(infineon

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product

portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.infineon.com

&= CYPRESS

~a»” EMBEDDED IN TOMORROW"

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture
Technical Reference Manual (TRM)

PSoC 62 MCU

Document No. 002-20730 Rev. *J
December 5, 2023

Cypress Semiconductor

An Infineon Technologies Company
198 Champion Court

San Jose, CA 95134-1709
WWW.Cypress.com
www.infineon.com

http://www.cypress.com
http://www.infineon.com

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Copyrights

© Cypress Semiconductor Corporation, 2018-2023. This document is the property of Cypress Semiconductor Corporation, an
Infineon Technologies company, and its affiliates (“Cypress”). This document, including any software or firmware included or
referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as
specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your
organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents
that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software
solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the
Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress
hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access
to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS
PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK,
VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively,
“Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in
these materials may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document
without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly
design, program, and test the functionality and safety of any application made of this information and any resulting product.
“High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical
Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause,
directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole
or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a
Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates,
and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages,
and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage
arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published
data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii)
Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk
Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and
ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other
countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as
property of their respective owners.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 2

Content Overview

& CYPRESS

> EMBEDDED IN TOMORROW"

Section A: Overview

1. INtrOdUCTION ..o
2. Getting Started ...
3. Document Organization and Conventions..............ccoeviviiinennnen.

Section B: CPU Subsystem

4. CPU Subsystem (CPUSS) ..o,
5. SRAM CONtrolleF ..o
6. Inter-Processor Communication ..o
7. Fault Monitoring ..o
8. INtErTUPES e
9. Protection Units ..o
10. DMA Controller ...
11. Cryptographic Function Block (Crypto)......ccoviiiiiiiiiiiiieeeen
12. Program and Debug Interfacecoooooiiiiiii
13. Nonvolatile MemoOry ..o
14. BOOt COde ..
15. EFUSE MEMOIY ..o
16. DeVICEe SECUMTY ..vviiiii e

Section C: System Resources Subsystem (SRSS)

17. Power Supply and Monitoringcoveeviiiiiiiiiie e
18. Device POWer MOdesoouuiiiiiiiiii e
19. Backup System ...
20. ClocKing SYsStemcu i
21. Reset System ...
22. /O Sy S OM e
23. Watchdog Timer ...
24. Trigger Multiplexer BIOCKcciiiiiiiii
25. PrOfIler e

Section D: Digital Subsystem

26. Serial Communications Block (SCB)ccooiiiiiiiiiiiiieeen
27. Serial Memory Interface (SMIF) ...,
28. Timer, Counter, and PWM (TCPWM)cooiiiiiiiiiiieeeeeee,
29. Inter-1C Sound BUS ...

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

A

ws CYPRESS

~amp” EMBEODED IN TOMORROW Content Overview
30. PDM-PCM CONVEITET ..ottt ettt 409
31. Universal Serial Bus (USB) Device MOAEc.oiiiiniiiiii e 418
32. Universal Serial Bus (USB) HOSE 434
33. LCD DiIrECE DIV ..eiiieiiiteeii et ettt et et 451
34. Universal Digital BIOCKS (UDB)......cuuiiiiiiie e 464
Section E: Analog Subsystem 507
35. Analog Reference BIOCK 509
36. LOW-POWEr COMPArator ... oo e et 513
37. Continuous Time BIock Mini (CTBIM) ...iuuiiiiiiiiiie e e 518
38. Continuous TiMeE DAC ... et 525
39. SAR AD C it e e 538
40. TEMPEIAIUIE SENSOT .. it e ettt e e et et e ea e 557
41. ANAIOG ROULING .. e e 561
42, 07T 1 T=T o 1T PP 565

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

& CYPRESS

> EMBEDDED IN TOMORROW"

Section A: Overview

1. Introduction

T FEAIUIES...oeeee e
1.2 ArChItECIUIe. ...
2. Getting Started
2.1 PSOC 6 MCU RESOUICEScceeiiuiiiiiaiiiiiiiee et
3. Document Organization and Conventions
3.1 MaJor SECHONSevieieiiiieie e
3.2 Documentation ConVentions...........cccuveiiiiiiiiiii e
3.2.1 Register Conventions...........cccoviiiiiiiiic e
3.2.2 NUMeric Namingccoooiiiiiieii e
3.2.3 Units of Measure.........cccooiiieiiiiiieee e
3.24 Acronyms and Initializationscccccceiiiiiiiiiniieen.

Section B: CPU Subsystem
4. CPU Subsystem (CPUSS)

A1 FEAIUIES ...t
4.2 ArChItECIUIE. ...

4.2.1 Address and Memory Maps.......ccccuveeeeeieieeeieeiiiieeeee,
4.3 REQISIEIS. oo
4.4 Operating Modes and Privilege Levels.........cccccceeiiiiiieeiiiiciienees
4.5 INStrUCtiON Set.....ccuiiiiiiiiii

5. SRAM Controller

5.1 FeAtUreS......oeeiiei e
5.2 ArChItECIUre.....ocoiiiiie e
5.3 Wait Statesooiiiiiiiiii
6. Inter-Processor Communication
6.1 FEAUMES...cco i
6.2 ArChiteCIUre.......ooiiiiiiiii e
6.2.1 IPC Channel.......ocuuiiiiiiiiiiie e
6.2.2 IPC INtermupt.. ..o
6.2.3 IPC Channels and Interrupts........ccccocoeeiiiniiiieeeniiieenn.
6.3 Implementing LOCKSuviiiiiiiiiiee e
6.4 MeSSage PasSingcccoiiiiiiiiiiiiiiee e
6.5 Typical Usage Modelsoocciiiiiiiiiiiiiie e
6.5.1 Full Duplex Communicationccccoecuveeeeiniiiieee e
6.5.2 Half Duplex with Independent Event Handling..............
6.5.3 Half Duplex with Shared Event Handling......................

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

A
(e

CYPRESS

~mmp> EMBEDDED IN TOMORROW Contents
7. Fault Monitoring 48
A% B == (U Y TSR 48
A S\ o1 011 C=Tox (0 = YRS 49
7.2.1 L= T 1 (=T o] o A 49

7.2.2 SigNaling INtEITACEeeiiiiiiee e 51

7.2.3 1Yo a1 o] [o [P UPRPURPR 51

724 Low-power Mode OPeration.............cceeiiiiiiiiiiiiiiiiieeeeeeee e 52

7.2.5 UsiNg @ FaUIt STTUCLUIEooiiiieiie et 52

7.2.6 CPU Exceptions Versus Fault Monitoringcooiciiieeiiiiiee e 52

7.3 FAUI SOUICES ..ot eatareeeeees 53
A S = To 153 oY N L SRR 54
8. Interrupts 55
G TRt B == Y (U= SRS SS 55
8.2 AFCRILECIUN.....eeeeeie ettt e e e e bbb e e e e e e e e e e e 56
8.3 Interrupts and EXcCeptions - OPErationccoeeiiiiiiiiiiiiieeeee e e e e e e 57
8.3.1 Interrupt/Exception Handling.........ccooiiiiiiiiiiiiieeee e 57

8.3.2 Level and Pulse INterrUPEScoooiiiii e s 57

8.3.3 Exception Vector TabIecoooiiii i s 58

8.4 EXCEPLON SOUICESottt e ettt e e e e e e e e e se e ae e e e e aaeeeeeesnnneeeeees 59
8.4.1 ST TC b CeT=T o 1 o] o 59

8.4.2 Non-Maskable Interrupt EXCEPLioNn...........uvuveieiiiiiiie e 59

8.4.3 HardFault EXCEPLION ..o e 60

8.44 Memory Management Fault EXCeplionuvvveiiiiiiiii e 60

8.4.5 (ST LSRN = U] o =Y o] i o 60

8.4.6 Usage Fault EXCEPLION ... 60

8.4.7 Supervisor Call (SVCall) EXCEPLION ...vvvviiiiiiieeeeee it 61

8.4.8 PendSupervisory (PendSV) EXCEeptionceuviiiiiiiiiiiiiieee e 61

8.4.9 System Tick (SysTick) EXCEPLONc.c..uvvviiiiiiiiiee e 61

8.5 INEITUPL SOUICESttt e e e e e e e e e s ettt eaeeeaaaeeeeseeeanreneeeees 61
8.6 INterrupt/EXCEPLioON PriONitYccooiiii e 66
8.7 Enabling and Disabling INterruptS.........euueiiiiiee e 66
8.8 INterrupt/EXCEPLioON STAES ...cooviiieeeiiecee e ————— 67
8.8.1 Pending INterrupts/EXCEPLIONSvviiiiiiiiiee e 67

8.9 Stack Usage for INterruptS/EXCEPLONSeeeiiiiiiieie it 68
8.10 Interrupts and LOW-POWET MOESuuuuuiiiiiiei it e e n e e e e e e e 68
8.11 Interrupt/Exception — Initialization/ Configurationccceeveiiiiii e 68
T 2 =T 15 (= I S 69
9. Protection Units 70
S TRt O LY o1 11 (=Y (U4 YRS 70
9.2 PSoC 6 Protection ArChiteCtUree i 71
9.3 Register ArChitECIUIEooiiiiei e b 73
9.31 Protection Structure and Attributes ... 73

9.4 Bus Master Protection Attributes 76
9.5 Protection CONEXL ettt e e e e e e e e e e e e e e e e e eeees 76
9.6 Protection CoNEXt O ...t e e e e e e e e e e e e e e e e e eneee e 77
9.7 ProteCtion STIUCIUIE ...t e e e et e e e e e e e e e e e e eeeeeas 78
9.71 Protection Violation 78

