows and columns in a matrix of segments. The opacity of an LCD segment is controlled by varying
the root-mean-square (RMS) voltage across the corresponding COM/SEG pair.

The following terms/voltages are used in this chapter to describe LCD drive:

■ VRMSOFF: The voltage that the LCD driver can realize on segments that are intended to be off.

■ VRMSON: The voltage that the LCD driver can realize on segments that are intended to be on.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 452

LCD Direct Drive

■ Discrimination Ratio (D): The ratio of VRMSON and VRMSOFF that the LCD driver can realize. This depends on the type of
waveforms applied to the LCD panel. Higher discrimination ratio results in higher contrast.

Liquid crystal material does not tolerate long term exposure to DC voltage. Therefore, any waveforms applied to the panel
must produce a 0-V DC component on every segment (on or off). Typically, LCD drivers apply waveforms to the COM and
SEG electrodes that are generated by switching between multiple voltages. The following terms are used to define these
waveforms:

■ Duty: A driver is said to operate in 1/M duty when it drives ‘M’ number of COM electrodes. Each COM electrode is effec-
tively driven 1/M of the time.

■ Bias: A driver is said to use 1/B bias when its waveforms use voltage steps of (1/B) × VDRV. VDRV is the highest drive
voltage in the system (equals VDD). The PSoC 6 MCU supports 1/2, 1/3, and 1/4 biases in PWM drive modes.

■ Frame: A frame is the length of time required to drive all the segments. During a frame, the driver cycles through the com-
mons in sequence. All segments receive 0-V DC (but non-zero RMS voltage) when measured over the entire frame.

The PSoC 6 MCU supports two different types of drive waveforms in all drive modes. These are:

■ Type-A Waveform: In this type of waveform, the driver structures a frame into M sub-frames. ‘M’ is the number of COM
electrodes. Each COM is addressed only once during a frame. For example, COM[i] is addressed in sub-frame i.

■ Type-B Waveform: The driver structures a frame into 2M sub-frames. The two sub-frames are inverses of each other.
Each COM is addressed twice during a frame. For example, COM[i] is addressed in sub-frames i and M+i. Type-B wave-
forms are slightly more power efficient because it contains fewer transitions per frame.

33.2.2 Drive Modes

The PSoC 6 MCU supports the following drive modes.

■ PWM drive at 1/2 bias

■ PWM drive at 1/3 bias

■ PWM drive at 1/4 bias with high-frequency clock input

■ Digital correlation

33.2.2.1 PWM Drive

In PWM drive mode, multi-voltage drive signals are generated using a PWM output signal together with the intrinsic resis-
tance and capacitance of the LCD. Figure 33-1 illustrates this.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 453

LCD Direct Drive

Figure 33-1. PWM Drive (at 1/3 Bias)

The output waveform of the drive electronics is a PWM waveform. With the Indium Tin Oxide (ITO) panel resistance and the
segment capacitance to filter the PWM, the voltage across the LCD segment is an analog voltage, as shown in Figure 33-1.
This figure illustrates the generation of a 1/3 bias waveform (four commons and voltage steps of VDD/3). See the Clocking
System chapter on page 221 for details.

The PWM is derived from either CLK_LF (32 kHz, low-speed operation) or CLK_PERI (high-speed operation). See the Clock-
ing System chapter on page 221 for more details of peripheral and low-frequency clocks. The filtered analog voltage across
the LCD segments typically runs at low frequency for segment LCD driving.

Figure 33-2 and Figure 33-3 illustrate the Type A and Type B waveforms for COM and SEG electrodes for 1/2 bias and 1/4
duty. Only COM0/COM1 and SEG0/SEG1 are drawn for demonstration purpose. Similarly, Figure 33-4 and Figure 33-5 illus-
trate the Type A and Type B waveforms for COM and SEG electrodes for 1/3 bias and 1/4 duty.

PWM Generator

PWM Generator

SEG

COM

GPIO Output Impedance ITO Panel Resistance LCD Segment
Capacitance

VPWM VLCD

VDDD

VDDDD

2/3 VDDD

1/3 VDDD

0

0

t

t

VPWM

VLCD

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 454

LCD Direct Drive

Figure 33-2. PWM1/2 Type-A Waveform Example

VDD

0
COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One frame of Type A waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 455

LCD Direct Drive

Figure 33-3. PWM1/2 Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One frame of Type B waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 456

LCD Direct Drive

Figure 33-4. PWM1/3 Type-A Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One Frameشof Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 457

LCD Direct Drive

Figure 33-5. PWM1/3 Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One Frameشof Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 458

LCD Direct Drive

The effective RMS voltage for ON and OFF segments can be calculated easily using these equations:

Equation 33-1

 Equation 33-2

Where B is the bias and M is the duty (number of COMs).

For example, if the number of COMs is four, the resulting discrimination ratios (D) for 1/2 and 1/3 biases are 1.528 and 1.732,
respectively. 1/3 bias offers better discrimination ratio in two and three COM drives also. Therefore, 1/3 bias offers better con-
trast than 1/2 bias and is recommended for most applications. 1/4 bias is available only in high-speed operation of the LCD.
They offer better discrimination ratio especially when used with high COM designs (more than four COMs).

When the low-speed operation of LCD is used, the PWM signal is derived from the 32-kHz CLK_LF. To drive a low-capaci-
tance display with acceptable ripple and rise/fall times using a 32-kHz PWM, additional external series resistances of 100 k-
1 M should be used. External resistors are not required for PWM frequencies greater than ~1 MHz. The ideal PWM fre-
quency depends on the capacitance of the display and the internal ITO resistance of the ITO routing traces.

The 1/2 bias mode has the advantage that PWM is only required on the COM signals; the SEG signals use only logic levels,
as shown in Figure 33-2 and Figure 33-3.

33.2.2.2 Digital Correlation

The digital correlation mode, instead of generating bias voltages between the rails, takes advantage of the characteristic of
LCDs that the contrast of LCD segments is determined by the RMS voltage across the segments. In this approach, the cor-
relation coefficient between any given pair of COM and SEG signals determines whether the corresponding LCD segment is
on or off. Thus, by doubling the base drive frequency of the COM signals in their inactive sub-frame intervals, the phase rela-
tionship of the COM and SEG drive signals can be varied to turn segments on and off. This is different from varying the DC
levels of the signals as in the PWM drive approach. Figure 33-8 and Figure 33-9 are example waveforms that illustrate the
principles of operation.

V
RMS OFF  2 B 2– 2

2 M 1– +
2M

--= x
VDRV

B
------------ 
 

V
RMS ON  2B2 2 M 1– +

2M
--------------------------------------= x

VDRV

B
------------ 
 

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 459

LCD Direct Drive

Figure 33-6. Digital Correlation Type-A Waveform

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One Frameشof Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 460

LCD Direct Drive

Figure 33-7. Digital Correlation Type-B Waveform

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One Frameشof Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 461

LCD Direct Drive

The RMS voltage applied to on and off segments can be calculated as follows:

Where B is the bias and M is the duty (number of COMs). This leads to a discrimination ratio (D) of 1.291 for four COMs.
Digital correlation mode also has the ability to drive 3-V displays from 1.8-V VDD.

33.2.3 Recommended Usage of Drive Modes

The PWM drive mode has higher discrimination ratios compared to the digital correlation mode, as explained in 33.2.2.1
PWM Drive and 33.2.2.2 Digital Correlation. Therefore, the contrast in digital correlation method is lower than PWM method
but digital correlation has lower power consumption because its waveforms toggle at low frequencies.

The digital correlation mode creates reduced, but acceptable contrast on TN displays, but no noticeable difference in contrast
or viewing angle on higher contrast STN displays. Because each mode has strengths and weaknesses, recommended usage
is as follows.

33.2.4 Digital Contrast Control

In all drive modes, digital contrast control can be used to change the contrast level of the segments. This method reduces
contrast by reducing the driving time of the segments. This is done by inserting a ‘Dead-Time’ interval after each frame.
During dead time, all COM and SEG signals are driven to a logic 1 state. The dead time can be controlled in fine resolution.
Figure 33-8 illustrates the dead-time contrast control method for 1/3 bias and 1/4 duty implementation.

Figure 33-8. Dead-Time Contrast Control

Table 33-1. Recommended Usage of Drive Modes

Display Type Deep Sleep Mode Sleep/Active Mode Notes

Four COM TN
Glass

Digital correlation PWM 1/3 bias
Firmware must switch between LCD drive modes before going to deep
sleep or waking up.

Four COM STN
Glass

Digital correlation No contrast advantage for PWM drive with STN glass.

Eight COM, STN Not supported PWM 1/4 bias
Supported only in the high-speed LCD mode. The low-speed CLK_LF is
not fast enough to make the PWM work at high multiplex ratios.

V
RMS OFF  M 1– 

2M
------------------= x VDD 

V
RMS ON  2 M 1– +

2M
----------------------------= x VDD 

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

Two Frames of of Type A Waveform with Dead-time

(Example for 1/4th Duty and 1/3rd bias)

Dead-Time

t0 t1 t2dt dtt3

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 462

LCD Direct Drive

33.3 PSoC 6 MCU Segment LCD Direct Drive

Figure 33-9. Block Diagram of LCD Direct Drive System

The LCD controller block contains two generators, one with
a high-speed clock source CLK_PERI and the other with a
low-speed clock source (32 kHz) derived from the CLK_LF.
These are called high-speed LCD master generator and
low-speed LCD master generator, respectively. Both the
generators support PWM and digital correlation drive
modes. PWM drive mode with low-speed generator requires
external resistors, as explained in PWM Drive on page 452.

The multiplexer selects one of these two generator outputs
to drive LCD, as configured by the firmware. The LCD pin
logic block routes the COM and SEG outputs from the gen-
erators to the corresponding I/O matrices. Any GPIO can be
used as either COM or SEG. This configurable pin assign-
ment for COM or SEG is implemented in GPIO and I/O
matrix; see High-Speed I/O Matrix. These two generators
share the same configuration registers. These memory
mapped I/O registers are connected to the system bus
(AHB) using an AHB interface.

The LCD controller works in three device power modes:
Active, Sleep, and Deep Sleep. High-speed operation is
supported in Active and Sleep modes. Low-speed operation
is supported in Active, Sleep, and Deep Sleep modes. The
LCD controller is unpowered in Hibernate mode.

33.3.1 High-Speed and Low-Speed
Master Generators

The high-speed and low-speed master generators are simi-
lar to each other. The only exception is that the high-speed
version has larger frequency dividers to generate the frame
and sub-frame periods. The high-speed generator is in the
active power domain and the low-speed generator is in the
Deep Sleep power domain. A single set of configuration reg-
isters is provided to control both high-speed and low-speed
blocks. Each master generator has the following features
and characteristics:

■ Register bit configuring the block for either Type A or
Type B drive waveforms (LCD_MODE bit in LCD0_-
CONTROL register).

■ Register bits to select the number of COMs (COM_NUM
field in LCD0_CONTROL register).

■ Operating mode configuration bits enabled to select one
of the following:

❐ Digital correlation

❐ PWM 1/2 bias

❐ PWM 1/3 bias

High-Speed (HS)
LCD Master
Generator

AHB
interface

AHB

Low Frequency
Clock, CLK_LF

(32 kHz)

Config & Control
Registers

LCD Mode
Select

 (HS/LS)

Sub Frame
Data

Display
Data

HSIO
Matrix

LCD com[0]

Display Data [0]

LCD
Pin

Logic

Display
Data

Registers

HSIO
Matrix

HSIO
Matrix

High-Frequency
Clock, CLK_PERI

LCD seg[0]

LCD com[1]

LCD seg[1]

LCD com[n]

LCD seg[n]

Active
Power Domain

Deep Sleep
Power Domain

Low-Speed (LS)
LCD Master
Generator

Multiplexer

Display Data [1]

Display Data [n]

HS COM Signals

HS SEG Signals

LS COM Signals

LS SEG Signals

HS Sub Frame Data

LS Sub Frame Data

COM
Signals

SEG
Signals

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 463

LCD Direct Drive

❐ PWM 1/4 bias (not supported in low-speed genera-
tor)

❐ Off/disabled. Typically, one of the two generators will
be configured to be Off

OP_MODE and BIAS fields in LCD0_CONTROL bits
select the drive mode.

■ A counter to generate the sub-frame timing. The SUB-
FR_DIV field in the LCD0_DIVIDER register determines
the duration of each sub-frame. If the divide value written
into this counter is C, the sub-frame period is 4 × (C+1).
The low-speed generator has an 8-bit counter. This
counter generates a maximum half sub-frame period of
8 ms from the 32-kHz CLK_LF. The high-speed genera-
tor has a 16-bit counter.

■ A counter to generate the dead time period. These
counters have the same number of bits as the sub-frame
period counters and use the same clocks. DEAD_DIV
field in the LCD0_DIVIDER register controls the dead
time period.

33.3.2 Multiplexer and LCD Pin Logic

The multiplexer selects the output signals of either high-
speed or low-speed master generator blocks and feeds it to
the LCD pin logic. This selection is controlled by the configu-

ration and control register. The LCD pin logic uses the sub-
frame signal from the multiplexer to choose the display data.
This pin logic will be replicated for each LCD pin.

33.3.3 Display Data Registers

Each LCD segment pin is part of an LCD port with its own
display data register, LCD0_DATAx. The device has eight
such LCD ports. Note that these ports are not real pin ports
but the ports/connections available in the LCD hardware for
mapping the segments to commons. Each LCD segment
configured is considered as a pin in these LCD ports. The
LCD0_DATAxx registers are 32-bit wide and store the ON/
OFF data for all SEG-COM combination enabled in the
design. For example, LCD0_DATA0x holds SEG-COM data
for COM0 to COM3 and LCD0_DATA1x holds SEG-COM
data for COM4 to COM7. The bits [4i+3:4i] (where ‘i’ is the
pin number) of each LCD0_DATAxx register represent the
ON/OFF data for Pin[i], as shown in Table 33-2. The
LCD0_DATAxx register should be programmed according to
the display data of each frame. The display data registers
are Memory Mapped I/O (MMIO) and accessed through the
AHB slave interface. See the device datasheet for the pin
connections.

33.4 Register List

Table 33-2. SEG-COM Mapping Example of LCD0_DATA00 Register (each SEG is a pin of the LCD port)

BITS[31:28] = PIN_7[3:0] BITS[27:24] = PIN_6[3:0]

PIN_7-COM3 PIN_7-COM2 PIN_7-COM1 PIN_7-COM0 PIN_6-COM3 PIN_6-COM2 PIN_6-COM1 PIN_6-COM0

BITS[23:20] = PIN_5[3:0] BITS[19:16] = PIN_4[3:0]

PIN_5-COM3 PIN_5-COM2 PIN_5-COM1 PIN_5-COM0 PIN_4-COM3 PIN_4-COM2 PIN_4-COM1 PIN_4-COM0

BITS[15:12] = PIN_3[3:0] BITS[11:8] = PIN_2[3:0]

PIN_3-COM3 PIN_3-COM2 PIN_3-COM1 PIN_3-COM0 PIN_2-COM3 PIN_2-COM2 PIN_2-COM1 PIN_2-COM0

BITS[7:3] = PIN_1[3:0] BITS[3:0] = PIN_0[3:0]

PIN_1-COM3 PIN_1-COM2 PIN_1-COM1 PIN_1-COM0 PIN_0-COM3 PIN_0-COM2 PIN_0-COM1 PIN_0-COM0

Table 33-3. LCD Direct Drive Register List

Register Name Description

LCD0_ID This register includes the information of LCD controller ID and revision number

LCD0_DIVIDER This register controls the sub-frame and dead-time period

LCD0_CONTROL This register is used to configure high-speed and low-speed generators

LCD0_DATA0x LCD port pin data register for COM0 to COM3

LCD0_DATA1x LCD port pin data register for COM4 to COM7

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 464

34. Universal Digital Blocks (UDB)

This chapter shows the design details of the PSoC 6 MCU universal digital blocks (UDBs). The UDB architecture implements
a balanced approach between configuration granularity and efficiency; UDBs have a combination of programmable logic
devices (PLDs), structured logic (datapaths), and a flexible routing scheme.

34.1 Features
■ PSoC 6 MCUs contain an array of twelve UDBs

■ For optimal flexibility, each UDB contains several components:

❐ An ALU-based 8-bit datapath (DP) with multiple registers, FIFOs, and an 8-word instruction store

❐ Two PLDs, each with 12 inputs, eight product terms, and four macrocell outputs

❐ Control and status modules

❐ Clock and reset modules

■ Flexible routing through the UDB array

■ Portions of UDBs can be shared or chained to enable larger functions

■ Flexible implementations of multiple digital functions, including timers, counters, PWM (with dead band generator), UART,
SPI, and CRC generation/checking

■ Register-based interface to CPU

34.2 Architecture

Figure 34-1 shows the components of a single UDB: two PLDs, a datapath, and control, status, clock and reset functions.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 465

Universal Digital Blocks (UDB)

Figure 34-1. Single UDB Block Diagram

Figure 34-2 shows how the array of twelve UDBs interfaces with the rest of the PSoC 6 MCU.

Figure 34-2. UDBs Array in PSoC 6 MCUs

The major components of a UDB are:

■ PLDs (2) – These blocks take inputs from the routing
channel and form registered or combinational sum-of-
products logic to implement state machines, control for
datapath operations, conditioning inputs, and driving out-
puts.

■ Datapath – This block contains a dynamically program-
mable ALU, four registers, two FIFOs, comparators, and
condition generation.

■ Control and Status – These modules provide a way for
CPU firmware to interact and synchronize with UDB
operation.

■ Reset and Clock Control – These modules provide
clock selection and enabling, and reset selection, for the
other blocks in the UDB.

■ Chaining Signals – The PLDs and datapath have
chaining signals that enable neighboring UDBs to be
linked, to create higher precision functions.

■ Routing Channel – UDBs are connected to the routing
channel through a programmable switch matrix for con-
nections between blocks in one UDB, and to all other
UDBs in the array.

■ System Bus Interface – All registers and RAM in each
UDB are mapped into the system address space and are
accessible by the CPU as 8, 16 and 32-bit accesses.

34.2.1 Programmable Logic Device (PLD)

Each UDB has two “12C4” PLDs. The PLD blocks, shown in
Figure 34-3, can be used to implement state machines, per-
form input or output data conditioning, and to create lookup
tables (LUTs). PLDs may also be configured to perform
arithmetic functions, sequence the datapath, and generate
status. General-purpose RTL can be synthesized and
mapped to the PLD blocks. This section presents an over-
view of the PLD design.

A PLD has 12 inputs, which feed across eight product terms
(PT) in the AND array. In a given product term, the true (T)
or complement (C) of the input can be selected. The outputs
of the PTs are inputs into the OR array. The ‘C’ in 12C4 indi-
cates that the OR terms are constant across all inputs, and
each OR input can programmatically access any or all of the
PTs. This structure gives maximum flexibility and ensures
that all inputs and outputs are permutable.

PLD
12C4

(8 PTs)

PLD
12C4

(8 PTs)

Datapath

Clock
and Reset
Control

Routing Channel

Datapath
Chaining

PLD
Chaining

Status and
Control

 BA

PA PA

 BA

PAPA

PA PAPAPA

UDB 02

UDB 01

UDB 03

UDB 00

AB

UDB 05

UDB 06

UDB 04

 A

UDB 07

B

BAB

DSI 09 DSI 08

DSI 00DSI 01DSI 02DSI 03

DSI 06DSI 07

UDB Pair

BA

PAPA

PAPA

UDB 09

UDB 10

UDB 08

A

UDB 11

B

A B

DSI 11 DSI 10

DSI 04DSI 05

A

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 466

Universal Digital Blocks (UDB)

Figure 34-3. PLD 12C4 Structure

34.2.1.1 PLD Macrocells

Figure 34-4 shows the macrocell architecture. The output drives the routing array and can be registered or combinational.
The registered modes are D Flip-Flop (DFF) with true or inverted input and Toggle Flip-Flop (TFF) on input high or low. The
output register can be set or reset for purposes of initialization, or asynchronously during operation under control of a routed
signal.

Figure 34-4. PLD Macrocell Architecture

P
T

0

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

IN9

IN10

IN11

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

P
T

1

P
T

2

P
T

3

P
T

4

P
T

5

P
T

6

P
T

7

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

AND
Array

OR
Array

MC0

MC1

MC2

OUT0

OUT1

OUT2

OUT3MC3

Carry In

Carry Out

set

res

D Q

QB

From OR gate

out
0

1

0

1
2

3

reset

selin

Output Bypass (BYP)
0: Registered
1: Combinational

XOR Feedback (XORFB)
00: D FF
01: Arithmetic (Carry)
10: T FF on high
11: T FF on low

Set Select (SSEL)
0: Set not used
1: Set from input

Reset Select (RSEL)
0: Set not used
1: Set from input

0

1

0

1

Carry Out Enable (COEN)
0:Carry Out disabled
1: Carry Out enabled

Constant (CONST)
0: D FF true in
1: D FF inverted in

selout

(to next MC)

(from prev MC)

BYP

RSEL

SSEL

COEN

CONST

0

1

clk

To macrocell
read-only registercpt0

cpt1

pld_en

XORFB[1:0]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 467

Universal Digital Blocks (UDB)

PLD Macrocell Read-Only Registers

The outputs of the eight macrocells in the two PLDs can be accessed by the CPU as an 8-bit read-only register. Macrocells
across multiple UDBs can be accessed as 16 or 32-bit read-only registers. See “UDB Addressing” on page 502.

34.2.1.2 PLD Carry Chain

PLDs are chained together in UDB address order. As shown in Figure 34-5, the carry chain input “selin” is routed from the
previous UDB in the chain through each macrocell in both PLDs, and then to the next UDB as the carry chain out “selout”. To
support the efficient mapping of arithmetic functions, special product terms are generated and used in the macrocell in con-
junction with the carry chain.

Figure 34-5. PLD Carry Chain and Special Product Term Inputs

34.2.1.3 PLD Configuration

The PLDs can be configured by accessing a set of 16 or 32-bit registers; see “UDB Addressing” on page 502.

34.2.2 Datapath

The datapath, shown in Figure 34-6, contains an 8-bit single-cycle ALU, with associated compare and condition generation
circuits. A datapath may be chained with datapaths in neighboring UDBs to achieve higher precision functions. The datapath
includes a small dynamic configuration RAM, which can dynamically select the operation to perform in a given cycle. The dat-
apath is optimized to implement typical embedded functions such as timers, counters, PWMs, PRS, CRC, shifters, and dead
band generators. The add and subtract functions allow support for digital delta-sigma operations.

selinMC0MC1MC2MC3MC0

cpt1,cpt0

MC1MC2MC3

{P
T

7
,P

T
6}

selout

PLD0PLD1

To the next
PLD block
in the chain

cpt1,cpt0cpt1,cpt0cpt1,cpt0 cpt1,cpt0cpt1,cpt0 cpt1,cpt0cpt1,cpt0

From the previous
PLD block in

the chain

{P
T

7,P
T

6}

{P
T

5
,P

T
4}

{P
T

5,P
T

4}

{P
T

3,P
T

2}

{P
T

3
,P

T
2}

{P
T

1
,P

T
0}

{P
T

1
,P

T
0}

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 468

Universal Digital Blocks (UDB)

Figure 34-6. Datapath Top Level

34.2.2.1 Overview

The following are key datapath features:

Dynamic Configuration

Dynamic configuration is the ability to change the datapath
function and interconnect on a cycle-by-cycle basis, under
sequencer control. This is implemented using the configura-
tion RAM, which stores eight unique configurations. The
address input to this RAM can be routed from any block
connected to the routing fabric, typically PLD logic, I/O pins,
or other datapaths.

ALU

The ALU can perform eight general-purpose functions:
increment, decrement, add, subtract, AND, OR, XOR, and
PASS. Function selection is controlled by the configuration
RAM on a cycle-by-cycle basis. Independent shift (left, right,
nibble swap) and masking operations are available at the
output of the ALU.

Conditionals

Each datapath has two comparators with bit masking
options, which can be configured to select a variety of data-
path register inputs for comparison. Other detectable condi-

tions include all zeros, all ones, and overflow. These
conditions form the primary datapath output selects to be
routed to the digital routing fabric as inputs to other func-
tions.

Built-in CRC/PRS

The datapath has built-in support for single-cycle cyclic
redundancy check (CRC) computation and pseudo random
sequence (PRS) generation of arbitrary width and arbitrary
polynomial specification. To achieve longer than 8-bit CRC/
PRS widths, signals may be chained between datapaths.
This feature is controlled dynamically and therefore, can be
interleaved with other functions.

Variable MSb

The most significant bit of an arithmetic and shift function
can be programmatically specified. This supports variable
width CRC/PRS functions and, in conjunction with ALU out-
put masking, can implement arbitrary width timers, counters,
and shift blocks.

Input/Output FIFOs

Each datapath contains two 4-byte FIFOs, which can be
individually configured for direction as an input buffer (CPU

ALU

A0

A1

D0

D1

PI

ALU

Mask

Shift

Data Registers

Output
Muxes

F1

F0

FIFOs

Accumulators

SRC A

PO

A0

A1

D0

D1

Output to
Programmable
Routing

Chaining

D
yn

am
ic C

o
n

fig
u

ratio
n

 R
A

M
8 W

o
rd

 X
 16 b

it

Parallel Input/Output
(to/from Programmable

Routing)

Input from
Programmable

Routing

Input
Muxes

To/From
Next
Datapath

To/From
Prev

Datapath

D
atap

ath
 C

o
n

tro
l

System Bus

SRC B

R/W Access to all
registers

C
o

n
d

itio
n

s
2

 C
o

m
p

a
re

s
2

 Z
e

ro
 D

ete
ct, 2 O

n
es D

e
te

ct
O

ve
rflo

w
 D

e
te

ct
66

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 469

Universal Digital Blocks (UDB)

writes to the FIFO, datapath internals read the FIFO), or an
output buffer (datapath internals write to the FIFO, the CPU
reads from the FIFO). These FIFOs generate full or empty
status signals that can be routed to interact with sequencers
or interrupts.

Chaining

The datapath can be configured to chain conditions and sig-
nals with neighboring datapaths. Shift, carry, capture, and
other conditional signals can be chained to form higher pre-
cision arithmetic, shift, and CRC/PRS functions.

Time Multiplexing

In applications that are oversampled or do not need the
highest clock rates, the single ALU in the datapath can be
efficiently shared between two sets of registers and condi-
tion generators. ALU and shift outputs are registered and
can be used as inputs in subsequent cycles. Usage exam-
ples include support for 16-bit functions in one (8-bit) datap-
ath, or interleaving a CRC generation operation with a data
shift operation.

Datapath Inputs

The datapath has three types of inputs: configuration, con-
trol, and serial and parallel data. The configuration inputs
select the dynamic configuration RAM address. The control
inputs load the data registers from the FIFOs and capture
accumulator outputs into the FIFOs. Serial data inputs
include shift in and carry in. A parallel data input port allows
up to eight bits of data to be brought in from routing.

Datapath Outputs

A total of 16 signals are generated in the datapath. Some of
these signals are conditional signals (for example, com-
pares), some are status signals (for example, FIFO status),
and the rest are data signals (for example, shift out). These
16 signals are multiplexed into the six datapath outputs and
then driven to the routing matrix. By default, the outputs are
single synchronized (pipelined). A combinational output
option is also available for these outputs.

Datapath Working Registers

Each datapath module has six 8-bit working registers. All
registers are readable and writable by CPU.

34.2.2.2 Datapath FIFOs

FIFO Modes and Configurations

Each FIFO has a variety of operation modes and configurations.

Table 34-1. Datapath Working Registers

Type Name Description

Accumulator A0, A1
The accumulators may be both a source and a destination for the ALU. They may also be loaded from a data
register or a FIFO. The accumulators typically contain the current value of a function, such as a count, CRC, or
shift. These registers are non-retention; they lose their values in Sleep mode and are reset to 0x00 on wakeup.

Data D0, D1
The data registers typically contain constant data for a function, such as a PWM compare value, timer period,
or CRC polynomial. These registers retain their values across sleep intervals.

FIFOs F0, F1

The two 4-byte FIFOs provide both a source and a destination for buffered data. The FIFOs can be configured
as both input buffers, both output buffers, or as one input buffer and one output buffer. Status signals indicate
the full/empty status of these registers. Usage examples include buffered Tx and Rx data in the SPI or UART
and buffered PWM compare and buffered timer period data. These registers are non-retention; they lose their
values in Sleep mode and are reset to 0x00 on wakeup.

Table 34-2. FIFO Modes and Configurations

Mode Description

Input/Output
In input mode, the CPU writes to the FIFO and the data is read and consumed by the datapath internals. In
output mode, the FIFO is written to by the datapath internals and is read and consumed by the CPU.

Single Buffer
The FIFO operates as a single-byte buffer with no status. Data written to the FIFO is immediately available for
reading, and can be overwritten at anytime.

Level/Edge The control to load the FIFO from the datapath internals can be either level or edge triggered.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 470

Universal Digital Blocks (UDB)

Figure 34-7 shows the possible FIFO configurations controlled by the input/output modes. The Tx/Rx mode has one FIFO in
input mode and the other in output mode. The primary example of this configuration is SPI. The dual capture configuration
provides independent capture of A0 and A1, or two separately controlled captures of either A0 or A1. Finally, the dual buffer
mode can provide buffered periods and compares, or two independent periods/compares.

Figure 34-7. FIFO Configurations

Normal/Fast
The control to load the FIFO from the datapath source is sampled on the currently selected datapath clock
(normal) or the HFCLK (fast). This allows captures to occur at the highest rate in the system (HFCLK), inde-
pendent of the datapath clock.

Software

Capture

When this mode is enabled and the FIFO is in output mode, a read by the CPU of the associated accumulator
(A0 for F0, A1 for F1) initiates a synchronous transfer of the accumulator value into the FIFO. The captured
value may then be immediately read from the FIFO. If chaining is enabled, the operation follows the chain to
the MS block for atomic reads by datapaths of multi-byte values.

Asynch
When the datapath is being clocked asynchronously to the HFCLK, the FIFO status signals can be routed to
the rest of the datapath either directly, single sampled to the datapath clock, or double sampled in the case of
an asynchronous datapath clock

Independent Clock Polarity Each FIFO has a control bit to invert polarity of the FIFO clock with respect to the datapath clock.

Table 34-2. FIFO Modes and Configurations (continued)

Mode Description

System Bus

F0

F1

System Bus

A0/A1/ALU

D0/D1

A0/A1/ALU

System Bus

F1

A0/A1/ALU

F0

D0

System Bus

F1

A0

D1

A1

F0

Tx/Rx Dual Capture Dual Buffer

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 471

Universal Digital Blocks (UDB)

Figure 34-8 shows a detailed view of FIFO sources and sinks.

Figure 34-8. FIFO Sources and Sinks

When the FIFO is in input mode, the source is the system bus and the sinks are the Dx and Ax registers. When in output
mode, the sources include the Ax registers and the ALU, and the sink is the system bus. The multiplexer selection is statically
set in UDB configuration register CFG15, as shown in Table 34-3 for the F0_INSEL[1:0] or F1_INSEL[1:0].

FIFO Status

Each FIFO generates two status signals, “bus” and “block,” which are sent to the UDB routing through the datapath output
multiplexer. The “bus” status can be used to assert an interrupt request to read/write the FIFO. The “block” status is primarily
intended to provide the FIFO state to the UDB internals. The meanings of the status bits depend on the configured direction
(Fx_INSEL[1:0] in the UDB CFG15 register) and the FIFO level bits. The FIFO level bits (FIFOx_LVL) are set in the Auxiliary
Control (ACTL) register in working register space. Table 34-4 shows the options.

Table 34-3. FIFO Multiplexer Set in UDB CFG15 Register

Fx_INSEL[1:0] Description

00 Input mode - System bus writes the FIFO, FIFO output destination is Ax or Dx.

01 Output A0 Mode - FIFO input source is A0, FIFO output destination is the system bus.

10 Output A1 Mode - FIFO input source is A1, FIFO output destination is the system bus.

11 Output ALU Mode - FIFO input source is the ALU output, FIFO output destination is the system bus.

Table 34-4. FIFO Status Options

Fx_INSEL[1:0] FIFOx_LVL FIFO Status
FIFO Status

Signal
Description

Input 0 Not Full Bus Status Asserted when there is room for at least 1 byte in the FIFO.

Input 1
At Least Half
Empty

Bus Status Asserted when there is room for at least 2 bytes in the FIFO.