9.7.2 IVIPU ettt e e ettt e e s st e e e e et b e e e e e ntaa e e e e e nnreeeeeannreaeeaannnaeen 78

9.7.3 SIMPU ettt e e e e e e e ——e e e e e e b areeeaanraeaeeannes 78

9.74 L O RS RRRU 79

9.7.5 Protection of Protection StrucCtures ... 80

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 6

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

9.7.6 Protection Structure TYPesS.......ccuuvviiiiiiiiii e
10. DMA Controller
O IR B Y= (8] = TP
T10.2 ArChitECIUIE..... e
T0.3 ChannEIS. ...t
10.3.1 Channel INterruptseeeeeiiiieiiiiie e
10,4 DESCHPIOIS. ... e e e e
10.4.1 Address Configurationcccceeiiiiiiii i
10.4.2 TranSTer SIZE......uveiiii i
10.4.3 Descriptor Chainingc.vveiieeiiiiiee e
10.5 DMA CONLIOIET ..coeieeiiiee ettt et e e e e e enbee e e e ennees
10.5.1 Trigger SEleCiONcccviiiie i
10.5.2 Pending TriQQeIS ... e
10.5.3 (O TU1 701U o o =Y SRR
10.5.4 Status regiStErS ..oooiiieiie e
10.5.5 DMA PerfOrManCe........cocuueiieeiiiiiiie e e eeiieee e e seetiee e e s esieee e staeee e
11. Cryptographic Function Block (Crypto)
T101 FEAIUIES. et
T1.2 ArChItECIUIE ... e
11.3 InStruction Controller............ueiiiiiiie e e
11.3.1 INSIFUCHIONS ...
11.3.2 Instruction OPerands.............cocvcviiiiiiiiiiee e
11.3.3 Load and Store FIFO Instructions..........ccccoecviiiiiiiiiiiiie e
11.3.4 Register Buffer Instructions............cccoovvieiiiiiiieeeee,
11.4 Hash AlQOrithmsoeueiiiee e
11.41 SHAT ANd SHAZ ... s
11.4.2 SH A G e e
11.5 DES A@nd TDES ... it
LG = S PRSP
1 T A 1 (PP
T1.8 PRNG L.ttt ettt e e et e e e e e e e e et e e e e neee
T1.9 TRING ...ttt e et e e e e et re e e e e e nbee e e e e ennees
T1.10 VeCtor UNit ...t
11.10.1 VU Register File......ooovvviiiiiieeee e
T1.10.2 SHACK ettt
11.10.3 Memory OPerandscccccuuuiiiieieeeeeee e seeciree e e
11.10.4 Datapath ..o
11.10.5 Status RegISterccooiiiieeee e
11.10.6 INSIUCHIONS.....eiiiiiiii e
11.10.7 INStruction Set........ooiiiiiiiiiiii e
12. Program and Debug Interface
P20 B Y= | (U] Y SRR
122 ArChitECIUIE ...t a e e
12.2.1 Debug Access Port (DAP).......ccueieeiiiee e
12.2.2 ROM TADIESeviiiiiiiiiee ettt e e e s e e
12.2.3 1= T = SR
12.2.4 Embedded Cross THYGEriNGcceeiiiiiiieeiiiiiee e
12.3 Serial Wire Debug (SWD) Interface...........coooiiiiiiiiiiiiiiiiee e
12.3.1 SWD Timing DetailSccueeeiiiiiiiiiiiieeeee e
12.3.2 ACK Detalls.......ccvviieeiiiiiee e

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Contents

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

12.3.3 Turnaround (Trn) Period Details ...
L B N € 1) =T o = Lo R
12.5 Programming the PSOC 6 MCU..........cooiiiiiiiiiiii e
12.5.1 SWD Port ACQUISITION ...
12.5.2 SWD Programming Mode Entry...........ccccceeiiiiieiiniiiiiee e,
12.5.3 SWD Programming Routine Executions.............ccccoviiiiiiiiinnenn.
126 REGISTEIS....ciiiiiieiii e
13. Nonvolatile Memory
131 FIaSh MEMIOIY ...t e e e e
13.1.1 FeAtUIES ...
13.1.2 (070101 ilo U= i o] o FN USRS
13.1.3 FIash GEOMELIYeeviiiiiiiiie e
13.1.4 Flash Controller........ ...
13.1.5 Read While Write (RWW) SUPPOIt........coeeviiiiiieeiiiiiiiee e
13.2 Flash Memory Programming ... eea e e
13.2.1 FEAtUIES ...
13.2.2 AFChITECIUNE ...
13.3 System Call Implementationccco i
13.3.1 System Call via CMO+ or CM4.........oooiiiiiiiieiiieee e
13.3.2 System Call Via DAP ...t
13.3.3 Exiting from a System Call..........ccccooiiiiiiiii i
13.3.4 SRAM USAQGE ...eeiiieiiiiiiie ettt ettt e e e e nnaaee e e s anneee s
13.4 SROM API LIDIAIY ..cooiiiieiiiee ettt
13.5 SyStEM CallS.....eeiiiiiiiiiie e
13.5.1 CYPIESS ID .t
13.5.2 BIOW €FUSE Bit......eeeiiieiieieieee e
13.56.3 Read eFUSE BYLE ...
13.54 WIEE ROW ...t
13.5.5 Program ROWeeiiiiiiiiiiae et
13.5.6 Erase Al
13.5.7 CRECKSUM ...ttt e e nnaee s
13.5.8 Compute Hash ...
13.5.9 ConfigureRegionBuUIKooiiiiiiiiiiiieee e
13.5.10 DireCtEXECULE......oiiiiiii i
13.5.11 Erase SECIOTuuveiiieiiiiiee ettt e
13.5.12 SOt RESEL ..eeiiiiieiee e
13513 Eras@ ROWueiiiiiiiiiiiiii et
13.5.14 Erase SUDSECIONcccuviiieiiiiiie et
13.5.15 GenerateHash........c.coocuviiiiiii
13.5.16 ReadUniquelD ..o
13.5.17 CheckFactoryHashccoeeeeiiiiiiiee e
13.5.18 TransitionTORMA
13.5.19 ReadFuseByteMarginc.c..oueiiiiiiiiiiiiiee e
13.6 System Call StatUSooooooiiiiii e
14. Boot Code
T4 FEATUIES.....coi i
T4.2 ROM BOOL ...ttt ettt
14.2.1 Data Integrity Checks..........ccoooiiiiiiieee e
14.2.2 Life-cycle Stages and Protection States.............cccccccvvvveveeeeneeenn.
14.2.3 Secure Boot in ROM BOO.........ccccciiiiiiiiiiiceiec e
14.2.4 Protection Setting.........covvviiiiiiiiii e

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Contents

o CYPRESS

~mmp” EMBEDDED IN TOMORROW Contents
14.2.5 SWD/JTAG REPUIMNPOSING -oeeeiiieeieiiiiieeie ittt e e e e e et e e e e e e e e e e e s e e eeeeeeeaeaaeas 180

14.2.6 Waking up from Hibernate ... 180

14.2.7 Disable Watchdog TIMETooiiiii i 180

14.2.8 ROM B0Ot FIOW Chart.........cooiiiiiiiiie et e e 180

7 3G T o = T o T T) SR 182

14.3.1 OVEIVIBW ...ttt e e e e e e e e et e et e e e e e e e e e e e e nnnnrneeeeeeaaaaeas 182

14.3.2 Features of FIash BOOL... ... 182

14.3.3 USING FIash BOOL........coooiiii e 182

14.3.4 FI1ash BOOt LAYOULcoouiiiiiiiiiiiii e 182

14.3.5 Flash Boot FIOW Chart ... 183

15. eFuse Memory 189
R T B Y= (0] = TP 189

T5.2 ArCIIEECIUIE. ...ttt e et e e e e e e e e e e e et aeeaeaaaeeeeas 189

16. Device Security 191
T B == L (0] (o TP PP PP PUPPPPTT 191

T6.2 ArCIIEECIUIE. ...ttt e e e e e e s e e e e e e e e e e s 191

16.2.1 Life Cycle Stages and Protection States.............cccccciiiiiiiiie e, 191

16.2.2 FIash SECUNILY ...t a e e e 195

16.2.3 Hardware-Based ENCryplionooeeiiiiiiiiiiiiiicice e s 195

Section C: System Resources Subsystem (SRSS) 196
17. Power Supply and Monitoring 197
0 T Y- | 10] Y PR 197

B N o] 11 (= o1 (1] = PSR 198

T7.3 POWET SUPPIY ..ottt e e ettt e e e aab bt e e e e s nbe e e e e e sneeeeeeaan 199

17.3.1 Regulators SUMMANYooiiiiii e 199

17.3.2 Power Pins and RalilS.......couiiii ittt 201

17.3.3 Power Sequencing ReqUIreMentsoooiiiiiiiiiiiiiii e 201

17.3.4 BaCKUP DOM@IN......iiiiiiiei e 201

17.3.5 POWEr SUPPIY SOUICES......ooiiiiiiiiie et 201

I Yo ¢= o T= N1V [oT a1 (o] [o U RP T PPPUSPPPUPRR 201
17.4.1 Power-On-Reset (POR)oooiiiii e 201

17.4.2 Brownout-Detect (BOD)oiiuiiiieiiiiiie ettt 202

17.4.3 Low-Voltage-Detect (LVD)coiiiiiiieiiiiee e 202

17.4.4 Over-Voltage Protection (OVP)......cooo oo 203

175 REGISTEE LISt ...ttt e e ettt e e e eb et e e e et e e e e ebbreeeeeaan 203

18. Device Power Modes 204
S TR Y= (8] =Y PR 204

B T2 N o] 1 (=T (1] = SR 204
18.2.1 CPU POWEE MOUES ...ttt e e e e e e e e e e eeeeeeeeas 206

18.2.2 SyStem POWEr MOUESeeiiiiiiiie e 206

18.2.3 System Deep Sleep MOAE 206

18.2.4 System Hibernate MOde ... 207

18.2.5 Other Operation MOAESooiiiiiiiiii e e 207

18.3 Power Mode TranSitioNSooiie et e e e e e e e e e e e e e aaaen s 208
18.3.1 Power-up TranSitioNsoooiiiii et a e e 209

18.3.2 Power Mode TranSitioNsoooiiieee e a e 209

18.3.3 Wakeup TransitioNns e 211

T84 SUIMMIAIY ottt e e ettt e e ettt e e e s bttt e e e e aab b et e e e saabeneeeeaabeeeeeeaan 212

T8.5 REGISTEI LIStt e et e e eb e e e e 213

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 9

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

19. Backup System

191 FALUIES.... . a e
19.2 ArChItECIUIE.. ..o e
T19.3 POWET SUPPIY ..eeiiiieiiiiiie ettt e e e e e e e enree e e e e ennees
194 ClOCKING ...ttt e e e e e e e e e e e e eeaeeeeeas
19.4.1 WCO with External Clock/Sine Wave Inputcccccccooeeeiiiiiinnnn,
19.4.2 Calibration...........coooiiiiiee e
0.5 RSB . —————————
19.6 ReEAIFTIME ClIOCK ...vvviiiiiieiieceee et
19.6.1 Reading RTC User RegiSterscoocuviiieiiiiiieee e
19.6.2 Writing to RTC User Registers........ccccvveiiiiiiei i
19.7 Alarm FEAUre ...
19.8 PMIC CONMIOLutiiiiiiiiiiiee et e e e eaa e e
19.9 Backup REGISIEIS......ueeeiiiiiiie e
19.10 ReGIStEr LiSt.. .. e
20. Clocking System
20,1 FRAIUIES .ottt a e
20.2 ArCRITECIUIE e
20.3 ClOCK SOUICES.cieeiieeeeiiiiiee ettt e et e et e e et e e e e ennaeeee s enaeeeens
20.3.1 Internal Main Oscillator (IMO)coovviieiiiiiiiicceeee e,
20.3.2 External Crystal Oscillator (ECO)cvvvveeveieeiiiiiiiiiieeeeeeeeee,
20.3.3 External Clock (EXTCLK)cooiiiieeeeeeeee e
20.3.4 Internal Low-speed Oscillator (ILO)ccooociiiiiiiiiieeee e,
20.3.5 Precision Internal Low-speed Oscillator (PILO).........ccvveveveeeeennn.
20.3.6 Watch Crystal Oscillator (WCO).........ccooeiiiiiciiiiiieeieeee e
20.4 CloCK GENETALIONeiiiiiiiiiiie ettt e e e e e s eneaee s
20.41 Phase-Locked Loop (PLL)coooiiiiieeeeeee e
20.4.2 Frequency Lock LOOP (FLL).....cccuvimiiiiiiieeeeeeee e,
PR O (o Tl I =Y R
20.5.1 Path ClOCKSeiiiiiiiieiee e
20.5.2 High-Frequency Root CIOCKSccccuvviiieiiieeiee e,
20.5.3 Low-Frequency CloCKcoooiiiiiiiiiieieeceee e
20.54 TIMEE ClOCK ...t
20.5.5 Group Clocks (CIK_SYS)uuuiiiiiiiiiieeeieiie et
20.5.6 Backup Clock (Clk_bak)oceeeeiiiiiiiieeeeeeeeeeee e
20.6 CLK_HF[O] DisStribULIONeeiieiiiiiiie ettt
20.6.1 O I G s U
20.6.2 CLK _PERI ...t
20.6.3 CLK _SLOW ...ttt
20.7 Peripheral CIOCK DiVIAEISuuuiiiiiiiiiiiee et
20.71 Fractional Clock Dividersc.eeeiiiiiiiiiieiiiiieee e
20.7.2 Peripheral Clock Divider Configuration..............ccccocciviivieenneee.n.
20.8 Clock Calibration COUNTEISc.uviiieiiiiiiiie e
21. Reset System
211 FRAIUIES. ..ttt ——————
21.2 ArChItECIUE..... oot
21.21 POWEr-0n RESEL ...
21.2.2 BrownoUt RESEtovuveiiiiiieii e
21.2.3 Watchdog Timer Reset ...
21.2.4 Software Initiated Reset...........oovvviiiiiiiiiii
21.2.5 EXternal RESEtuuueeiiiieiiee e

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Contents

10

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

21.2.6 Logic Protection Fault Reset...........oocoiiiiiiiii
21.2.7 Clock-Supervision Logic Reset.........cccoiiiiiiiiiiiiiie,
21.2.8 Hibernate Wakeup Reset ...
21.3 Identifying RESEt SOUICES.......coiiuiiiiiiiiiii e
214 RegIStEr LiSt.....ooiiiiiiiiiii e
22. 1/0 System
220 FRAIUIES . .ttt e e e e e e e e e e as
22.2 ArCRItECIUIE ... e
22.2.1 I/O Cell ArchiteCtureccooiviiiiiiei e
22.2.2 Digital Input BUffer ...
22.2.3 Digital OUPUL DIVET....cciiiiiiiiee e
22.3 High-Speed /O MatriXc.eeeiieiiiiiieie it e e e ennaee s
224 1/O State 0N POWET UpD ...t
22.5 Behavior in Low-Power Modescoooiiiiiiiiiiiieeee e
22.6 Input and Output Synchronizationcccceeiieiiiiiiiii e
D A 1 01 (Y 1 (U o) S SRR
22.8 Peripheral CoONNECHIONSuviiiiiiiiiiiiee e
22.8.1 Firmware-Controlled GPIOccoooiiiiiiiieiiieee e
22.8.2 ANAIOG 1O ..
22.8.3 07 I ¢ 1RSSR
22.8.4 CAPSENSE .o
b IS 111 T- o G 1 LR SR
22.9.1 OVEIVIBW ..ottt ettt ettt s et e e e et e e e et ee e e e e nnsaee e e s annneeens
229.2 BIOCK COMPONENES....cceiiiiieiiiiiieectteeee e
22.9.3 ROULING ...
2294 OPEIatioN ..o
22,10 REQISTEIS. ..ttt e e e e e e eeeeaeeeas
23. Watchdog Timer
231 FRAIUIES .ot a e
23.2 ArCRITECIUIE ...
23.3 Free-running WDT e e s
23.3.1 OVEIVIBW ..ttt ettt ettt e e et ee e e s s e e e s anneeeens
23.3.2 Watchdog ReSEtovvveieiiii e
23.3.3 Watchdog Interruptooeeeeeiiiii e
23.4 MUlti-CoUNTEr WDTS .ooeiiiiiieeeeiiieiee ettt e e e e s eneaee s
23.4.1 OVEIVIBW ..ottt ettt ettt ettt e e e et e e s s e e e s anaeeeens
23.4.2 Enabling and Disabling WDT ..o
23.4.3 Watchdog Cascade OptioNScceeveeeeeiiiiiciiiiiiieieeeee e
2344 MCDWT RESEL ...ttt
23.4.5 MCWDT INtEITUPT....eveeeieeieeeee e
23.5 Reset Cause DetecCtion..........cooiiiiiiiiiiiiiii e
23.6 RegiSter List......cocoiiiiiiieee e
24. Trigger Multiplexer Block
DS B =Y | (U] SRR
D N o 011 (=T o1 (1] SRR
24.2.1 Trigger MultipleXxer Groupoooiiiieieeiee e
2422 Trigger Multiplexer Block Architecture............ccooooiiiiiiiiniinnne
2423 Trigger Multiplexer ROULINGc.cooiiiiiiiiieee e
2424 SOftWare THGGErSuveieii e
24.3 PSoC 6 MCU Trigger Multiplexer BIOCK............ccooiiiiiiiiien

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Contents

11

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

244 ReQISter LISt ..o
25. Profiler
D24 Tt B =Y | (U RSP
25.2 ArChItECIUIE e
25.2.1 Profiler DESIGN ..ottt
25.2.2 Available Monitoring SOUICESccccvveiiiiiiiee e
2523 Reference CIOCKS.cciiiiiiiiie e
25.3 USING the Profilerooiiiiiiie e
25.3.1 Enable or Disable the Profilerccoovviiiiiiiiiiie e
25.3.2 Configure and Enable a Counterccccccevviiiiiiieeiiiieee e,
25.3.3 Start and Stop Profilingcoooviiiiiii e
25.3.4 Handle Counter OVerfloW..........ccuueiieiiiiiieee e
2535 Get the RESUIES ...cooiieiiie e
25.3.6 EXit Gracefully.......ccuveiiieiiiiiee e

Section D: Digital Subsystem
26. Serial Communications Block (SCB)

26.1 FRAIUIES. ..ot a e
26.2 ArCRITECIUIE ...
26.2.1 BUFfEr MOGES......co e
26.2.2 Clocking MOAEScuviiiiiiiiiiiiie e
26.3 Serial Peripheral Interface (SPI)covvivie oo
26.3.1 FRAtUIES ...
26.3.2 General DesCriplionceeiiiiiiieii i
26.3.3 SPI Modes of Operation...........ccceeeeeeeiiiciiiiieieeeeee e
26.3.4 SPI BUfer MOAES.........eeiiiiiiiiiii e
26.3.5 Clocking and Oversamplingcccccvvviiiiiieiiiee e
26.3.6 Enabling and Initializing SPI ...,
26.3.7 I/O Pad ConNNECtioN.........ccoiiiiiiiieei e
26.3.8 SPI REGISIEIS ..o
DG S © 1 o R
26.41 FRAtUIES ...
26.4.2 General DesCriplionc.eiiiiiiieii i
26.4.3 UART Modes of Operation...........cccuvviiiiiiiiieee e
26.4.4 Clocking and Oversamplingccccceviiiiiiiiiiee e
26.4.5 Enabling and Initializing the UARTooomriiiiiiiiieeeeeeee,
26.4.6 I/O Pad CoNNECtiON.........cooiiiiiiiiee e
26.4.7 UART REQISIEIS ..
26.5 Inter Integrated CirCuit (I2C)uveiiiiiiieeee e
26.5.1 FRAUIES ...
26.5.2 General DesCriplioncoeiviiiiieii i
26.5.3 External Electrical Connectionscc.coovviiiiiiieiiiiieeee e
26.5.4 Terms and Definitionsoociiiiiii e
26.5.5 [12C Modes of Operation...........ccccuvveiiiiieeee e,
26.5.6 [2C BUfer MOGESooeiiiiiiiie e
26.5.7 Clocking and Oversamplingccccceviiiiiiiiiiiee e
26.5.8 Enabling and Initializing the 12C..........cccccieiiiiiiiiieeee e,
26.5.9 I/O Pad CoNNECLIONS........ccoiiiiiiiee it
26.5.10 12C REQGISIEIS c.coovviiieee it
26.6 SCB INTEITUPES ..evviiiiiiieie e e a e e
26.6.1 SPIINEITUPES ..o
26.6.2 UART INtEITUPES .o