FIFO F1

D1

A1
U

D
B

 Lo
ca

l D
ata B

us

FIFO F0

D0

A0

A
0

A
0

A
1

A
1

A
L

U

A
L

U

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 472

Universal Digital Blocks (UDB)

FIFO Operation

Figure 34-9 illustrates a typical sequence of reads and writes and the associated status generation. Although the figure
shows reads and writes occurring at different times, a read and write can also occur simultaneously.

Figure 34-9. Detailed FIFO Operation

FIFO Fast Mode (FIFO FAST)

When the FIFO is configured for output, the FIFO load operation normally uses the currently selected datapath clock for sam-
pling the write signal. As shown in Figure 34-10, with the FIFO fast mode set, the HFCLK can be optionally selected for this
operation. Used in conjunction with edge sensitive mode, this operation reduces the latency of accumulator-to-FIFO transfer
from the resolution of the datapath clock to the resolution of the HFCLK, which can be much higher. This allows the CPU to
read the captured result in the FIFO with minimal latency.

Input NA Empty Block Status
Asserted when there are no bytes left in the FIFO. When not empty, the
datapath internals may consume bytes. When empty the datapath may
idle or generate an underrun condition.

Output 0 Not Empty Bus Status
Asserted when there is at least 1 byte available to be read from the
FIFO.

Output 1 At Least Half Full Bus Status
Asserted when there are at least 2 bytes available to be read from the
FIFO.

Output NA Full Block Status
Asserted when the FIFO is full. When not full, the datapath internals
may write bytes to the FIFO. When full, the datapath may idle or gener-
ate an overrun condition.

Table 34-4. FIFO Status Options

Fx_INSEL[1:0] FIFOx_LVL FIFO Status
FIFO Status

Signal
Description

WR_PTR

RD_PTR RD_PTR

Reset Write 2 bytes

Empty = 1

At Least Half Empty = 1

D0

D1

Full = 0

At Least Half Full = 0

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 1

Write 2 more bytes

Empty = 0

At Least Half Empty = 0

Full = 1

At Least Half Full = 1

D0

D1

D2

D3

WR_PTR

WR_PTR

RD_PTR

Read 3 bytes

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

X

X

D3
RD_PTR

WR_PTR

Write 2 bytes

Empty = 0

At Least Half Empty = 0

Full = 0

At Least Half Full = 1

D4

D5

X

D3
RD_PTR

WR_PTR

Read 2 bytes

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

D5

X

X

RD_PTR

WR_PTR

Read 1 bytes

Empty = 1

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

X

X

X

RD_PTR

WR_PTR

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 473

Universal Digital Blocks (UDB)

Figure 34-10 illustrates that the fast load operation is independent of the currently selected datapath clock; however, using
the HFCLK may cause higher power consumption. Note that the incoming fx_ld signal must be able to meet HFCLK timing,
which can require local resynchronization.

Figure 34-10. FIFO Fast Configuration Sinks

FIFO Level/Edge Write Mode

Two modes are available for writing the FIFO from the datapath. In the first mode, data is synchronously transferred from the
accumulators to the FIFOs. The control for that write (fx_ld) is typically generated from a state machine or condition that is
synchronous to the datapath clock. The FIFO is written in any cycle where the input load control is a ‘1’.

In the second mode, the FIFO is used to capture the value of the accumulator in response to a positive edge of the fx_ld sig-
nal. In this mode the duty cycle of the waveform is arbitrary (however, it must be at least one datapath clock cycle in width).
An example of this mode is capturing the value of the accumulator using an external pin input as a trigger. The limitation of
this mode is that the input control must revert to ‘0’ for at least one cycle before another positive edge is detected.

Figure 34-11 shows the edge detect option on the fx_ld control input. One bit for this option sets the mode for both FIFOs in a
UDB. Note that edge detection is sampled at the rate of the selected FIFO clock.

Figure 34-11. Edge Detect Option for Internal FIFO Write

FIFO Software Capture Mode

A common and important requirement is to allow the CPU the ability to reliably read the contents of an accumulator during
normal operation. This is done with software capture and is enabled by setting the FIFO Cap configuration bit (FIFO_CAP bit
in the UDB CFG16 register). This bit applies to both FIFOs in a UDB, but is operational only when a FIFO is in output mode.
When using software capture, F0 should be set to load from A0 and F1 from A1.

As shown in Figure 34-12, reading the accumulator triggers a write to the FIFO from that accumulator. This signal is chained
so that a read of a given byte simultaneously captures accumulators in all chained UDBs. This allows the CPU to reliably read
16 bits or more simultaneously. The data returned in the read of the accumulator should be ignored; the captured value may
be read from the FIFOs immediately.

The fx_ld signal, which generates a FIFO load, is ORed with the software capture signal; the results can be unpredictable
when both hardware and software capture are used at the same time. As a general rule, these functions should be mutually
exclusive; however, hardware and software capture can be used simultaneously with the following settings:

■ FIFO capture clocking mode is set to FIFO FAST

■ FIFO write mode is set to FIFO EDGE

FIFO
(In Output Mode)

DP clk

HFCLK

DP Operation

fx_ld

FIFO Fast

0

1

HFCLK

digital
clocks

UDB DP
Clock Mux

Write

FF

0

1fx_ld (from Routing)

FIFO Edge

fx_write

0

1

FIFO Fast

dp_clk

HFCLK

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 474

Universal Digital Blocks (UDB)

With these settings, hardware and software capture work essentially the same and in any given HFCLK cycle, either signal
asserted initiates a capture.

Clear the target FIFO in firmware (UDB ACTL register) before initiating a software capture. This initializes the FIFO read and
write pointers to a known state.

Figure 34-12. Software Capture Configuration

FIFO Control Bits

The Auxiliary Control (ACTL) register has four bits that may be used by the CPU firmware to control the FIFO during normal
operation.

The FIFO0 CLR and FIFO1 CLR bits are used to reset or flush the FIFO. When a ‘1’ is written to one of these bits, the asso-
ciated FIFO is reset. The bit must be written back to ‘0’ for FIFO operation to continue. If the bit is left asserted, the given
FIFO is disabled and operates as a one byte buffer without status. Data can be written to the FIFO; the data is immediately
available for reading and can be overwritten at anytime. Data direction using the Fx INSEL[1:0] (UDB CFG15 register) config-
uration bits is still valid.

The FIFO0 LVL and FIFO1 LVL bits control the level at which the 4-byte FIFO asserts bus status (when the bus is either read-
ing or writing to the FIFO) to be asserted. The meaning of FIFO bus status depends on the configured direction, as shown in
Table 34-5.

FIFO Asynchronous Operation

Figure 34-13 illustrates the concept of asynchronous FIFO operation. As an example, assume F0 is set for input mode and F1
is set for output mode, which is a typical configuration for Tx and Rx registers.

On the Tx side, the datapath state machine uses “empty” to determine if there are any bytes available to consume. Empty is
set synchronously to the DP state machine, but is cleared asynchronously due to a bus write. When cleared, the status is syn-
chronized back to the DP state machine.

On the Rx side, the datapath state machine uses “full” to determine whether there is a space left to write to the FIFO. Full is
set synchronously to the DP state machine, but is cleared asynchronously due to a bus read. When cleared, the status is syn-
chronized back to the DP state machine.

A single FIFO ASYNCH bit of the UDB CFG16 register is used to enable this synchronization method; when set it applies to
both FIFOs. It is applied only to the block status, as it is assumed that bus status is naturally synchronized by the interrupt
process.

Table 34-5. FIFO Level Control Bits in UDB ACTL Register

FIFOxLVL Input Mode (Bus is Writing FIFO) Output Mode (Bus is Reading FIFO)

0
Not Full

At least 1 byte can be written

Not Empty

At least 1 byte can be read

1
At least Half Empty

At least 2 bytes can be written

At least Half Full

At least 2 bytes can be read

capxi (chaining in)
capx (chaining out)

read ax

Chain X

FIFO Cap

fx_write

fx_ld

HFCLK

(FIFO FAST)

FIFO EDGE

0

1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 475

Universal Digital Blocks (UDB)

Figure 34-13. FIFO Asynchronous Operation

FIFO Overflow and Underflow Operations

Use FIFO status signaling to safely implement both internal
(datapath) and external (CPU) reads and writes. There is no
built-in protection from underflow and overflow conditions. If
the FIFO is full and subsequent writes occur (overflow), the
new data overwrites the front of the FIFO (the data currently
being output, the next data to read). If the FIFO is empty and
subsequent reads occur (underflow), the read value is unde-
fined. FIFO pointers remain accurate regardless of under-
flow and overflow.

FIFO Clock Inversion Option

Each FIFO has a control bit called Fx CK INV in the UDB
CFG16 register that controls the polarity of the FIFO clock,
with respect to the polarity of the DP clock. By default, the
FIFO operates at the same polarity as the DP clock. When
this bit is set, the FIFO operates at the opposite polarity as
the DP clock. This provides support for “both clock edge”
communication protocols, such as SPI.

FIFO Dynamic Control

Normally, the FIFOs are configured statically in either input
or output mode. As an alternative, each FIFO can be config-
ured into a mode where the direction is controlled dynami-
cally, that is, by routed signals. One configuration bit per
FIFO (Fx DYN bit in the UDB CFG17 register) enables the
mode. Figure 34-14 shows the configurations available in
dynamic FIFO mode.

Figure 34-14. FIFO Dynamic Mode

In internal access mode, the datapath can read and write
the FIFO. In this configuration, the Fx INSEL bits must be
configured to select the source for the FIFO writes. Fx
INSEL = 00 (CPU bus source) is invalid in this mode; they
can only be 01, 10, or 11 (A0, A1, or ALU). Note that the
only read access is to the associated accumulator; the data
register destination is not available in this mode.

In external access mode, the CPU can both read and write
the FIFO. The configuration between internal and external
access is dynamically switchable using datapath routing sig-
nals. The datapath input signals d0_load and d1_load are
used for this control. Note that in the dynamic control mode,
d0_load and d1_load are not available for their normal use
in loading the D0/D1 registers from F0/F1. The dx_load sig-
nals can be driven by any routed signal, including constants.

In one usage example, starting with external access (dx_-
load == 1), the CPU can write one or more bytes of data to
the FIFO. Then toggling to internal access (dx_load == 0),
the datapath can perform operations on the data. Then tog-

System Bus

F0 (Tx)

F1 (Rx)

System Bus

Datapath Process
(Asynch)

blk_stat

Synch to
DP

blk_stat

Synch to
DP

empty

full

set

DP clk

d q

async

1

0 Empty to
DP state
machine

empty

set

DP clk

d q

async

1

0 Full to
DP state
machine

full

Asynchronously cleared
by bus write,

sycnhyronously set by
DP read

Asynchronously cleared
by bus read,

sycnhyronously set by
DP write

FIFO Fx

Ax

Internal Access
(Fx DYN = 1, dx_load = 0)

A
0

A
1

A
L

U

UDB Local Data Bus

FIFO Fx

UDB Local Data Bus

External Access
(Fx DYN = 1, dx_load = 1)

INSEL

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 476

Universal Digital Blocks (UDB)

gling back to external access, the CPU can read the result
of the computation.

Because the Fx INSEL must always be set to 01, 10, or 11
(A0, A1, or ALU), which is “output mode” in normal opera-
tion, the FIFO status signals have the following definitions
(also dependent on Fx LVL control).

Because the datapath and CPU may both write and read the
FIFO, these signals are no longer considered “block” and
“bus” status. The blk_stat signal is used for write status and
the bus_stat signal is used for read status.

34.2.2.3 FIFO Status

There are four FIFO status signals, two for each FIFO:
fifo0_bus_stat, fifo0_blk_stat, fifo1_bus_stat, and
fifo1_blk_stat. The meaning of these signals depends on the
direction of the given FIFO, which is determined by static
configuration.

34.2.2.4 Datapath ALU

The ALU core consists of three independent 8-bit program-
mable functions, which include an arithmetic/logic unit, a
shifter unit, and a mask unit. See the UDB datapath archi-
tecture block diagram (Figure 34-6) for more details.

Arithmetic and Logic Operation

The ALU functions, which are configured dynamically by the
configuration RAM, are shown in Table 34-7.

srca = ‘A’ input source to the ALU, srcb = ‘B’ input source to
the ALU. See Figure 34-6.

Carry In

The carry in is used in arithmetic operations. Table 34-8
shows the default carry in value for certain functions.

In addition to this default arithmetic mode for carry opera-
tion, there are three additional carry options. The CI SELA
and CI SELB configuration bits in the CFG13 register deter-
mine the carry in for a given cycle. Dynamic configuration
RAM selects either the A or B configuration on a cycle-by-
cycle basis. The options are defined in Table 34-9.

When a routed carry is used, the meaning with respect to
each arithmetic function is shown in Table 34-10. Note that
in the case of the decrement and subtract functions, the
carry is active low (inverted).

Carry Out

The carry out is a selectable datapath output and is derived
from the currently defined MSb position, which is statically
programmable. This value is also chained to the next most
significant block as an optional carry in. Note that in the
case of decrement and subtract functions, the carry out is
inverted.

Table 34-6. FIFO Status

Status Signal Meaning Fx LVL = 0 Fx LVL = 1

fx_blk_stat Write Status FIFO full FIFO full

fx_bus_stat Read Status FIFO not empty At least half full

Table 34-7. ALU Functions in UDB DCFG Register

Func[2:0] Function Operation

000 PASS srca

001 INC ++srca

010 DEC --srca

011 ADD srca +srcb

100 SUB srca – srcb

101 XOR srca ^ srcb

110 AND srca & srcb

111 OR srca | srcb

Table 34-8. Carry In Functions

Function Operation Default Carry In Implementation

INC ++srca srca + 00h + ci, where ci is forced to 1

DEC --srca srca + ffh + ci, where ci is forced to 0

ADD srca + srcb srca + srcb + ci, where ci is forced to 0

SUB srca – srcb srca + ~srcb + ci, where ci is forced to 1

Table 34-9. Additional Carry In Functions in UDB CFG13

CI SEL A
CI SEL B

Carry
Mode

Description

00 Default
Default arithmetic mode as described in
Table 34-8.

01 Registered

Carry Flag, result of the carry from the pre-
vious cycle. This mode is used to imple-
ment add with carry and subtract with
borrow operations. It can be used in suc-
cessive cycles to emulate a double preci-
sion operation.

10 Routed
Carry is generated elsewhere and routed to
this input. This mode can be used to imple-
ment controllable counters.

11 Chained

Carry is chained from the previous datap-
ath. This mode can be used to implement
single cycle operations of higher precision
involving two or more datapaths.

Table 34-10. Routed Carry In Functions

Function
Carry In
Polarity

Carry In Active Carry In Inactive

INC True ++srca srca

DEC Inverted --srca srca

ADD True (srca + srcb) + 1 srca + srcb

SUB Inverted (srca – srcb) – 1 (srca – srcb)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 477

Universal Digital Blocks (UDB)

Carry Structure

Figure 34-15 shows the options for carry in, and for MSb selection for carry out generation. The registered carry out value
may be selected as the carry in for a subsequent arithmetic operation. This feature can be used to implement higher precision
functions in multiple cycles.

Figure 34-15. Carry Operation

Shift Operation

The shift operation occurs independent of the ALU operation, according to Table 34-12.

A shift out value is available as a datapath output. Both shift out right (sor) and shift out left (sol_msb) share that output selec-
tion. A static configuration bit (SHIFT SEL in the UDB CFG15 register) determines which shift output is used as a datapath
output. When no shift is occurring, the sor and sol_msb signal is defined as the LSb or MSb of the ALU function, respectively.

The SI SELA and SI SELB configuration bits determine the shift in data for a given operation. Dynamic configuration RAM
selects the A or B configuration on a cycle-by-cycle basis. Shift in data is valid only for left and right shift; it is not used for pass
and nibble swap. Table 34-13 shows the selections and usage that apply to both left and right shift directions.

Table 34-11. Carry Out Functions

Function Carry Out Polarity Carry Out Active Carry Out Inactive

INC True ++srca == 0 srca

DEC Inverted --srca == –1 srca

ADD True srca + srcb > 255 srca + srcb

SUB Inverted srca – srcb < 0 (srca – srcb)

Table 34-12. Shift Operation Functions in UDB DCFG Register

Shift[1:0] Function

00 Pass

01 Shift Left

10 Shift Right

11 Nibble Swap

co_msb
(to DP output mux)

ci

Selected MSb

Arithmetic ALU Function
(inc, dec, add, sub)

Default function value

Chained (from prev datapath)

Routed (from interconnect)

Registered (from co_msb_reg)

ALU
Bit 0

ALU
Bit 1

ALU
Bit 2

ALU
Bit 3

ALU
Bit 4

ALU
Bit 5

ALU
Bit 6

ALU
Bit 7

co_msb_reg

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 478

Universal Digital Blocks (UDB)

The shift out left data comes from the currently defined MSb position (MSB_EN and MSB_SEL bits in the CFG14 register),
and the data that is shifted in from the left (in a shift right operation) goes into the currently defined MSb position. Both shift out
data (left or right) are registered and can be used in a subsequent cycle. This feature can be used to implement a higher pre-
cision shift in multiple cycles.

Figure 34-16. Shift Operation

Note that the bits that are isolated by the MSb selection are still shifted. In the example shown, bit 7 still shifts in the sil value
on a right shift and bit 5 shifts in bit 4 on a left shift. The shift out either right or left from the isolated bits is lost.

ALU Masking Operation

An 8-bit mask register (AMASK) in the UDB static configuration register space (CFG9) defines the masking operation. In this
operation, the output of the ALU is masked (ANDed) with the value in the mask register. A typical use for the ALU mask func-
tion is to implement free-running timers and counters in power of two resolutions.

Table 34-13. Shift In Functions in UDB CFG15 Register

SI SEL A/ SI SEL B Shift In Source Description

00 Default/Arithmetic
The default input is the value of the DEF SI configuration bit (fixed 1 or 0). However, if
the MSb SI bit is set, then the default input is the currently defined MSb (for right shift
only).

01 Registered
The shift in value is driven by the current registered shift out value (from the previous
cycle). The shift left operation uses the last shift out left value. The shift right operation
uses the last shift out right value.

10 Routed Shift in is selected from the routing channel (the SI input).

11 Chained
Shift in left is routed from the right datapath neighbor and shift in right is routed from the
left datapath neighbor.

3 2 1 07 6 5 4

shift in left (sil)

shift out left (sol_msb)
(to DP output mux) shift in right (sir)

shift out right (sor)
(to DP output mux)

Selected MSb

Shift right or shift left

Default (tie value)

Registered (sor_reg)

Chained (from next datapath)

Routed (from interconnect)

Default (tie value)

Chained (from previous datapath)

Routed (from interconnect)

Registered (from sol_msb_reg)

sor_reg

sol_msb_reg

sil

Select default value or
arithmetic shift

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 479

Universal Digital Blocks (UDB)

34.2.2.5 Datapath Inputs and Multiplexing

The datapath has a total of nine inputs, as shown in Table 34-14, including six inputs from the channel routing. These consist
of the configuration RAM address, FIFO and data register load control signals, and the data inputs shift in and carry in.

As shown in Figure 34-17, each input has a 6-to-1 multiplexer, therefore, all inputs are permutable. Inputs are handled in one
of two ways, either level sensitive or edge sensitive. RAM address, shift in and data in values are level sensitive; FIFO and
data register load signals are edge sensitive.

Figure 34-17. Datapath Input Selection

34.2.2.6 CRC/PRS Support

The datapath can support cyclic redundancy checking (CRC) and pseudo random sequence (PRS) generation. Chaining sig-
nals are routed between datapath blocks to support CRC/PRS bit lengths of longer than eight bits.

The most significant bit (MSb) of the most significant block in the CRC/PRS computation is selected and routed (and chained
across blocks) to the least significant block. The MSb is then XORed with the data input (SI data) to provide the feedback (FB)
signal. The FB signal is then routed (and chained across blocks) to the most significant block. This feedback value is used in
all blocks to gate the XOR of the polynomial (from the DATA0 or DATA1 register) with the current accumulator value.

Figure 34-18 shows the structural configuration for the CRC operation. The PRS configuration is identical except that the shift
in (SI) is tied to ‘0’. In the PRS configuration, D0 or D1 contain the polynomial value, while A0 or A1 contain the initial (seed)
value and the CRC residual value at the end of the computation.

To enable CRC operation, the CFB_EN bit in the dynamic configuration RAM must be set to ‘1’. This enables the AND of
SRCB ALU input with the CRC feedback signal. When set to zero, the feedback signal is driven to ‘1’, which allows for normal
arithmetic operation. Dynamic control of this bit on a cycle-by-cycle basis gives the capability to interleave a CRC/PRS oper-
ation with other arithmetic operations.

Table 34-14. Datapath Inputs

Input Description

RAD2

RAD1

RAD0

Asynchronous dynamic configuration RAM address. There are eight 16-bit words, which are user-programmable. Each
word contains the datapath control bits for the current cycle. Sequences of instructions can be controlled by these address
inputs.

F0 LD

F1 LD

When asserted in a given cycle, the selected FIFO is loaded with data from one of the A0 or A1 accumulators or from the
output of the ALU. The source is selected by the Fx INSEL[1:0] configuration bits. This input is edge sensitive. It is sampled
at the datapath clock; when a '0' to '1' transition is detected, a load occurs at the subsequent clock edge.

D0 LD

D1 LD

When asserted in a given cycle, the Dx register is loaded from associated FIFO Fx. This input is edge sensitive. It is sam-
pled at the datapath clock; when a '0' to '1' transition is detected, a load occurs at the subsequent clock edge.

SI This is a data input value that can be used for either shift in left or shift in right.

CI This is the carry in value used when the carry in select control is set to “routed carry.”

{0, dp_in[5:0], 0} rad0
(similar for rad1, rad2, si, ci)

CFGx
RAD0 MUX[2:0]

f0_ld
(similar for f1_ld, d0_ld, d1_ld)

CFGx
F0 LD MUX[2:0]

{0, dp_in[5:0], 0}

These inputs are
edge sensitive

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 480

Universal Digital Blocks (UDB)

Figure 34-18. CRC Functional Structure

CRC/PRS Chaining

Figure 34-19 illustrates an example of CRC/PRS chaining across three UDBs. This scenario can support a 17- to 24-bit oper-
ation. The chaining control bits are set according to the position of the datapath in the chain as shown in the figure.

Figure 34-19. CRC/PRS Chaining Configuration

The CRC/PRS feedback signal (cfbo, cfbi) is chained as follows:

■ If a given block is the least significant block, then the feedback signal is generated in that block from the built-in logic that
takes the shift in from the right (sir) and XORs it with the MSb signal. (For PRS, the “sir” signal is tied to ‘0’.)

■ If a given block is not the least significant block, the CHAIN FB configuration bit must be set and the feedback is chained
from the previous block in the chain.

The CRC/PRS MSb signal (cmsbo, cmsbi) is chained as follows:

■ If a given block is the most significant block, the MSb (according to the polynomial selected) is configured using the
MSB_SEL configuration bits in the UDB CFG14 register.

■ If a given block is not the most significant block, the CHAIN CMSB configuration bit in the UDB CFG14 register must be
set and the MSb signal is chained from the next block in the chain.

CRC/PRS Polynomial Specification

As an example of how to configure the polynomial for programming into the associated D0/D1 register, consider the CCITT

CRC-16 polynomial, which is defined as x16 + x12 +x5 + 1. The method for deriving the data format from the polynomial is
shown in Figure 34-20.

The X0 term is inherently always ‘1’ and therefore does not need to be programmed. For each of the remaining terms in the
polynomial, a ‘1’ is set in the appropriate position in the alignment shown.

Note: This polynomial format is slightly different from the format normally specified in Hex. For example, the CCITT CRC16
polynomial is typically denoted as 1021H. To convert to the format required for datapath operation, shift right by one and add
a ‘1’ in the MSb. In this case, the correct polynomial value to load into the D0 or D1 register is 8810H.

SI
(shift in)

D0/D1
(POLY)

A0/A1
(CRC)

ALU
(XOR)

SHIFTER
(LEFT)

MSb
FB

(feedback)

srcasrcb Tie input to
zero for PRS
operation

CHAIN MSB = 1

CHAIN FB = 1CHAIN FB = 1

UDB 1

cmsbi

cfbo

cmsbo

cfbi

cmsbi

cfbo

cmsbo

cfbi
UDB 0

CHAIN MSB = 1

UDB 2

cmsbi

cfbo

cmsbo

cfbi

Set msb_sel

sir CRC data in

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 481

Universal Digital Blocks (UDB)

Figure 34-20. CCITT CRC16 Polynomial Format

Example CRC/PRS Configuration

The following is a summary of CRC/PRS configuration requirements, assuming that D0 is the polynomial and the CRC/PRS is
computed in A0:

1. Select a suitable polynomial and write it into D0.

2. Select a suitable seed value (for example, all zeros for CRC, all ones for PRS) and write it into A0.

3. Configure chaining if necessary.

4. Select the MSb position as defined in the polynomial from the MSB_SEL static configuration register bits and set the
MSB_EN register bit in the UDB CFG14 register.

5. Configure the dynamic configuration RAM word fields:

a. Select D0 as the ALU SRCB (ALU B input source).

b. Select A0 as the ALU SRCA (ALU A input source).

c. Select XOR for the ALU function.

d. Select SHIFT LEFT for the SHIFT function.

e. Select CFB_EN to enable the support for CRC/PRS.

f. Select ALU as the A0 write source.

If a CRC operation, configure “shift in right” for input data from routing and supply input on each clock. If a PRS operation, tie
“shift in right” to ‘0’.

Clocking the UDB with this configuration generates the required CRC or outputs the MSb, which may be output to the routing
for the PRS sequence.

External CRC/PRS Mode

A static configuration bit may be set (EXT CRCPRS in the UDB CFG16 register) to enable support for external computation of
a CRC or PRS. As shown in Figure 34-21, computation of the CRC feedback is done in a PLD block. When the bit is set, the
CRC feedback signal is driven directly from the Carry In (CI) datapath input selection mux, bypassing the internal computa-
tion. The figure shows a simple configuration that supports up to an 8-bit CRC or PRS. Normally the built-in circuitry is used,
but this feature gives the capability for more elaborate configurations, such as up to a 16-bit CRC/PRS function in one UDB
using time division multiplexing.

In this mode, the dynamic configuration RAM bit CFB_EN in the UDB DCFG0 register still controls whether the CRC feed-
back signal is ANDed with the SRCB ALU input. Therefore, as with the built-in CRC/PRS operation, the function can be inter-
leaved with other functions if required.

0000100000010001

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15X16

CCITT 16-Bit Polynomial is 0x8810

X16 X12 X5 1+ + +

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 482

Universal Digital Blocks (UDB)

Figure 34-21. External CRC/PRS Mode

34.2.2.7 Datapath Outputs and Multiplexing

Conditions are generated from the registered accumulator values, ALU outputs, and FIFO status. These conditions can be
driven to the digital routing for use in other UDB blocks, for use as interrupts, or to I/O pins. The 16 possible conditions are
shown in Table 34-15.

There are a total of six datapath outputs. As shown in Figure 34-22, each output has a 16-1 multiplexer that allows any of
these 16 signals to be routed to any of the datapath outputs.

Table 34-15. Datapath Condition Generation

Name Condition Chain Description

ce0 Compare Equal Y A0 == D0

cl0 Compare Less Than Y A0 < D0

z0 Zero Detect Y A0 == 00h

ff0 Ones Detect Y A0 == FFh

ce1 Compare Equal Y A1 or A0 == D1 or A0 (dynamic selection)

cl1 Compare Less Than Y A1 or A0 < D1 or A0 (dynamic selection)

z1 Zero Detect Y A1 == 00h

ff1 Ones Detect Y A1 == FFh

ov_msb Overflow N Carry (MSb) ^ Carry (MSb–1)

co_msb Carry Out Y Carry out of MSb defined bit

cmsb CRC MSb Y MSb of CRC/PRS function

So Shift Out Y Selection of shift output

f0_blk_stat FIFO0 Block Status N Definition depends on FIFO configuration

f1_blk_stat FIFO1 Block Status N Definition depends on FIFO configuration

f0_bus_stat FIFO0 Bus Status N Definition depends on FIFO configuration

f1_bus_stat FIFO1 Bus Status N Definition depends on FIFO configuration

SI
(shift in)

D0/D1
(POLY)

A0/A1
(CRC)

ALU
(XOR)

SHIFTER
(LEFT)

MSb FB
(feedback)

srcasrcb

Tie shift in to
zero for PRS

operation

CI Mux

PLD

D
P

Inputs

RoutingRouting

SI Mux

When the
EXT_CRCPRS bit is
set, the CI selection
drives the CRC
feedback line.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 483

Universal Digital Blocks (UDB)

Figure 34-22. Output Mux Connections

Compares

There are two compares, one of which has fixed sources
(Compare 0) and the other has dynamically selectable
sources (Compare 1). Each compare has an 8-bit statically
programmed mask register, which enables the compare to
occur in a specified bitfield. By default, the masking is off (all
bits are compared) and must be enabled.

Comparator 1 inputs are dynamically configurable. As
shown in Table 34-16, there are four options for Comparator
1, which applies to both the “less than” and the “equal” con-
ditions. The CMP SELA and CMP SELB configuration bits in
the UDB CFG12 register determine the possible compare
configurations. A dynamic configuration RAM bit CMP SEL
in the UDB DCFG0 register selects one of the A or B config-
urations on a cycle-by-cycle basis.

Compare 0 and Compare 1 are independently chainable to
the conditions generated in the previous datapath (in
addressing order). The decision to chain compares is stati-
cally specified by CHAIN0 and CHAIN1 bits of the UDB

CFG14 registers. Figure 34-23 illustrates compare equal
chaining, which is just an ANDing of the compare equal in
this block with the chained input from the previous block.

Figure 34-23. Compare Equal Chaining

Figure 34-24 illustrates compare less than chaining. In this
case, the “less than” is formed by the compare less than out-
put in this block, which is unconditional. This is ORed with
the condition where this block is equal, and the chained
input from the previous block is asserted as less than.

Figure 34-24. Compare Less Than Chaining

All Zeros and All Ones Detect

Each accumulator has dedicated all zeros detect and all
ones detect. These conditions are statically chainable as
specified in the UDB configuration registers. The decision to
chain these conditions is statically specified in the UDB con-
figuration registers. Chaining of zero detect is the same con-
cept as the compare equal. Successive chained data is
ANDed if the chaining is enabled.

Overflow

Overflow is defined as the XOR of the carry into the MSb
and the carry out of the MSb. The computation is done on
the currently defined MSb as specified by the MSB_SEL
bits. This condition is not chainable, however the computa-
tion is valid when done in the most significant datapath of a
multi-precision function as long as the carry is chained
between blocks.

34.2.2.8 Datapath Parallel Inputs and Outputs

As shown in Figure 34-25, the datapath Parallel In (PI) and
Parallel Out (PO) signals give limited capability to bring
routed data directly into and out of the datapath. Parallel Out

Table 34-16. Compare Configuration

CMP SEL A
CMP SEL B

Comparator 1 Compare Configuration

00 A1 Compare to D1

01 A1 Compare to A0

10 A0 Compare to D1

11 A0 Compare to A0

1
4

2
1

3
1

2
11

3
4

5
6

7
8

9
1

0
1

O
utp

ut M
ux

 (6
 - 1

6
to

 1)

0ce0

cl0

z0

ff0

ce1

cl1

z1

ff1

ov_msb

co_msb

cmsb
sor

sol_msb
f0_blk_stat

f1_blk_stat

dp_out[5:0]
6

Output Mux

15

f0_bus_stat

f1_bus_stat

CFG14
CCHAIN0

Compare Equal

ce0i
(from chaining)

ce0
(to routing

and chaining)

CFG14
CCHAIN0

Compare
Less Than

cl0i
(from chaining)

cl0
(to routing

and chaining)

Compare
Equal

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 484

Universal Digital Blocks (UDB)

signals are always available for routing as the ALU asrc
selection between A0 and A1.

Figure 34-25. Datapath Parallel In/Out

Parallel In needs to be selected for input to the ALU. The
two options available are static operation or dynamic opera-
tion. For static operation, the PI SEL bit of the UDB CFG15
register forces the ALU asrc to be PI. The PI DYN bit of the
UDB CFG15 register is used to enable the PI dynamic oper-

ation. When it is enabled, and assuming the PI SEL is 0, the
PI multiplexer may then be controlled by the CFB_EN (UDB
DCFG0 register) dynamic control bit. The primary function of
CFB_EN is to enable PRS/CRC functionality.