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Contents

12

A

ws CYPRESS
~mmp” EMBEDDED IN TOMORROW Contents
26.6.3 D2 O [=T 0 o] £ U 341
27. Serial Memory Interface (SMIF) 343
DA B =Y | (F] RPN UURRRTR 343
D A N o 011 C=To7 (1] PP 343
27.2.1 TX ANA RX FIFOS ..ottt e e e et a e e e entaeeeaeans 345
27.2.2 ComMMEANd MOEoviiiiiiiiiiiie et e e e et e e e st e e e e eenraeeeaeanes 346
27.2.3 D /[Yo = SR 346
2724 (O Lo o 1= PR 347
27.2.5 o] 111 1 o] o F O PEPTPUR 347
27.2.6 DESEIECE DEIAY ... e 348
27.2.7 (@7 0¥/ 0] (oo £=T o] o |V ST 348
27.3 Memory Device Signal INterface..........coooiiiiiiiie e 349
27.3.1 SpeCifying MemMOrY DEVICES........ccuueiiieieiiiie e e s eaaaeeee s e 349
27.3.2 Connecting SPI Memory DEVICEScocuiiieiiiiiiie e 350
27.3.3 SPIData TranSfereiiiiiiiiiie e e 355
27.3.4 Example of Setting Up SMIFo 356
DA Iy o o =T = PRI 358
DS T [01 (=Y 1 (U o) PSP SPUPPPRPUPRTPORS 359
27.6 SIEEP OPEIAION....ciiii ittt e e e e e e e e e e e e e e e e e e e aaaaaaaas 359
DA A == 4 (oo 0 =T Vo -SSR 359
28. Timer, Counter, and PWM (TCPWM) 360
D4 Tt B =T | (F = ST TP PPPPPPPP 360
28.2 ATCRITECIUIE et e et e e e e e e s e e e e e e e e e e e as 361
28.2.1 Enabling and Disabling Counters in a TCPWM BIOCKcoooeiiiiiiiiieeneeenn. 361
28.2.2 (@110 Ted (13T PSSRSO 361
28.2.3 LI 1o T 1T T o 10 £ 362
28.2.4 THGGEr OUIPULS ..ot e e e e e e e e e e e e e narnreees 364
28.2.5 1] (T U o £ PRSPPI 364
28.2.6 PWIM OULPULS....eeeiiieiiee ettt et e e e e e e e e ee e e e neee 365
28.2.7 POWEE MOAES ...t e e 365
28.3 OPEration IMOUEScoeeiiii ittt e e e e e e e e e e e e e e e e e e s e e e e e aaaaaae s 366
28.3.1 TIMEE MOAE ...t e e 367
28.3.2 Capture MOAEt a e e e e aas 373
28.3.3 Quadrature Decoder MOAEooiiiiiiiiiieiiiieeee e 376
28.3.4 Pulse Width Modulation MOde ... 380
28.3.5 Pulse Width Modulation with Dead Time Mode ... 390
28.3.6 Pulse Width Modulation Pseudo-Random Mode (PWM_PR)..........ccccvvveeeveeennn. 393
28.4 TCOPWM REGISIEISccceiiiiitie ettt ettt et e e e e e e e s e e et eeeaeaee e e s e s e nnnsraneeeeeaaeaeas 396
29. Inter-IC Sound Bus 397
D24 Bt B =Y | (] SR 397
D24 I N o 11 (= o1 (1] U 398
29.3 Digital Audio Interface FOrmMAtScc.eiiiiiiiiiii e 398
29.31 Standard 128 FOrmat...... ..o 398
29.3.2 Left Justified (L) FOrMat ... 401
29.3.3 Time Division Multiplexed (TDM) Format..........cccooiiiiiiiiiiiiieiee e 401
29.4 Clocking Polarity and Delay OPtioNSoocueiiiiiiiiiiiee e 402
29.5 Interfacing With AUAIO COUEECSccoiiiiiiiiiiiii e 403
29.6 ClOCKING FEATUMNEScoii it e e e 403
29.7 FIFO Buffer and DMA SUPPOITcoiiiiieeeiie ettt e e e e e e e e e aaaae s 405
D24 IR T [o1 =Y 0T o] AT o] o o OSSR 407

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 13

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

29.9 Watchdog TiMerooiiiiiii e
30. PDM-PCM Converter
30.1 FEAMUIES.....eeeeeeeeeeiee s
30.2 ArChiteCIUre......ceiiiiiee e
30.2.1 Enable/Disable Converter...........cccccoeciveeeeiiiiieeeeeees
30.2.2 Clocking Features..........ccccooeiiiiiiiiiiiiiiiieeeee e
30.2.3 Over-Sampling Ratio...........ccccvviviiiiiei e
30.2.4 Mono/Stereo Microphone Support........cccccccceeeeeennnne.
30.2.5 Hardware FIFO Buffers and DMA Controller Support
30.2.6 Interrupt SUPPOMt.......eeveiiiiiiieieieceee e
30.2.7 Digital Volume Gaincccceeveiiiiiiiiee e
30.2.8 Smooth Gain Transitionccccovecveeeee i
30.2.9 SOft MUEE...coi i
30.2.10 Word Length and Sign Bit Extension
30.2.11 High-Pass Filter ...
30.2.12 Enable/Disable Streamingccccevcvieveeeiiiiieeeenens
30.2.13 Power Modes.........c.uuuuiiiiiiiiieieeeeee e
30.3 Operating ProCedureccccuuiiieiiiiiiee et e e ee e
30.3.1 Initial Configurationccccoecciiii i,
30.3.2 Interrupt Service Routine (ISR) Configuration
30.3.3 Enabling / Disabling Streaming..........ccccccceevvviieeennns
31. Universal Serial Bus (USB) Device Mode
311 FEAMUIES ...
31.2 ArChiteCIUre.....ceeiiiiiii e
31.2.1 USB Physical Layer (USB PHY)cccoocviiviiiiieeeene
31.2.2 Serial Interface Engine (SIE)cccccciiiieeieieeeeeeen,
31.2.3 ADITEI Lo
31.3 OPEratioNceeieiiie et
31.3.1 USB Clocking Scheme............ooooeiiiiiiiieee e,
31.3.2 USB PHY .t
31.3.3 ENdpPointS ..ccovieiiiciee e
31.3.4 Transfer TYPES ..oovvvivei i
31.3.5 INtErrUPt SOUICES ...vviiiiiiiie e
31.3.6 DIMA SUPPOI....ceiiiiiiiiiieiee e e e
31.4 Logical Transfer MOdEesccceeviiiiiiiiiiiiiiieeeeee e
31.4.1 Manual Memory Management with No DMA Access.
31.4.2 Manual Memory Management with DMA Access.......
31.4.3 Automatic DMAMoOdeooooiiiiiiiiiieeeeeeee
31.4.4 Control Endpoint Logical Transfer..........cccccccveeeeeeennn.
31.5 USB POWEr MOAEScvviiieiiiiiiee et
31.6 USB Device RegIiStersccovviiiiiiiiiiiciieeeeee e
32. Universal Serial Bus (USB) Host
321 FEAMUIES.... e
32.2 ArchiteCtUre......oooiiiiee e
32.2.1 USB Physical Layer (USB PHY)occoviviiiiiiiieeens
32.2.2 Clock Control BIOCK...........uueeiiiiieaiiiiiiiiiieeeeeeeeeee
32.2.3 Interrupt Control BlockKcoocoiiiiiii e
32.24 Endpoint N (N=1, 2) c.oviiiiiiie e
32.2.5 DMA Request (DREQ) Controlccccceeevviieeeennnee.
32.3 USB Host Operationscoceiiieioeiiiiiiieeeeee e

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Contents

14

o CYPRESS

~mmp” EMBEDDED IN TOMORROW Contents
32.3.1 Detecting Device CONNECHION.........cooiiiiiiiiiiiii e 436
32.3.2 Obtaining Transfer Speed of the USB Device..........ccccceiviiiiiiiiiiiec e 436
32.3.3 USB BUS RESEL ...t a e 437
32.34 USB PaCKEESceiiiiiiiieiie ittt ettt et e e e e et ree e e e e ae e e e e nees 438
32.3.5 RErY FUNCHON. ..o e 442
32.3.6 o] RS = (1 - SRR 442
32.3.7 ENd Of PACKEt (EOP)......c ettt a e e 443
32.3.8 INEEITUPE SOUICES ...t e e e e e e e e e e e 443
32.3.9 DMA Transfer FUNCHON ... 445
32.3.10 Suspend and Resume OperationS..........ccoouieeaiiiiiiiiiiiiiiie e 449
32.3.11 Device DIiSCONNECHONcceeiiiiiiieee et e e e e e e e e e eeeas 449

32,4 USB HOSt REISTEISttt e e e e 450
33. LCD Direct Drive 451
B Tt B == (U =S PURRPPTR 451
B B Y o 011 (=Y (U T PUURPRR 451
33.2.1 LCD Segment Drive OVEIVIEWccoiiuiiiieeiiiiieeeeeiiteeeeeeiee e e e sieeee e e sneeeee e e e 451
33.2.2 DIriVE IMOAES ...ttt e e e e e e e s e e e e e e e s 452
33.2.3 Recommended Usage of Drive Modesooo i 461
33.2.4 Digital Contrast CoNtrol...........ooieiiii e 461

33.3 PSoC 6 MCU Segment LCD Dir€Ct DIVcccoiiiiiiieiiciiiee et 462
33.3.1 High-Speed and Low-Speed Master Generators............ccccevveieiiiieeeeiciieeee e 462
33.3.2 Multiplexer and LCD Pin LOGIC.uuuuieiiiiiiiiieeaee et 463
33.3.3 Display Data RegisSters ... 463

334 ReGISIEr LISt ..ot e e e e e e e e e e e e e e 463
34. Universal Digital Blocks (UDB) 464
4.1 FRAMUIES....ceeeeeeeeee ettt e e e e et e e e e e e e e 464
4.2 AFCRITECIUN ...t e e e e e e e e e et e e e e e e e s e e s anees 464
34.2.1 Programmable Logic Device (PLD)coooiiiiiiieeeee e 465
34.2.2 Datapath ... e ——————— 467
34.2.3 Status and Control MOAUIEccuueiiiiiiie e 486
34.2.4 Reset and Clock Control ModUIEcoooiiiiiiieiiiii e 493
34.2.5 01 S 3o (o | =TT o 502
34.2.6 System Bus AcCesSs CONEIENCYuuiiiiiiiiiiee e 502

G T o o Yo F=T o] (=T gl = o Td GRS 503
34.3.1 (N D 2= =T [oW e T | o 503
34.3.2 PA Port Pin Clock MUIIPIEXEr LOGIC .. .uvviiiiieeieeie et 504
34.3.3 PA Data OULPUL LOGIC.......ccoiiiiiiiieeeee ettt a e e e e e 504
34.3.4 PA Output ENabIE LOGIC ...coiiieiiiieieeeee ettt a e 505
34.3.5 PA CIOCK MURIPIEXET ..ottt a e e e e e e 506
34.3.6 PA RESEt MURIPIEXEI ... es 506
Section E: Analog Subsystem 507
35. Analog Reference Block 509
5.1 FRAMUIES.....eeeeeeeieeeie ettt e e e e e e e e e e areaaa e e e e e aa e nraaaaaeaeaaeeeaaaaaanne 509
TSI L o1 o1 (=Y 3 (U= YRR 510
35.2.1 Bandgap Reference BIOCKc..uiiiiiiiiiiie e 511
35.2.2 VREF Reference Voltage Selection Multiplexer Optionsccccoocieeiiiiiiienenns 511
35.2.3 Zero Dependency To Absolute Temperature Current Generator (IZTAT)............. 511
35.2.4 STArUD MOAES......oo ettt e e 512
35.2.5 LOW-POWET MOAESuviiiiiiieeie ettt e e e e e e e e e e e e e 512