34.2.2.9 Datapath Chaining

Each datapath block contains an 8-bit ALU, which is
designed to chain carries, shifted data, capture triggers, and
conditional signals to the nearest neighbor datapaths, to
create higher precision arithmetic functions and shifters.
These chaining signals, which are dedicated signals, allow
single-cycle 16-, 24- and 32-bit functions to be efficiently
implemented without the timing uncertainty of channel rout-
ing resources. In addition, the capture chaining supports the
ability to perform an atomic read of the accumulators in
chained blocks. As shown in Figure 34-26, all generated
conditional and capture signals chain in the direction of least
significant to most significant blocks. Shift left also chains
from least to most significant. Shift right chains from most to
least significant. The CRC/PRS chaining signal for feedback
chains least to most significant; the MSb output chains from
most to least significant.

Figure 34-26. Datapath Chaining Flow

ALU

PI[7:0] A1[7:0]A0[7:0]

ASRC[7:0]

PI SEL
(static config bit in CFG15 register)

PI DYN
(static config bit in CFG15 register)

CFB_EN

01

PO[7:0]

UDB1

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

UDB0

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

UDB2

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

0

0

0

0

0

0

0

0

0

0

0

0

CFBI CFBI CFBICFBOCFBOCFBO 0

CAP0

CAP1

CAP0i

CAP1i

CAP0

CAP1

CAP0i

CAP1i

CAP0

CAP1

CAP0i

CAP1i

0

0

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 485

Universal Digital Blocks (UDB)

34.2.2.10 Dynamic Configuration RAM

Each datapath contains a 16 bit-by-8 word dynamic configuration RAM, which is shown in Figure 34-27. The purpose of this
RAM is to control the datapath configuration bits on a cycle-by-cycle basis, based on the clock selected for that datapath. This
RAM has synchronous read and write ports for purposes of loading the configuration via the system bus.

An additional asynchronous read port is provided as a fast path to output these 16-bit words as control bits to the datapath.
The asynchronous address inputs are selected from datapath inputs and can be generated from any of the possible signals
on the channel routing, including I/O pins, PLD outputs, control block outputs, or other datapath outputs. The primary purpose
of the asynchronous read path is to provide a fast single-cycle decode of datapath control bits.

Figure 34-27. Configuration RAM I/O

The fields of this dynamic configuration RAM word are shown here. A description of the usage of each field follows.

Register Address 15 14 13 12 11 10 9 8

CFGRAM
61h - 6Fh

(odd)
FUNC[2:0] SRCA SRCB[1:0] SHIFT[1:0]

Register Address 7 6 5 4 3 2 1 0

CFGRAM
60h - 6Eh

(even)
A0 WR

SRC[1:0]

A1 WR

SRC[1:0]
CFB EN CI SEL SI SEL CMP SEL

16 Bit-by-8 Word RAM
Array

R
e

a
d

/W
ri

te
A

d
d

re
ss

D
e

co
d

e
r

bus_addr
[2:0]

W
r

C
tr

l

wrl

wrh

R
ea

d
O

nl
y

A
dd

re
ss

D
ec

od
er

rad[2:0]

Datapath Control
Inputs

R/W
Read

16

Config RAM
dyn_cfg_ram

[15:0]

16

RO
Read

16

rd
dpram

U
D

B
 L

oc
a

l B
u

s

bu
s_

da
ta

[1
5:

0]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 486

Universal Digital Blocks (UDB)

34.2.3 Status and Control Module

Figure 34-28 shows a high-level view of the Status and Con-
trol module. The control register drives into the routing to
provide firmware control inputs to UDB operation. The sta-
tus register read from routing provides firmware a method of
monitoring the state of UDB operation.

Figure 34-29 shows a more detailed view of the Status and
Control module. The primary purpose of this block is to coor-
dinate CPU firmware interaction with internal UDB opera-
tion. However, due to its rich connectivity to the routing

matrix, this block may be configured to perform other func-
tions.

Figure 34-28. Status and Control Registers

Table 34-17. Dynamic Configuration Quick Reference

Field Bits Parameter Values

FUNC[2:0] 3 ALU Function

000 PASS

001 INC SRCA

010 DEC SRCA

011 ADD

100 SUB

101 XOR

110 AND

111 OR

SRCA 1 ALU A Input Source
0 A0

1 A1

SRCB 2 ALU B Input Source

00 D0

01 D1

10 A0

11 A1

SHIFT[1:0] 2 SHIFT Function

00 PASS

01 Left Shift

10 Right Shift

11 Nibble Swap

A0 WR

SRC[1:0]
2 A0 Write Source

00 None

01 ALU

10 D0

11 F0

A1 WR

SRC[1:0]
2 A1 Write Source

00 None

01 ALU

10 D1

11 F1

CFB EN 1 CRC Feedback Enable
0 Enable

1 Disable

CI SEL 1
Carry In Configuration
Select

0 ConfigA

1 ConfigBa

SI SEL 1
Shift In Configuration
Select

0 ConfigA

1 ConfigBa

CMP SEL 1
Compare Configuration
Select

0 ConfigA

1 ConfigBa

a. For CI, SI, and CMP, the RAM fields select between two predefined stat-
ic settings; see Table 34-9, Table 34-13, and Table 34-16, respectively.

Routing Channel

8-Bit Status Register
(Read Only)

8-Bit Control Register
(Write/Read)

System Bus

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 487

Universal Digital Blocks (UDB)

Figure 34-29. Status and Control Module

Modes of operation include:

■ Status Input – The state of routing signals can be input and captured as status and read by the CPU.

■ Control Output – The CPU can write to the control register to drive the state of the routing.

■ Parallel Input – To datapath parallel input.

■ Parallel Output – From datapath parallel output.

■ Counter Mode – In this mode, the control register operates as a 7-bit down counter with programmable period and auto-
matic reload. Routing inputs can be configured to control both the enable and reload of the counter. When this mode is
enabled, control register operation is not available.

■ Sync Mode – In this mode, the status register operates as a 4-bit double synchronizer. When this mode is enabled, status
register operation is not available.

Interrupt
Gen

sc_out[7:0]

From
Datapath
Parallel
Output

(po[7:0])

To
Datapath
Parallel
Input

(pi[7:0])

8

8

sc_io_out[2:0]

INT

{sc_io_in[3:0],sc_in[3:0]}

7-Bit
Down Count

7-Bit
Period Register
(same as Mask)

8-Bit
Status Register

7-Bit
Mask Register

(same as Period)

8-Bit
Control Register

Status and Control Module

Horizontal Channel Routing

8

8

EN/LD CTL

7
TC CNT

8
CFGx

SC OUT
CTL[1:0]

CFGx
INT MD

8

3

4-Bit Sync

4

CFGx
SYNC MD

8
8

sc_io_out[3]

sc_in[3:0]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 488

Universal Digital Blocks (UDB)

34.2.3.1 Status and Control Mode

When operating in status and control mode, this module functions as a status register, interrupt mask register, and control
register in the configuration shown in Figure 34-30.

Figure 34-30. Status and Control Operation

Status Register Operation

One 8-bit, read-only status register is available for each
UDB. Inputs to this register come from any signal in the digi-
tal routing fabric. The status register is nonretention; it loses
its state across sleep intervals and is reset to 0x00 on
wakeup. Each bit can be independently programmed to
operate in one of two ways, as shown in Table 34-18.

An important feature of the status register clearing operation
is to note that the clear of status is applied only to the bits
that are set. This allows other bits that are not set to con-
tinue to capture status, so that a coherent view of the pro-
cess can be maintained.

Transparent Status Read

By default, a CPU read of this register transparently reads
the state of the associated routing. This mode can be used
for a transient state that is computed and registered inter-
nally in the UDB.

Sticky Status, with Clear on Read

In this mode, the status register inputs are sampled on each
cycle of the status and control clock. If the signal is high in a
given sample, it is captured in the status bit and remains
high, regardless of the subsequent state of the input. When
the CPU reads the status register the bit is cleared. The sta-
tus register clearing is independent of mode and occurs
even if the UDB clock is disabled; it is based on the HFCLK
and occurs as part of the read operation.

Status Latching During Read

Figure 34-31 shows the structure of the status read logic.
The sticky status register is followed by a latch, which
latches the status register data and holds it stable during the
duration of the read cycle, regardless of the number of wait
states in a given read.

8-Bit Status

Register

sc_out[7:0]

7-Bit Mask

Register

Read
Write

Reset

{sc_io_in[3:0],sc_in[3:0]

8

Read
Only

(Routed Reset

from Reset and Clock
Control Block)

8-Bit Control

Register

Read
Write

8

System Bus

sc_io_out[3]

7 7

7

00: Read Transparently
01: Sticky, Clear on Read

CFGx
STAT MD[7:0]

CFGx
INT MD

ACTL
INT EN

SC OUT CTL bits must
be set to select Control
register bits for output

CFGx
SC OUT
CTL[1:0]

INT

Table 34-18. Status Register Mode Selection in UDB
CFG20 Register

STAT MD Description

0
Transparent read. A read returns the current value
of the routed signal

1
Sticky, clear on read. A high on the input is sampled
and captured. It is cleared when the register is read.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 489

Universal Digital Blocks (UDB)

Figure 34-31. Status Read Logic

Interrupt Generation

In most functions, interrupt generation is tied to the setting of
status bits. As shown in Figure 34-31, this feature is built
into the status register logic as the masking and OR reduc-
tion of status. Only the lower seven bits of status input can
be used with the built-in interrupt generation circuitry. The
most significant bit is typically used as the interrupt output
and may be routed to the interrupt controller through the dig-
ital routing. In this configuration, the MSb of the status regis-
ter is read as the state of the interrupt bit.

34.2.3.2 Control Register Operation

One 8-bit control register is available for each UDB. This
operates as a standard read/write register on the system
bus, where the output of these register bits are selectable as
drivers into the digital routing fabric.

The Control register is nonretention; it loses its contents
across sleep intervals and is reset to 0x00 on wakeup.

Control Register Operating Modes

Three modes are available that may be configured on a bit-
by-bit basis. The configuration is controlled by the concate-
nation of the bits of the two 8-bit registers CTL_MD1[7:0]
and CTL_MD0[7:0] of the UDB CFG18 and CFG19 regis-
ters. For example, {CTL_MD1[0],CTL_MD0[0]} controls the
mode for Control Register bit 0, as shown in Table 34-19.

Control Register Direct Mode

The default mode is Direct mode. As shown in Figure 34-32,
when the Control Register is written by the CPU the output

of the control register is driven directly to the routing on that
write cycle.

Figure 34-32. Control Register Direct Mode

Control Register Sync Mode

In Sync mode, as shown in Figure 34-33, the control register
output is driven by a re-sampling register clocked by the cur-
rently selected Status and Control (SC) clock. This allows
the timing of the output to be controlled by the selected SC
clock, rather than the HFCLK.

Figure 34-33. Control Register Sync Mode

Control Register Double Sync Mode

In Double Sync mode, as shown in Figure 34-34, a second
register clocked by the selected SC clock is added after the
re-sampling register. This allows the circuit to perform
robustly when the HFCLK and SC clock are asynchronous.

Figure 34-34. Control Register Double Sync Mode

Status and
Control Clock

from Routing

UDB Local Bus

D Q

AR

Sticky/Transparent

0

1

Sticky Status
Register

EN

D Q

Read Latch

Status Register
Read

End of Status
Register Read

Table 34-19. Mode for Control Register Bit 0 in the UDB
CFG18 and CFG19 Registers

CTL MD Description

00 Direct mode

01 Sync mode

10 Double Sync mode

11 Pulse mode

HFCLK

Data Bus To
Routing

SC CLKHFCLK

Data Bus
To

Routing

SC CLKHFCLK

Data Bus
To

Routing

SC CLK

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 490

Universal Digital Blocks (UDB)

Control Register Pulse Mode

Pulse mode is similar to Sync mode in that the control bit is
re-sampled by the SC clock; the pulse starts on the first SC
clock cycle following the bus write cycle. The output of the
control bit is asserted for one full SC clock cycle. At the end
of this clock cycle, the control bit is automatically reset.

With this mode of operation, firmware can write a ‘1’ to a
control register bit to generate a pulse. After it is written as a
‘1’, it is read back by firmware as a ‘1’ until the completion of
the pulse, after which it is read back as a ‘0’. The firmware
can then write another ‘1’ to start another pulse. A new pulse

cannot be generated until the previous one is completed.
Therefore, the maximum frequency of pulse generation is
every other SC clock cycle.

Control Register Reset

The control register has two reset modes, controlled by the
EXT RES configuration bit, as shown in Figure 34-35. When
EXT RES is 0 (the default) then in sync or pulse mode the
routed reset input resets the synced output but not the
actual control bit. When EXT RES is 1 then the routed reset
input resets both the control bit and the synced output.

Figure 34-35. Control Register Reset

34.2.3.3 Parallel Input/Output Mode

In this mode, as Figure 34-36 shows, the status and control routing is connected to the datapath parallel in and parallel out
signals. To enable this mode, the SC OUT configuration bits in the UDB CFG22 registers are set to select datapath parallel
out. The parallel input connection is always available, but these routing connections are shared with the status register inputs,
counter control inputs, and the interrupt output.

Figure 34-36. Parallel Input/Output Mode

SC CLKHFCLK

Data Bus

To
Routing

Bit by Bit
CFG

0

1

EXT RES

Routed Reset

res resStatic configuration
bit

sc_out[7:0]

88

Datapath

po[7:0] pi[7:0]

Datapath
Parallel Out

Datapath
Parallel InSC OUT CTL bits must

be set to select
datapath parallel out bits
for output to routing.

The INT MD and SYNC
MD control bits must be
cleared to enable
SC_IO bits to input mode.

{sc_io_in[3:0], sc_in[3:0]}

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 491

Universal Digital Blocks (UDB)

34.2.3.4 Counter Mode

As shown in Figure 34-37, when the block is in counter
mode, a 7-bit down counter is exposed for use by UDB inter-
nal operation or firmware applications. This counter has the
following features:

■ A 7-bit read/write period register.

■ A 7-bit read/write count register. It can be accessed only
when the counter is disabled.

■ Automatic reload of the period to the count register on
terminal count (0).

■ A firmware control bit in the Auxiliary Control (ACTL0)
working register called CNT START, to start and stop the
counter. (This is an overriding enable and must be set
for optional routed enable to be operational.)

■ Selectable bits from the routing for optional dynamic
control of the counter enable and load functions:

❐ EN, routed enable to start or stop counting.

❐ LD, routed load signal to force the reload of period.
When this signal is asserted, it overrides a pending
terminal count. It is level sensitive and continues to
load the period while asserted.

■ The 7-bit count may be driven to the routing fabric as
sc_out[6:0].

■ The terminal count may be driven to the routing fabric as
sc_out[7].

■ In default mode, the terminal count is registered. In alter-
nate mode the terminal count is combinational.

■ In default mode, the routed enable, if used, must be
asserted for routed load to operate. In alternate mode
the routed enable and routed load signals operate inde-
pendently.

To enable the counter mode, the SC_OUT_CTL[1:0] bits of
the UDB CFG22 register must be set to counter output. In
this mode the normal operation of the control register is not
available. The status register can still be used for read oper-
ations, but should not be used to generate an interrupt
because the mask register is reused as the counter period
register. The Period register is implemented as a retention
register and maintains its state across sleep intervals. For a
period of N clocks, the period value of N–1 should be
loaded. N = 1 (period of 0) is not supported as a clock divide
value, and results in the terminal count output of a constant
1.The use of SYNC mode depends on whether the dynamic
control inputs (LD/EN) are used. If they are not used, SYNC
mode is unaffected. If they are used, SYNC mode is unavail-
able.

Figure 34-37. Counter Mode

sc_out[6:0]

7-Bit Period

Register

4

7-Bit Counter

7

Zero
Detect

sc_out[7]

EN

4

LD

0: Reload is controlled only by terminal count
1: Reload is also controlled by routing

CFGx
ROUTE LD

CFGx
ROUTE EN

0: Enable is controlled only by firmware
1: Enable is also controlled by routing

CFGx
LD SEL[1:0]

Terminal
Count
(TC)

RES

CFGx
EN SEL[1:0]

ACTL
CNT START

Routed Reset from
Reset and Clock

Control Block

SC OUT CTL bits must be set
to select the counter output
as the selected output to
routing.

The INT MD and SYNC
MD bits should be
cleared to configure the
SC_IO bits to input mode.

Read
Only*

 System Bus

Read
Write

*Current count value is
readable only when
not enabled.

{sc_io_in[3:0], sc_in[3:0]}

8

[3:0][7:4]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 492

Universal Digital Blocks (UDB)

34.2.3.5 Sync Mode

As shown in Figure 34-38, the status register can operate as
a 4-bit double synchronizer, clocked by the current SC_CLK,
when the SYNC MD bit in the UDB CFG22 register is set.
This mode may be used to implement local synchronization
of asynchronous signals, such as GPIO inputs. When
enabled, the signals to be synchronized are selected from
SC_IN[3:0], the outputs are driven to the SC_IO_OUT[3:0]
pins, and SYNC MD automatically puts the SC_IO pins into
output mode. When in this mode, the normal operation of
the status register is not available, and the status sticky bit
mode is forced off, regardless of the control settings for this
mode. The control register is not affected by the mode. The
counter can still be used with limitations. No dynamic inputs
(LD/EN) to the counter can be enabled in this mode.

Figure 34-38. Sync Mode

34.2.3.6 Status and Control Clocking

The status and control registers require a clock selection for
any of the following operating modes:

■ Status register with any bit set to sticky, clear on read
mode.

■ Control register in counter mode.

■ Sync mode.

The clock for this is allocated in the reset and clock control
module. See “Reset and Clock Control Module” on
page 493.

34.2.3.7 Auxiliary Control Register

The read-write Auxiliary Control register is a special register
that controls fixed function hardware in the UDB. This regis-
ter allows CPU to dynamically control the interrupt, FIFO,
and counter operation. The register bits and descriptions are
as follows.

FIFO0 Clear, FIFO1 Clear

The FIFO0 CLR and FIFO1 CLR bits are used to reset the
state of the associated FIFO. When a ‘1’ is written to these
bits, the state of the associated FIFO is cleared. These bits
must be written back to ‘0’ to allow FIFO operation to con-
tinue. When these bits are left asserted, the FIFOs operate
as simple one-byte buffers, without status.

FIFO0 Level, FIFO1 Level

The FIFO0 LVL and FIFO1 LVL bits control the level at
which the 4-byte FIFO asserts bus status (when the bus is
either reading or writing to the FIFO) to be asserted. The
meaning of FIFO bus status depends on the configured
direction, as shown in Table 34-20.

Interrupt Enable

When the status register’s interrupt generation logic is
enabled, the INT EN bit gates the resulting interrupt signal.

Count Start

The CNT START bit may be used to enable and disable the
counter (valid only when the SC_OUT_CTL[1:0] bits are
configured for counter output mode).

sc_io_out[3:0]

Sync Module (Status Register)

Digital Routing

4

CFGx
SYNC MD

sc_in[3:0]

01234567

4

Auxiliary Control Registers

7 6 5 4 3 2 1 0

CNT
START

INT
EN

FIFO1
LVL

FIFO0
LVL

FIFO1
CLR

FIFO0
CLR

Table 34-20. FIFO Level Control Bits

FIFOx
LVL

Input Mode
(Bus is Writing FIFO)

Output Mode
(Bus is Reading FIFO)

0

Not Full

At least 1 byte can be writ-
ten

Not Empty

At least 1 byte can be
read

1

At Least Half Empty

At least 2 bytes can be writ-
ten

At Least Half Full

At least 2 bytes can be
read

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 493

Universal Digital Blocks (UDB)

34.2.3.8 Status and Control Register
Summary

Table 34-21 summarizes the function of the status and con-
trol registers. Note that the control and mask registers are
shared with the count and period registers and the meaning
of these registers is mode dependent.

34.2.4 Reset and Clock Control Module

The primary function of the reset and clock block is to select
a clock from the available global system clocks or HFCLK
for each of the PLDs, the datapath, and the status and con-
trol block. It also supplies dynamic and firmware-based
resets to the UDB blocks. As shown in Figure 34-39, there
are four clock control blocks, and one reset block. Four
inputs are available for use from the routing matrix
(RC_IN[3:0]). Each clock control block can select a clock
enable source from these routing inputs, and there is also a
multiplexer to select one of the routing inputs to be used as
an external clock source. As shown, the external clock
source selection can be optionally synchronized. There are
a total of six clocks that can be selected for each UDB com-
ponent: four UDB peripheral clocks, HFCLK, and the
selected external clock (ext clk). Any of the routed input sig-
nals (rc_in) can be used as either a level sensitive or edge
sensitive enable. The reset function of this block provides a
routed reset for the PLD blocks and SC counter, and a firm-
ware reset capability to each block to support reconfigura-
tion.

The HFCLK input to the reset and clock control is distinct
from the system HFCLK. This clock is called “hf_clk_app”
because it is gated similar to the other UDB peripheral
clocks and used for UDB applications. The system HFCLK
is used only for I/O access and is automatically gated, per
access. The datapath clock generator produces three
clocks: one for the datapath in general, and one for each of
the FIFOs.

Table 34-21. Status, Control Register Function Summary

Mode Control/Count Status/SYNC Mask/Period

Control Control Out Status In or
SYNC

Status Mask

Count Count Out Count Perioda

a. Note that in counter mode, the mask register is operating as a period
register and cannot function as a mask register. Therefore, interrupt out-
put is not available when counter mode is enabled.

Status Control Out or Count
Out

Status In Status Mask

SYNC SYNC NAb

b. Note that in SYNC mode, the status register function is not available, and
therefore, the mask register is unusable. However, it can be used as a
period register for count mode.

Universal Digital Blocks (UDB)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 494

Figure 34-39. Reset and Clock Control

PLD0
Clock

Select/Enable
pld0_clk (to PLD0)rc_in[3:0]

pld1_clk (to PLD1)

dp_clk (to Datapath)

sc_clk (to Status and Control)

cnt_routed_ reset (to SC counter)

sc_reset (firmware/system reset)

hf_clk_app, gclks[7:0]

dp_reset (firmware/system reset)

CFGx
EXT CLK SEL[1:0]

2

global_enable

PLD1
Clock

Select/Enable

DP
Clock

Select/Enable

SC
Clock

Select/Enable

rc_in_gated[3:0]

ext_clk

rc_in_gated[3:0]

sysreset

From channel routing

pld0_reset (firmware/system reset)

pld1_reset (firmware/system reset)

Reset
Select/Enable

mf

CFGx
EXT SYNC

HFCLK

f0_clk (to FIFO0)

f1_clk (to FIFO1)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 495

Universal Digital Blocks (UDB)

34.2.4.1 Clock Control

Figure 34-40 illustrates one instance of the clock selection and enable circuit. Each UDB has four of these circuits: one for
each of the PLD blocks, one for the datapath, and one for the status and control block. The main components of this circuit
are a global clock selection multiplexer, clock inversion, clock enable selection multiplexer, clock enable inversion, and edge
detect logic.

Figure 34-40. Clock Select/Enable Control

Clock Selection

Four UDB peripheral clocks (see Clocking System chapter
on page 221), gclk[0] to gclk[3], are routed to all UDBs; the
remaining four clock configurations, gclk[4] to gclk[7], are
not supported in the PSoC 6 MCU. Any of these clocks may
be selected. UDB peripheral clocks are the output of user-
selectable clock dividers. Another selection is HFCLK, which
is the highest frequency in the system. Called “hf_clk_app,”
this signal is routed separately from the system HFCLK. In
addition, an external routing signal can be selected as a
clock input to support direct-clocked functions such as SPI.
Because application functions are mapped to arbitrary
boundaries across UDBs, individual clock selection for each
UDB subcomponent block supports a fine granularity of pro-
gramming.

Clock Inversion

The selected clock may be optionally inverted. This limits
the maximum frequency of operation due to the existence of
one half cycle timing paths. Simultaneous bus writes and
internal writes (for example writing a new count value while
a counter is counting) are not supported when the internal
clock is inverted and the same frequency as HFCLK. This
limitation affects A0, A1, D0, D1, and the Control register in
counter mode.

Clock Enable Selection

The clock enable signal may be routed to any synchronous
signal and can be selected from any of the four inputs from
the routing matrix that are available to this block.

Clock Enable Inversion

The clock enable signal may be optionally inverted. This
feature allows the clock enable to be generated in any polar-
ity.

Clock Enable Mode

By default, the clock enable is OFF. After configuring the tar-
get block operation, software can set the mode to one of the
following using the EN MODE[1:0] bits of the UDB CFG24
register shown in Figure 34-40.

Latch

CFGx
CK SEL[3:0]

{hf_clk_app,ext_clk, gclk[7:0]}

clk

Clock Select
0000: gclk[0] 0100: gclk[4]
0001: gclk[1] 0101: gclk[5]
0010: gclk[2] 0110: gclk[6]
0011: gclk[3] 0111: gclk[7]
1000: ext_clk
1001: hf_clk_app

CFGx
EN SEL[1:0]

Enable Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

CFGx
EN INV

2

Enable Invert
0: true
1: inverted

4
Clock Invert
0: true
1: inverted

rc_in_gated[3:0] FF

CFGx
EN MODE[1:0]

Enable Mode
00: off
01: on
10: positive edge
11: level

1 1

0

22

0

1

CFGx
CK INV

2

0

1

0

3

2

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 496

Universal Digital Blocks (UDB)

Clock Enable Usage

The two general usage scenarios for the clock enable are:

Firmware Enable – It is assumed that most functions
require a firmware clock enable to start and stop the func-
tion. Because the boundary of a function mapped into the
UDB array is arbitrary–it may span multiple UDBs and/or
portions of UDBs–there must be a way to enable a given
function atomically. This is typically implemented from a bit
in a control register routed to one or more clock enable
inputs. This scenario also supports the case where applica-
tions require multiple, unrelated blocks to be enabled simul-
taneously.

Emulated Local Clock Generation – This feature allows
local clocks to be generated by UDBs, and distributed to
other UDBs in the array by using a synchronous clock
enable implementation scheme, rather than directly clocking

from one UDB to another. Using the positive edge feature of
the clock enable mode eliminates restrictions on the duty
cycle of the clock enable waveform.

Special FIFO Clocking

The datapath FIFOs have special clocking considerations.
By default, the FIFO clocks follow the same configuration as
the datapath clock. However, the FIFOs have special control
bits that alter the clock configuration:

■ Each FIFO clock can be inverted with respect to the
selected datapath clock polarity.

■ When FIFO FAST mode is set in the UDB CFG16 regis-
ter, the HFCLK overrides the datapath clock selection
normally in use by the FIFO.

34.2.4.2 Reset Control

The two modes of reset control are: compatible mode and
alternate mode. The modes are controlled by the ALT RES
bit in each UDB CFG31 register. When this bit is ‘0’, the
compatible scheme is implemented. When this bit is ‘1’, the
alternate scheme is implemented.

Compatible Reset Scheme

This scheme features a routed reset, for dynamically reset-
ting the embedded state of block, which can be applied to
each PLD macrocell and the SC counter.

Compatible PLD Reset Control

Figure 34-41 shows the compatible PLD reset system, using
routed dynamic resets.

Figure 34-41. Compatible PLD Reset Structure

Table 34-22. Clock Enable Mode in UDB CFG24 Register

Clock Enable
Mode

Description

OFF Clock is OFF.

ON
Clock is ON. The selected global clock is free run-
ning.

Positive Edge

A gated clock is generated on each positive edge
detect of the clock enable input. Maximum fre-
quency of enable input is the selected global clock
divided by two.

Level
Clocks are generated while the clock enable input
is high ('1').

CFGx
PLD0 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD0 RES POL
Reset Invert
0: true
1: inverted

rc_in[3:0]

set

res

D Q

QB

SSEL

0

1

0

1

RSEL

SSEL

PLD
Macrocell

M
C

PLD0

M
C

M
C

M
C

routed
reset

System
Reset

M
C

PLD1

M
C

M
C

M
C

sysreset

pld_routed_reset

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 497

Universal Digital Blocks (UDB)

Compatible Datapath Reset Control

Figure 34-42 shows the compatible datapath reset system, using firmware reset. The firmware reset asynchronously clears
the DP output registers, the carry and shift out flags, the FIFO state, accumulators, and data registers. Note that the D0 and
D1 registers are implemented as retention registers that maintain their state across sleep intervals. The FIFO data is
unknown because it is RAM-based.

Figure 34-42. Compatible Datapath Reset Structure

sysreset

CFGx
DP FRES dp_reset

A0/A1
RES

F1 Status
RES

ACTL
F0 CLR

F0 Status
RES

ACTL
F1 CLR

res res res

OUT
res

OUT
res

OUT
res

OUT
res

OUT
res

res
OUT

SYNC

CO
REG

SOL
MSB
REG

SOR
REG

D0/D1
RES

sysreset _ret

dp_reset_ret

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 498

Universal Digital Blocks (UDB)

Compatible Status and Control Block Reset Control

Figure 34-43 shows the compatible status and control block reset. The mask/period and auxiliary control registers are reten-
tion registers.

Figure 34-43. Compatible Status and Control Block Reset Control

Alternate Reset Scheme

Table 34-23 shows a summary of the differences between the compatible reset scheme and the alternate reset scheme.

Table 34-23. Reset Schemes

Feature Compatible Alternate

Granularity One routed reset is shared by all blocks in the UDB Each UDB component block can select an individual reset

Status register No routed reset capability Optionally can use the selected SC routed reset

Datapath No routed reset capability Optionally can use the selected DP routed reset

CFGx
RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
RES INV

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
SC FRES sc_reset

CFGx
EN RES
CNTCTL

Status

RES

Mask/Period
(retention)

RES

Aux Control
(retention)

RES

sysreset_ret

sc_reset_ret

CFGx
EXT RES

CGFx
SC OUT CTL[1:0]

Control register is enabled for routed reset, either in
Counter mode, OR with the EXT RES bit explicitly.

Control Write
Register

And Counter

RES

Control Sampling
Register

(embedded)

RES

sc_routed_reset

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 499

Universal Digital Blocks (UDB)

Alternate PLD Reset Control

Figure 34-44 shows the alternate PLD reset system. Although there are provisions for individual resets for each PLD, this is
not supported in the PLD block. Therefore, in the alternate reset scheme, the PLD0 reset control settings applies to both
PLDs.

Figure 34-44. Alternate PLD Reset Structure

CFGx
PLD0 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD0 RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

set

res

D Q

QB

SSEL

0

1

0

1

RSEL

SSEL

PLD Macrocell

MC

PLD0

MC

MC

MC

routed
reset

system/
firmware

reset

MC

PLD1

MC

MC

MC

sysreset

pld_routed_reset

pld0_reset

pld1_reset
sysreset

CFGx
PLD1 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD1 RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

Note: The current
PLD only supports 1
routed reset. Both
are controlled by
PLD0 routed reset.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 500

Universal Digital Blocks (UDB)

Alternate Datapath Reset Control

Figure 34-45 shows the alternate datapath reset system. The datapath routed reset applies to all datapath states, except the
data registers, which are implemented as retention registers.

Figure 34-45. Alternate Datapath Reset Structure

CFGx
DP RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
DP RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
EN RES DP

Carry Out
Register

Shift Out Left
Register

Output
Sync
Registers

RES

Shift Out Right
Register

Accumulator
Accumulators

RES

Accumulator
Data Registers

RES

RES

RES

RES

FIFO0 Status
RES

All elements of the datapath are reset by the selected
DP routed reset signal, EXCEPT the Data Registers

FIFO1 Status
RES

ACTL
F0 CLR

ACTL
F1 CLR

sysreset_ret

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 501

Universal Digital Blocks (UDB)

Alternate Status and Control Block Reset Control

Figure 34-46 shows the alternate status and control block reset. The mask/period and auxiliary control registers are retention
registers.

Figure 34-46. Alternate Status and Control Block Reset Control

34.2.4.3 UDB POR Initialization

Register and State Initialization

Routing Initialization

On POR, the state of input and output routing is as follows:

■ All outputs from the UDB that drive into the routing matrix are held at ‘0’.

■ All drivers out of the routing and into UDB inputs are initially gated to ‘0’.

As a result of this initialization, conflicting drive states on the routing are avoided and initial configuration occurs in an order-
independent sequence.

Table 34-24. UDB POR State Initialization

State Element State Element POR State

Configuration Latches CFG 0 – 31 0

Ax, Dx, CTL, ACTL, MASK Accumulators, data registers, auxiliary control register, mask register 0

ST, Macrocell Status and macrocell read only registers 0

DP CFG RAM and Fx (FIFOs) Datapath configuration RAM and FIFO RAM Unknown

PLD RAM PLD configuration RAM Unknown

CFGx
 SC RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
SC RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
EN RES CNTCTL

Control Write Register
and Counter

RES

Status

RES

CFGx
EN RES STAT

Mask/Period

RES

Aux Control

RESsysreset_ret

CFGx
EXT RES

CGFx
SC OUT CTL[1:0]

Control register is enabled for routed reset, either in
Counter mode, OR with the EXT RES bit explicitly.