TSI T =T 1] 1= = T PRSP 512

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 15

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

36. Low-Power Comparator

6.1 FEAMUIES....eeeeeeeeeiee e
36.2 ArChIECIUNE......eeiiiiiie e e
36.2.1 Input Configuration.............ooeiiiiiiiie i
36.2.2 Output and Interrupt Configurationccccocccivieeiicee e,
36.2.3 Power Mode and Speed Configuration...........cccccoecveeieiiiciieneenns
36.2.4 HYSEEreSIS .o
36.2.5 Wakeup from Low-Power Modes............ccccvveeeeeeeiieeiiiiiiccinne,
36.2.6 Comparator ClOCK...........uueiiiiiiieieeiiee e
36.3 Register List ...
37. Continuous Time Block mini (CTBm)
7.1 FRAMUIES ...t e e e e e e e e e e e e e nnnn
37.2 ATCHITECIUI..... et e e e e s ee e e e e e e e e e e nnnns
37.2.1 Power Mode and Output Strength Configuration.........................
37.2.2 Charge PUMPcooiii it
37.2.3 Reference CUrrentS........oocuueiie i
37.2.4 Compensation Trim BitS..........cccooiiiiiiiiiiiiiieeeee e
37.2.5 SWItChiNg MatriX......ccccviiiiiiiiiiiee e
37.2.6 Sample and HOId ...
37.2.7 Comparator Modeuuueiiiiiiieiecc e
37.2.8 Deep Sleep Operationccooiiiiiciiiiiiiiieceee e
37.2.9 USiNg CTBM OPaMP..iiiiiiiiiiiieeeeiieciiiiiieeeee e e e e e e e aeeeeaaa e
37.3 ReQISter LiSt. ...
38. Continuous Time DAC
381 FEAMUIES.....eeeeeeeeeee e e e
38.2 ArChItECIUrE. ... oo e e e e e e e
38.2.1 CTDAC COrE...uviiieeeciiiiee ettt ettt e e e s et e e e e sssaae e s s ensaae e e s annneees
38.2.2 CTDAC Control Interfaceoooeeeriiiiiiicieeeeeeeee e
38.2.3 Deglitch Operation ...
38.2.4 USING CTDAC ...ttt et e e e ennaee e e
38.3 RegiSter List. . ..o
39. SARADC
9.1 FRAMUIES ...t a e e
39.2 ArCHIECIUNE......eeeeeiiee e e a e e e e
39.2.1 SAR ADC COTE ..coeeeiiiiieee ettt nnaaee e nanee s
39.2.2 SARMUX ...ttt ettt e e e e s eeaee e e s nnaee s
39.2.3 SARREF ... s
39.2.4 SARSEQ ..ottt
39.2.5 SAR INTEITUPES ...
39.2.6 B 5o o =T PP RPN
39.2.7 SAR ADC StatUS ...coieeiieeeiiiiie et
39.3 REGISIEIS. ... e e
40. Temperature Sensor
401 FEAIUIES. . e a e
40.2 ArChItECIUIE. ...t
40.3 SAR ADC Configuration for Measurementccccccveeeeeeiiiiicciiiieiieeeeeee,
20 S N o To] 11 0] o o TR
40.5 REGISIEIS. ..o aaaaas

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Contents

16

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

41. Analog Routing
411 Features

41.2 Architecture

41.21 AMUXBUS Splitting

41.3 Register List

42. CapSense

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Contents

17

Section A: Overview

&= CYPRESS

s> EMBEDDED IN TOMORROW™

This section encompasses the following chapters:

m Introduction chapter on page 20

m Getting Started chapter on page 24

m Document Organization and Conventions chapter on page 25

Document Revision History

Revision Issue Date Description of Change
** 08/18/2017 Initial version of PSoC 62 for public release
A 10/04/2017 tL(J;;:ated CTDAC chapter diagrams. Minor update to the Backup System and USB Device Mode chap-
*B 02/08/2018 Minor text and image edits throughout the document

Reorganized content for consistency. Minor updates to Nonvolatile Memory Programming and Watchdog

C 02/23/2018 Timer chapters
“D 04/27/2018 Major rewrite t_o the Device Security chapter. Minor edits to Backup System, Clocking, Nonvolatile Mem-
ory Programming, and Interrupts chapters.
Modified title
Updated USB Device Registers and updated Figure 31-2
Added a note on vector tables in Address and Memory Maps
Added SRAM Usage and updated System Calls
Updated power mode names
Added reference to VSSR in Table 17-1
Updated Backup Registers
£ 09/30/2019 Added Enabling and Disabling the FLL and updated the EXTCLK clock range in the Clocking

System chapter on page 221

Added note on WDT lock status in the Watchdog Timer chapter on page 262

Added note in Slew Rate Control

Multiple updates to the Timer, Counter, and PWM (TCPWM) chapter on page 360

Added External Electrical Connections

Deleted the Chip Operational Mode chapter

Renamed all instances of energy profiler as “profiler”

Updated Protection Units, Clocking System, and Interrupts chapters based on review comments

Updated the Trigger Multiplexer Block, Timer, Counter, and PWM (TCPWM), I/O System, Inter-Processor
*F 04/08/2020 Communication, DMA Controller, CPU Subsystem (CPUSS), Nonvolatile Memory, and Clocking System
chapters as part of the PSoC 6 collateral review effort

Added the SRAM Controller chapter.
*G 07/03/2020 Aligned the Introduction section with the datasheet.
Updates throughout the document to address review comments.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 18

A

ws CYPRESS

e~ EMBEDDED IN TOMORROW Overview
Revision Issue Date Description of Change
Fixed typos: Sflash to SFlash, AUXflash and EE emulation to AUXFlash.
*H 05/11/2023) e .
Updated PSoC 6 Programming Specification weblink.
Updated Table 14-3.
*| 09/06/2023 .) . .
Updated Authenticate App? (7) and Life Cycle Stages and Protection States sections.
Added a footnote in CPU Subsystem (CPUSS).
*J 12/05/2023 Added text after Table 14-2.
Added USB peripheral mode in Table 18-5.
PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 19

1. Introduction

& CYPRESS

> EMBEDDED IN TOMORROW"

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

The PSoC™ MCU is a scalable and reconfigurable platform architecture that supports a family of programmable embedded
system controllers with Arm® Cortex® CPUs (single and multi-core). The PSoC 62 product family, based on the PSoC 6 MCU
platform, is a combination of a dual-core microcontroller with built-in programmable peripherals. It incorporates integrated
low-power flash technology, digital programmable logic, high-performance analog-to-digital and digital-to-analog conversion,
low-power comparators, touch sensing, serial memory interface with encryption, and standard communication and timing
peripherals.

1.1 Features

32-bit Dual CPU Subsystem

150-MHz Arm® Cortex®-M4F (CM4) CPU with single-cycle multiply, floating point, and memory protection unit (MPU)
100-MHz Cortex-M0+ (CMO0+) CPU with single-cycle multiply and MPU

User-selectable core logic operation at either 1.1 V or 0.9 V

Active CPU current slope with 1.1-V core operation

Active CPU current slope with 0.9-V core operation

Two DMA controllers with 16 channels each

Memory Subsystem

m 1-MB application flash, 32-KB auxiliary flash (AUXFlash), and 32-KB supervisory flash (SFlash); read-while-write (RWW)
support. Two 8-KB flash caches, one for each CPU

m 288-KB SRAM with power and data retention control
One-time-programmable (OTP) 1-Kb eFuse array

Low-Power 1.7-V to 3.6-V Operation

m Six power modes for fine-grained power management

m Deep Sleep mode with SRAM retention

m On-chip Single-In Multiple Out (SIMO) DC-DC Buck converter
m Backup domain and real-time clock

Flexible Clocking Options
m On-chip crystal oscillators
m Phase-locked loop (PLL) for multiplying clock frequency

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 20

https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

m Internal main oscillator (IMO)
m Ultra-low-power internal low-speed oscillator (ILO)
m Frequency locked loop (FLL) for multiplying IMO frequency

Quad-SPI (QSPI)/Serial Memory Interface (SMIF)

m Execute-In-Place (XIP) from external Quad SPI Flash
On-the-fly encryption and decryption

4-KB cache for greater XIP performance with lower power

Supports single, dual, quad, dual-quad, and octal interfaces

Serial Communication
m Nine run-time configurable serial communication blocks (SCBs)
o Eight SCBs: configurable as SPI, I2C, or UARTs

a One Deep Sleep SCB: configurable as SPI or 12C
m USB full-speed device interface

Audio Subsystem
m Two PDM channels and one 12S channel with TDM mode

Timing and Pulse-Width Modulation

m Thirty-two timer/counter pulse-width modulators (TCPWMs)
m Center-aligned, Edge, and Pseudo-random modes

m Comparator-based triggering of Kill signals

Programmable Analog

Introduction

m 12-bit 1-Msps SAR ADC with differential and single-ended modes and 16-channel sequencer with result averaging

One 12-bit voltage mode DAC

Two opamps with low-operation modes

Built-in temp sensor connected to ADC

Up to 100 Programmable GPIOs

m Two Smart I/O ports (16 1/0s) enable Boolean operations on GPIO pins; available during system Deep Sleep

m Programmable drive modes, strengths, and slew rates
m Six overvoltage-tolerant (OVT) pins

LCD

m LCD segment direct block support up to 61 segments and up to 8 commons

m Operates in Active, Sleep, and Deep Sleep modes

Capacitive Sensing

m CapSense Sigma-Delta (CSD) provides best-in-class SNR, liquid tolerance, and proximity sensing

m Enables dynamic usage of both self and mutual sensing
m Automatic hardware tuning (SmartSense ™)

Security Built into Platform Architecture
m ROM-based root of trust via uninterruptible Secure Boot
m Step-wise authentication of execution images

m Secure execution of code in execute-only mode for protected routines

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Two low-power comparators available in Deep Sleep and Hibernate modes

21

o CYPRESS

~mg> EMBEDDED IN TOMORROW Introduction

m All Debug and Test ingress paths can be disabled
m Up to eight Protection Contexts

Cryptography Accelerators
m Hardware acceleration for symmetric and asymmetric cryptographic methods and hash functions
m True Random Number Generator (TRNG) function

Programmable Digital

m 12 programmable logic blocks, each with 8 Macrocells and an 8-bit data path (called universal digital blocks or UDBs)
m Usable as drag-and-drop Boolean primitives (gates, registers), or as Verilog programmable blocks
m Cypress-provided peripheral component library using UDBs to implement functions such as Communication peripherals

(for example, LIN, UART, SPI, I2C, S/PDIF, and other protocols), Waveform Generators, Pseudo-Random Sequence
(PRS) generation, and many other functions.