Control Sampling
Register

(embedded)

RES

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 502

Universal Digital Blocks (UDB)

34.2.5 UDB Addressing

The UDBs can be accessed through a number of address spaces, for 8, 16, and 32-bit accesses of both the working registers
(A0, A1, D0, D1, FIFOs, and so on) and the configuration registers.

■ 8-bit working registers – This address space allows access to individual working registers in a single UDB.

■ 16-bit working registers consecutive – This address space allows access to the same working register in two consecutive
UDBs, for example D0 of UDB n and D0 of UDB n + 1

■ 16-bit working registers paired – This address space allows access to two working registers, for example A0 and A1, from
the same UDB.

■ 32-bit working registers – This address space allows access to the same working register, for example A1, in all twelve
UDBs.

■ 8-, 16-, or 32-bit configuration registers – This address space allows access to the configuration registers for a single
UDB.

34.2.6 System Bus Access Coherency

UDB registers have dual access modes:

■ System bus access, where the CPU is reading or writing a UDB register.

■ UDB internal access, where the UDB function is updating or using the contents of a register.

34.2.6.1 Simultaneous System Bus Access

Table 34-25 lists the possible simultaneous access events and required behavior:

34.2.6.2 Coherent Accumulator Access (Atomic Reads and Writes)

The UDB accumulators are the primary target of data computation. Therefore, reading these registers directly during normal
operation gives an undefined result, as indicated in Table 34-25. However, there is built-in support for atomic reads in the form
of software capture, which is implemented across chained blocks. In this usage model, a read of the least significant accumu-
lator transfers the data from all chained blocks to their associated FIFOs. Atomic writes to the accumulator can be imple-
mented programmatically. Individual writes can be performed to the input FIFOs, and then the status signal of the last FIFO
written can be routed to all associated blocks and simultaneously transfer the FIFO data into the Dx or Ax registers.

Table 34-25. Simultaneous System Bus Access

Register
UDB Write

Bus Write

UDB Write

Bus Read

UDB Read

Bus Write

UDB Read

Bus Read

Ax
Undefined result Not allowed directlya, b

a. The Ax registers can be safely read by using the software capture feature of the FIFOs.
b. The Dx registers can only be written dynamically by the FIFOs. When this mode is programmed, direct read of the Dx registers is not allowed.

UDB reads previous value Current value is read by both
Dx

Fx
Not supported (UDB and bus
must be opposite access)

If FIFO status flags are used, no simultaneous read/
write at the same location is possible

Not supported (UDB and bus
must be opposite access)

ST NA, bus does not write Bus reads previous value NA, UDB does not read

CTL NA, UDB does not write

UDB reads previous value
Current value is read by both

CNT Undefined result Not allowed directlyc

c. The CNT register can only be safely read when it is disabled. An alternative for dynamically reading the CNT value is to route the output to the SC register
(in transparent mode).

ACTL

NA, UDB does not writeMASK

PER

Macrocell (RO) NA, bus does not write Not allowed directlyd

d. Macrocell register bits can also be routed to the status register (in transparent mode) inputs for safe reading.

NA, bus does not write

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 503

Universal Digital Blocks (UDB)

34.3 Port Adapter Block

The Port Adaptor block extends the UDBs to provide an interface to the GPIOs through the High-Speed I/O Matrix (HSIOM),
described in “High-Speed I/O Matrix” on page 246. The HSIOM places registers for faster routing of DSI signals to GPIO out-
puts and output enables. The HSIOM also allows GPIOs to be shared amongst multiple blocks, for example port data regis-
ters and peripherals such as I2C. Figure 34-47 shows a high-level view.

Figure 34-47. Port Adapter Block Diagram

Each 8-bit GPIO port has one port adaptor (PA). There are eight inputs from the GPIO data in, eight outputs to the GPIO data
out, and eight output enable (OE) connections. The registers in the PA are used for synchronizing inputs, outputs, and output
enables. Another feature is the port input clock multiplexer. This multiplexer selects one of the port inputs to be used as a
clock. The clock can be used locally in the PA and routed to the global clocks (see Clocking System chapter on page 221).

Two programmable clock selectors are available, to supply separate clocks for the input and output synchronization registers.
The OE register uses the same clock as the output register. Also, two programmable reset selectors are available, in the
same manner as for the clock selectors.

34.3.1 PA Data Input Logic

Figure 34-48 shows the structure for the data input logic. Inputs are from each pin of an I/O port. The signal can be either sin-
gle synchronized or double synchronized, or synchronization can be bypassed for asynchronous inputs. Synchronization is to
the selected port input clock. The output of this circuit connects to the DSI routing.

Figure 34-48. Detail of GPIO Input Logic

Clock
Selectors

9
Global Clocks

3 DSI Signals
4

Reset
Selectors

2

2

To DSI

8

From DSI

8

8 8

8

From DSI

4

4

HSIOM

To Clock Tree

[0]

[0]

[1]

[1]

GPIO Port

8 8

Input Synch Regs
reset

Output Synch Regs
reset

Output Enables
reset

Port Input
Clock Multiplexer

3

8

8

2

PACFGx
IN SYNC[1:0]

00: transparent
01: single sync
10: double sync
11: reserved

Selected
Input Reset

Selected
Input Clock

From Port Pin[j]
where j = 0-7

dsi_from_pin[j]
(to DSI routing)

8 instances (one per port pin) in each port adapter

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 504

Universal Digital Blocks (UDB)

34.3.2 PA Port Pin Clock Multiplexer Logic

Figure 34-49 shows the port pin multiplexer. Each port has eight data input signals, one of which is selected for use as a
clock. This selection is routed for use as:

■ Programmable clock in the port adapter

■ Source for the UDB clock tree

■ Programmable reset in the port adapter

■ For use as a clock enable in the port adapter.

Note that the selected signal does not pass through synchronizers and is asynchronous to other clock domains within the
block. It should be used carefully for selected functions.

Figure 34-49. Detail of GPIO Pin Selection

34.3.3 PA Data Output Logic

Figure 34-50 shows the structure for the data output logic. Outputs go to each pin of an I/O port (through HSIOM). The signal
can be single synchronized or synchronization can be bypassed for asynchronous outputs. Other options include the ability to
output either the selected clock or an inverted version of the clock.

Figure 34-50. Detail of GPIO Output Data Logic

PIN CLK
MUX

dsi_from_pin[4]

dsi_from_pin[5]

3

PACFGx
PIN SEL[2:0]

Pin Clk Sel
000: sel pin 0
001: sel pin 1
010: sel pin 2
011: sel pin 3
100: sel pin 4
101: sel pin 5
110: sel pin 6
111: sel pin 7

dsi_from_pin[6]

dsi_from_pin[7]

(From Port Pins)

dsi_from_pin[0]

dsi_from_pin[1]

dsi_from_pin[2]

dsi_from_pin[3] To PA CLK/
Reset Select

2

PACFGx
OUT SYNC[1:0]

00: transparent
01: single sync
10: clock
11: clock inverted

Selected
Output Reset

Selected
Outout Clock

Data Mux

To Port Pin[j]
where j = i+ 0,1,2,3

dsi_to_pin[i+0]

dsi_to_pin[i+1]

2

PACFGx
DATA SEL[1:0]

00: Sel i+0
01: Sel i+1
10: Sel i+2
11: Sel i+3
where i = 0, 4

dsi_to_pin[i+2]

dsi_to_pin[i+3]

(From DSI routing)

8 Instances (one per port pin) in each Port Adapter

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 505

Universal Digital Blocks (UDB)

34.3.4 PA Output Enable Logic

Figure 34-51 shows the output enable (OE) logic. This circuit shares the clock and reset associated with data output. This
connection is unique in that there are four DSI outputs associated with the OE, but these are muxed to a total of four OE con-
nections to the I/O port pins, as Figure 34-52 shows.

Figure 34-51. GPIO Output Enable (OE) Sync Logic

Figure 34-52. GPIO Output Enable (OE) Multiplexers

Note that due to the active low sense of the OE signals at the ports, there is an additional inversion in the path between the
OE sync logic and the OE multiplexers.

2

PACFGx
OE SNYC[1:0]

00: transparent
01: single sync
10: 1
11: 0

Selected
Output Reset

Selected
Outout Clock

0

1

dsi_to_oe[j]
(j=0 to 3)

4 Instances (one per DSI
OE connection) in each

Port Adapter

To OE Muxes

OE MUXes

2

PACFGx
OE SEL[1:0]

00: Sel 0
01: Sel 1
10: Sel 2
11: Sel 3

8 Instances (one per OE
port pin input) in each Port

Adapter

OE selected[0]

OE selected[2]

OE selected[3]

To Port Pin OE[j]
j = 0 to 7

OE selected[1]
OE Sync

OE Sync

OE Sync

OE Sync

dsi_to_oe[0]

dsi_to_oe[1]

dsi_to_oe[2]

dsi_to_oe[3]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 506

Universal Digital Blocks (UDB)

34.3.5 PA Clock Multiplexer

Figure 34-53 shows the structure of the PA clock multiplexer. As noted previously, each PA has two programmable clock
selectors, to supply separate clocks for port inputs and outputs and output enables (OEs).

Figure 34-53. PA Clock Multiplexer Detail

34.3.6 PA Reset Multiplexer

The structure of the PA reset multiplexer is shown in Figure 34-54.

Figure 34-54. PA Reset Multiplexer Detail

As shown in Figure 34-55, the reset selection logic is duplicated, one for input, and one that serves both output and output
enable. Each of these resets has an individual enable, which applies to all eight bits in the associated category.

Figure 34-55. PA Reset System

Latch

PACFGx
CK SEL[3:0]

{dsi_xx_rc[2:0],port_xx_rc,bus_clk_app, gclk[7:0]}

Input/Output Clock

1000: res
1001: hf_clk_app
1010: res
1011: res
1100: port_xx_rc
1101: dsi_xx_rc[0]
1110: dsi_xx_rc[1]
1111: dsi_xx_rc[2]

PACFGx
EN SEL[1:0]

00: port_xx_rc
01: dsi_xx_rc[0]
10: dsi_xx_rc[1]
11: dsi_xx_rc[2]

PACFGx
EN INV

2

0: true
1: inverted

4

0: true
1: inverted

{dsi_xx_rc[2:0],port_xx_rc} FF

PACFGx
EN MODE[1:0]

00: off
01: on
10: pos edge
11: level

1 1

0

22

0

1

PACFGx
CK INV

2

0

1

0

3

2

0000: gclk[0]
0001: gclk[4]
0010: gclk[1]
0011: gclk[5]
0100: gclk[2]
0101: gclk[6]
0110: gclk[3]
0111: gclk[7]

PACFGx
RES SEL[1:0]

00: port_xx_rc
01: dsi_xx_rc[0]
10: dsi_xx_rc[1]
11: dsi_xx_rc[2]

2

PACFGx
RES INV

0: true
1: inverted

{dsi_xx_rc[2:0],port_xx_rc} To Input/Output reset

{dsi_xx_rc[2:0],port_xx_rc}

To Input/Output reset

Input
Reset Select

PACFGx
RES IN EN

PACFGx
RES OUT EN

PACFGx
RES OE EN

Output
Reset Select

0

0

0

To Input Sync
Register Resets

To Output Sync
Registers Resets

To OE Sync
Registers Resets

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 507

Section E: Analog Subsystem

This section encompasses the following chapters:

■ Analog Reference Block chapter on page 509

■ Low-Power Comparator chapter on page 513

■ Continuous Time Block mini (CTBm) chapter on page 518

■ Continuous Time DAC chapter on page 525

■ SAR ADC chapter on page 538

■ Temperature Sensor chapter on page 557

■ Analog Routing chapter on page 561

■ CapSense chapter on page 565

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 508

Analog Subsystem

Top Level Architecture

Figure E-1. Analog System Block Diagram

System
Hibernate Mode

Backup
Domain

System
DeepSleep Mode

System LP/ULP Mode
CPUs Active/Sleep

Color Key:
Power Modes and

Domains

Programmable Analog

SAR ADC 12 bit

S
A

R
M

U
X

DAC 12 bit

2x Opamp

Temperature Sensor

I/O
 S

u
b

sy
s

te
m

:
U

p
to

 1
0

0
G

P
IO

s
(i

nc
lu

d
in

g
 6

 O
V

T
),

 1
24

-B
G

A
 P

ac
ka

ge
B

ou
nd

a
ry

 S
ca

n
2x

 S
m

ar
t I

/O
 P

o
rt

s

P
er

ip
he

ra
l I

nt
e

rc
on

ne
ct

 (
M

M
IO

, P
P

U
)

P
er

ip
he

ra
l c

lo
ck

 (
P

C
LK

)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 509

35. Analog Reference Block

The Analog Reference block (AREF) generates highly accurate reference voltage and currents needed by the programmable
analog subsystem (PASS) and CapSense (CSD) blocks.

35.1 Features
■ Provides accurate bandgap references for PASS and CSD subsystems

■ 1.2-V voltage reference (VREF) generator

■ Option to output alternate voltage references routed from SRSS or from an external pin

■ Proportional to absolute temperature (IPTAT) current reference generation

■ Zero dependency to absolute temperature (IZTAT) flat current reference generation, which is independent of temperature
variations

■ Option to generate IZTAT from SRSS generated current reference

■ Option to enable or disable references in System Deep-Sleep mode

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

Analog Reference Block

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 510

35.2 Architecture

Figure 35-1. AREF Block Diagram

Figure 35-1 shows the architecture of the Analog Reference (AREF) block. It consists of a bandgap reference circuit, which generates 1.2 V voltage reference (VREFBG) and a
positive temperature coefficient current reference (IPTAT). Options for the voltage reference include 0.8 V reference from the SRSS block and an external reference from a
dedicated pin (see thedevice datasheet for pin number). Application use cases of the selected voltage reference (VREF) include setting the reference in the CTBm opamp

amplifier/comparator, CTDAC (using CTBm opamp as buffer), SAR ADC, and CapSense blocks. The voltage reference can be routed to an external pin through a CTBm opamp
configured as buffer.

IPTAT is used in the CTBm block for opamp offset drift compensation. It can be scaled to either 0.1 µA or 1 µA; these values are defined at room temperature.

The AREF block also generates zero-temperature coefficient IZTAT reference current (1 µA), which remains stable over temperature. The other option for IZTAT reference is the
1 µA current derived from the 250-nA reference current from SRSS. Selected IZTAT reference current is used in CTBm, SAR ADC, and CapSense blocks. It is also possible to

M
U

X

Bandgap Reference

Current
Reference
generator

VREF

IZTAT

IPTAT

Analog Reference (AREF) block

Voltage
Reference
generator

SRSS Voltage Reference (0.8 V)

External (off-chip) reference from a pin
AREF_EXT_VREF

SRSS Current Reference
(250 nA)

IPTAT 1 uA / 0.1uA

VREFBG 1.2 V

IZTAT
Generator

M
U

X

IZTAT
1 uA

Current
Mirror

Current
Mirror

Redirect
IZTAT

To CTBm

To SAR ADCs
and CapSense

To CTBm

PASS_AREF_AREF_CTRL.
IZTAT_SEL

PASS_AREF_AREF_CTRL.
VREF_SEL

PASS_AREF_AREF_CTRL.
CTB_IPTAT_REDIRECT

PASS_AREF_AREF_CTRL.
CTB_IPTAT_SCALE

VREF

To CapSense Block

Scale (x4)

Low Pass
Filter

Low Pass
Filter

PASS_AREF_AREF_CTRL.
AREF_MODE

VDDAVDDA/2

VREF
Buffer

External reference
input pin (VREF) or
bypass capacitor for
internal reference

SAR Reference
(SARREF)

To
SAR ADC
Core

To SAR ADC

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 511

Analog Reference Block

redirect the IPTAT current to the IZTAT output going to the CTBm block. When IPTAT is configured to 0.1 µA, power
consumption in the CTBm opamp can be lowered. This, however, leads to reduced gain-bandwidth product of the opamp.
See thedevice datasheet for the specifications.

Current mirror circuits are used to generate multiple current references to drive to different analog blocks. The AREF block
can be enabled to work in System Deep Sleep mode. It is not available in the System Hibernate mode.

The following sections explain the configurations in detail.

35.2.1 Bandgap Reference Block

The AREF block contains a local bandgap reference generator, which has tighter accuracy, temperature stability, and lower
noise than the SRSS bandgap reference. The bandgap reference block provides a temperature stable voltage (VREFBG) and

an additional current that tracks temperature (IPTAT). See the device datasheet to know the accuracy of VREFBG.

IPTAT current can be scaled to either 0.1 µA or 1 µA using CTB_IPTAT_SCALE bit of the PASS_AREF_AREF_CTRL
register.

The AREF block is enabled by writing ‘1’ into the ENABLED bit of the PASS_AREF_AREF_CTRL register.

35.2.2 VREF Reference Voltage Selection Multiplexer Options

The multiplexer in AREF is used to select the sources for the output voltage reference. The following options are available for
selection using VREF_SEL bits of the PASS_AREF_AREF_CTRL register.

35.2.3 Zero Dependency To Absolute Temperature Current Generator (IZTAT)

The IZTAT current generator uses the output of the selected reference voltage (VREF) to generate a precise current reference,

which has a low variation over temperature.

Table 35-1. Bandgap References in AREF

Bandgap Reference
Outputs

Value

VREFBG 1.2 V

IPTAT 1 µA (if CTB_IPTAT_SCALE = 0) or 0.1 µA (if CTB_IPTAT_SCALE = 1)

Table 35-2. Reference Voltage Multiplexer Options

VREF_SEL[1:0] Description

00 (SRSS)

Routes the VREF from SRSS (0.8 V)

Note: SRSS references are not available in System Deep Sleep power mode. This option should not be
used if the analog blocks – CTBm are required to be functional in System Deep Sleep mode.

01 (LOCAL) Routes locally generated bandgap reference (1.2V)

02 (EXTERNAL) Routes the reference from external VREF pin

Table 35-3. IZTAT Reference

IZTAT Reference Outputs Value

IZTAT 1 µA

www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 512

Analog Reference Block

35.2.3.1 IZTAT Selection Multiplexer Options

IZTAT output current can be derived from the SRSS reference current (250 nA) or the reference current from the local IZTAT
generator. The selection is made using IZTAT_SEL bit of the PASS_AREF_AREF_CTRL register.

35.2.4 Startup Modes

AREF supports two startup modes, which provide a trade-off between wakeup time and noise performance when transitioning
from the Deep Sleep to Active power mode. This is selected using the AREF_MODE bit of the PASS_AREF_AREF_CTRL
register. The FAST_START mode enables faster wakeup, but with higher noise levels. Firmware can switch to NORMAL
mode after the FAST_START settling time to achieve better noise performance.

35.2.5 Low-Power Modes

AREF’s voltage and current references can be made available during the Deep Sleep power mode. This is configured using
the DEEPSLEEP_ON bit in the PASS_AREF_AREF_CTRL register. Individual references can be active by configuring
DEEPSLEEP_MODE as shown in Table 35-6.

Note: These options are applicable only when DEEPSLEEP_ON = 1.

35.3 Registers

Table 35-4. IZTAT Multiplexer Options

IZTAT_SEL Description

0 (SRSS)
Uses SRSS current reference

Note: SRSS references are not available in System Deep Sleep mode. This option should not be used if the
analog blocks - CTBm are required to be functional in the System Deep Sleep mode.

1 (LOCAL) Uses locally generated reference current

Table 35-5. Startup Modes

AREF_MODE Description

0 (NORMAL) Normal startup mode

1 (FAST_START) Fast startup mode

Table 35-6. Deep Sleep Mode

DEEPSLEEP_MODE[1:0] Description

00 (OFF) All references are OFF during Deep Sleep

01 (IPTAT)
IPTAT is ON during Deep Sleep. This mode enables fast wakeup from Deep Sleep. However, IPTAT is not avail-
able for use by the CTBm block.

10 (IPTAT_IZTAT)
IPTAT is ON during Deep Sleep and available to CTBm. To use this mode, IPTAT current should be redirected to
IZTAT output by setting the CTB_IPTAT_REDIRECT bit of the PASS_AREF_AREF_CTRL register to ‘1’.

11 (IPTAT_IZTAT_VREF) IPTAT, IZTAT, and VREF are ON and available to other analog blocks (CTBm, CTDAC) during Deep Sleep

Table 35-7. List of AREF Registers

Register Comment Features

PASS_AREF_AREF_CTRL AREF control register Reference selection, startup time, and low-power mode.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 513

36. Low-Power Comparator

PSoC 6 MCUs have two Low-Power comparators, which can perform fast analog signal comparison of internal and external
analog signals in all system power modes. Low-Power comparator output can be inspected by the CPU, used as an interrupt/
wakeup source to the CPU when in CPU Sleep mode, used as a wakeup source to system resources when in System Deep
Sleep or Hibernate mode, or fed to DSI as an asynchronous or synchronous signal (level or pulse).

36.1 Features

The PSoC 6 MCU comparators have the following features:

■ Configurable input pins

■ Programmable power and speed

■ Ultra low-power mode support

■ Each comparator features a one-sided hysteresis option

■ Rising edge, falling edge, combined rising and falling edge detection at the comparator output

■ Local reference voltage generation

■ Wakeup source from low-power modes

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 514

Low-Power Comparator

36.2 Architecture

Figure 36-1 shows the block diagram for the Low-Power comparator.

Figure 36-1. Low-Power Comparator Block Diagram

The following sections describe the operation of the PSoC 6
MCU Low-Power comparator, including input configuration,
power and speed modes, output and interrupt configuration,
hysteresis, and wakeup from low-power modes.

36.2.1 Input Configuration

Low-Power comparators can operate with the following input
options:

■ Compare two voltages from external pins.

■ Compare a voltage from an external pin against an
internally generated analog-signal (through AMUXBUS).

■ Compare two internal voltages through AMUXBUS-A/
AMUXBUS-B.

■ Compare internal and external signals with a locally-
generated reference voltage. Note that this voltage is not
a precision reference and can vary from 0.45 V–0.75 V.

See the device datasheet for detailed specifications of the
Low-Power comparator.

Note that AMUXBUS connections are not available in Deep
Sleep and Hibernate modes. If Deep Sleep or Hibernate
operation is required, the Low-Power comparator must be
connected to the dedicated pins. This restriction also
includes routing of any internally-generated signal, which

uses the AMUXBUS for the connection. See the I/O
System chapter on page 240 for more details on connecting
the GPIO to AMUXBUS A/B or setting up the GPIO for
comparator input.

Refer to the LPCOMP_CMP0_SW, LPCOMP_CMP1_SW,
LPCOMP_CMP0_SW_CLEAR, and
LPCOMP_CMP1_SW_CLEAR registers in the registers
TRM to understand how to control the internal routing
switches shown in Figure 36-1.

If the inverting input of a comparator is routed to a local
voltage reference, the LPREF_EN bit in the
LPCOMP_CONFIG register must be set to enable the
voltage reference.

36.2.2 Output and Interrupt Configuration

Both Comparator0 and Comparator1 have hardware outputs
available at dedicated pins. See the device datasheet for the
location of comparator output pins. In addition, comparator
outputs can be routed through DSI to the programmable
digital logic (UDBs) or any GPIO that supports DSI.

Firmware readout of Comparator0 and Comparator1 outputs
are available at the OUT0 and OUT1 bits of the

Low Power Comparator Block

Analog Sub-Section
AHBAHB

Interface

Edge
Detector

Edge
Detector

Interrupt to
CPU
Subsystem

dsi_comp0
(To HSIOM or trigger
multiplexer)

Sync
edge + pulse

dsi_comp1
(To HSIOM or trigger
multiplexer)

Sync
edge + pulse

S
yn

c
S

yn
c

combine &
mask

Wake up signals to
System Resources Sub-System

MMIO

Registers

Comparator1

Part of I/O
system

out0

o
u

t_
w

k0
+

-

out1

o
u

t_
w

k1

+

-

VREF (0.45 V -0.75 V)

VN1

VN0BN0AN0

BP0AP0

BN1AN1

BP1AP1

IN0

IP0

IN1

IP1

A
M

U
X

B
U

S
 A

A
M

U
X

B
U

S
 B

P1BP1A

P0BP0A

P3BP3A

P2BP2A

inp0

inn0

inp1

inn1

Comparator0

To MMIO

Routing
Switches

Routing
Switches

AA_SL

BB_SL

AA_SR

BB_SR

www.cypress.com/ds218449
http://www.cypress.com/trm220777
http://www.cypress.com/trm220777
http://www.cypress.com/trm220777
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 515

Low-Power Comparator

LPCOMP_STATUS register (Table 36-1). The output of each
comparator is connected to a corresponding edge detector
block. This block determines the edge that triggers the
interrupt. The edge selection and interrupt enable is
configured using the INTTYPE0 and INTTYPE1 bitfields in
the LPCOMP_CMP0_CTRL and LPCOMP_CMP1_CTRL
registers for Comparator0 and Comparator1, respectively.
Using the INTTYPE0 and INTTYPE1 bits, the interrupt type
can be selected to disabled, rising edge, falling edge, or
both edges, as described in Table 36-1.

Each comparator’s output can also be routed directly to a
GPIO pin through the HSIOM. See the I/O System chapter
on page 240 for more details.

During an edge event, the comparator will trigger an
interrupt. The interrupt request is registered in the COMP0
bit and COMP1 bit of the LPCOMP_INTR register for
Comparator0 and Comparator1, respectively. Both
Comparator0 and Comparator1 share a common interrupt
signal output (see Figure 36-1), which is a logical OR of the
two interrupts and mapped as the Low-Power comparator
block’s interrupt in the CPU NVIC. Refer to the
Interrupts chapter on page 55 for details. If both the
comparators are used in a design, the COMP0 and COMP1
bits of the LPCOMP_INTR register must be read in the

interrupt service routine to know which one triggered the
interrupt. Alternatively, COMP0_MASK bit and
COMP1_MASK bit of the LPCOMP_INTR_MASK register
can be used to mask the Comparator0 and Comparator1
interrupts to the CPU. Only the masked interrupts will be
serviced by the CPU. After the interrupt is processed, the
interrupt should be cleared by writing a ‘1’ to the COMP0
and COMP1 bits of the LPCOMP_INTR register in firmware.
If the interrupt to the CPU is not cleared, it stays active
regardless of the next compare events and interrupts the
CPU continuously. Refer to the Interrupts chapter on
page 55 for details.

LPCOMP_INTR_SET register bits [1:0] can be used to
assert an interrupt for firmware debugging.

In Deep Sleep mode, the wakeup interrupt controller (WIC)
can be activated by a comparator edge event, which then
wakes up the CPU. Similarly in Hibernate mode, the
LPCOMP can wake up the system resources sub-system.
Thus, the LPCOMP has the capability to monitor a specified
signal in low-power modes. See the Power Supply and
Monitoring chapter on page 197 and the Device Power
Modes chapter on page 204 for more details.

36.2.3 Power Mode and Speed Configuration

The Low-Power comparators can operate in three power modes:

■ Normal

■ Low-power

■ Ultra low-power

Table 36-1. Output and Interrupt Configuration

Register[Bit_Pos] Bit_Name Description

LPCOMP_STATUS[0] OUT0 Current/Instantaneous output value of Comparator0

LPCOMP_STATUS[16] OUT1 Current/Instantaneous output value of Comparator1

LPCOMP_CMP0_CTRL[7:6] INTTYPE0

Sets on which edge Comparator0 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_CMP1_CTRL[7:6] INTTYPE1

Sets on which edge Comparator1 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_INTR[0] COMP0
Comparator0 Interrupt: hardware sets this interrupt when Comparator0 triggers. Write
a '1' to clear the interrupt

LPCOMP_INTR[1] COMP1
Comparator1 Interrupt: hardware sets this interrupt when Comparator1 triggers. Write
a '1' to clear the interrupt

LPCOMP_INTR_SET[0] COMP0 Write a '1' to trigger the software interrupt for Comparator0

LPCOMP_INTR_SET[1] COMP1 Write a 1 to trigger the software interrupt for Comparator1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 516

Low-Power Comparator

The power or speed setting for Comparator0 is configured using the MODE0 bitfield of the LPCOMP_CMP0_CTRL register.
Similarly, the power or speed setting for Comparator1 is configured using the MODE1 bitfield of the LPCOMP_CMP1_CTRL
register. The power consumption and response time vary depending on the selected power mode; power consumption is
highest in fast mode and lowest in ultra-low-power mode, response time is fastest in fast mode and slowest in ultra-low-power
mode. Refer to the device datasheet for specifications for the response time and power consumption for various power
settings.

The comparators can also be enabled or disabled using these bitfields, as described in Table 36-2.

Note: The output of the comparator may glitch when the power mode is changed while comparator is enabled. To avoid this,
disable the comparator before changing the power mode.

Additionally, the entire Low-Power comparator system can be enabled or disabled globally using the LPCOMP_CONFIG[31]
bit. See the registers TRM for details of these bitfields.

36.2.4 Hysteresis

For applications that compare signals close to each other and slow changing signals, hysteresis helps to avoid oscillations at
the comparator output when the signals are noisy. For such applications, a fixed hysteresis may be enabled in the comparator
block. See the device datasheet for the hysteresis voltage range.

The hysteresis level is enabled/disabled by using the HYST0 and HYST1 bitfields in the LPCOMP_CMP0_CTRL and
LPCOMP_CMP1_CTRL registers for Comparator0 and Comparator1, as described in Table 36-3.

Table 36-2. Comparator Power Mode Selection Bits

Register[Bit_Pos] Bit_Name Description

LPCOMP_CMP0_CTRL[1:0] MODE0

Compartor0 power mode selection

00: Off

01: Ultra low-power operating mode. This mode must be used when the device is in
Deep Sleep or Hibernate mode.

10: Low-power operating mode

11: Normal, full-speed, full-power operating mode

See the datasheet for electrical specifications in each power mode.

LPCOMP_CMP1_CTRL[1:0] MODE1

Compartor1 power mode selection

00: Off

01: Ultra low-power operating mode. This mode must be used when the device is in
Deep Sleep or Hibernate mode.

10: Low-power operating mode

11: Normal, full-speed, full-power operating mode

See the datasheet for electrical specifications in each power mode.

https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
http://www.cypress.com/trm220777
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 517

Low-Power Comparator

Table 36-3. Hysteresis Control Bits

36.2.5 Wakeup from Low-Power Modes

The comparator is operational in the device’s low-power modes, including Sleep, Deep Sleep, and Hibernate modes. The
comparator output can wake the device from Sleep and Deep Sleep modes. The comparator output can generate interrupts in
Deep Sleep mode when enabled in the LPCOMP_CONFIG register, the INTTYPEx bits in the LPCOMP_CMPx_CTRL
register should not be set to disabled, and the INTR_MASKx bit should be set in the LPCOMP_INTR_MASK register for the
corresponding comparator to wake the device from low-power modes. Comparisons involving AMUXBUS connections are not
available in Deep Sleep and Hibernate modes. Moreover, if the comparator is required in Deep Sleep or Hibernate modes,
then it must be configured into Ultra Low-Power mode before the device is put into Deep Sleep or Hibernate mode.

In the Deep Sleep and Hibernate power modes, a compare event on either Comparator0 or Comparator1 output will generate
a wakeup interrupt. The INTTYPEx bits in the LPCOMP_CONFIG register should be properly configured. The mask bits in the
LPCOMP_INTR_MASK register is used to select whether one or both of the comparator’s interrupt is serviced by the CPU.
See the Device Power Modes chapter on page 204 for more details.

36.2.6 Comparator Clock

The comparator uses the system main clock SYSCLK as the clock for interrupt and output synchronization. See the Clocking
System chapter on page 221 for more details.

36.3 Register List

Register[Bit_Pos] Bit_Name Description

LPCOMP_CMP0_CTRL[5] HYST0

Enable/Disable hysteresis to Comparator0

1: Enable Hysteresis

0: Disable Hysteresis

See the datasheet for hysteresis voltage range.

LPCOMP_CMP1_CTRL[5] HYST1

Enable/Disable hysteresis to Comparator1

1: Enable Hysteresis

0: Disable Hysteresis

See the datasheet for hysteresis voltage range.