Profiler

m Eight counters provide event or duration monitoring of on-chip resources

1.2 Architecture

Figure 1-1 shows the major components of the PSoC 62 architecture.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 22

A,

wes CYPRESS

EMBEDDED IN TOMORROW

Figure 1-1. PSoC 6 MCU Architecture Block Diagram

PSoC 62 MCU
CY8C62x6, CY8C62x7

Color Key:
Power Modes and
Domains

System LP/ULP Mod¢]
CPUs Active/Sleep

System
DeepSleep Mode

System
Hibernate Mode

Backup
Domain

System Resources

Power Clocks
OVP LvD IMO ECO €
POR | BOD FLL |[2x PLL
Buck Regulator 2x MCWDT
PILO
RTC | WCO

PMIC Control

CPU Subsystem

Cortex M4F CPU
150/50 MHz, 1.1/0.9 V
SWJ, ETM, ITM, CTI

€

Cortex MO+ CPU
100/25 MHz, 1.1/0.9 V
SWJ, MTB, CTI

[

2x DMA
Controller

Crypto
DES/TDES, AES, SHA,
CRC, TRNG, RSA/ECC

Accelerator

Y
Peripheral dock (PCLK) |

A

Y

4-—>| CapSense

Programmable Analog

SAR ADC 12 bit

DAC 12 bit

SARMUX

2x Opamp

| Temperature Sensor |

Introduction

A

A

Y
2x Smart I/0 Ports

LCD

A

A

LP Comparator

A

A

A 4

Programmable Digital: 12x UDB

\ 4

A

\ 4

DSl

A

32x TCPWM

A

Peripheral Interconnect (MMIO, PPU)

A

A 4

SCB

A

8x 12C, SPI,
UART, or LIN

\ 4

12C or SPI

A

Audio Subsystem
2x 128

Y
1/0 Subsystem: Up to 100 GPIOs (including 6 OVT), 124-BGA Package
Boundary Scan

A

Flash

Y

I

A

Y

Bl

A

PDM-PCM

Profiler <

Y

eFuse: 1024 bits

A

1024 KB + 32 KB + 32 KB
8 KB cache for each CPU

System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)

SRAM
288 KB

ROM
128 KB

QSPI (SMIF)

with OTF Encryption/Decryption

|

USB

y

USB-FS <

PHY

The block diagram shows the device subsystems and gives a simplified view of their interconnections. The color-code shows
the lowest power mode where the particular block is still functional (for example, LP comparator is functional in Deep Sleep

and Hibernate modes).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

23

2. Getting Started

&= CYPRESS

> EMBEDDED IN TOMORROW"

21 PSoC 6 MCU Resources

This chapter provides the complete list of PSoC 6 MCU resources that helps you get started with the device and design your
applications with them. If you are new to PSoC, Cypress provides a wealth of data at www.cypress.com to help you to select
the right PSoC device and quickly and effectively integrate it into your design.

The following is an abbreviated list of PSoC 6 MCU resources:

Overview: PSoC Portfolio, PSoC 6 MCU webpage

Product Selectors: See the PSoC 6 MCU Product Selector Guide to choose a part that suits your application. In addition,
ModusToolbox includes a similar device selection tool to select devices for ModusToolbox projects.

Datasheets describe and provide electrical specifications for each device family.

Application Notes and Code Examples cover a broad range of topics, from basic to advanced level. Many of the
application notes include code examples, which can be opened from ModusToolbox.

Technical Reference Manuals (TRMs) provide detailed descriptions of the architecture and registers in each device family.
CapSense Design Guide: Learn how to design capacitive touch-sensing applications with PSoC devices.
Development Tools

1 ModusToolbox is a free integrated design environment (IDE). It enables you to design hardware and firmware systems
concurrently with PSoC devices.

0 PSoC 6 Kits offer an easy-to-use, inexpensive platform that enables prototyping of wide variety of designs including
loT applications requiring Wi-Fi/Bluetooth/Bluetooth LE using the PSoC 6 MCU at its center.

Additional Resources: Visit the PSoC 6 MCU webpage for additional resources such as IBIS, BSDL models, CAD Library
Files, and Programming Specifications.

Technical Support
o Forum: See if your question is already answered by fellow developers of the PSoC 6 community.
a0 Cypress support: Visit our support page or contact a local sales representative.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 24

http://www.cypress.com
http://www.cypress.com/psoc
https://www.infineon.com/AN85951
http://www.cypress.com/search/psg/114026#/
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A574&f%5b2%5d=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/microcontrollers-mcus-kits#psoc6
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A583&f%5b2%5d=field_related_products%3A114026
http://www.cypress.com/products/modustoolbox-integrated-design-environment-ide
https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/products/modustoolbox-software-environment
http://www.cypress.com/psoc6
http://www.cypress.com/support
http://www.cypress.com/about-us/sales-offices
http://www.cypress.com/psoc6
https://community.cypress.com/community/product-forums/MCU/psoc-6

3. Document Organization and Conventions

EMBEDDED IN TOMORROW™

&2 CYPRESS

This document includes the following sections:

m Section B: CPU Subsystem on page 29

m Section C: System Resources Subsystem (SRSS) on page 196
m Section D: Digital Subsystem on page 284

m Section E: Analog Subsystem on page 507

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

m Section — Presents the top-level architecture, how to get started, and conventions and overview information of the
product.

m Chapter — Presents the chapters specific to an individual aspect of the section topic. These are the detailed
implementation and use information for some aspect of the integrated circuit.

m Glossary — Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are
presented in bold, italic font throughout.

m Registers Technical Reference Manual — Supplies all device register details summarized in the technical reference
manual. This is an additional document.

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

m The first is the use of italics when referencing a document title or file name.

m The second is the use of bold italics when referencing a term described in the Glossary of this document.
m The third is the use of Times New Roman font, distinguishing equation examples.

m The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘“14h’ or
3Ah) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b or 01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 25

http://www.cypress.com/trm220777

A

ws CYPRESS

-

3.2.3

EMBEDDED IN TOMORROW

Units of Measure

This table lists the units of measure used in this document.

Table 3-1. Units of Measure

3.2.4

Document Organization and Conventions

Acronyms and Initializations

This table lists the acronyms and initializations used in this

document

Table 3-2. Acronyms and Initializations

Abbreviation Unit of Measure
bps bits per second

°C degrees Celsius

dB decibels

dBm decibels-milliwatts

fF femtofarads

G Giga

Hz Hertz

k kilo, 1000

K kilo, 2210

KB 1024 bytes, or approximately one thousand bytes
Kbit 1024 bits

kHz kilohertz (32.000)

kQ kilohms

MHz megahertz

MQ megaohms

WA microamperes

uF microfarads

us microseconds

[\ microvolts

uVrms microvolts root-mean-square
mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nVv nanovolts

Q ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

c sigma: one standard deviation
\ volts

Acronym Definition
ABUS analog output bus
AC alternating current
ADC analog-to-digital converter
ADV advertising
AES Advanced Encryption Standard
AHB A_MBA (advanced microcontroller bus architecture)
high-performance bus, an Arm data transfer bus
API application programming interface
APOR analog power-on reset
BC broadcast clock
BCD binary coded decimal
BESL best effort service latency
BOD brownout detect
BOM bill of materials
BR bit rate
BRA bus request acknowledge
BRQ bus request
CAN controller area network
Cl carry in
CiC cascaded integrator comb
CMAC cipher-based message authentication code
CMP compare
CcO carry out
COM LCD common signal
CPHA clock phase
CPOL clock polarity
CPU central processing unit
CPUSS CPU subsystem
CRC cyclic redundancy check
CSD CapSense sigma delta
CsX CapSense cross-point
CT cipher text
CTB continuous time block
CTBm continuous time block mini
CTI cross triggering interface
CTM cross triggering matrix
ESR equivalent series resistance
DAC digital-to-analog converter
DAP debug access port
DC direct current

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 26

A

ws CYPRESS

g EMBEDDED IN TOMORROW

Table 3-2. Acronyms and Initializations (continued)

Document Organization and Conventions

Table 3-2. Acronyms and Initializations (continued)

Acronym Definition Acronym Definition

DES Data Encryption Standard IRES initial power on reset

DFF D flip-flop IRA interrupt request acknowledge

DI digital or data input IRK identity resolution key

DL drive level IRQ interrupt request

DMA direct memory access ISA instruction set architecture

DMIPS Dhrystone million instructions per second ISR interrupt service routine

DNL differential nonlinearity IT™ instrumentation trace macrocell

DO digital or data output IVR interrupt vector read

DSl digital system interconnect IZTAT zero dependency to absolute temperature

DSP digital signal processing JWT JSON web token

DSM Deep Sleep mode L2CAP logical link control and adaptation protocol

DU data unit LCD liquid crystal display

DW data wire LFCLK low-frequency clock

ECO external crystal oscillator LFSR linear feedback shift register

EEPROM electrically erasable programmable read only LIN local interconnect network
memory LJ left justified

EMIF external memory interface LL link layer

ETM embedded trace macrocell LNA low-noise amplifier

FB8 feedback LP system low-power mode

FIFO first in first out LPCOMP | Low-Power comparator

FPU floating point unit LPM link power management

FSR full scale range LR link register

GAP generic access profile LRb last received bit

GATT generic attribute profile LRB last received byte

GFSK Gaussian frequency-shift keying LSb least significant bit

GPIO general-purpose /O LSB least significant byte

HCI host-controller interface LUT lookup table

HFCLK high-frequency clock MAC message authentication code

HMAC hashed message authentication code MISO master-in-slave-out

HPF high-pass filter MMIO memory mapped input/output

HSIOM high-speed 1/0 matrix MOSI master-out-slave-in

12c inter-integrated circuit MPU memory protection unit

12s inter-IC sound MSb most significant bit

IDE integrated development environment MSB most significant byte

ILO internal low-speed oscillator MSP main stack pointer

ITO indium tin oxide MTB micro trace buffer

IMO internal main oscillator NI next instant

INL integral nonlinearity NMI non-maskable interrupt

110 input/output NVIC nested vectored interrupt controller

IOR 1/0 read OE output enable

I0W 1/0O write OSR over-sampling ratio

IPC inter-processor communication OVP over-voltage protection

IPTAT proportional to absolute temperature PA power amplifier

PSoC 6 MCU:

CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

27

ot s

RESS

g EMBEDDED IN TOMORROW

Table 3-2. Acronyms and Initializations (continued)

Document Organization and Conventions

Table 3-2. Acronyms and Initializations (continued)

Acronym Definition Acronym Definition
PC program counter SMPU shared memory protection units
PCB printed circuit board SOF start of frame
PCH program counter high SOl start of instruction
PCL program counter low SP stack pointer
PD power down SPD sequential phase detector
PDU protocol data unit SPI serial peripheral interconnect
PGA programmable gain amplifier SPIM serial peripheral interconnect master
PHY physical layer SPIS serial peripheral interconnect slave
PLD programmable logic device SRAM static random-access memory
PM power management SROM supervisory read only memory
PMA PSoC memory arbiter SRSS system resources subsystem
POR power-on reset SSADC single slope ADC
PPOR precision power-on reset SSC supervisory system call
PPU peripheral protection units SVCall supervisor call
PRNG pseudo random number generator SYSCLK system clock
PRS pseudo random sequence SWD single wire debug
PSA Platform Security Architecture SWv serial wire viewer
PSoC Programmable System-on-Chip TAR turn-around time
PSP process stack pointer TC terminal count
PSR program status register TCPWM timer, counter, PWM
PSRR power supply rejection ratio D transaction descriptors
PSSDC power system sleep duty cycle TDM time division multiplexed
PWM pulse width modulator TFF toggle flip-flop
RAM random-access memory TIA trans-impedance amplifier
RETI return from interrupt TPIU trace port interface unit
RF radio frequency TRM technical reference manual
RNG random number generator TRNG True random number generator
ROM read only memory UART universal asynchronous receiver/transmitter
ROT root of trust uLB system ultra low-power mode
RPA resolvable private address ubB universal digital block
RMS root mean square usB universal serial bus
RW read/write USBIO usB I/0
SAR successive approximation register VTOR vector table offset register
SARSEQ SAR sequencer WCO watch crystal oscillator
SEG LCD segment signal WDT watchdog timer
SEO single-ended zero WDR watchdog reset
sSC switched capacitor wiC wakeup interrupt controller
SCB serial communication block XRES external reset
SHA-256 Secure Hash Algorithm XRES_N external reset, active low
SIE serial interface engine
SIMO single input multiple output
SIO special /10
SNR signal-to-noise ratio

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 28

Section B: CPU Subsystem

&= CYPRESS

s> EMBEDDED IN TOMORROW™

This section encompasses the following chapters:

CPU Subsystem (CPUSS) chapter on page 31
SRAM Controller chapter on page 38
Inter-Processor Communication chapter on page 40
Fault Monitoring chapter on page 48

Interrupts chapter on page 55

Protection Units chapter on page 70

DMA Controller chapter on page 85

Cryptographic Function Block (Crypto) chapter on page 95
Program and Debug Interface chapter on page 136
Nonvolatile Memory chapter on page 146

Boot Code chapter on page 173

eFuse Memory chapter on page 189

Device Security chapter on page 191

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 29

A
(e

Top Level Architecture

CYPRESS

EMBEDDED IN TOMORROW

Figure 3-1. CPU System Block Diagram

CPU Subsystem

Cortex M4F CPU

150/50 MHz, 1.1/0.9V [«

SWJ, ETM, ITM, CTI

Cortex M0+ CPU

100/25 MHz, 1.1/0.9V <>

SWJ, MTB, CTI

2x DMA
Controller

Color Key:
Power Modes and
Domains

Crypto
DES/TDES, AES, SHA,
CRC, TRNG, RSA/ECC

Accelerator

System LP/ULP Mode
CPUs Active/Sleep

Flash
1024 KB + 32 KB + 32 KB
8 KB cache for each CPU

System
DeepSleep Mode

System
Hibernate Mode

Backup
Domain

SRAM
288 KB

System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)

ROM
128 KB

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

CPU Subsystem

30

4. CPU Subsystem (CPUSS)

& CYPRESS

> EMBEDDED IN TOMORROW"

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

The CPU subsystem is based on dual 32-bit Arm Cortex CPUs, as Figure 4-1 shows. The Cortex-M4 is the main CPU. It is
designed for short interrupt response time, high code density, and high 32-bit throughput while maintaining a strict cost and
power consumption budget. A secondary Cortex-M0+ CPU implements security, safety, and protection features.

This section provides only an overview of the Arm Cortex CPUs in PSoC 6 MCUs. For details, see the Arm documentation
sets for Cortex-M4 and Cortex-MO+.

Some PSoC 6 MCU parts have only one CPU. See the device datasheet for details.

4.1 Features

The PSoC 6 MCU Arm Cortex CPUs have the following features:

m Cortex-M4 has a floating-point unit (FPU) that supports single-cycle digital signal processing (DSP) instructions, and a
memory protection unit (MPU). Cortex-M0+ has an MPU.

m Both CPUs have 8-KB instruction caches with four-way set associativity.

m Maximum clock frequency of 150 MHz for the Cortex-M4 and 100 MHz for the Cortex-M0+".

m The Cortex-M4 implements a version of the Thumb instruction set based on Thumb-2 technology (defined in the Armv7-M
Architecture Reference Manual). The Cortex-M0O+ supports the Armv6-M Thumb instruction set (defined in the Armv6-M
Architecture Reference Manual). See “Instruction Set” on page 37.

m Both CPUs have nested vectored interrupt controllers (NVIC) for rapid and deterministic interrupt response. For details,
see the Interrupts chapter on page 55

m Both CPUs have extensive debug support. For details, see the Program and Debug Interface chapter on page 136.
SWJ: combined serial wire debug (SWD) and Joint Test Action Group (JTAG) ports

Serial wire viewer (SWV): provides real-time trace information through the serial wire output (SWO) interface
Breakpoints

a o oa

Watchpoints
o Trace: Cortex-M4: embedded trace macrocell (ETM). Cortex-MO0+: 4-KB micro trace buffer (MTB)
m Inter-processor communication (IPC) hardware — see the Inter-Processor Communication chapter on page 40.

1. For CM4 speeds above 100 MHz, CMO0+ and bus peripherals are limited to half the speed of CM4. Therefore, for CM4 running at 150 MHz, CM0+ and
peripherals are limited to 75 MHz in system low-power (LP) mode. In system ultra-low-power (ULP) mode, CPU speeds are limited to 50 MHz and 25 MHz
respectively. See Device Power Modes chapter on page 204.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 31

http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m4/index.html#cortexm4
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/BABGHFIB.html
http://infocenter.arm.com/help/topic/com.arm.doc.100166_0001_00_en/ric1417175910246.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/BEHGGEIC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/CIHIGCIF.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m0plus/index.html
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

o CYPRESS

e~ EMBEDDED IN TOMORROW CPU Subsystem (CPUSS)

4.2 Architecture

Figure 4-1. CPU Subsystem Block Diagram

CPU Subsystem

Cortex M4F CPU
150/50 MHz, 1.1/0.9V [«
SWJ, ETM, ITM, CTI

Cortex M0+ CPU
100/25 MHz, 1.1/0.9V <>
SWJ, MTB, CTI

2x DMA
Controller

Crypto
DES/TDES, AES, SHA,
CRC, TRNG, RSA/ECC

System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)

Color Key: Accelerator
Power Modes and
Domains
Flash
System LP/ULP Mode 1024 KB + 32 KB + 32 KB [«
CPUs Active/Sleep 8 KB cache for each CPU
System SR
DeepSleep Mode l€>]
p £ 288 KB
System
Hibernate Mode -
128 KB
Backup
Domain L |

Each CPU is a 32-bit processor with its own 32-bit datapath and a 32-bit memory interface. Each CPU has its own set of 32-
bit registers. They support a wide variety of instructions in the Thumb instruction set. They support two operating modes (see
“Operating Modes and Privilege Levels” on page 36).

The Cortex-M4 instruction set includes:

Signed and unsigned, 32x32 — 32-bit and 32x32 — 64-bit, multiply and multiply-accumulate, all single-cycle

Signed and unsigned 32-bit divides that take two to 12 cycles

DSP instructions, including single instruction multiple data (SIMD) instructions

Complex memory-load and store access

m Complex bit manipulation; see the bitfield instructions in Table 4-6

The Cortex-M4 FPU has its own set of registers and instructions. It is compliant with the ANSI/IEEE Std 754-2008, IEEE
Standard for Binary Floating-Point Arithmetic.

The Cortex-M0+ has a single cycle 32x32 — 32-bit signed multiplication instruction.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 32

o CYPRESS

e~ EMBEDDED IN TOMORROW CPU Subsystem (CPUSS)

4.2.1 Address and Memory Maps

Both CPUs have a fixed address map, with shared access to memory and peripherals. The 32-bit (4 GB) address space is
divided into the regions shown in Table 4-1. Note that code can be executed from the code and SRAM regions.

Table 4-1. Address Map for Cortex-M4 and Cortex-MO+

Address Range Region Name Use

Program code region. You can also put data here. It includes the exception vector

0x0000 0000 — OxTFFF FFFF Code table, which starts at address 0.
0x2000 0000 — O0x3FFF FFFF SRAM Data region. This region is not supported in PSoC 6.
0x4000 0000 — OX5FFFE FFEF Peripheral All peripheral registers. Code cannot be executed from this region. Note that the

Cortex-M4 bit-band in this region is not supported in PSoC 6.
0x6000 0000 — Ox9FFF FFFF External RAM Not used
0xA000 0000 — OXDFFF FFFF External Device | Not used

Private Peripheral
Bus (PPB)

0xE010 0000 — OXFFFF FFFF Device Device-specific system registers.

0xEO000 0000 — OXEOOF FFFF Provides access to peripheral registers within the CPU core.

The device memory map shown in Table 4-2 applies to both CPUs. That is, the CPUs share access to all PSoC 6 MCU
memory and peripheral registers.

Table 4-2. PSoC 6 Memory Map

Address Range Name Comments
0x0000 0000 — 0x0002 0000 | SROM 128 Kbytes
0x0800 0000 — 0x0804 8400 | SRAM Up to 288 Kbytes
0x1000 0000 — 0x1010 0000 | User Application Flash Up to 1 Mbyte
0x1600 0000 — 0x1600 8000 | Supervisory Flash (SFlash) | 32K for secure access
0x1800 0000 — 0x0800 0000 | External memory 128 Mbyte execute-in-place (XIP) region

SRAM is located in the code region for both CPUs (see Table 4-1). This facilitates executing code out of SRAM. There is no
physical memory located in the CPUs’ SRAM region.

Note: The CPUSS_CMO_VECTOR_TABLE_BASE and CPUSS_CM4 VECTOR_TABLE_BASE registers determine the
location of the vector table for each CPU. A number of LS bits in each register are set to 0. As a result, there are restrictions
on the location of vector tables — they must be on a 256-byte boundary for CM0+ and a 1024-byte boundary for CM4.

4.2.1.1 Wait State Lookup Tables

The wait state lookup tables show the wait states for Flash, SRAM, and ROM based on the CIk_HFO frequency and the
current power mode. SRAM and ROM have two domains for the wait states — fast clock domain (Clk_Fast) and slow clock
domain (Clk_Slow); both domains are based off Clk_HF0. The following tables show the wait states for the slow clock
domain. All wait states for the fast clock domain are zero. For more information on clocking see the Clocking System chapter
on page 221.

Ultra-Low Power Clk_HFO0 (MHz)
Mode Clk_HFO0 < 25 25 < Clk_HFO0 <100 100 < Clk_HFO0
True 0 1 1
ROM/SRAM
False 0 0 1
Ultra-Low Power
Mode Clk_HFO0 (MHz)
Clk_HF0<16 16 < Clk_HF0 <33 33 <Clk_HF0
True
Flash 0 1 2
as
Fal Clk_ HF0<29 |29<Clk HF0<58|58 <Clk HF0<87 |87 <Clk_HF0 <120 | 120 < Clk_HF0 <150
alse
0 1 2 3 4

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 33

A

ws CYPRESS

EMBEDDED IN TOMORROW

4.3

Registers

CPU Subsystem (CPUSS)

Both CPUs have sixteen 32-bit registers, as Table 4-3 shows. See the Arm documentation for details.

m RO to R12 - General-purpose registers. RO to R7 can be accessed by all instructions; the other registers can be accessed
by a subset of the instructions.

m R13 - Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL
register indicates the stack pointer to use — Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

R14 - Link register. Stores the return program counter during function calls.
R15 — Program counter. This register can be written to control program flow.