Table 36-4. Low-Power Comparator Register Summary

Register Function

LPCOMP_CONFIG LPCOMP global configuration register

LPCOMP_INTR LPCOMP interrupt register

LPCOMP_INTR_SET LPCOMP interrupt set register

LPCOMP_INTR_MASK LPCOMP interrupt request mask register

LPCOMP_INTR_MASKED LPCOMP masked interrupt output register

LPCOMP_STATUS Output status register

LPCOMP_CMP0_CTRL Comparator0 configuration register

LPCOMP_CMP1_CTRL Comparator1 configuration

LPCOMP_CMP0_SW Comparator0 switch control

LPCOMP_CMP1_SW Comparator1 switch control

LPCOMP_CMP0_SW_CLEAR Comparator0 switch control clear

LPCOMP_CMP1_SW_CLEAR Comparator1 switch control clear

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 518

37. Continuous Time Block mini (CTBm)

The Continuous Time Block mini (CTBm) provides on-chip operational amplifiers (opamps) for creating continuous-time
signal chains. Each CTBm includes a switch matrix for input/output configuration, two identical opamps, which are also
configurable as two comparators, a charge pump inside each opamp, a sample-and-hold circuit, and a digital interface for
comparator output routing, switch controls, and interrupts. CTBm and CTDAC are intended to work together in many
applications. See the Continuous Time DAC chapter on page 525 for details.

37.1 Features

The PSoC 6 MCU CTBm has the following features:

■ Discrete, high-performance, and highly configurable on-chip operational amplifiers

■ Programmable power, bandwidth, compensation, and output drive strength

■ Flexible input and output routing

■ Support for opamp voltage-follower mode using internal connections

■ Comparator mode with optional 10-mV hysteresis

■ Works as buffer/pre-amplifier for SAR inputs

■ Works as buffer/amplifier/sample-and-hold for CTDAC outputs

■ Operates in System Deep Sleep mode

■ Buffering external Vref of CTDAC

■ PGA using the CTDAC resistive ladder

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 519

Continuous Time Block mini (CTBm)

37.2 Architecture

Figure 37-1. CTBm Block Diagram

Note: CTDAC is not a part of the CTBm. See the Continuous Time DAC chapter on page 525 for more details.

The CTBm has two identical opamps, a switch routing matrix and a sample and hold circuit. Each opamp is configurable as
an amplifier (with external passive components) or as a comparator. The opamp pins can be brought out to the pins using
configurable switches, where external components can be connected to build useful circuits such as non-inverting amplifier,
active filters, transimpedance amplifier, and many more. When opamps are used as amplifier, the output drive strength is
configurable to drive internal blocks or external pins. When opamps are used as comparators, options are provided to
generate interrupts and route the comparator output to different blocks such as TCPWMs using trigger multiplexer and DSI.

The CTBm block is designed to work closely with the CTDAC block. Opamps are used to buffer the reference input from a pin
or internal reference (VREF) and to buffer the output of the DAC. The sample and hold circuit allow sampling of the CTDAC

output. The resistor array of CTDAC can be used as feedback network around CTBm opamp to build a configurable gain
amplifier. See the Continuous Time DAC chapter on page 525 for details of different use cases.

Opamps can be operated in System Deep Sleep mode with reduced performance (lower gain-bandwidth product).

The following sections describe the CTBm block configuration.

37.2.1 Power Mode and Output Strength Configuration

The opamp can operate in three power modes - low, medium, and high. Power modes are configured using the PWR_MODE
bitfield in the respective CTBM_OA_RESx_CTRL register. The slew rate and gain-bandwidth product (GBW) are maximum in
highest power mode and minimum in lowest power mode.

In addition, the output driver of each opamp can be configured to the internal driver low output drive strength or high output
drive strength external driver. Low and high output drive strengths are mutually exclusive – they cannot be active at the same

Firmware Controlled Switch

Legend

Firmware and DSI Controlled Switch
Firmware, DSI and SARSEQ Controlled Switch

Xnn

Xnn

Xnn

A
M

U
X

B
U

S
 A

A
M

U
X

B
U

S
 B

sa
rb

us
0

sa
rb

us
1

P P

P P

P P

P P

P P

P P

P P

P P

A00

1x

OA0

A03 A13

A22

A20

A11

D81

D62

D51

D52

A81

A82

10x

1x
OA1

D82

10x
+

-

+

-

A43

A30

Part of GPIO
(Controlled by HSIOM)

ctdvout

ctdrefdrive

ctdrefsense

cmpout0

cmpout1

CIS

COR

CRD

CVD

VSSA

C
T

D
A

C

CTBm

CRS

R
2

R
 (1

2
b)

CO 6

ct
d

vo
ut

sw

A73

CHOLD

CHD

VSSA

COS

C6H

CA0

ILR

COB

P0

P6

P5

P4

P3

P2

P1

P7

CTBm Port VDDA

D
ig

ita
l I

nt
er

fa
ce

 a
nd

 L
og

ic

AHBSwitch & Opamp Control

dsi_comp (to DSI)

Interrupt (to CPUSS)

V
R

E
F

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 520

Continuous Time Block mini (CTBm)

time. Low output drive strength is suited to drive smaller on-chip capacitive and resistive loads at higher speeds. High output
drive strengths is useful for driving large off-chip capacitive and resistive loads. See the device datasheet for gain bandwidth,
slew rate, and maximum output drive capability (IOUT specifications in various power modes and output strength
configurations. Table 37-1 summarizes the bits used to configure the opamp output drive strength and power modes.

In special instances, to connect the output to an external pin with low output drive strength or an internal load (for example,
SAR ADC) with high output drive strength, switches D81/D82 shown in Figure 37-1 can be used. However, Cypress does not
guarantee performance in this configuration.

37.2.2 Charge Pump

Each opamp includes a charge pump to get rail-to-rail input. The clock for running the charge pumps is selected using
CLOCK_PUMP_PERI_SEL bits of PASS_AREF_CTRL register (see the Analog Reference Block chapter on page 509). The
selected clock will be common to both the opamps in the CTBm block.

Pump clock input frequency requires to be in a certain range depending on the opamp power mode. See Table 37-2.

For the opamp configured for operation in System Deep Sleep mode, pump clock is not available.

Table 37-1. Output Strength and Power Mode Configuration in CTBM Registers

Register[Bit_Pos] Bit_Name Description

CTBM_CTB_CTRL[31] ENABLE

CTBM power mode selection

0: CTBM is disabled

1: CTBM is enabled

CTBM_OA_RES0_CTRL [11] OA0_PUMP_EN

Opamp0 pump enable bit. Pump must be enabled and clocks should be
configured for CTBm to work

0: Opamp0 pump is disabled

1: Opamp0 pump is enabled

CTBM_OA_RES1_CTRL [11] OA1_PUMP_EN

Opamp1 pump enable bit

0: Opamp1 pump is disabled

1: Opamp1 pump is enabled

CTBM_OA_RES0_CTRL [1:0] OA0_PWR_MODE

Opamp0 power mode select bits

00: Opamp0 is OFF

01: Opamp0 is in low-power mode

10: Opamp0 is in medium-power mode

11: Opamp0 is in high-power mode

CTBM_OA_RES1_CTRL [1:0] OA1_PWR_MODE

Opamp1 power mode select bits

00: Opamp1 is OFF

01: Opamp1 is in low-power mode

10: Opamp1 is in medium-power mode

11: Opamp1 is in high-power mode

CTBM_OA_RES0_CTRL [2] OA0_DRIVE_STR_SEL

Opamp0 output drive strength select bits

0: Opamp0 output drive strength is low

1: Opamp0 output drive strength is high

CTBM_OA_RES1_CTRL [2] OA1_DRIVE_STR_SEL

Opamp1 output drive strength select bits

0: Opamp1 output drive strength is low

1: Opamp1 output drive strength is high

Table 37-2. Pump Clock Frequency

Opamp Power Mode Pump Clock Frequency

High 24 MHz

Medium 8 MHz to 24 MHz

Low 8 MHz to 24 MHz

www.cypress.com/psoc-6-63-series-datasheet
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 521

Continuous Time Block mini (CTBm)

Charge pump is enabled by setting the OA0_PUMP_EN bit in the CTBM_OA_RES0_CTRL register for Opamp0 and
OA1_PUMP_EN bit in the CTBM_OA_RES1_CTRL register for Opamp1.

37.2.3 Reference Currents

Opamps require reference currents (IPTAT and IZTAT) for its operation. These currents are generated by the Analog
Reference block. Follow this procedure to configure the reference currents:

1. Enable the reference using ENABLED bit in the PASS_AREF_CTRL register.

2. If the opamps are required to be operational in System Deep Sleep mode, AREF also needs to be active simultaneously.
Configure the DEEPSLEEP_MODE and DEEPSLEEP_ON bit fields in the PASS_AREF_CTRL register to keep the refer-
ence currents ON during System Deep Sleep mode.

3. Power consumption in opamps can be reduced by lowering the reference current (IPTAT) from 1 µA to 100 nA at the
expense of reduced gain bandwidth product. IPTAT value is configured using CTB_IPTAT_SCALE bit of the
PASS_AREF_CTRL register. Choose the setting based on the application requirements. Performance specifications are
provided in the device datasheet.

The AREF settings apply to all the opamps. See the Analog Reference Block chapter on page 509 for more details.

37.2.4 Compensation Trim Bits

For opamp stability, compensation bits need to be set based on the selected drive strength. Set the compensation trim
registers OA0_COMP_TRIM and OA1_COMP_TRIM to 03h for 10x output drive strength and 01h for 1x output drive
strength.

37.2.5 Switching Matrix

The CTBm has many switches to configure input and output routing of the opamps, as shown in Figure 37-1. Table 37-3 lists
the switches and the respective control bits to open/close the switches.

Table 37-3. Switches and their Control Bits

Switch Description Register Bitfield

A00 Opamp0 non-inverting input to AMUXBUS A CTBM_OA0_SW OA0P_A00

A20 Opamp0 non-inverting input to Px.0 CTBM_OA0_SW OA0P_A00

A30 Opamp0 non-inverting input to Px.6 (and C6H) CTBM_OA0_SW OA0P_A30

A11 Opamp0 inverting input to Px.1 CTBM_OA0_SW OA0M_A11

A81 Opamp0 inverting input to output CTBM_OA0_SW OA0M_A81

D51 Opamp0 output to sarbus0 CTBM_OA0_SW OA0O_D51

D81 Opamp0 - shorts low and high drive strength outputs CTBM_OA0_SW OA0O_D81

A03 Opamp1 non-inverting input to AMUXBUS B CTBM_OA1_SW OA1P_A03

A13 Opamp1 non-inverting input to Px.5 CTBM_OA1_SW OA1P_A13

A43 Opamp1 non-inverting input to Px.7 CTBM_OA1_SW OA1P_A43

A73 Opamp1 non-inverting input to VREF CTBM_OA1_SW OA1P_A73

A22 Opamp1 inverting input to Px.4 CTBM_OA1_SW OA1M_A22

A82 Opamp1 inverting input to output CTBM_OA1_SW OA1M_A82

D52 Opamp1 output to sarbus0 CTBM_OA1_SW OA1O_D52

D62 Opamp1 output to sarbus1 CTBM_OA1_SW OA1O_D62

D82 Opamp1 - shorts low and high drive strength outputs CTBM_OA1_SW OA1O_D82

CIS Opamp0 non-inverting input isolation (for CHOLD) CTBM_CTD_SW CTDH_CIS

ILR CHOLD leakage reduction (drives far side of isolation switch CIS) CTBM_CTD_SW CTDH_ILR

CA0 CHOLD to Opamp0 non-inverting input CTBM_CTD_SW CTDH_CA0

COS CTDAC output to CHOLD (deglitch capable) CTBM_CTD_SW CTDO_COS

www.cypress.com/psoc-6-63-series-datasheet
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 522

Continuous Time Block mini (CTBm)

Note: GPIO switches are not covered in this table. For a detailed description of GPIO switches and AMUXBUS connections,
see the I/O System chapter on page 240.

Switches D51/D52/D62 shown in Figure 37-1 can be hardware controlled by the SAR sequencer (SARSEQ) as well as DSI
signals, in addition to being firmware controllable. For more details of the SAR sequencer, see the SAR ADC chapter on
page 538.

The CTBm switches will also work in the Deep Sleep power mode. The firmware control will keep values from Active to Deep
Sleep mode. The hardware control signals will be latched during Deep Sleep.

Using the switching matrix, the opamps in CTBm can be configured to have inputs from:

■ Dedicated pins

■ CTDAC

■ AMUXBUS A/B

Similarly, the output of the opamps can be connected to:

■ Dedicated pins

■ SAR ADC input (sarbus0 / sarbus1)

■ AMUXBUS A/B

See the device datasheet for the location of dedicated CTBm pins. See the Continuous Time DAC chapter on page 525 for
details of CTDAC-CTBm connections. For more details of AMUXBUS connections to other analog blocks in the PSoC 6 MCU,
see Analog Routing chapter on page 561.

37.2.6 Sample and Hold

CTBm has a sample and hold (SH) at the CTBm amplifier input, connected to the CTDAC output. This sampling is controlled
by firmware. Switches also exist to route the CTDAC output to a pin without buffering, and to drive a buffered reference
voltage to the CTDAC through a CTBm amplifier. The Continuous Time DAC chapter on page 525 contains detailed
explanation of CTBm and sample and hold operating together with the CTDAC.

37.2.7 Comparator Mode

Each opamp can be configured as a comparator by setting the respective OAx_COMP_EN bit in the CTBM_OA_REx_CTRL
register. Note that enabling the comparator disables the compensation capacitors and shuts down the low and high drive
strength outputs. The comparator has the following features:

■ Optional 10-mV input hysteresis

■ Configurable power/speed

■ Optional output synchronization

■ Configurable edge detection (rising/falling/both/disable)

37.2.7.1 Comparator Configuration

A hysteresis of 10 mV can be enabled in one direction (low to high). Input hysteresis can be enabled by setting
OAx_HYST_EN bit in the CTBM_OA_RESx_CTRL register. The two comparators also have three power modes: low,
medium, and high, controlled by OAx_PWR_MODE bitfield in the CTBM_OA_RESx_CTRL register. Power modes differ in
response time and power consumption; power consumption is maximum in fast mode and minimum in ultra-low-power mode.
Exact specifications for power consumption and response time are provided in the device datasheet.

CHD CHOLD disconnect CTBM_CTD_SW CTDH_CHD

C6H CTDAC output to Px.6 CTBM_CTD_SW CTDO_C6H

CRD Opamp1 output to CTDAC Ref CTBM_CTD_SW CTDD_CRD

COR CTDAC output to Opamp1 inverting input CTBM_CTD_SW CTDS_COR

CRS CTDAC Ref sense to Opamp1 inverting input CTBM_CTD_SW CTDS_CRS

Table 37-3. Switches and their Control Bits

Switch Description Register Bitfield

www.cypress.com/psoc-6-63-series-datasheet
www.cypress.com/psoc-6-63-series-datasheet
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 523

Continuous Time Block mini (CTBm)

The output state of Comparator0 and Comparator1 can be monitored by the firmware using OAx_COMP bits in the
CTBM_COMP_STAT register.

Table 37-4 summarizes various bits used to configure the comparator mode in the CTBm.

37.2.7.2 Comparator Interrupt

The comparator output is connected to an edge detector block, which is used to detect the edge (disable/rising/falling/both)
that generates interrupt. It can be configured using OAx_COMPINT bitfields in the CTBM_OA_RESx_CTRL register.

Each interrupt has an interrupt mask bit in the CTBM_INTR_MASK register. By setting the interrupt mask low, the
corresponding interrupt source is ignored. The CTBm comparator interrupt to the CPUSS will be raised if logic AND of the
interrupt flags in INTR registers and the corresponding interrupt masks in the CTBM_INTR_MASK register is logic 1.

Writing a ‘1’ to the COMPx bits in the CTBM_INTR register clears the corresponding interrupt.

For firmware convenience, the logic AND of the interrupt flags and the interrupt masks is also made available in the
CTBM_INTR_MASKED register. To know the interrupt source at the block level (CTBM or CTDAC), PASS_INTR_CAUSE
register can be used.

For verification and debug purposes, a set bit is provided for each interrupt in the CTBM_INTR_SET register. This bit allows
the firmware to raise the interrupt without a real comparator switch event.

For more details on the PSoC 6 MCU interrupt architecture, see the Interrupts chapter on page 55.

37.2.8 Deep Sleep Operation

CTBm opamps can operate in the System Deep Sleep mode with reduced GBW and output drive capability. The CTBm
switches will also work in the Deep Sleep mode. The firmware control will keep values from Active to Deep Sleep mode. The
hardware control signals will be latched during Deep Sleep.

The Deep Sleep operation can be enabled using the DEEPSLEEP_ON bit in the CTBM_CTB_CTRL register. Note that
analog references required for CTBm must be enabled and configured for Deep Sleep operation using the
PASS_AREF_CTRL register. See the Analog Reference Block chapter on page 509 for more details.

37.2.9 Using CTBm Opamp

Follow this procedure to use the CTBm opamp:

1. Configure the analog reference (AREF).

2. Configure the charge pump.

3. Configure power mode and output drive strength.

4. Configure compensation trim bits.

5. Configure input and output switches.

Table 37-4. Comparator Mode and Configuration Register Settings

Register[Bit_Pos] Bit_Name Description

CTBM_OA_RESx_CTRL[4] OA_COMP_EN

Opamp comparator enable bit

0: Comparator mode is disabled in opamp

1: Comparator mode is enabled in opamp

CTBM_OA_RES_CTRL[5] OA_HYST_EN

Opamp comparator hysteresis enable bit

0: Hysteresis is disabled in opamp

1: Hysteresis is enabled in opamp

CTBM_OA_RES_CTRL[6] OA_BYPASS_DSI_SYNC

Bypass comparator output synchronization for DSI (trigger) output

0: Synchronize (level or pulse)

1: Bypass

CTBM_OA_RES_CTRL[7] OA_ DSI_LEVEL

Comparator output type after synchronization

0: Pulse

1: Level

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 524

Continuous Time Block mini (CTBm)

6. Enable the CTBm block by setting the ENABLED bit in the CTBM_CTB_CTRL register.

To configure a comparator, the steps are similar, except the output drive strength and compensation setting, which are not
applicable for the comparator and OA0_COMP_EN/OA1_COMP_EN bit of the OA_RES0_CTRL/OA_RES1_CTRL register
should be set to enable comparator mode. For the comparator mode, hysteresis and edge detection logic are available. See
Comparator Mode on page 522 for details.

37.3 Register List

Table 37-5. Register Summary

Name Description

CTBM_CTB_CTRL Global CTBm enable and power control register

PASS_AREF_CTRL Global AREF control for PASS register

CTBM_OA_RES0_CTRL Opamp0 control register

CTBM_OA_RES1_CTRL Opamp1 control register

CTBM_COMP_STAT Comparator status register

PASS_INTR_CAUSE Global interrupt cause register for PASS

CTBM_INTR Interrupt request register

CTBM_INTR_SET Interrupt request set register

CTBM_INTR_MASK Interrupt request mask register

CTBM_INTR_MASKED Interrupt request masked register

CTBM_OA0_SW Opamp0 switch control register

CTBM_OA0_SW_CLEAR Opamp0 switch control clear register

CTBM_OA1_SW Opamp1 switch control register

CTBM_OA1_SW_CLEAR Opamp1 switch control clear register

CTBM_CTD_SW CTDAC connection switch control register

CTBM_CTD_SW_CLEAR CTDAC connection switch control clear register

CTBM_CTB_SW_DS_CTRL CTBm bus switch control register

CTBM_CTB_SW_SQ_CTRL CTBm bus switch SAR sequencer control enable/disable register

CTBM_CTB_SW_STATUS CTBm bus switch control status register

CTBM_OA0_OFFSET_TRIM Opamp0 offset trim control register

CTBM_OA0_SLOPE_OFFSET_TRIM Opamp0 offset slope trim control register

CTBM_OA0_COMP_TRIM Opamp0 comparator trim control register

CTBM_OA1_OFFSET_TRIM Opamp1 offset trim control register

CTBM_OA1_SLOPE_OFFSET_TRIM Opamp1 offset slope trim control register

CTBM_OA1_COMP_TRIM Opamp1 comparator trim control register

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 525

38. Continuous Time DAC

The PSoC 6 MCU analog subsystem supports a 12-bit continuous time digital-to-analog converter (CTDAC). The 12-bit DAC
provides continuous time output without the need for an external sample and hold (S/H) circuit. The CTDAC block can be
used in applications that require voltage references, bias, or analog waveform output. It consists of the following blocks:

■ CTDAC core

■ CTDAC control interface

The CTDAC core includes a combination of 8-bit R-2R ladder DAC and 4-bit thermometer decoded resistors to generate the
12-bit DAC output voltage from the reference. VDDA or any signal buffered through Opamp1 of the CTBm provides the refer-
ence voltage to the DAC. The core is closely integrated with the CTBm, which provides easy buffering of the DAC output volt-
age in addition to providing buffered input reference voltage and sample/hold feature for the DAC output. A programmable
gain amplifier (PGA) can be made using the CTBm opamp and the R-2R ladder of DAC.

The CTDAC control interface provides an option to control the DAC output through CPU and DMA. This includes a double-
buffered DAC voltage control register, clock input for programmable update rate, interrupt on DAC buffer empty to CPU, and
trigger to DMA and TCPWMs. Figure 38-1 shows the CTDAC block diagram.

38.1 Features

The CTDAC has the following features

■ 12-bit continuous time output – no external S/H required

■ 2-µs settling time for a 25 pF load when buffered using the CTBm opamp

■ Support in System Deep Sleep power mode

■ Selectable voltage reference:

❐ VDDA

❐ Internal VREF buffered through Opamp1 of CTBm

❐ External VREF buffered through Opamp1 of CTBm

■ Selectable output paths:

❐ Direct DAC output to a pin

❐ Buffered DAC output through Opamp0 of CTBm

❐ Sample and hold output path through Opamp0 or to a pin directly

■ Selectable input modes:

❐ Unsigned 12-bit mode

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 526

Continuous Time DAC

❐ Two's complement (signed) 12-bit mode

■ Configurable update rate using clock and DSI strobe signal

■ Double-buffered DAC voltage control register

■ Interrupt and DMA/TCPWM trigger on DAC buffer empty

■ Configurable as PGA along with Opamp1 of CTBm

38.2 Architecture

Figure 38-1. CTDAC Block Diagram

Figure 38-2 shows the internal architecture of the DAC along with the CTBm connections. CTDAC core, CTBm routes, and
the CTDAC control interface are covered in detail in this section.

CTDAC Core

12-bit DAC

CTDAC Control I/F

_

+
OA0

_

+
OA1

DAC_BUF_OUT

VREF

VOUT0

External Ref

VDDA

DAC_REF

CTBm

CPU/
DMA

IRQ/TRIG

Output
Control

Sample/
Hold

CTDAC_VAL

CTDAC_VAL_NXT

Double buffer

CLK 12 12

STROBE INPUT
From Trigger Mux

CTDAC_CTRL

VOUT1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 527

Continuous Time DAC

Figure 38-2. CTDAC with CTBm

38.2.1 CTDAC Core

The CTDAC core includes the following components:

■ R-2R and thermometer decoder architecture with switches

■ Input reference selection

■ Output path selection

■ Flip-flops to register input from the control interface

Switch types

CTBm

_

+
OA0

_

+
OA1

VREF

CRD

CRS

COS

C
H

D

CHOLD

P9.6

COR

CA0

C
IS

P9.2

(A03/A13/A43)

A
8

1

(D51)

(A00/A20/A30)

(A22)

(A11)

A73

C
6

H

A
8

2

D
8

1

(D52/D62)

CTDAC Core

2R

R

1

0

B(7)

2R

R

1

0

B(6)

2R

1

0

B(5)

2R

R

1

0

B(2)

2R

R

1

0

B(1)

S
(1

)

VDACREF

VSSA

2R 2R

1

OUT_EN

2R

1

0

B(0)

LSb

2R

1

0

Range

TERM

CVD

VDDA

Vrefsense

Vdacout

Vrefdrive

C
O

6

1

S
(1

5
)S(15)

S(1)

DIS_Z

R

CLK

F/F

B(0)

logic

Large switch – Low resistance

Very large switch – Very low resistance

Small switch – High resistance

(xxx) CTBm switches to other peripherals
(I/Os, SAR ADC, AMUX)

0 0

COB

IL
R

Tiny switch – Very high resistance

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 528

Continuous Time DAC

Figure 38-3. CTDAC Core Architecture

38.2.1.1 CTDAC Architecture

Figure 38-3 shows the CTDAC core components. The CTDAC includes a binary coded R-2R structure for the lower eight bits
(B [0:7]) and a thermometer decoded resistor structure for the upper four bits (S[1:15]). The lower eight bits [7:0] of the
CTDAC_VAL register control the B [7:0] signals directly. The upper four bits [11:8] of the CTDAC_VAL register control the
thermometer resistors selection signals S[15:1]. The signals S[15:1] are generated using a binary to thermometer decode
logic, which means the number of 1s (from LSb) set in the signal S[15:1] depends on the upper four bits – ‘1’ indicates only
the LSb is set, ‘15’ indicates all 15 bits are set. The output step-size of the DAC is given by VDACREF/4096.

38.2.1.2 Input Voltage Reference

The CTDAC can have one of the following sources as the input voltage reference:

■ VDDA

■ Internal VREF (buffered using CTBm opamp1)

■ External voltage (buffered using CTBm opamp1)

P9.6

CTDAC Core

2R

R

1

0

B(7)

2R

R

1

0

B(6)

2R

1

0

B(5)

2R

R

1

0

B(2)

2R

R

1

0

B(1)

S
(1

)

VDACREF

VSSA

2R 2R

1

OUT_EN

2R

1

0

B(0)

LSb

2R

1

0

Range

TERM

CVD

VDDA

Vdacout

C
O

6

1

S
(1

5
)S(15)

S(1)

DIS_Z

R

CLK

F/F

B(0)

logic

0 0

Vrefsense

Vrefdrive

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 529

Continuous Time DAC

Closing the CVD switch (CTDD_CVD bit [0] of CTDAC_SW register) selects VDDA as the CTDAC voltage reference.

Figure 38-4 shows the signal path. Note that CVD is a very low-resistance switch and minimizes the non-linearity in output.

Figure 38-4. VDDA Voltage Reference

Figure 38-5 shows the signal path to select the internal VREF as the CTDAC reference. As seen, this signal path includes var-

ious switches from the CTBm along with Opamp1 (OA1). Internal reference (VREF) is buffered through OA1 and then is routed

through CRD switch in CTBm to the CTDAC reference. The internal reference can be used when the DAC output needs to be
accurate and supply independent. Note that for the CTDAC to operate properly in this configuration, CTBm should be
enabled and OA1 should be configured in voltage follower mode with all the switches configured properly. See the Continu-
ous Time Block mini (CTBm) chapter on page 518 for details.

Figure 38-5. Internal VREF as Voltage Reference

Figure 38-6 shows the signal path to connect an external signal as CTDAC reference. The signal path appears similar to the
internal reference signal path. Instead of routing the internal VREF, the OA1 positive terminal connections can be used to route

an external signal.

CTBm

_

+
OA0

_

+
OA1

VREF

CRD

CRS

COS

C
H

D

CHOLD

P9.6

COR

CA0

C
IS

P9.2

(A03/A13/A43)

A
81

(D51)

(A00/A20/A30)

(A22)

(A11)

A73

C
6

H

A
82

D
81

(D52/D62)

VREFSENSE

VDACOUT

VREFDRIVE

COB

IL
R

VDDA

REF

VOUT

CVD

C
O

6

CTDAC

CTBm

_

+
OA0

_

+
OA1

VREF

CRD

CRS

COS

C
H

D

CHOLD

COR

CA0

C
IS

P9.2

(A03/A13/A43)

A
81

(D51)

(A00/A20/A30)

(A22)

(A11)

A73

C
6

H

A
82

D
81

(D52/D62)

VREFSENSE

VDACOUT

VREFDRIVE

COB

IL
R

P9.6

VDDA

REF

VOUT

CVD

C
O

6

CTDAC

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 530

Continuous Time DAC

Figure 38-6. External VREF as Voltage Reference

38.2.1.3 Output Paths

The CTDAC output can be routed in three different paths:

■ Direct output path

■ Buffered output path through Opamp0

■ Sample and hold path using Opamp0 and CHOLD capacitor

Figure 38-7 shows the direct and buffered output path from the DAC. As seen, the direct path does not involve any switches
from the CTBm and is completely controlled by the CTDAC switches. However, the direct path has a slower settling time for a
given load (see the device datasheet for details). The buffered path on the other hand makes use of the CTBm Opamp0 as
voltage buffer and routes the CTDAC output. This path provides a better settling time for the DAC output at the pin.

Figure 38-7. Direct and Buffered DAC Output

CTBm includes a CHOLD capacitor, which can be used to implement a Sample and Hold circuit for the CTDAC output.

Figure 38-8 shows the Sample and Hold path for the CTDAC output. In this mode, the CHD switch is closed. The DAC output
is sampled onto the CHOLD capacitor. When sampled, DAC can be powered off or disconnected to save power and the Opa-

CTBm

_

+
OA0

_

+
OA1

VREF

CRD

CRS

COS

C
H

D

CHOLD

P9.6

COR

CA0

C
IS

P9.2

A
81

(A00/A20/A30)

(A22)

C
6

H

A
8

2

D
8

1

(D52/D62)

VREFSENSE

VDACOUT

VREFDRIVE

VDDA

REF

VOUT

CVD

P9.5

P9.7

AMUXB

A13

A43

A03

C
O

6

(D51)

(A11)

COB

IL
R

A73

CTDAC

CTBm

_

+
OA0

_

+
OA1

VREF

CRD

CRS

COS

C
H

D

CHOLD

P9.6

COR

CA0

P9.2

(A03/A13/A43)

A
81

(D51)

(A00/A20/A30)

(A22)

(A11)

C
6H

A
82

D
8

1

(D52/D62)

VREFSENSE

VDACOUT

VREFDRIVE

VDDA

C
O

6

REF

VOUT

CVD

Buffered path

Direct output path

C
IS

COB

A73

IL
R

CTDAC

http://www.cypress.com/documentation/datasheets/psoc-6-mcu-psoc-61-datasheet-programmable-system-chip-psoc-preliminary
www.cypress.com/psoc-6-63-series-datasheet
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 531

Continuous Time DAC

mp0, configured as buffer, holds the voltage at the output. This is useful for achieving low power when an occasional update
of DAC output is acceptable.

Figure 38-8. Sample Mode using DAC

Figure 38-9. Hold Mode using DAC

38.2.1.4 Other Configurations

The CTDAC with the Opamp1 can be used to implement a PGA (see Figure 38-10). In this configuration, the COR switch
feeds back the Opamp1 output through the R-2R divider. The CTDAC_VAL register controls the gain of the amplifier. The gain
is given by (4096/CTDAC_VAL). Note that this configuration should be used only for very low frequency signals and is not
guaranteed to work for fast-switching signals. This is because of significant destabilizing capacitance introduced by the DAC
in the amplifier feedback loop, which can result in oscillations.

CTBm

_

+
OA0

_

+
OA1

VREF

CRD

CRS

COS

C
H

D

CHOLD

P9.6

COR

CA0

IL
R

P9.2

(A03/A13/A43)

A
8

1

(A00/A20/A30)

(A22)

(A11)

A73

C
6H

A
82

D
8

1

(D52/D62)

VREFSENSE

VDACOUT

VREFDRIVE

VDDA

C
O

6
REF

VOUT

CVD

Sample mode

(D51)

COB

C
IS

CTDAC

CTBm

_

+
OA0

_

+
OA1

VREF

CRD

CRS

COS

C
H

D

CHOLD

P9.6

COR

CA0

C
IS

P9.2

(A03/A13/A43)

A
8

1

(A00/A20/A30)

(A22)
A73

C
6H

A
82

D
81

(D52/D62)

VREFSENSE

VDACOUT

VREFDRIVE

VDDA

C
O

6

REF

VOUT

CVD

Hold mode(D51)

(A11)

COB

IL
R

CTDAC

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 532

Continuous Time DAC

Figure 38-10. CTDAC and CTBm as PGA

38.2.2 CTDAC Control Interface

The CTDAC control interface provides a digital interface to control and use the CTDAC. It offers the following features:

■ Support for unsigned and two’s complement numbers

■ Double buffered DAC data register

■ Programmable update rate using clock and strobe signal

■ CPU interrupts and DMA triggers on data register empty event

38.2.2.1 CTDAC Modes

The CTDAC supports two modes in which the DAC output value from the CTDAC_VAL register is interpreted. The content of
the register can be either an unsigned or a two’s complement value. In the unsigned mode, the DAC output value is simply
proportional to the register value; this means, 0x0 gives the lowest value and 0xFFF gives the maximum value. In the two's
complement mode, 0x800 gives the lowest value, 0x000 gives the mid value, and 0x7FF gives the maximum value.

The mode in which CTDAC operates is selected by the CTDAC_MODE bits [25:24] of the CTDAC_CTRL register. Setting the
bits to 00b selects unsigned mode of operation. Setting the bits to 01b selects two’s complement mode of operation. The
other two combinations are reserved for future use.

38.2.2.2 Update Rate and Double Buffering

This section describes the ways to update the CTDAC.

Direct write

In this mode, the CPU or the DMA directly writes into the CTDAC_VAL register. The rate of DAC update depends only on the
rate at which the CPU or the DMA writes into the CTDAC_VAL register. This mode is used when there is a need for fixed volt-
age at the output; however, it cannot be used to generate periodic waveforms because accurate sampling rate cannot be
achieved using writes from the CPU or DMA.

CTBm

_

+
OA0

_

+
OA1

VREF

CRD

CRS

COS

C
H

D

CHOLD

P9.6

COR

CA0

C
IS

P9.2

(A03/A13/A43)

A
81

(D51)

(A00/A20/A30)

(A22)

(A11)

A73

C
6H

A
8

2

D
8

1

(D52/D62)

VREFSENSE

VDACOUT

VREFDRIVE

VDDA

C
O

6

REF

VOUT

CVD

IL
R

COB

CTDAC

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 533

Continuous Time DAC

Figure 38-11. Direct Write

Buffered write

To generate periodic waveforms, buffered write mode can be used. The CTDAC control interface provides a double buffer
(CTDAC_VAL_NXT register) and a clock input (CLK) for this purpose. The data is loaded into the CTDAC_VAL_NXT register
ahead of time using the CPU or the DMA and is automatically pushed into the final update register CTDAC_VAL on the rising
edge of the CLK. When this happens, a trigger output is generated which is used to trigger the DMA to move new data into
CTDAC_VAL_NXT register. This keeps the data ready for the update at the next rising edge of the CLK. Interrupt is also gen-
erated to notify the CPU. The clock input to the CTDAC (CLK) is derived from the CLK_PERI; to know how to configure the
clock, see the Clocking System chapter on page 221.

Figure 38-12. Buffered Write

Strobe Edge Sync

This mode enables “strobe” input for controlling when the DAC update happens. Strobe is a hardware signal, which can come
from on-chip peripherals such as TCPWMs or LPCOMPs or any other signal using DSI, thus enabling other peripherals to
control the CTDAC output. In this mode, the CTDAC_VAL register is updated from the CTDAC_VAL_NXT register on the ris-
ing edge of the CLK only after a rising edge is detected in the strobe signal.

Writing ‘1’ into the DSI_STROBE_EN bit [28] of the CTDAC_CTRL register enables the strobe input. Writing ‘0’ into the
DSI_STROBE_LEVEL bit [29] of the CTDAC_CTRL register configures the CTDAC into strobe edge sync mode. Strobe sig-
nal should remain high and low for at least two CLK_SYS each for detection.

CLK_SYS

CPU/DMA write

CLK_PERI

CTDAC_VAL

DAC Analog
Output

2 clk_peri
cycles

Previous data New data

CLK_SYS

CLK
(DAC clock input)

CLK_PERI

CTDAC_VAL

DAC Analog
Output

Data N-1 Data N

CTDAC_VAL_NEXT Data N

Trigger out

VDAC_EMPTY
Interrupt

2 x clk_sys

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 534

Continuous Time DAC

Figure 38-13. Strobe Edge Sync Write

Strobe Edge Immediate

This mode is similar to the strobe edge sync mode except that, in this mode, the CTDAC_VAL register update is initiated by
the rising edge of the strobe input instead of the clock input. The only difference in configuration as compared to the strobe
edge sync mode is the clock divider value. In this mode, the clock divider is set to ‘1’. However, the strobe signal should
remain high and low for at least two CLK_SYS periods.

For the clock configuration, see the Clocking System chapter on page 221.

Figure 38-14. Strobe Edge Immediate Write

Strobe Level

In this mode, the CTDAC_VAL register is continuously updated from the CTDAC_VAL_NXT register at the rising edge of input
clock as long as strobe signal is high. To configure this mode, enable the strobe signal by writing ‘1’ into the
DSI_STROBE_EN bit [28] of the CTDAC_CTRL register and set the strobe level mode by writing ‘1’ into the
DSI_STROBE_LEVEL bit [29] of the CTDAC_CTRL register. Strobe signal should remain high for at least two CLK_SYS peri-
ods.

CLK_SYS

Strobe
(synced – internal)

CLK_PERI

CTDAC_VAL

DAC Analog
Output

ignored

Data N-1 Data N

Strobe

CTDAC_VAL_NXT Data N

CLK
(DAC clock input)

CLK_SYS

Strobe
(synced - internal)

CLK_PERI

CTDAC_VAL

DAC Analog
Output

Data N-1 Data N

Strobe

CTDAC_VAL_NXT Data N

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 535

Continuous Time DAC

Figure 38-15. Strobe Level Write

Note: The maximum update rate depends on the CTDAC settling time specification. See the device datasheet for the specifi-
cation.

38.2.2.3 Interrupts and DMA Triggers

The CTDAC supports a generation of interrupts on the CTDAC_VAL_NXT register empty event (VDAC_EMPTY). This inter-
rupt can be used by the CPU to transfer the next value to the CTDAC_VAL_NXT register. In addition to the interrupt, the same
event can generate a DMA trigger for initiating a DMA transfer to the CTDAC_VAL_NXT register.

VDAC_EMPTY bit [0] of the CTDAC_INTR register provides the status of the CTDAC interrupt. Alternatively, PASS_INTR_-
CAUSE register can also be read for the CTDAC interrupt status. VDAC_EMPTY_MASK bit [0] of the CTDAC_INTR_MASK
register enables the interrupt to be serviced by CPU.

38.2.3 Deglitch Operation

The CTDAC provides an option to debounce or deglitch the output value every time CTDAC_VAL is updated. It is accom-
plished by forcing the COS switch at the output path of DAC open when a new value is loaded. With the switches open, the
DAC output has time to settle before the switch is again closed. The duration for which the switches remain open is program-
mable using the 6-bit DEGLITCH_CNT field of the CTDAC_CTRL register; duration is measured in terms of number of
PERI_CLK cycles.

The DEGLITCH_COS bit [9] in the CTDAC_CTRL register enables the deglitch functionality on the opamp input. When set,
the COS switch in CTBm is forced to remain open for (DEGLITCH_CNT+1) CLK_PERI cycles. DEGLITCH_CNT bit field is
part of the CTDAC_CTRL register.

38.2.3.1 Other Control Configurations

The CTDAC_SW and CTDAC_SW_CLEAR registers are used to close or open the CVD and CO6 switches (Figure 38-2).
The CTDAC_SW register is used to close the switches – CTDD_CVD bit [0] for CVD switch and CTDD_CO6 bit [8] for CO6
switch. Setting the bits closes the corresponding switch. To open the switch, the corresponding bits in the CTDAC_SW_-
CLEAR register should be set. Clearing the bit in the CTDAC_SW register does not have any effect. Controls for other
switches shown in Figure 38-2 is present in the CTBm. Refer to the Continuous Time Block mini (CTBm) chapter on page 518
for details.

The CTDAC block can be enabled by setting the ENABLED bit in the CTDAC_CTRL register. The output of the DAC can be
enabled or disabled using the OUT_EN bit [22] of the CTDAC_CTRL register. If the bit is set, output of the CTDAC is enabled.
If the bit is cleared, output is disabled. The output state when the output is disabled is configurable using the DISABLED_-
MODE and CTDAC_RANGE bits of the CTDAC_CTRL register as shown in Table 38-1.

CLK_SYS

Strobe
(synced - Internal)

CLK_PERI

CTDAC_VAL

DAC Analog
Output

ignored

Data N-1 Data N

Strobe

CTDAC_VAL_NXT Data N

CLK
(DAC clock input)

Data N + 1

ignored

Data N + 1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 536

Continuous Time DAC

The CTDAC supports two output ranges:

■ VSSA to (VDACREF × 4095/4096)

■ VDACREF/4096 to VDACREF

The two ranges are almost the same except that the second range is lifted by one LSb. The CTDAC_RANGE bit [23] of the
CTDAC_CTRL register decides the range. Setting the bit provides one LSb lifted range.

The CTDAC supports output to be maintained in System Deep Sleep power mode. However, no update is possible. To enable
Deep Sleep operation, set the DEEPSLEEP_ON bit [30] of the CTDAC_CTRL register.

38.2.4 Using CTDAC

Follow these steps to use the CTDAC:

1. Configure various switches in CTDAC and CTBm according to the input reference voltage and output path selection.

2. Configure deglitch, CTDAC mode, range, Deep Sleep operation capability, and strobe control in the CTDAC_CTRL regis-
ter according to your requirements.

3. Enable VDAC_EMPTY interrupt if used.

4. Configure and enable DMA with VDAC_EMPTY as trigger and CTDAC_VAL_NXT register as destination (see the DMA
Controller chapter on page 85), if used.

5. Configure and enable the clock for CTDAC (see the Clocking System chapter on page 221).

6. Configure and enable the DSI strobe signal, if used.

7. Enable the CTBm and opamps based on the configuration in step 1.

a. Enable the CTBm if any of the switches from the CTBm is used in the input reference and output path.

b. Enable Opamp1 if an internal reference is used.

c. Enable and configure the Opamp1 positive input if an external reference is used.

d. Enable Opamp0 if the DAC output is buffered.

8. Enable the CTDAC block by setting the ENABLED bit in the CTDAC_CTRL register.

9. Enable the DAC output by setting the OUT_EN bit in the CTDAC_CTRL register.

10. Update the CTDAC_VAL register for fixed output and the CTDAC_VAL_NXT register for clocked output.

11. Additional updates can happen in VDAC_EMPTY ISR or through DMA transfers.

12. The DAC output can be enabled/disabled at any time using the OUT_EN bit.

Table 38-1. Output State

OUT_EN DISABLED_MODE CTDAC_RANGE OUTPUT_STATE

0 0 x Tristate

0 1 0 VSSA

0 1 1 VREF

1 x x Programmed value

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 537

Continuous Time DAC

38.3 Register List

Table 38-2. List of CTDAC Registers

Name Description

CTDAC_CTRL Global CTDAC control register

CTDAC_INTR CTDAC interrupt request register

CTDAC_INTR_SET CTDAC interrupt request set register

CTDAC_INTR_MASK CTDAC interrupt request mask

CTDAC_INTR_MASKED CTDAC interrupt request masked

CTDAC_CTDAC_SW CTDAC switch control register

CTDAC_CTDAC_SW_CLEAR CTDAC switch control clear register

CTDAC_CTDAC_VAL Current DAC value register

CTDAC_CTDAC_VAL_NXT Next DAC value (double buffering) register

CTDAC_TRIM CTDAC trim register

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 538

39. SAR ADC

The PSoC 6 MCU has a 12-bit successive approximation register analog-to-digital converter (SAR ADC). The 12-bit, 1-Msps
SAR ADC is designed for applications that require moderate resolution and high data rate.

39.1 Features
■ Maximum sample rate of 1 Msps

■ Sixteen individually configurable logical channels that can scan thirteen unique input channels. Each channel has the fol-
lowing features:

❐ Input from eight dedicated pins (eight single-ended mode or four differential inputs) or internal signals (AMUXBUS,
CTBm output, or temperature sensor)

❐ Each channel may choose one of the four programmable acquisition times to compensate for external factors (such as
high input impedance sources with long settling times)

❐ Single-ended or differential measurement

❐ Averaging and accumulation

❐ Double-buffered results

■ Result may be left- or right-aligned, or may be represented in 16-bit sign extended

■ Scan can be triggered by firmware, trigger from other peripherals, pin, or UDB

❐ One-shot – periodic or continuous mode

■ Hardware averaging support

❐ First order accumulate

❐ Supports 2, 4, 8, 16, 32, 64, 128, and 256 samples (powers of 2)

■ Selectable voltage references

❐ Internal VDDA and VDDA/2 references

❐ Internal 1.2-V reference with buffer

❐ External reference

■ Interrupt generation

❐ End of scan

❐ Saturation detect and over-range (configurable) detect for every channel

❐ Scan results overflow

❐ Collision detect

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

SAR ADC

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 539

39.2 Architecture

Figure 39-1. Block Diagram

 SAR ADC

Conversion Result RegistersWorking Data Registers

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

AMUXBUS A

AMUXBUS B

SARBUS0

SARBUS1

Pins of SARMUX Port

AMUXBUS connects to
other pins / analog
peripherals

SARBUS connects to
CTBm outputs

VREF

VPLUS

VMINUS

Temp
VSSA_KELVIN

S
A

R
M

U
X

SAR_CHAN_WORK0
to
SAR_CHAN_WORK15

Connects to internal
Temperature Sensor

SAR_CHAN_RESULT0
to
SAR_CHAN_RESULT15

Accumulate /
Average /

Align /
Sign extend

SAR_CHAN_WORK_UPDATED SAR_CHAN_RESULT_UPDATED

Saturation
Detect

Range Detect
< , = , >

SARSEQ

saturate_intr

range_intr

eos /
collision /
overflow_int

SAR_INTR_MASKED
SAR_INTR_MASK

SAR_INTR

sar_interrupt (to NVIC)

 VREF Buffer

 VDDA
 VDDA / 2

1.2V from AREF

External Reference or Bypass Capacitor
for Internal Reference

SAR_RANGE_COND
SAR_RANGE_THRES

SAR_CTRL
SAR_SAMPLE_CTRL
SAR_SAMPLE_TIME01
SAR_SAMPLE_TIME23
SAR_CHAN_EN
SAR_CHAN_CONFIG0 to SAR_CHAN_CONFIG15
SAR_START_CTRL

SAR_STAT
SAR_AVG_STAT

SAR_CTRL

Control Registers

Status Registers

tr_sar_in

Hardware trigger from
other peripherals
such as TCPWM
(used to start
conversion)

tr_sar_out
Hardware trigger to other peripherals
(occurs at end of sample (eos)

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 540

SAR ADC

Figure 39-1 shows the simplified block diagram of PSoC 6
MCU SAR ADC system, with important registers shown in
blue. Preceding the SAR ADC is the SARMUX, which can
route external pins and internal signals (AMUXBUS A/
AMUXBUS B, CTBm outputs, or temperature sensor output)
to the internal channels of SAR ADC. The sequencer con-
troller (SARSEQ) is used to control SARMUX and SAR ADC
to do an automatic scan on all enabled channels without
CPU intervention. SARSEQ also performs pre-processing
such as averaging and accumulating the output data.

The result from each channel is double-buffered and a com-
plete scan may be configured to generate an interrupt at the
end of the scan. The sequencer may also be configured to
flag overflow, collision, and saturation errors that can be
configured to assert an interrupt.

39.2.1 SAR ADC Core

The PSoC 6 MCU SAR ADC core is a 12-bit SAR ADC. The
maximum sample rate for this ADC is 1 Msps. The SAR
ADC core has the following features:

■ Fully differential architecture; also supports single-ended
mode

■ 12-bit resolution

■ Four programmable acquisition times

■ Seven programmable power levels

■ Supports single and continuous conversion mode

SAR_CTRL register contains the bitfields that control the
operation of SAR ADC core. See the registers TRM for more
details of this register.

39.2.1.1 Single-ended and Differential Modes

The PSoC 6 MCU SAR ADC can operate in single-ended
and differential modes. Differential or single-ended mode
can be configured using the DIFFERENTIAL_EN bitfield in
the channel configuration register, SAR_CHAN_CONFIGx,
where x is the channel number (0–15).

SAR ADC gives full range output (0 to 4095) for differential
inputs in the range of –VREF to +VREF.

Note: The precise value of the input range in the differential
mode is –VREF to (+VREF – (VREF/2047)). The positive input

range is limited by the resolution of the ADC.

The single-ended mode options of negative input include
VSSA, VREF, or an external input from P1, P3, P5, or P7 pins
of SARMUX. See the device datasheet for the exact location
of SARMUX pins. This mode is configured by the NEG_SEL
bitfield in the global configuration register SAR_CTRL.
When VMINUS is connected to these SARMUX pins, the sin-

gle-ended mode is equivalent to differential mode. However,
when the odd pin of each differential pair is connected to the
common alternate ground, these conversions are 11-bit
because measured signal value cannot go below ground.

To get a single-ended conversion with 12 bits, you must con-
nect VREF to the negative input of the SAR ADC; then, the

input range can be from 0 to 2 × VREF.

Note that temperature sensor can only be used in single-
ended mode.

39.2.1.2 Input Range

All inputs should be in the range of VSSA to VDDA. Input volt-
age range is also limited by VREF. If voltage on negative
input is Vn and the ADC reference is VREF, the range on the
positive input is Vn ± VREF. This criterion applies for both
single-ended and differential modes. In single-ended mode,
Vn is connected to VSSA, VREF or an external input.

Note that Vn ± VREF should be in the range of VSSA to VDDA.
For example, if negative input is connected to VSSA, the
range on the positive input is 0 to VREF, not –VREF to VREF.
This is because the signal cannot go below VSSA. Only half
of the ADC range is usable because the positive input signal
cannot swing below VSS, which effectively only generates
an 11-bit result.

http://www.cypress.com/trm220777
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 541

SAR ADC

Figure 39-2. Input Range

39.2.1.3 Result Data Format

Result data format is configurable from two aspects:

■ Signed/unsigned

■ Left/right alignment

When the result is considered signed, the most significant bit of the conversion is used for sign extension to 16 bits with MSb.
For an unsigned conversion, the result is zero extended to 16-bits. The sample value can be either right-aligned or left-
aligned within the 16 bits of the result register. By default, data is right-aligned in data[11:0], with sign extension to 16 bits, if
required. Left-alignment will cause lower significant bits to be made zero.

Result data format can be controlled by DIFFERENTIAL_SIGNED, SINGLE_ENDED_SIGNED, and LEFT_ALIGN bitfields in
the SAR_SAMPLE_CTRL register.

The result data format can be shown as follows.

Table 39-1. Result Data Format

Alignment
Signed/

Unsigned

Result Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Right Unsigned – – – – 11 10 9 8 7 6 5 4 3 2 1 0

Right Signed 11 11 11 11 11 10 9 8 7 6 5 4 3 2 1 0

Left – 11 10 9 8 7 6 5 4 3 2 1 0 – – – –

1

2

3

-1

0

Usable
Range

Unusable
Range

VDD = 3.3

Unusable
Range

-2

V
R

E
F
 =

 1
.2

V
R

E
F
 =

 V
D

D
 /

2

V
R

E
F

=
 V

D
D

4

-VDD

Single Ended
VMINUS = VSSA

Usable
Range

Unusable
Range

Usable
Range

1

2

3

-1

0

VDD = 3.3

-2

4

1

2

3

-1

0

VDD = 3.3

-2

4

5

Single Ended
VMINUS = VREF

Differential

Unusable
Range

V
R

E
F
 =

 1
.2

V
R

E
F
 =

 V
D

D
 /

2

V
R

E
F

=
 V

D
D

2 x VDD

Unusable
Range

Unusable
Range

V
R

E
F

=
 V

D
D

V
R

E
F
 =

 1
.2

-Vin

V
R

E
F
 =

 V
D

D
 /

2

-Vin
-Vin

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 542

SAR ADC

39.2.1.4 Negative Input Selection

The negative input connection choice affects the voltage range and effective resolution (Table 39-2). In single-ended mode,
negative input of the SAR ADC can be connected to VSSA, VREF, or P1, P3, P5, or P7 pins of SARMUX. Vx is the common

mode voltage.

Note that single-ended conversions with VMINUS connected to the pins with SARMUX connectivity are electrically equivalent
to differential mode. However, when the odd pin of each differential pair is connected to the common alternate ground, these
conversions are 11-bit because measured signal value (SARMUX.vplus) cannot go below ground.

39.2.1.5 Acquisition Time

Acquisition time is the time taken by sample and hold (S/H) circuit inside SAR ADC to settle. After acquisition time, the input
signal source is disconnected from the SARADC core, and the output of the S/H circuit will be used for conversion. Each
channel can select one from four acquisition time options, from 4 to 1023 SAR clock cycles defined in global configuration
registers SAR_SAMPLE_TIME01 and SAR_SAMPLE_TIME23. These two registers contain four programmable sample
times ST0, ST1, ST2, and ST3. One of these four sample times can be selected for a particular channel by configuring the
SAMPLE_TIME_SEL bitfield in the respective SAR_CHAN_CONFIGx register.

Table 39-2. Negative Input Selection Comparison

Single-ended/Differential Signed/Unsigned VMINUS VPLUS Range Result Register

Single-ended N/Aa

a. For single-ended mode with VMINUS connected to VSSA, conversions are effectively 11-bit because voltages cannot swing below VSSA on any PSoC 6 MCU
pin. Because of this, the global configuration bit SINGLE_ENDED_SIGNED (SAR_SAMPLE_CTRL[2]) will be ignored and the result is always (0x000-0x7FF).

VSSA
+VREF

VSSA = 0

0x7FF

0x000

Single-ended Unsigned VREF

+2 × VREF

VREF

VSSA = 0

0xFFF

0x800

0

Single-ended Signed VREF

+2 × VREF

VREF

VSSA = 0

0x7FF

0x000

0x800

Single-ended Unsigned Vxb

b. Vx is the differential input common mode voltage.

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Single-ended Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

Differential Unsigned Vx

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Differential Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 543

SAR ADC

Figure 39-3. Acquisition Time

The acquisition time should be sufficient to charge the internal hold capacitor of the ADC through the resistance of the routing
path, as shown in Figure 39-3. The recommended value of acquisition time is:

Tacq >= 9 × (Rsrc + Rmux + Racqsw) × Csh

Where:

■ Rsrc = Source resistance

■ Rmux = SARMUX switch resistance

■ Racqsw = Sample and hold switch

■ Rmux + Racqsw ~= 1000 ohms

■ Csh ~= 10pF

This depends on the routing path (see Analog Routing on page 545 for details).

39.2.1.6 SAR ADC Clock

Note: The maximum SAR ADC clock frequency may be limited to less than 18 MHz by the device datasheet specification for
sample rate maximum.

SAR ADC clock frequency must be between 1.8 MHz and 18 MHz, which comes from the peripheral clock (CLK_PERI) in the
system resources subsystem (SRSS). See the Clocking System chapter on page 221 to know how to configure the peripheral
clock.

39.2.1.7 SAR ADC Timing

As Figure 39-4 shows, an ADC conversion with the minimum acquisition time of four clocks requires 18 clocks to complete.
Note that the minimum acquisition time of four clock cycles at 36 MHz is based on the minimum acquisition time supported by
the SAR block (RSW1 and CSHOLD in Figure 39-3 on page 543), which is 97 ns.

Total clock cycles for valid output are equal to:

4 clock cycles for sampling input (minimum acquisition time set by SAR_SAMPLE_TIME01 or SAR_SAMPLE_TIME23)

+ 12 clock cycle conversions (with 12-bit resolution)

+ 1 clock for EOF output signal

+ 1 clock for continuous conversion mode and Auto-zero

=18 clock cycles.

Minimum 12-Bit Conversion Time 18 Clocks

Acquisition
Time 4 Clocks

Resolution + 2 Clocks
12bits + 2 = 14 Clocks

SWACQ

ADC
Clocks

tACQ

ADC Core

RSW1RSW2

CSHOLD

SWACQ

DC

RSRC

Inside PSoC 6

Signal
Source

½ LSB

VCSH

www.cypress.com/ds218449

SAR ADC

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 544

Figure 39-4. SAR ADC Timing

F FSAMPLE SAMPLES1S2S3S4S5S6S7S8S9S10S11S12 S1S2S3S4S5S6

SOC

Data Data

S7S8S9S10G S11S12G* SAMPLE

SARADC CLK

trigger

sample

State

EOC

Next

Data_out

18 clock cycles

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 545

SAR ADC

39.2.2 SARMUX

SARMUX is an analog dedicated programmable multiplexer. The main features of SARMUX are:

■ Controlled by sequencer controller block (SARSEQ) or firmware

■ Internal temperature sensor

■ Multiple inputs:

❐ Analog signals from pins (port 2)

❐ Temperature sensor output (settling time for the temperature sensor is about 1 µs)

❐ AMUXBUS A/AMUXBUS B

39.2.2.1 Analog Routing

SARMUX has many switches that may be controlled by SARSEQ block (sequencer controller) or firmware. Different control
methods have different control capability on the switches. Figure 39-5 shows the SARMUX switches. See the device data-
sheet for the exact location of SARMUX pins.

Figure 39-5. SARMUX Switches

Sequencer control: In the sequencer control mode, the SARMUX switches are controlled by the SARSEQ block. After con-
figuring each channel’s analog routing, it enables multi-channel, automatic scan in a round-robin fashion, without CPU inter-
vention. Not every switch in analog routing can be controlled by the sequencer, as Figure 39-5 shows.

 SAR ADC

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

AMUXBUS A

AMUXBUS B

SARBUS0

SARBUS1

Temp

VSSA_KELVIN

Temperature
Sensor

MUX_FW_P0_VMINUS MUX_FW_P0_VPLUS

MUX_FW_P1_VMINUS MUX_FW_P1_VPLUS

MUX_FW_P2_VMINUS MUX_FW_P2_VPLUS

MUX_FW_P3_VMINUS MUX_FW_P3_VPLUS

MUX_FW_P4_VMINUS MUX_FW_P4_VPLUS

MUX_FW_P5_VMINUS MUX_FW_P5_VPLUS

MUX_FW_P6_VMINUS MUX_FW_P6_VPLUS

MUX_FW_P7_VMINUS MUX_FW_P7_VPLUS

MUX_FW_AMUXBUSA_VMINUS MUX_FW_AMUXBUSA_VPLUS

MUX_FW_AMUXBUSB_VMINUS MUX_FW_AMUXBUSB_VPLUS

MUX_FW_SARBUS0_VMINUS MUX_FW_SARBUS0_VPLUS

MUX_FW_SARBUS1_VMINUS MUX_FW_SARBUS1_VPLUS

MUX_FW_TEMP_VPLUS

MUX_FW_VSSA_VMINUS

 SARMUX

Pins of SARMUX Port

AMUXBUS connects to
other pins / analog
peripherals

SARBUS connects to
CTBm outputs

VSSA

Enable

VPLUS

VMINUS

www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 546

SAR ADC

SAR_MUX_SWITCH_SQ_CTRL register can be used to enable/disable SARSEQ control of SARMUX switches. See section
19.3.4 SARSEQ for more details of sequencer control.

Firmware control: In firmware control, registers are written by the firmware to connect required signals to VPLUS/VMINUS
terminals before starting the scan. Firmware can control every switch in SARMUX, as Figure 39-5 shows. However, firmware
control needs continuous CPU intervention for multi-channel scans. The SAR_MUX_SWITCH0 register can be used by the
firmware to control SARMUX switches. Note that additional register writes may be required to connect blocks outside the
SARMUX. See the Analog Routing chapter on page 561 for more details.

DSI control: Switches are controlled by DSI signals from the UDB, which can act as a secondary sequencer with a custom-
ized logic design. DSI can control most SARMUX switches. The SAR_MUX_SWITCH_DS_CTRL register can be used to
enable or disable DSI control of SARMUX switches.

39.2.2.2 Analog Interconnection

The PSoC 6 MCU analog interconnection is very flexible. SAR ADC can be connected to multiple inputs via SARMUX, includ-
ing both external pins and internal signals. For example, it can connect to a neighboring block such as CTBm. It can also con-
nect to non-SARMUX ports through AMUXBUS A/AMUXBUS B, at the expense of scanning performance (more parasitic
coupling, longer RC time to settle).

This section discusses several routing cases to provide a better understanding of analog interconnections. See the Analog
Routing chapter on page 561 for details of all available analog routing options in PSoC 6 MCUs.

Input from SARMUX Port

Figure 39-6 shows how two GPIOs that support SARMUX are connected to SAR ADC as a differential pair (VPLUS/VMINUS)

via switches. In this mode, sequencer, firmware , and DSI control are possible. In addition to SARMUX switch configuration,
the GPIOs must be configured properly to connect to SARMUX. See the I/O System chapter on page 240 for more details.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 547

SAR ADC

Figure 39-6. Input from External Pins

Note: Pins and blocks shown in Figure 39-6 may not be available in all PSoC 6 MCUs. See the specific device datasheet for
more details.

Input from Other Pins through AMUXBUS

Figure 39-7 shows how two pins that do not support SARMUX connectivity can be connected to SAR ADC as a differential
pair. Additional switches are required to connect these two pins to AMUXBUS A and AMUXBUS B, and then connect
AMUXBUS A and AMUXBUS B to the SAR ADC. See the I/O System chapter on page 240 and Analog Routing chapter on
page 561 for details of AMUXBUS connections.

The additional switches reduce the scanning performance (more parasitic coupling, longer RC time to settle). This is not rec-
ommended for external signals; the dedicated SARMUX port should be used, if possible. Moreover, sequencer control may
not be available if more than one AMUXBUS channel is required.

AMUXBUS A and B can be also used to connect other analog peripherals in the PSoC 6 MCU to the SAR ADC. See the Ana-
log Routing chapter on page 561 for more details.

VSSA

Legend

AMUXBUS A
AMUXBUS B

5 6

12

4

P6[2]

P6[3]

P6[4]

P6[5]

P6[6]

P6[7]

P6[0]

P6[1]

3

P
1

4
[1

]

P
1

4[
0

]

OA1 OA0

Unused or Open Switches

Used SARMUX Switches

Unused Pin

Used Pin

Unused Analog Route

Used Analog Route

P
2

[7
]

P
2[

6
]

P
2[

5
]

P
2

[4
]

P
2[

3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

P
3[

5
]

P
3

[4
]

P
3[

3
]

P
3

[2
]

P
3

[1
]

P
3

[0
]

P
4

[1
]

P
4

[0
]

www.cypress.com/psoc-6-63-series-datasheet
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 548

SAR ADC

Figure 39-7. Input from Analog Bus

VSSA

Legend

AMUXBUS A
AMUXBUS B

5 6

12

4

P6[2]

P6[3]

P6[4]

P6[5]

P6[6]

P6[7]

P6[0]

P6[1]

3

P
1

4
[1

]

P
1

4[
0

]

Unused or Open Switches

Used AMUX / IO Switches

Used SARMUX Switches

Unused Pin

Used Pin

Unused Analog Route

Used Analog Route

OA1 OA0

P
2

[7
]

P
2[

6
]

P
2[

5
]

P
2

[4
]

P
2[

3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

P
3[

5
]

P
3

[4
]

P
3[

3
]

P
3

[2
]

P
3

[1
]

P
3

[0
]

P
4

[1
]

P
4

[0
]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 549

SAR ADC

Input from CTBm Output via sarbus

SAR ADC can be connected to CTBm output via sarbus 0/1. Figure 39-8 shows how to connect an opamp (configured as a
follower) output to a single-ended SAR ADC. Figure 39-9 shows how to connect two opamp outputs to SAR ADC as a differ-
ential pair. Note that external components of the opamp circuit are not shown (for example, resistors used to create differen-
tial amplifier front end). Because additional switches are used for signal routing. However, the on-chip opamps add value for
many applications. In this mode, sequencer control, firmware control, and DSI control are possible. See the Continuous Time
Block mini (CTBm) chapter on page 518 for more details of CTBm opamps, routing, and switches.

Figure 39-8. Input from CTBm Output via sarbus

VSSA

Legend

AMUXBUS A
AMUXBUS B

5 6

12

4

P6[2]

P6[3]

P6[4]

P6[5]

P6[6]

P6[7]

P6[0]

P6[1]

3

P
1

4
[1

]

P
1

4[
0

]

Unused or Open Switches

Used SARMUX Switches

Used CTBm Switches

Unused Pin

Used Pin

Unused Analog Route

Used Analog Route

OA0OA1

P
2

[7
]

P
2[

6
]

P
2[

5
]

P
2

[4
]

P
2[

3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

P
3[

5
]

P
3

[4
]

P
3[

3
]

P
3

[2
]

P
3

[1
]

P
3

[0
]

P
4

[1
]

P
4

[0
]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 550

SAR ADC

Figure 39-9. Inputs from CTBm Output via sarbus0 and sarbus1

Input from Temperature Sensor

On-chip temperature sensor can be used to measure the device temperature. See the Temperature Sensor chapter on
page 557 for more details of this block. For temperature sensors, differential conversions are not available (conversion result
is undefined), thus always use it in singled-ended mode. As Figure 39-10 shows, temperature sensor can be routed to posi-
tive input of SAR ADC using a switch that can be controlled by the sequencer, firmware, or DSI. Setting the MUX_FW_-
TEMP_VPLUS bit in the SAR_MUX_SWITCH0 register can enable the temperature sensor and connect its output to VPLUS of

SAR ADC; clearing this bit will disable temperature sensor by cutting off its bias current.

VSSA

Legend

AMUXBUS A
AMUXBUS B

5 6

12

4

P6[2]

P6[3]

P6[4]

P6[5]

P6[6]

P6[7]

P6[0]

P6[1]

3

P
1

4
[1

]

P
1

4[
0

]

OA1 OA0

Unused or Open Switches

Used SARMUX Switches

Used CTBm Switches

Unused Pin

Used Pin

Unused Analog Route

Used Analog Route
P

2
[7

]

P
2[

6
]

P
2[

5
]

P
2

[4
]

P
2[

3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

P
3[

5
]

P
3

[4
]

P
3[

3
]

P
3

[2
]

P
3

[1
]

P
3

[0
]

P
4

[1
]

P
4

[0
]

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 551

SAR ADC

Figure 39-10. Inputs from Temperature Sensor

39.2.3 SARREF

The main features of the SAR reference block (SARREF) are:

■ Reference options: VDDA, VDDA/2, 1.2-V bandgap, and external reference

■ Reference buffer and bypass capacitor to enhance internal reference drive capability

39.2.3.1 Reference Options

SARREF generates VDDA and VDDA/2 voltages. In addition, it can take in a 1.2-V bandgap reference from AREF (see the

Analog Reference Block chapter on page 509 for details) or an external VREF connected to a dedicated pin (see the device

datasheet for details). External VREF value should be between 1-V and VDDA.

The external VREF pin is also used to bypass the internal references. The VREF_SEL bitfield in the SAR_CTRL register can be

used to select which one of these references is connected to the SAR ADC.

39.2.3.2 Reference Buffer and Bypass Capacitors

The internal references, 1.2 V from bandgap and VDDA/2, are buffered with the reference buffer. This reference may be routed
to the external VREF pin where a capacitor can be used to filter noise that may exist on the reference.

The VREF_BYP_CAP_EN bitfield in the SAR_CTRL register can be used to enable the bypass capacitor. REFBUF_EN and
PWR_CTRL_VREF bitfields in the same register can be used to enable the buffer, and select one of seven available power
levels of the reference buffer respectively.

VSSA

Legend

AMUXBUS A
AMUXBUS B

5 6

12

4

P6[2]

P6[3]

P6[4]

P6[5]

P6[6]

P6[7]

P6[0]

P6[1]

3

P
1

4
[1

]

P
1

4[
0

]

Unused or Open Switches

Used SARMUX Switches

Unused Pin

Used Pin

Unused Analog Route

Used Analog Route

OA1 OA0

P
2

[7
]

P
2[

6
]

P
2[

5
]

P
2

[4
]

P
2[

3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

P
3[

5
]

P
3

[4
]

P
3[

3
]

P
3

[2
]

P
3

[1
]

P
3

[0
]

P
4

[1
]

P
4

[0
]

www.cypress.com/ds218449
www.cypress.com/ds218449
www.cypress.com/ds218449

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 552

SAR ADC

SAR performance varies with the mode of reference and the VDDA supply.

Reference buffer startup time varies with different bypass capacitor size. Table 39-4 lists two common values for the bypass
capacitor and its startup time specification. If reference selection is changed between scans or when scanning after device
low-power modes in which the ADC is not active (see the Device Power Modes chapter on page 204), make sure the refer-
ence buffer is settled before the SAR ADC starts sampling.

39.2.3.3 Input Range versus Reference

All inputs should be between VSSA and VDDA. The ADCs

input range is limited by VREF selection. If negative input is

Vn and the ADC reference is VREF, the range on the positive

input is Vn ± VREF. These criteria applies for both single-

ended and differential modes as long as both negative and
positive inputs stay within VSSA to VDDA.

39.2.4 SARSEQ

SARSEQ is a dedicated control block that automatically
sequences the input mux from one channel to the next while
placing the result in an array of registers, one per channel.
SARSEQ has the following functions:

■ Controls SARMUX analog routing automatically without
CPU intervention

■ Controls SAR ADC core such as selecting acquisition
times

■ Receives data from SAR ADC and pre-process (aver-
age, range detect)

■ Results are double-buffered; therefore, the CPU can
safely read the results of the last scan while the next
scan is in progress.

The features of SARSEQ are:

■ Sixteen channels can be individually enabled as an
automatic scan without CPU intervention

■ Each channel has the following features:

❐ Single-ended or differential mode

❐ Input from external pin or internal signal (AMUXBUS/
CTBm/temperature sensor)

❐ One of four programmable acquisition times

❐ Result averaging and accumulation

■ Scan triggering

❐ One-shot, periodic, or continuous mode

❐ Triggered by any digital signal or input from GPIO pin

❐ Triggered by internal UDB of fixed-function block

❐ Software triggered

■ Hardware averaging support

❐ First order accumulate

❐ 2, 4, 8, 16, 32, 64, 128, or 256 samples averaging
(powers of 2)

❐ Results in 16-bit representation

■ Double buffering of output data

❐ Left or right adjusted results

❐ Results in working register and result register

■ Interrupt generation

❐ Finished scan conversion

❐ Channel saturation detection

❐ Range (configurable) detection

❐ Scan results overflow

❐ Collision detect

39.2.4.1 Channel Configuration

The SAR_CHAN_CONFIGx register contains the following
bitfields, which control the behavior of respective channels
during a SARSEQ scan:

■ POS_PORT_ADDR and POS_PIN_ADDR select the
connection to VPLUS terminal of the ADC

Table 39-3. Reference Modes

Reference Mode
Maximum SAR ADC

Clock Frequency
Maximum Sample Rate

External Reference 18 MHz 1 Msps

Internal reference without bypass capacitor 1.8 MHz 100 ksps

Internal reference with bypass capacitor 18 MHz 1 Msps

VDDA as reference 18 MHz 1 Msps

Table 39-4. Bypass Capacitor Values vs Startup Time

Capacitor Value Startup Time

Internal reference with bypass capacitor (50 nF) 120 µs

Internal reference with bypass capacitor (100 nF) 210 µs

Internal reference without bypass capacitor 10 µs

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 553

SAR ADC

■ NEG_ADDR_EN, NEG_PORT_ADDR, and
NEG_PIN_ADDR select the connection to VMINUS termi-

nal of the ADC

■ SAMPLE_TIME_SEL selects the acquisition time for the
channel

■ AVG_EN enables the hardware averaging feature

■ DIFFERENTIAL_EN selects single-ended/differential
mode

SAR_CHAN_EN contains the enable bits that can be used
to include or exclude a channel for the next SARSEQ scan.

39.2.4.2 Averaging

The SARSEQ block has a 20-bit accumulator and shift reg-
ister to implement averaging. Averaging is performed after
sign extension. The SAR_SAMPLE_CTRL register controls
the global averaging settings.

Each channel configuration register (SAR_CHAN_CONFIG)
has an enable bit (AVG_EN) to enable averaging.

The AVG_CNT bitfield in the SAR_SMAPLE_CTRL register
specifies the number of accumulated samples (N) according
to the formula:

N=2^(AVG_CNT+1) N range = [2..256]

For example, if AVG_CNT = 3, then N = 16.

Because the conversion result is 12-bit and the maximum
value of N is 256 (left shift 8 bits), the 20-bit accumulator will
never overflow.

The AVG_SHIFT bitfield in the SAR_SAMPLE_CTRL regis-
ter is used to shift the accumulated result to get the aver-
aged value. If this bit is set, the SAR sequencer performs
sign extension and then accumulation. The accumulated
result is then shifted right AVG_CNT + 1 bits to get the aver-
aged result.

The AVG_MODE bitfield in the SAR_SAMPLE_CTRL can
be used to select between accumulate-and-dump and inter-
leaved averaging modes. If a channel is configured for accu-
mulate-and-dump averaging, the SARSEQ will take N
consecutive samples of the specified channel before moving
to the next channel. In the interleaved mode, one sample is
taken per channel and averaged over several scans.

39.2.4.3 Range Detection

The SARSEQ supports range detection to allow automatic
detection of result values compared to two programmable
thresholds without CPU involvement. Range detection is
defined by the SAR_RANGE_THRES register. The
RANGE_LOW field in the SAR_RANGE_THRES register
defines the lower threshold and RANGE_HIGH field defines
the upper threshold of the range.

The RANGE_COND bitfield in the SAR_RANGE_COND
register define the condition that triggers a channel mas-

kable range detect interrupt (RANGE_INTR). The following
conditions can be selected:

0: result < RANGE_LOW (below the range)

1: RANGE_LOW  result < RANGE_HIGH (inside the
range)

2: RANGE_HIGH  result (above the range)

3: result < RANGE_LOW || RANGE_HIGH  result (outside
range)

See Range Detection Interrupts on page 554 for details.

39.2.4.4 Double Buffer

Double buffering is used so that firmware can read the
results of a complete scan while the next scan is in prog-
ress. The SAR ADC results are written to a set of working
registers until the scan is complete, at which time the data is
copied to a second set of registers where the data can be
read by your application. This action allows sufficient time
for the firmware to read the previous scan before the pres-
ent scan is completed. All input channels are double buff-
ered with 16 registers.

SAR_CHAN_WORKx registers contain the working data
and SAR_CHAN_RESULTx contain the buffered results of
the channels. The SAR_CHAN_WORK_UPDATED and
SAR_CHAN_RESULT_UPDATED registers can be used to
track if the working data and the result value of a channel is
updated.

39.2.5 SAR Interrupts

SAR ADC can generate interrupts on these events:

■ End of Scan – When scanning is complete for all the
enabled channels.

■ Overflow – When the result register is updated before
the previous result is read.

■ Collision – When a new trigger is received while the SAR
ADC is still processing the previous trigger.

■ Range Detection – When the channel result meets the
threshold value.

■ Saturation Detection – When the channel result is equal
to the minimum or maximum value.

This section describes each interrupt in detail. These inter-
rupts have an interrupt mask in the SAR_INTR_MASK reg-
ister. By making the interrupt mask low, the corresponding
interrupt source is ignored. The SAR interrupt is generated if
the interrupt mask bit is high and the corresponding interrupt
source is pending.

When servicing an interrupt, the interrupt service routine
(ISR) can clear the interrupt source by writing a ‘1’ to the
corresponding interrupt bit in the SAR_RANGE_INTR regis-
ter, after reading the data.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 554

SAR ADC

The SAR_INTR_MASKED register is the logical AND
between the interrupts sources and the interrupt mask. This
register provides a convenient way for the firmware to deter-
mine the source of the interrupt.

For verification and debug purposes, a set bit (such as
EOS_SET in the SAR_INTR_SET register) is used to trigger
each interrupt. This action allows the firmware to generate
an interrupt without the actual event occurring.

39.2.5.1 End-of-Scan Interrupt (EOS_INTR)

After completing a scan, the end-of-scan interrupt
(EOS_INTR) is raised. Firmware should clear this interrupt
after picking up the data from the RESULT registers.

Optionally, the EOS_INTR can also be sent out on the DSI
bus by setting the EOS_DSI_OUT_EN bit in the SAR_SAM-
PLE_CTRL register. The EOS_INTR signal is maintained on
the DSI bus for two system clock cycles. These cycles coin-
cide with the data_valid signal for the last channel of the
scan (if selected).

EOS_INTR can be masked by making the EOS_MASK bit 0
in the SAR_INTR_MASK register. EOS_MASKED bit of the
SAR_INTR_MASKED register is the logic AND of the inter-
rupt flags and the interrupt masks. Writing a ‘1’ to EOS_SET
bit in SAR_INTR_SET register can set the EOS_INTR,
which is intended for debug and verification.

39.2.5.2 Overflow Interrupt

If a new scan completes and the hardware tries to set the
EOS_INTR and EOS_INTR is still high (firmware does not
clear it fast enough), then an overflow interrupt (OVER-
FLOW_INTR) is generated by the hardware. This usually
means that the firmware is unable to read the previous
results before the current scan completes. In this case, the
old data is overwritten.

OVERFLOW_INTR can be masked by making the OVER-
FLOW_MASK bit 0 in SAR_INTR_MASK register. OVER-
FLOW_MASKED bit of SAR_INTR_MASKED register is the
logic AND of the interrupt flags and the interrupt masks,
which are for firmware convenience. Writing a ‘1’ to the
OVERFLOW_SET bit in SAR_INTR_SET register can set
OVERFLOW_INTR, which is intended for debug and verifi-
cation.

39.2.5.3 Collision Interrupt

It is possible that a new trigger is generated while the
SARSEQ is still busy with the scan started by the previous
trigger. Therefore, the scan for the new trigger is delayed
until after the ongoing scan is completed. It is important to
notify the firmware that the new sample is invalid. This is
done through the collision interrupt, which is raised any time
a new trigger, other than the continuous trigger, is received.

The collision interrupt for the firmware trigger (FW_COLLI-
SION_INTR) and for the DSI trigger (DSI_COLLI-

SION_INTR) allow the firmware to identify which trigger
collided with an ongoing scan.

When the DSI trigger is used in level mode, the DSI_COLLI-
SION_INTR will never be set.

The collision interrupts can be masked by making the corre-
sponding bit ‘0’ in the SAR_INTR_MASK register. The corre-
sponding bit in the SAR_INTR_MASKED register is the logic
AND of the interrupt flags and the interrupt masks. Writing a
‘1’ to the corresponding bit in SAR_INTR_SET register can
set the collision interrupt, which is intended for debug and
verification.

39.2.5.4 Range Detection Interrupts

Range detection interrupt flag can be set after averaging,
alignment, and sign extension (if applicable). This means it
is not required to wait for the entire scan to complete to
determine whether a channel conversion is over-range. The
threshold values need to have the same data format as the
result data.

Range detection interrupt for a specified channel can be
masked by setting the SAR_RANGE_INTR_MASK register
specified bit to ‘0’. Register SAR_RANGE_INTR_MASKED
reflects a bitwise AND between the interrupt request and
mask registers. If the value is not zero, then the SAR inter-
rupt signal to the NVIC is high.

SAR_RANGE_INTR_SET can be used for debug/verifica-
tion. Write a ‘1’ to set the corresponding bit in the interrupt
request register; when read, this register reflects the inter-
rupt request register.

There is a range detect interrupt for each channel
(RANGE_INTR and INJ_RANGE_INTR).

39.2.5.5 Saturate Detection Interrupts

The saturation detection is always applied to every conver-
sion. This feature detects if a sample value is equal to the
minimum or maximum value and sets a maskable interrupt
flag for the corresponding channel. This action allows the
firmware to take action, such as discarding the result, when
the SAR ADC saturates. The sample value is tested right
after conversion, before averaging. This means that the
interrupt is set while the averaged result in the data register
is not equal to the minimum or maximum.

Saturation interrupt flag is set immediately to enable a fast
response to saturation, before the full scan and averaging.
Saturation detection interrupt for specified channel can be
masked by setting the SAR_SATURATE_INTR_MASK reg-
ister specified bit to ‘0’. SAR_SATURATE_INTR_MASKED
register reflects a bit-wise AND between the interrupt
request and mask registers. If the value is not zero, then the
SAR interrupt signal to the NVIC is high.

SAR_SARTURATE_INTR_SET can be used for debug/veri-
fication. Write a ‘1’ to set the corresponding bit in the inter-

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 555

SAR ADC

rupt request register; when read, this register reflects the
interrupt request register.

39.2.5.6 Interrupt Cause Overview

INTR_CAUSE register contains an overview of all the pend-
ing SAR interrupts. It allows the ISR to determine the cause
of the interrupt. The register consists of a mirror copy of
SAR_INTR_MASKED. In addition, it has two bits that aggre-
gate the range and saturate detection interrupts of all chan-
nels. It includes a logical OR of all the bits in
RANGE_INTR_MASKED and SATURATE_INTR_MASKED
registers (does not include INJ_RANGE_INTR and INJ_-
SATURATE_INTR).

39.2.6 Trigger

A scan can be triggered in the following ways:

■ A firmware or one-shot trigger is generated when the
firmware writes to the FW_TRIGGER bit of the
SAR_START_CTRL register. After the scan is com-
pleted, the SARSEQ clears the FW_TRIGGER bit and
goes back to idle mode waiting for the next trigger. The
FW_TRIGGER bit is cleared immediately after the SAR
is disabled.

■ A periodic trigger comes in through the DSI connections
(dsi_trigger).

■ Trigger from other peripherals through the trigger multi-
plexer (see the Trigger Multiplexer Block chapter on
page 273 for more details).

■ A continuous trigger is activated by setting the CONTIN-
UOUS bit in SAR_SAMPLE_CTRL register. In this
mode, after completing a scan the SARSEQ starts the
next scan immediately; therefore, the SARSEQ is
always BUSY. As a result, all other triggers are essen-
tially ignored. Note that FW_TRIGGER will still get
cleared by hardware on the next completion.

These triggers are mutually exclusive. If a DSI trigger coin-
cides with a firmware trigger, the DSI trigger is handled first
and a separate scan is done for the firmware trigger (and a
collision interrupt is set). When a DSI trigger coincides with
a continuous trigger, both triggers are effectively handled at
the same time (a collision interrupt may be set for the DSI
trigger).

For firmware continuous trigger, it takes only one SAR ADC
clock cycle before the sequencer tells the SAR ADC to start
sampling (provided the sequencer is idle). For the DSI trig-
ger, it depends on the trigger configuration setting.

39.2.7 SAR ADC Status

The current SAR status can be observed through the BUSY
and CUR_CHAN fields in the SAR_STATUS register. The
BUSY bit is high whenever the SAR is busy sampling or
converting a channel; the CUR_CHAN bits indicate the
number of the current channel being sampled.

SW_VREF_NEG bit indicates the current switch status,
including DSI and register controls, of the switch in the SAR
ADC that shorts NEG with VREF input.

The CUR_AVG_ACCU and CUR_AVG_CNT fields in the
SAR_AVG_STAT register indicate the current averaging
accumulator contents and the current sample counter value
for averaging (counts down).

The SAR_MUX_SWITCH_STATUS register gives the cur-
rent switch status of MUX_SWITCH0 register. These status
registers help to debug SAR behavior.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 556

SAR ADC

39.3 Registers

Name Description

SAR_CTRL Global configuration register. Analog control register

SAR_SAMPLE_CTRL Global configuration register. Sample control register

SAR_SAMPLE_TIME01 Global configuration register. Sample time specification ST0 and ST1

SAR_SAMPLE_TIME23 Global configuration register. Sample time specification ST2 and ST3

SAR_RANGE_THRES Global range detect threshold register

SAR_RANGE_COND Global range detect mode register

SAR_CHAN_EN Enable bits for the channels

SAR_START_CTRL Start control register (firmware trigger)

SAR_CHAN_CONFIGx Channel configuration register. There are 16 such registers with x = 0 to 15

SAR_CHAN_WORKx Channel working data register. There are 16 such registers with x = 0 to 15

SAR_CHAN_RESULTx Channel result data register. There are 16 such registers with x = 0 to 15

SAR_CHAN_WORK_UPDATED Channel working data register: updated bits

SAR_CHAN_RESULT_UPDATED Channel result data register: updated bits

SAR_STATUS Current status of internal SAR registers (for debug)

SAR_AVG_STAT Current averaging status (for debug)

SAR_INTR Interrupt request register

SAR_INTR_SET Interrupt set request register

SAR_INTR_MASK Interrupt mask register

SAR_INTR_MASKED Interrupt masked request register

SAR_SATURATE_INTR Saturate interrupt request register

SAR_SATURATE_INTR_SET Saturate interrupt set request register

SAR_SATURATE_INTR_MASK Saturate interrupt mask register

SAR_SATURATE_INTR_MASKED Saturate interrupt masked request register

SAR_RANGE_INTR Range detect interrupt request register

SAR_RANGE_INTR_SET Range detect interrupt set request register

SAR_RANGE_INTR_MASK Range detect interrupt mask register

SAR_RANGE_INTR_MASKED Range interrupt masked request register

SAR_INTR_CAUSE Interrupt cause register

SAR_MUX_SWITCH0 SARMUX firmware switch controls

SAR_MUX_SWITCH_CLEAR0 SARMUX firmware switch control clear

SAR_MUX_SWITCH_DS_CTRL SARMUX switch DSI control

SAR_MUX_SWITCH_SQ_CTRL SARMUX switch sequencer control

SAR_MUX_SWITCH_STATUS SARMUX switch status

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 557

40. Temperature Sensor

PSoC 6 MCUs have an on-chip temperature sensor that is used to measure the internal die temperature. The sensor consists
of a transistor connected in diode configuration.

40.1 Features
■ Measures device temperature

■ Voltage output can be internally connected to SAR ADC for digital readout

■ Factory calibrated parameters

40.2 Architecture

The temperature sensor consists of a single bipolar junction transistor (BJT) in the form of a diode. The transistor is biased
using a reference current IREF from the analog reference block (see the Analog Reference Block chapter on page 509 for

more details). Its base-to-emitter voltage (VBE) has a strong dependence on temperature at a constant collector current and

zero collector-base voltage. This property is used to calculate the die temperature by measuring the VBE of the transistor

using the SAR ADC, as shown in Figure 40-1.

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 558

Temperature Sensor

Figure 40-1. Temperature Sensing Mechanism

The analog output from the sensor (VBE) is measured using the SAR ADC. Die temperature in °C can be calculated from the

ADC results as given in the following equation:

Equation 40-1

■ Temp is the slope compensated temperature in °C represented as Q16.16 fixed point number format.

■ ‘A’ is the 16-bit multiplier constant. The value of A is determined using the PSoC 6 MCU characterization data of two point
slope calculation. It is calculated as given in the following equation.

Equation 40-2

Where,

SAR100C = ADC counts at 100 °C

SAR–40C = ADC counts at –40 °C

Constant ‘A’ is stored in a register SFLASH_SAR_TEMP_MULTIPLIER. See the registers TRM for more details.

■ ‘B’ is the 16-bit offset value. The value of B is determined on a per die basis by taking care of all the process variations
and the actual bias current (IREF) present in the chip. It is calculated as given in the following equation.

Equation 40-3

Where,

SAR100C = ADC counts at 100 °C

Constant ‘B’ is stored in a register SFLASH_SAR_TEMP_OFFSET. See the registers TRM for more details.

■ Tadjust is the slope correction factor in °C. The temperature sensor is corrected for dual slopes using the slope correction
factor. It is evaluated based on the result obtained without slope correction, which is given by the following equation:

Equation 40-4

If Tinitial is greater than the center value (15 °C), then Tadjust is given by the following equation.

Temperature
Sensor

S
A

R
M

U
X

SAR ADC CPU

IREF

SAR_MUX_SWITCH0.MUX
_FW_TEMP_VPLUS

Vssa

Current from Analog
Reference Block

vplus

vminus
12 bit

1.2 V

Vssa

vssa_kelvin

Temp A SARout 2
10

B+  Tadjust+=

A signed int  2
16 100C 40C– –

SAR100C SAR 40C––
-- 
 

 
 =

B unsigned int  2
6
x100C

A SAR100C

2
10

 
 
 

–
 
 
 

=

Tinitial A SAROUT 2
10

+ B =

http://www.cypress.com/trm220777
http://www.cypress.com/trm220777

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 559

Temperature Sensor

Equation 40-5

If Tinitial is less than center value, then Tadjust is given by the following equation.

Equation 40-6

Figure 40-2. Temperature Error Compensation

Note: A and B are 16-bit constants stored in flash during factory calibration. These constants are valid only with a specific
SAR ADC configuration. See 40.3 SAR ADC Configuration for Measurement for details.

40.3 SAR ADC Configuration for Measurement

The temperature sensor is routed to the SAR ADC for measurement. Configure the SAR ADC channel to connect to the
temperature sensor by writing ‘1’ to the MUX_FW_TEMP_VPLUS bit of the SAR_MUX_SWITCH0 register. This also routes
the reference current to the sensor. Note that if the SAR sequencer is used, the SAR_MUX_SWITCH_SQ_CTRL register
also needs to be written. Configure the selected channel to a single-ended mode with negative input connected to VSS.

Use the following SAR ADC parameters:

1. 12-bit resolution

2. Internal 1.2-V VREF

3. Right-aligned result

4. 100 ksps sample rate (for best performance)

5. Averaging can be enabled to reduce the noise. However, averaging count, averaging shift, and averaging mode should be
set so as to get a 12-bit result after averaging.

For details about the SAR ADC parameters and its configuration, see the SAR ADC chapter on page 538.

40.4 Algorithm
1. Get the digital output from the SAR ADC.

2. Fetch ‘A’ from SFLASH_SAR_TEMP_MULTIPLIER and ‘B’ from SFLASH_SAR_TEMP_OFFSET.

3. Calculate the die temperature using the following equation:

For example, let A = 0xBC4B and B = 0x65B4. Assume that the output of SAR ADC (VBE) is 0x595 at a given tempera-

ture. Firmware does the following calculations:

a. Multiply A and VBE: 0xBC4B × 0x595 = (–17333)10 × (1429)10 = (–24768857)10

b. Multiply B and 1024: 0x65B4 × 0x400 = (26036)10 × (1024)10 = (26660864)10

c. Add the result of steps 1 and 2 to get Tinitial: (–24768857)10 + (26660864)10 = (1892007)10 = 0x1CDEA7

Tadjust
0.5C

100C 15C–
----------------------------------- 100C 2

16
Tinitial–  

 =

Tadjust
0.5C

40C 15C+
-------------------------------- 40C 2

16
Tinitial+  

 =

Temperature
Error

Actual Temperature
15 °C 100 °C-40 °C

0 °C

0.5 °C

-0.5 °C

Compensation curve

Sensor Error Curve

Tadjust

Temp A SAROUT 2
10

+ B  TADJUST+=

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 560

Temperature Sensor

d. Calculate Tadjust using Tinitial value: Tinitial is the upper 16 bits multiplied by 216, that is, 0x1C00 = (1835008)10. It is

greater than 15°C (0x1C - upper 16 bits). Use Equation 4 to calculate Tadjust. It comes to 0x6B1D = (27421)10

e. Add Tadjust to Tinitial: (1892007)10 + (27421)10 = (1919428)10 = 0x1D49C4

f. The integer part of temperature is the upper 16 bits = 0x001D = (29)10

g. The decimal part of temperature is the lower 16 bits = 0x4B13 = (0.18884)10

h. Combining the result of steps f and g, Temp = 29.18884 °C ~ 29.2°C

40.5 Registers

Name Description

SAR_MUX_SWITCH0
This register has the SAR_MUX_FW_TEMP_VPLUS field to connect the temperature sensor to the
SAR MUX terminal.

SAR_MUX_SWITCH_STATUS This register provides the status of the temperature sensor switch connection to SAR MUX.

SFLASH_SAR_TEMP_MULTIPLIER Multiplier constant 'A' as defined in Equation 40-1.

SFLASH_SAR_TEMP_OFFSET Constant 'B' as defined in Equation 40-1.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 561

41. Analog Routing

The PSoC 6 MCU has a flexible analog routing system that interconnects programmable analog blocks and GPIOs. Analog
routing in the PSoC 6 MCU reduces external connections, allows last-minute feature changes, and eliminates delays caused
by PCB spins by reconfiguring interconnection between analog blocks.

41.1 Features

The PSoC 6 MCU analog routing has the following features:

■ Flexible connections between different analog blocks and GPIOs

■ Two system-wide analog mux buses (AMUXBUS) that interconnect all analog capable GPIOs

■ Switches in the analog routing can be used to create analog multiplexers

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

■ Device datasheet

■ Peripheral Driver Library (PDL) documentation

■ Application notes

■ Code examples

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

Analog Routing

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 562

41.2 Architecture

Figure 41-1 shows the analog routing available in PSoC 6 MCUs.

Figure 41-1. PSoC 6 MCU Analog Routing Diagram

VSSA

Legend

GPIO Switches

AMUX Splitter Switches

SAR ADC Switches

CTBm Switches

CTDAC Switches

LPCOMP Switches

CapSense Switches

AMUXBUS A
AMUXBUS B

5 6

12

4

P6[2]

P6[3]

P6[4]

P6[5]

P6[6]

P6[7]

P6[0]

P6[1]

3

P
2

[7
]

P
2[

6
]

P
2[

5
]

P
2

[4
]

P
2[

3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

P
3[

5
]

P
3

[4
]

P
3[

3
]

P
3

[2
]

P
3

[1
]

P
3

[0
]

P
4

[1
]

P
4

[0
]

P
1

4
[1

]

P
1

4[
0

]

OA0OA1

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 563

Analog Routing

Notes:

■ The analog features and GPIOs shown in Figure 41-1 may not be available in all PSoC 6 MCUs. See the respective
device datasheets for available analog features and ports in a device.

■ Certain analog blocks such as CapSense and LPCOMP have additional internal routing, which is not shown in
Figure 41-1. See the respective chapters of these blocks in this document for details.

Analog routing in the PSoC 6 MCU consists of several on-chip analog buses and analog switches. Table 41-1 gives a
summary of connections available between analog blocks.

Notes:

■ For detailed routing and switch-control information of a block, click on the respective block name.

■ CapSense block connections used for touch sensing are not shown in Table 41-1 because CapSense is not connected to
any other analog blocks during touch sensing.

■ AMUXBUS routing is not available in system Deep Sleep and Hibernate power modes of PSoC 6 MCUs.

■ If the routing uses switches belonging to a particular analog block, for example, SAR ADC, then SAR ADC block needs to
be enabled.

■ SAR ADC is designed with 16 channels, but it can scan thirteen unique inputs, which includes eight GPIOs from
dedicated SARMUX port, two CTBm opamp outputs, two AMUX buses, and a temperature sensor. It is possible to scan
GPIOs from other ports using AMUX buses.

Most analog blocks have dedicated connections to certain pins, which, when used, provide the best possible performance.
However, these blocks can be also connected to other GPIOs and each other using AMUXBUS in case the dedicated pin is
not available or is used by another resource.

41.2.1 AMUXBUS Splitting

AMUXBUS A and AMUXBUS B are system-wide analog buses that can connect to almost all analog blocks and some GPIOs
in the PSoC 6 MCU. However, the PSoC 6 MCU has only two of these buses. Each AMUXBUS can be split into multiple
segments using 5 switches controlled by writing into the HSIOM_AMUX_SPLIT_CTL registers. An example use case would

Table 41-1. Available Connections between PSoC 6 MCU Analog Blocks

To GPIOs To SAR ADC
To CTBm (OA0,

OA1)
To CTDAC To LPCOMP

To CapSense
IDACs

From GPIOs
AMUXBUS A

AMUXBUS B

Dedicated SARSEQ
port

Through CTBm

AMUXBUS A

AMUXBUS B

Dedicated CTBm
pins

AMUXBUS A

AMUXBUS B

N/A1

1. CTDAC does not have analog inputs.

Dedicated LPCOMP
pins

AMUXBUS A

AMUXBUS B

N/A2

2. IDAC does not have analog inputs.

From SAR ADC N/A3

3. SAR ADC does not have analog outputs.

N/A4

4. Same block

N/A3 N/A3 N/A3 N/A3

From CTBm
(OA0, OA1)

Dedicated CTBm pins

AMUXBUS A

AMUXBUS B

Internal bus

AMUXBUS A

AMUXBUS B

N/A4 N/A1
AMUXBUS A

AMUXBUS B
N/A2

From CTDAC

Through CTBm
Dedicated CTDAC Pin

AMUXBUS A

AMUXBUS B

Through CTBm
AMUXBUS A

AMUXBUS B

Internal bus
AMUXBUS A

AMUXBUS B
N/A4

AMUXBUS A

AMUXBUS B
N/A2

From LPCOMP N/A5

5. LPCOMP does not have analog outputs.

N/A5 N/A5 N/A5 N/A4 N/A5

From CapSense
IDACs

AMUXBUS A

AMUXBUS B

AMUXBUS A6

AMUXBUS B6

6. External resistor may be required to convert current to voltage.

AMUXBUS A

AMUXBUS B
N/A1

AMUXBUS A6

AMUXBUS B6
N/A4

http://www.cypress.com/an85951
http://www.cypress.com/an85951
http://www.cypress.com/an85951
http://www.cypress.com/an85951

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 564

Analog Routing

be to disconnect the AMUX switches 2 and 5 (see Figure 41-1) when using CapSense with touch pads connected to Port 7
and Port 8. This leaves other AMUX bus segments free for use by other analog blocks. For more information on AMUXBUS
connections, see the I/O System chapter on page 240.

41.3 Register List

Table 41-2. Register Summary

Name Description

HSIOM_ AMUX_SPLIT_CTL This register controls the breaking of AMUX buses A and B into multiple segments.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 565

42. CapSense

The CapSense system can measure the self-capacitance of an electrode or the mutual capacitance between a pair of
electrodes. In addition to capacitive sensing, the CapSense system can function as an ADC to measure voltage on any GPIO
pin that supports the CapSense functionality.

The CapSense touch sensing method in PSoC 6 MCUs, which senses self-capacitance, is known as CapSense Sigma Delta
(CSD). Similarly, the mutual-capacitance sensing method is known as CapSense Cross-point (CSX). The CSD and CSX
touch sensing methods provide the industry’s best-in-class signal-to-noise ratio (SNR), high touch sensitivity, low-power
operation, and superior EMI performance.

CapSense touch sensing is a combination of hardware and firmware techniques. Therefore, use the CapSense component
provided by the ModusToolbox IDE to implement CapSense designs. See the PSoC 4 and PSoC 6 MCU CapSense Design
Guide for more details.

https://www.infineon.com/AN85951
https://www.infineon.com/AN85951
https://www.infineon.com/AN85951

	PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture Technical Reference Manual (TRM) PSoC 62 MCU
	Content Overview
	Contents
	Section A: Overview
	Document Revision History
	1. Introduction
	1.1 Features
	1.2 Architecture

	2. Getting Started
	2.1 PSoC 6 MCU Resources

	3. Document Organization and Conventions
	3.1 Major Sections
	3.2 Documentation Conventions
	3.2.1 Register Conventions
	3.2.2 Numeric Naming
	3.2.3 Units of Measure
	3.2.4 Acronyms and Initializations

	Section B: CPU Subsystem
	Top Level Architecture
	4. CPU Subsystem (CPUSS)
	4.1 Features
	4.2 Architecture
	4.2.1 Address and Memory Maps
	4.2.1.1 Wait State Lookup Tables

	4.3 Registers
	4.4 Operating Modes and Privilege Levels
	4.5 Instruction Set

	5. SRAM Controller
	5.1 Features
	5.2 Architecture
	5.3 Wait States

	6. Inter-Processor Communication
	6.1 Features
	6.2 Architecture
	6.2.1 IPC Channel
	6.2.2 IPC Interrupt
	6.2.3 IPC Channels and Interrupts

	6.3 Implementing Locks
	6.4 Message Passing
	6.5 Typical Usage Models
	6.5.1 Full Duplex Communication
	6.5.2 Half Duplex with Independent Event Handling
	6.5.3 Half Duplex with Shared Event Handling

	7. Fault Monitoring
	7.1 Features
	7.2 Architecture
	7.2.1 Fault Report
	7.2.2 Signaling Interface
	7.2.3 Monitoring
	7.2.4 Low-power Mode Operation
	7.2.5 Using a Fault Structure
	7.2.6 CPU Exceptions Versus Fault Monitoring

	7.3 Fault Sources
	7.4 Register List

	8. Interrupts
	8.1 Features
	8.2 Architecture
	8.3 Interrupts and Exceptions - Operation
	8.3.1 Interrupt/Exception Handling
	8.3.2 Level and Pulse Interrupts
	8.3.3 Exception Vector Table

	8.4 Exception Sources
	8.4.1 Reset Exception
	8.4.2 Non-Maskable Interrupt Exception
	8.4.3 HardFault Exception
	8.4.4 Memory Management Fault Exception
	8.4.5 Bus Fault Exception
	8.4.6 Usage Fault Exception
	8.4.7 Supervisor Call (SVCall) Exception
	8.4.8 PendSupervisory (PendSV) Exception
	8.4.9 System Tick (SysTick) Exception

	8.5 Interrupt Sources
	8.6 Interrupt/Exception Priority
	8.7 Enabling and Disabling Interrupts
	8.8 Interrupt/Exception States
	8.8.1 Pending Interrupts/Exceptions

	8.9 Stack Usage for Interrupts/ Exceptions
	8.10 Interrupts and Low-Power Modes
	8.11 Interrupt/Exception – Initialization/ Configuration
	8.12 Register List

	9. Protection Units
	9.1 Architecture
	9.2 PSoC 6 Protection Architecture
	9.3 Register Architecture
	9.3.1 Protection Structure and Attributes

	9.4 Bus Master Protection Attributes
	9.5 Protection Context
	9.6 Protection Context 0
	9.7 Protection Structure
	9.7.1 Protection Violation
	9.7.2 MPU
	9.7.3 SMPU
	9.7.4 PPU
	9.7.5 Protection of Protection Structures
	9.7.6 Protection Structure Types

	10. DMA Controller
	10.1 Features
	10.2 Architecture
	10.3 Channels
	10.3.1 Channel Interrupts

	10.4 Descriptors
	10.4.1 Address Configuration
	10.4.2 Transfer Size
	10.4.3 Descriptor Chaining

	10.5 DMA Controller
	10.5.1 Trigger Selection
	10.5.2 Pending Triggers
	10.5.3 Output Triggers
	10.5.4 Status registers
	10.5.5 DMA Performance

	11. Cryptographic Function Block (Crypto)
	11.1 Features
	11.2 Architecture
	11.3 Instruction Controller
	11.3.1 Instructions
	11.3.2 Instruction Operands
	11.3.3 Load and Store FIFO Instructions
	11.3.4 Register Buffer Instructions

	11.4 Hash Algorithms
	11.4.1 SHA1 and SHA2
	11.4.2 SHA3

	11.5 DES and TDES
	11.6 AES
	11.7 CRC
	11.8 PRNG
	11.9 TRNG
	11.10 Vector Unit
	11.10.1 VU Register File
	11.10.2 Stack
	11.10.3 Memory Operands
	11.10.4 Datapath
	11.10.5 Status Register
	11.10.6 Instructions
	11.10.7 Instruction Set

	12. Program and Debug Interface
	12.1 Features
	12.2 Architecture
	12.2.1 Debug Access Port (DAP)
	12.2.1.1 DAP Security
	12.2.1.2 DAP Power Domain

	12.2.2 ROM Tables
	12.2.3 Trace
	12.2.4 Embedded Cross Triggering

	12.3 Serial Wire Debug (SWD) Interface
	12.3.1 SWD Timing Details
	12.3.2 ACK Details
	12.3.3 Turnaround (Trn) Period Details

	12.4 JTAG Interface
	12.5 Programming the PSoC 6 MCU
	12.5.1 SWD Port Acquisition
	12.5.1.1 SWD Port Acquire Sequence

	12.5.2 SWD Programming Mode Entry
	12.5.3 SWD Programming Routine Executions

	12.6 Registers

	13. Nonvolatile Memory
	13.1 Flash Memory
	13.1.1 Features
	13.1.2 Configuration
	13.1.2.1 Block Diagram

	13.1.3 Flash Geometry
	13.1.4 Flash Controller
	13.1.4.1 Wait State Count
	13.1.4.2 Power Modes
	13.1.4.3 CPU Caches

	13.1.5 Read While Write (RWW) Support

	13.2 Flash Memory Programming
	13.2.1 Features
	13.2.2 Architecture

	13.3 System Call Implementation
	13.3.1 System Call via CM0+ or CM4
	13.3.2 System Call via DAP
	13.3.3 Exiting from a System Call
	13.3.4 SRAM Usage

	13.4 SROM API Library
	13.5 System Calls
	13.5.1 Cypress ID
	13.5.2 Blow eFuse Bit
	13.5.3 Read eFuse Byte
	13.5.4 Write Row
	13.5.5 Program Row
	13.5.6 Erase All
	13.5.7 Checksum
	13.5.8 Compute Hash
	13.5.9 ConfigureRegionBulk
	13.5.10 DirectExecute
	13.5.11 Erase Sector
	13.5.12 Soft Reset
	13.5.13 Erase Row
	13.5.14 Erase Subsector
	13.5.15 GenerateHash
	13.5.16 ReadUniqueID
	13.5.17 CheckFactoryHash
	13.5.18 TransitionToRMA
	13.5.19 ReadFuseByteMargin

	13.6 System Call Status

	14. Boot Code
	14.1 Features
	14.2 ROM Boot
	14.2.1 Data Integrity Checks
	14.2.2 Life-cycle Stages and Protection States
	14.2.3 Secure Boot in ROM Boot
	14.2.4 Protection Setting
	14.2.5 SWD/JTAG Repurposing
	14.2.6 Waking up from Hibernate
	14.2.7 Disable Watchdog Timer
	14.2.8 ROM Boot Flow Chart

	14.3 Flash Boot
	14.3.1 Overview
	14.3.2 Features of Flash Boot
	14.3.3 Using Flash Boot
	14.3.4 Flash Boot Layout
	14.3.4.1 Header
	14.3.4.2 Code Segment

	14.3.5 Flash Boot Flow Chart
	14.3.5.1 Entry from ROM Boot (0)
	14.3.5.2 Basic Initialization (1)
	14.3.5.3 Is TOC2 Valid? (2)
	14.3.5.4 Is Hard Fault Triggered? (3)
	14.3.5.5 Trigger a Hard Fault (4)
	14.3.5.6 Get App #0 Reset Handler (5)
	14.3.5.7 Is Reset Handler Valid? (6)
	14.3.5.8 Authenticate App? (7)
	14.3.5.9 Is Public Key Valid (8)
	14.3.5.10 Is Digital Signature Valid? (9)
	14.3.5.11 Enable System Calls (10)
	14.3.5.12 Is DAP Enabled (11)
	14.3.5.13 Configure SWD/JTAG Pins (12)
	14.3.5.14 Wake from Hibernate? (13)
	14.3.5.15 Wait Window (14)
	14.3.5.16 Test Mode Enable? (15)
	14.3.5.17 Launch CM0+ Application (16)
	14.3.5.18 Set Up SP (17)
	14.3.5.19 Idle Loop (18)
	14.3.5.20 Set Error Code (30)
	14.3.5.21 Protection = Virgin? (31)
	14.3.5.22 Life Cycle = SECURE (32)
	14.3.5.23 Protection = DEAD (33)
	14.3.5.24 Deploy Access Restrictions (34)
	14.3.5.25 Set Up DAP from AR (35)
	14.3.5.26 Apply System Protection (36)

	15. eFuse Memory
	15.1 Features
	15.2 Architecture

	16. Device Security
	16.1 Features
	16.2 Architecture
	16.2.1 Life Cycle Stages and Protection States
	16.2.2 Flash Security
	16.2.3 Hardware-Based Encryption

	Section C: System Resources Subsystem (SRSS)
	Top Level Architecture
	17. Power Supply and Monitoring
	17.1 Features
	17.2 Architecture
	17.3 Power Supply
	17.3.1 Regulators Summary
	17.3.1.1 Core Regulators

	17.3.2 Power Pins and Rails
	17.3.3 Power Sequencing Requirements
	17.3.4 Backup Domain
	17.3.5 Power Supply Sources

	17.4 Voltage Monitoring
	17.4.1 Power-On-Reset (POR)
	17.4.2 Brownout-Detect (BOD)
	17.4.3 Low-Voltage-Detect (LVD)
	17.4.4 Over-Voltage Protection (OVP)

	17.5 Register List

	18. Device Power Modes
	18.1 Features
	18.2 Architecture
	18.2.1 CPU Power Modes
	18.2.1.1 CPU Active Mode
	18.2.1.2 CPU Sleep Mode
	18.2.1.3 CPU Deep Sleep Mode

	18.2.2 System Power Modes
	18.2.2.1 System Low Power Mode
	18.2.2.2 System Ultra Low Power Mode

	18.2.3 System Deep Sleep Mode
	18.2.4 System Hibernate Mode
	18.2.5 Other Operation Modes
	18.2.5.1 Backup Domain
	18.2.5.2 Reset State
	18.2.5.3 Off State

	18.3 Power Mode Transitions
	18.3.1 Power-up Transitions
	18.3.2 Power Mode Transitions
	18.3.3 Wakeup Transitions

	18.4 Summary
	18.5 Register List

	19. Backup System
	19.1 Features
	19.2 Architecture
	19.3 Power Supply
	19.4 Clocking
	19.4.1 WCO with External Clock/Sine Wave Input
	19.4.2 Calibration

	19.5 Reset
	19.6 Real-Time Clock
	19.6.1 Reading RTC User Registers
	19.6.2 Writing to RTC User Registers

	19.7 Alarm Feature
	19.8 PMIC Control
	19.9 Backup Registers
	19.10 Register List

	20. Clocking System
	20.1 Features
	20.2 Architecture
	20.3 Clock Sources
	20.3.1 Internal Main Oscillator (IMO)
	20.3.2 External Crystal Oscillator (ECO)
	20.3.2.1 ECO Trimming

	20.3.3 External Clock (EXTCLK)
	20.3.4 Internal Low-speed Oscillator (ILO)
	20.3.5 Precision Internal Low-speed Oscillator (PILO)
	20.3.6 Watch Crystal Oscillator (WCO)

	20.4 Clock Generation
	20.4.1 Phase-Locked Loop (PLL)
	20.4.2 Frequency Lock Loop (FLL)
	20.4.2.1 Configuring the FLL
	20.4.2.2 Enabling and Disabling the FLL

	20.5 Clock Trees
	20.5.1 Path Clocks
	20.5.2 High-Frequency Root Clocks
	20.5.3 Low-Frequency Clock
	20.5.4 Timer Clock
	20.5.5 Group Clocks (clk_sys)
	20.5.6 Backup Clock (clk_bak)

	20.6 CLK_HF[0] Distribution
	20.6.1 CLK_FAST
	20.6.2 CLK_PERI
	20.6.3 CLK_SLOW

	20.7 Peripheral Clock Dividers
	20.7.1 Fractional Clock Dividers
	20.7.2 Peripheral Clock Divider Configuration
	20.7.2.1 Phase Aligning Dividers
	20.7.2.2 Connecting Dividers to Peripheral

	20.8 Clock Calibration Counters

	21. Reset System
	21.1 Features
	21.2 Architecture
	21.2.1 Power-on Reset
	21.2.2 Brownout Reset
	21.2.3 Watchdog Timer Reset
	21.2.4 Software Initiated Reset
	21.2.5 External Reset
	21.2.6 Logic Protection Fault Reset
	21.2.7 Clock-Supervision Logic Reset
	21.2.8 Hibernate Wakeup Reset

	21.3 Identifying Reset Sources
	21.4 Register List

	22. I/O System
	22.1 Features
	22.2 Architecture
	22.2.1 I/O Cell Architecture
	22.2.2 Digital Input Buffer
	22.2.3 Digital Output Driver
	22.2.3.1 Drive Modes
	22.2.3.2 Slew Rate Control
	22.2.3.3 GPIO-OVT Pins

	22.3 High-Speed I/O Matrix
	22.4 I/O State on Power Up
	22.5 Behavior in Low-Power Modes
	22.6 Input and Output Synchronization
	22.7 Interrupt
	22.8 Peripheral Connections
	22.8.1 Firmware-Controlled GPIO
	22.8.2 Analog I/O
	22.8.2.1 AMUXBUS Connection

	22.8.3 LCD Drive
	22.8.4 CapSense

	22.9 Smart I/O
	22.9.1 Overview
	22.9.2 Block Components
	22.9.2.1 Clock and Reset
	22.9.2.2 Synchronizer
	22.9.2.3 Lookup Table (LUT)
	22.9.2.4 Data Unit (DU)

	22.9.3 Routing
	22.9.4 Operation

	22.10 Registers

	23. Watchdog Timer
	23.1 Features
	23.2 Architecture
	23.3 Free-running WDT
	23.3.1 Overview
	23.3.2 Watchdog Reset
	23.3.3 Watchdog Interrupt

	23.4 Multi-Counter WDTs
	23.4.1 Overview
	23.4.1.1 MCWDTx_WDT0 and MCWDTx_WDT1 Counters Operation
	23.4.1.2 MCWDTx_WDT2 Counter Operation

	23.4.2 Enabling and Disabling WDT
	23.4.3 Watchdog Cascade Options
	23.4.4 MCDWT Reset
	23.4.5 MCWDT Interrupt

	23.5 Reset Cause Detection
	23.6 Register List

	24. Trigger Multiplexer Block
	24.1 Features
	24.2 Architecture
	24.2.1 Trigger Multiplexer Group
	24.2.2 Trigger Multiplexer Block Architecture
	24.2.3 Trigger Multiplexer Routing
	24.2.4 Software Triggers

	24.3 PSoC 6 MCU Trigger Multiplexer Block
	24.4 Register List

	25. Profiler
	25.1 Features
	25.2 Architecture
	25.2.1 Profiler Design
	25.2.2 Available Monitoring Sources
	25.2.3 Reference Clocks

	25.3 Using the Profiler
	25.3.1 Enable or Disable the Profiler
	25.3.2 Configure and Enable a Counter
	25.3.3 Start and Stop Profiling
	25.3.4 Handle Counter Overflow
	25.3.5 Get the Results
	25.3.6 Exit Gracefully

	Section D: Digital Subsystem
	Top Level Architecture
	26. Serial Communications Block (SCB)
	26.1 Features
	26.2 Architecture
	26.2.1 Buffer Modes
	26.2.1.1 FIFO Mode
	26.2.1.2 EZ Mode
	26.2.1.3 CMD_RESP Mode

	26.2.2 Clocking Modes

	26.3 Serial Peripheral Interface (SPI)
	26.3.1 Features
	26.3.2 General Description
	26.3.2.1 Transfer Separation

	26.3.3 SPI Modes of Operation
	26.3.3.1 Motorola SPI
	26.3.3.2 Texas Instruments SPI
	26.3.3.3 National Semiconductors SPI

	26.3.4 SPI Buffer Modes
	26.3.4.1 FIFO Mode
	26.3.4.2 EZSPI Mode
	26.3.4.3 Command-Response Mode

	26.3.5 Clocking and Oversampling
	26.3.5.1 Clock Modes
	26.3.5.2 Using SPI Master to Clock Slave
	26.3.5.3 Oversampling and Bit Rate

	26.3.6 Enabling and Initializing SPI
	26.3.7 I/O Pad Connection
	26.3.7.1 SPI Master
	26.3.7.2 SPI Slave
	26.3.7.3 Glitch Avoidance at System Reset
	26.3.7.4 Median Filter

	26.3.8 SPI Registers

	26.4 UART
	26.4.1 Features
	26.4.2 General Description
	26.4.3 UART Modes of Operation
	26.4.3.1 Standard Protocol
	26.4.3.2 UART Local Interconnect Network (LIN) Mode
	26.4.3.3 SmartCard (ISO7816)
	26.4.3.4 Infrared Data Association (IrDA)

	26.4.4 Clocking and Oversampling
	26.4.5 Enabling and Initializing the UART
	26.4.6 I/O Pad Connection
	26.4.6.1 Standard UART Mode
	26.4.6.2 SmartCard Mode
	26.4.6.3 LIN Mode
	26.4.6.4 IrDA Mode

	26.4.7 UART Registers

	26.5 Inter Integrated Circuit (I2C)
	26.5.1 Features
	26.5.2 General Description
	26.5.3 External Electrical Connections
	26.5.4 Terms and Definitions
	26.5.4.1 Clock Stretching
	26.5.4.2 Bus Arbitration

	26.5.5 I2C Modes of Operation
	26.5.5.1 Write Transfer
	26.5.5.2 Read Transfer

	26.5.6 I2C Buffer Modes
	26.5.6.1 FIFO Mode
	26.5.6.2 EZI2C Mode
	26.5.6.3 Command-Response Mode

	26.5.7 Clocking and Oversampling
	26.5.7.1 Glitch Filtering
	26.5.7.2 Oversampling and Bit Rate

	26.5.8 Enabling and Initializing the I2C
	26.5.8.1 Configuring for I2C FIFO Mode
	26.5.8.2 Configuring for EZ and CMD_RESP Modes

	26.5.9 I/O Pad Connections
	26.5.10 I2C Registers

	26.6 SCB Interrupts
	26.6.1 SPI Interrupts
	26.6.2 UART Interrupts
	26.6.3 I2C Interrupts

	27. Serial Memory Interface (SMIF)
	27.1 Features
	27.2 Architecture
	27.2.1 Tx and Rx FIFOs
	27.2.1.1 Tx Command FIFO
	27.2.1.2 Tx Data FIFO
	27.2.1.3 Rx Data FIFO

	27.2.2 Command Mode
	27.2.3 XIP Mode
	27.2.4 Cache
	27.2.5 Arbitration
	27.2.6 Deselect Delay
	27.2.7 Cryptography

	27.3 Memory Device Signal Interface
	27.3.1 Specifying Memory Devices
	27.3.2 Connecting SPI Memory Devices
	27.3.3 SPI Data Transfer
	27.3.4 Example of Setting up SMIF

	27.4 Triggers
	27.5 Interrupts
	27.6 Sleep Operation
	27.7 Performance

	28. Timer, Counter, and PWM (TCPWM)
	28.1 Features
	28.2 Architecture
	28.2.1 Enabling and Disabling Counters in a TCPWM Block
	28.2.2 Clocking
	28.2.2.1 Clock Prescaling
	28.2.2.2 Count Input

	28.2.3 Trigger Inputs
	28.2.4 Trigger Outputs
	28.2.5 Interrupts
	28.2.6 PWM Outputs
	28.2.7 Power Modes

	28.3 Operation Modes
	28.3.1 Timer Mode
	28.3.1.1 Configuring Counter for Timer Mode

	28.3.2 Capture Mode
	28.3.2.1 Configuring Counter for Capture Mode

	28.3.3 Quadrature Decoder Mode
	28.3.3.1 Configuring Counter for Quadrature Mode

	28.3.4 Pulse Width Modulation Mode
	28.3.4.1 Asymmetric PWM
	28.3.4.2 Configuring Counter for PWM Mode

	28.3.5 Pulse Width Modulation with Dead Time Mode
	28.3.5.1 Configuring Counter for PWM with Dead Time Mode

	28.3.6 Pulse Width Modulation Pseudo-Random Mode (PWM_PR)
	28.3.6.1 Configuring Counter for Pseudo-Random PWM Mode

	28.4 TCPWM Registers

	29. Inter-IC Sound Bus
	29.1 Features
	29.2 Architecture
	29.3 Digital Audio Interface Formats
	29.3.1 Standard I2S Format
	29.3.2 Left Justified (LJ) Format
	29.3.3 Time Division Multiplexed (TDM) Format

	29.4 Clocking Polarity and Delay Options
	29.5 Interfacing with Audio Codecs
	29.6 Clocking Features
	29.7 FIFO Buffer and DMA Support
	29.8 Interrupt Support
	29.9 Watchdog Timer

	30. PDM-PCM Converter
	30.1 Features
	30.2 Architecture
	30.2.1 Enable/Disable Converter
	30.2.2 Clocking Features
	30.2.3 Over-Sampling Ratio
	30.2.4 Mono/Stereo Microphone Support
	30.2.5 Hardware FIFO Buffers and DMA Controller Support
	30.2.6 Interrupt Support
	30.2.7 Digital Volume Gain
	30.2.8 Smooth Gain Transition
	30.2.9 Soft Mute
	30.2.10 Word Length and Sign Bit Extension
	30.2.11 High-Pass Filter
	30.2.12 Enable/Disable Streaming
	30.2.13 Power Modes

	30.3 Operating Procedure
	30.3.1 Initial Configuration
	30.3.2 Interrupt Service Routine (ISR) Configuration
	30.3.3 Enabling / Disabling Streaming

	31. Universal Serial Bus (USB) Device Mode
	31.1 Features
	31.2 Architecture
	31.2.1 USB Physical Layer (USB PHY)
	31.2.2 Serial Interface Engine (SIE)
	31.2.3 Arbiter
	31.2.3.1 SIE Interface Module
	31.2.3.2 CPU/DMA Interface Block
	31.2.3.3 Memory Interface
	31.2.3.4 Arbiter Logic

	31.3 Operation
	31.3.1 USB Clocking Scheme
	31.3.2 USB PHY
	31.3.2.1 Power Scheme
	31.3.2.2 VBUS Detection
	31.3.2.3 USB D+ Pin Pull-up Enable Logic
	31.3.2.4 Transmitter and Receiver Logic
	31.3.2.5 GPIO Mode Logic
	31.3.2.6 Link Power Management (LPM)

	31.3.3 Endpoints
	31.3.4 Transfer Types
	31.3.5 Interrupt Sources
	31.3.5.1 USB Start of Frame (SOF) Event
	31.3.5.2 USB Bus Reset Event
	31.3.5.3 Data Endpoint Interrupt Events
	31.3.5.4 Control Endpoint Interrupt Event
	31.3.5.5 Link Power Management (LPM) Event
	31.3.5.6 RESUME Interrupt
	31.3.5.7 Arbiter Interrupt Event

	31.3.6 DMA Support

	31.4 Logical Transfer Modes
	31.4.1 Manual Memory Management with No DMA Access
	31.4.2 Manual Memory Management with DMA Access
	31.4.3 Automatic DMA Mode
	31.4.4 Control Endpoint Logical Transfer

	31.5 USB Power Modes
	31.6 USB Device Registers

	32. Universal Serial Bus (USB) Host
	32.1 Features
	32.2 Architecture
	32.2.1 USB Physical Layer (USB PHY)
	32.2.2 Clock Control Block
	32.2.3 Interrupt Control Block
	32.2.4 Endpoint n (n=1, 2)
	32.2.5 DMA Request (DREQ) Control

	32.3 USB Host Operations
	32.3.1 Detecting Device Connection
	32.3.2 Obtaining Transfer Speed of the USB Device
	32.3.3 USB Bus Reset
	32.3.4 USB Packets
	32.3.4.1 Token Packet
	32.3.4.2 Data Packet
	32.3.4.3 Handshake Packet

	32.3.5 Retry Function
	32.3.6 Error Status
	32.3.7 End of Packet (EOP)
	32.3.8 Interrupt Sources
	32.3.9 DMA Transfer Function
	32.3.9.1 Packet Transfer Mode
	32.3.9.2 Automatic Data Transfer Mode

	32.3.10 Suspend and Resume Operations
	32.3.10.1 Suspend Operation
	32.3.10.2 Resume Operation

	32.3.11 Device Disconnection

	32.4 USB Host Registers

	33. LCD Direct Drive
	33.1 Features
	33.2 Architecture
	33.2.1 LCD Segment Drive Overview
	33.2.2 Drive Modes
	33.2.2.1 PWM Drive
	33.2.2.2 Digital Correlation

	33.2.3 Recommended Usage of Drive Modes
	33.2.4 Digital Contrast Control

	33.3 PSoC 6 MCU Segment LCD Direct Drive
	33.3.1 High-Speed and Low-Speed Master Generators
	33.3.2 Multiplexer and LCD Pin Logic
	33.3.3 Display Data Registers

	33.4 Register List

	34. Universal Digital Blocks (UDB)
	34.1 Features
	34.2 Architecture
	34.2.1 Programmable Logic Device (PLD)
	34.2.1.1 PLD Macrocells
	34.2.1.2 PLD Carry Chain
	34.2.1.3 PLD Configuration

	34.2.2 Datapath
	34.2.2.1 Overview
	34.2.2.2 Datapath FIFOs
	34.2.2.3 FIFO Status
	34.2.2.4 Datapath ALU
	34.2.2.5 Datapath Inputs and Multiplexing
	34.2.2.6 CRC/PRS Support
	34.2.2.7 Datapath Outputs and Multiplexing
	34.2.2.8 Datapath Parallel Inputs and Outputs
	34.2.2.9 Datapath Chaining
	34.2.2.10 Dynamic Configuration RAM

	34.2.3 Status and Control Module
	34.2.3.1 Status and Control Mode
	34.2.3.2 Control Register Operation
	34.2.3.3 Parallel Input/Output Mode
	34.2.3.4 Counter Mode
	34.2.3.5 Sync Mode
	34.2.3.6 Status and Control Clocking
	34.2.3.7 Auxiliary Control Register
	34.2.3.8 Status and Control Register Summary

	34.2.4 Reset and Clock Control Module
	34.2.4.1 Clock Control
	34.2.4.2 Reset Control
	34.2.4.3 UDB POR Initialization

	34.2.5 UDB Addressing
	34.2.6 System Bus Access Coherency
	34.2.6.1 Simultaneous System Bus Access
	34.2.6.2 Coherent Accumulator Access (Atomic Reads and Writes)

	34.3 Port Adapter Block
	34.3.1 PA Data Input Logic
	34.3.2 PA Port Pin Clock Multiplexer Logic
	34.3.3 PA Data Output Logic
	34.3.4 PA Output Enable Logic
	34.3.5 PA Clock Multiplexer
	34.3.6 PA Reset Multiplexer

	Section E: Analog Subsystem
	Top Level Architecture
	35. Analog Reference Block
	35.1 Features
	35.2 Architecture
	35.2.1 Bandgap Reference Block
	35.2.2 VREF Reference Voltage Selection Multiplexer Options
	35.2.3 Zero Dependency To Absolute Temperature Current Generator (IZTAT)
	35.2.3.1 IZTAT Selection Multiplexer Options

	35.2.4 Startup Modes
	35.2.5 Low-Power Modes

	35.3 Registers

	36. Low-Power Comparator
	36.1 Features
	36.2 Architecture
	36.2.1 Input Configuration
	36.2.2 Output and Interrupt Configuration
	36.2.3 Power Mode and Speed Configuration
	36.2.4 Hysteresis
	36.2.5 Wakeup from Low-Power Modes
	36.2.6 Comparator Clock

	36.3 Register List

	37. Continuous Time Block mini (CTBm)
	37.1 Features
	37.2 Architecture
	37.2.1 Power Mode and Output Strength Configuration
	37.2.2 Charge Pump
	37.2.3 Reference Currents
	37.2.4 Compensation Trim Bits
	37.2.5 Switching Matrix
	37.2.6 Sample and Hold
	37.2.7 Comparator Mode
	37.2.7.1 Comparator Configuration
	37.2.7.2 Comparator Interrupt

	37.2.8 Deep Sleep Operation
	37.2.9 Using CTBm Opamp

	37.3 Register List

	38. Continuous Time DAC
	38.1 Features
	38.2 Architecture
	38.2.1 CTDAC Core
	38.2.1.1 CTDAC Architecture
	38.2.1.2 Input Voltage Reference
	38.2.1.3 Output Paths
	38.2.1.4 Other Configurations

	38.2.2 CTDAC Control Interface
	38.2.2.1 CTDAC Modes
	38.2.2.2 Update Rate and Double Buffering
	38.2.2.3 Interrupts and DMA Triggers

	38.2.3 Deglitch Operation
	38.2.3.1 Other Control Configurations

	38.2.4 Using CTDAC

	38.3 Register List

	39. SAR ADC
	39.1 Features
	39.2 Architecture
	39.2.1 SAR ADC Core
	39.2.1.1 Single-ended and Differential Modes
	39.2.1.2 Input Range
	39.2.1.3 Result Data Format
	39.2.1.4 Negative Input Selection
	39.2.1.5 Acquisition Time
	39.2.1.6 SAR ADC Clock
	39.2.1.7 SAR ADC Timing

	39.2.2 SARMUX
	39.2.2.1 Analog Routing
	39.2.2.2 Analog Interconnection

	39.2.3 SARREF
	39.2.3.1 Reference Options
	39.2.3.2 Reference Buffer and Bypass Capacitors
	39.2.3.3 Input Range versus Reference

	39.2.4 SARSEQ
	39.2.4.1 Channel Configuration
	39.2.4.2 Averaging
	39.2.4.3 Range Detection
	39.2.4.4 Double Buffer

	39.2.5 SAR Interrupts
	39.2.5.1 End-of-Scan Interrupt (EOS_INTR)
	39.2.5.2 Overflow Interrupt
	39.2.5.3 Collision Interrupt
	39.2.5.4 Range Detection Interrupts
	39.2.5.5 Saturate Detection Interrupts
	39.2.5.6 Interrupt Cause Overview

	39.2.6 Trigger
	39.2.7 SAR ADC Status

	39.3 Registers

	40. Temperature Sensor
	40.1 Features
	40.2 Architecture
	40.3 SAR ADC Configuration for Measurement
	40.4 Algorithm
	40.5 Registers

	41. Analog Routing
	41.1 Features
	41.2 Architecture
	41.2.1 AMUXBUS Splitting

	41.3 Register List

	42. CapSense