Table 4-3. Cortex-M4 and Cortex-M0+ Registers

Name Type? | Reset Value Description
RO - R12 RwW Undefined R0-R12 are 32-bit general-purpose registers for data operations.
The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
MSP (R13) indicates the stack pointer to use:
RW | [0x0000 0000] |0 = Main stack pointer (MSP). This is the reset value.
PSP (R13) 1 = Process stack pointer (PSP).
On reset, the processor loads the MSP with the value from the vector address.
The link register (LR) is register R14. It stores the return information for subroutines, function
LR (R14) RW | Seenote® gister (LR) is reg
calls, and exceptions.
The program counter (PC) is register R15. It contains the current program address. On reset,
PC (R15) RW [0x0000 0004] | the processor loads the PC with the value from the vector address plus 0x0000 0004. Bit[0]
of the value is loaded into the EPSR T-bit (see Table 4-4) at reset; it must always be 1.
The program status register (PSR) combines:
) Application Program Status Register (APSR).
PSR RW Undefined Execution Program Status Register (EPSR).
Interrupt Program Status Register (IPSR).
APSR RW Undefined The AP.SR contains the current state of the condition flags from previous instruction
executions.
On reset, the EPSR Thumb state bit is loaded with the value bit[0] of the register
[0x0000 0004]. It must always be 1.
EPSR RO 0x0100 0000 o)
In Cortex-M4, other bits in this register control the state of interrupt-continuable instructions
and the if-then (IT) instruction.
IPSR RO The IPSR contains the current exception number.
PRIMASK RW The PRIMASK register prevents activation of all exceptions with configurable priority.
The CONTROL register controls:
- The privilege level in Thread mode; see 4.4 Operating Modes and Privilege Levels.
CONTROL RW 0 priviiege feve _ peraiing ¢
- The currently active stack pointer, MSP or PSP.
- Cortex-M4 only: whether to preserve the floating-point state when processing an exception.
FAULTMASK RW 0 Cortex-M4 only. Bit 0 = 1 prevents the activation of all exceptions except NMI.
BASEPRI RW 0 Cortex-M4 only. When set to a nonzero value, prevents processing any exception with a

priority greater than or equal to the value.

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.
b. LR reset value is OxFFFF FFFF in Cortex-M4, undefined in Cortex-MO+.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

34

A

ws CYPRESS

EMBEDDED IN TOMORROW

CPU Subsystem (CPUSS)

The Cortex-M4 floating-point unit (FPU) also has the following registers:

m Thirty-two 32-bit single-precision registers, S0 to S31. These registers can also be addressed as sixteen 64-bit double-
precision registers, DO to D15.

m Five FPU control and status registers:

a

o o o o

CPACR - Coprocessor Access Control Register

FPCCR - Floating-point Context Control Register
FPCAR - Floating-point Context Address Register
FPSCR - Floating-point Status Control Register
FPDSCR - Floating-point Default Status Control Register

For more information on how these registers are used, see the Arm Cortex-M4 documentation.

Use the MSR and MRS instructions to access the PSR, PRIMASK, CONTROL, FAULTMASK, and BASEPRI registers.
Table 4-4 and Table 4-5 show how the PSR bits are assigned.

Table 4-4. Cortex-M4 PSR Bit Assignments

Bit

PSR Register

Name

Usage

31

APSR

Negative flag

30

APSR

Zero flag

29

APSR

Carry or borrow flag

28

APSR

<|O|IN|Z

Overflow flag

27

APSR

DSP overflow and saturation flag

26-25

EPSR

ICNT

Control interrupt-continuable and IT instructions

24

EPSR

Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0
results in a HardFault exception.

23-20

Reserved

19-16

APSR

GE

Greater than or equal flags, for the SEL instruction

15-10

EPSR

IC/TI

Control interrupt-continuable and IT instructions

Reserved

IPSR

ISR_NUMBER

Exception number of current ISR:
0 = thread mode

1 =reserved

2 = NMI

3 = HardFault

4 = MemManage

5 = BusFault

6 = UsageFault

7 — 10 = reserved

11 = SVCall

12 = reserved for debug

13 =reserved

14 = PendSV

15 = SysTick (see “System Tick (SysTick) Exception” on page 61)
16 = IRQO

255 =1RQ240

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 35

o CYPRESS

e~ EMBEDDED IN TOMORROW CPU Subsystem (CPUSS)

Table 4-5. Cortex-M0+ PSR Bit Assignments

Bit PSR Register Name Usage
31 APSR N Negative flag
30 APSR V4 Zero flag
29 APSR C Carry or borrow flag
28 APSR \% Overflow flag
27-25 - - Reserved
24 EPSR T Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is O results in

a HardFault exception.

23-6 - - Reserved

Exception number of current ISR:
0 = thread mode
1 =reserved

2 =NMI

3 = HardFault

4 —10 = reserved
11 = SVCall

12, 13 = reserved
14 = PendSV

15 = SysTick

16 = IRQO

Exception

5-0 IPSR Number

47 = IRQ31

4.4 Operating Modes and Privilege Levels

Both CPUs support two operating modes and two privilege levels:
m Operating Modes:
o Thread Mode — used to execute application software. The processor enters Thread mode when it comes out of reset.

o Handler Mode — used to handle exceptions. The processor returns to Thread mode when it has finished all exception
processing.

m Privilege Levels:

a1 Unprivileged — the software has limited access to the MSR and MRS instructions, and cannot use the CPSID and
CPSIE instructions. It cannot access the system timer, NVIC, or system control block. It may have restricted access to
memory or peripherals.

a1 Privileged — the software can use all the instructions and has access to all resources.

In Thread mode, the CONTROL register controls whether software execution is privileged or unprivileged. In Handler mode,
software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level. Unprivileged software can use the
SVC instruction to transfer control to privileged software.

In Handler mode, the MSP is always used. The exception entry and return mechanisms automatically update the CONTROL
register, which may change whether MSP/PSP is used.

In Thread mode, use the MSR instruction to set the stack pointer bit in the CONTROL register. When changing the stack
pointer, use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the ISB execute
using the new stack pointer.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 36

A

ws CYPRESS

~ammp> EMBEDDED IN TOMORROW

4.5 Instruction Set

CPU Subsystem (CPUSS)

Both CPUs implement subsets of the Thumb instruction set, as Table 4-6 shows. The table does not show the large number
of variants and conditions of the instructions. For details, see one of the Arm Cortex Generic User Guides or Technical

Reference Manuals.

An instruction operand can be a register, a constant, or another instruction-specific parameter. Instructions act on the
operands and often store the result in a destination register. Many instructions have restrictions on using the PC or SP for the
operands or destination register. See the Arm documentation for details.

Table 4-6. Instruction Set Summary — Cortex-M4 and Cortex-MO+

Functional Group Cortex-M4 | Cortex-MO0+ Brief List of Instruction Mnemonics
Memory access (4 v LDR, STR, ADR, PUSH, POP
Cortex-M0+: ADD, ADC, AND, ASR, BICS, CMN, CMP, EOR, LSL, LSR, MOV,
) MVNS, ORR, REV, ROR, RSB, SBC, SUB, SXT, UXT, TST
General data processing v 4
Cortex-M4 has all of the above plus: CLZ, ORN, RRX, SADD, SAS, SSA, SSUB,
TEQ, UADD, UAS, USA, USUB
. . MLA, MLS, MUL, SDIV, SMLA, SMLS, SMMLA, SMMLS, SMUA, SMUL, SMUS,
Multiply and divide 4 MUL only UDIV, UMAAL, UMLAL. UMULL
Saturatin v B SSAT, USAT, QADD, QSUB, QASX, QSAX, QDADD, QDSUB, UQADD, UQASX,
9 UQSAX, UQSUB
Packing and unpacking v - PKH, SXT, SXTA, UXT, UXTA
Bitfield v - BFC, BFI, SBFX, UBFX
Cortex-M0+: B{cc}, BL, BLX, BX
Branch and control 4 v
Cortex-M4 has all of the above plus: CBNZ, CBZ, IT, TB
) CPSID, CPSIE, DMB, DSB, ISB, MRS, MSR, NOP, SEV, SVC, WFE, WFI
Miscellaneous v v
Cortex-M4 has all of the above plus BKPT
VABS, VADD, VCMP, VCVT, VDIV, VFMA, VFNMA, VFMS, VFNMS, VLD, VLMA,
Floating-point v - VLMS, VMOV, VMRS, VMSR, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VPOP,

VPUSH, VSQRT, VST, VSUB

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

37

5. SRAM Controller

& CYPRESS

> EMBEDDED IN TOMORROW"

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

This chapter explains the PSoC 6 MCU SRAM Controller, its features, architecture, and wait states. The SRAM controller
enables the CPU to read and write parts of the PSoC 6 SRAM.

5.1 Features

The CPUSS has up to three identical SRAM controllers; see the device datasheet for details.

The SRAM controller has the following features:
m Consists of two AHB-Lite interfaces:
o An AHB-Lite bus interface on clk_fast that connects to the fast bus infrastructure
o An AHB-Lite bus interface on clk_slow that connects to the slow bus infrastructure
m Supports programmable number of clk_hf wait states
m Supports 8-, 16-, and 32-bit accesses

5.2 Architecture

The design has two AHB-Lite interfaces that connect to the AHB-Lite infrastructure. Each AHB-Lite interface is connected to
a synchronization component that translates between the interface clock (either clk_fast or clk_slow) and the high-frequency
clock (clk_hf).

Arbitration is performed on the AHB-Lite transfers from the two ports (AHB-Lite interface). Arbitration uses device-wide bus
master specific arbitration priorities. Therefore, although two AHB-Lite interfaces are provided, only one AHB-Lite transfer is
accepted by the port arbitration component.

The AHB-Lite transfers are the origin for all SRAM accesses; that is, the write buffer and SRAM repair requests result from
AHB-Lite transfers. The SRAM controller differentiates between the following three types of AHB-Lite transfers:

m AHB-Lite read transfers

m 32-bit AHB-Lite write transfers

m 8-bit and 16-bit AHB-Lite write transfers (also referred to as partial AHB-Lite write transfers)

Each type is described in more detail here.
AHB-Lite read transfers. An AHB-Lite read transfer is translated into an SRAM read access. If the read address matches

in the write buffer, the SRAM has stale data and the write data provides the requested read data (this functionality is provided
by the read merge component).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 38

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
www.cypress.com/ds218449

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

32-bit AHB-Lite write transfers. A 32-bit AHB-Lite write
transfer is translated into an SRAM write access. If the write
address matches in the write buffer, the matching write
buffer entries have stale data and these entries are
invalidated.

Partial AHB-Lite write transfers. A partial AHB-Lite write
transfer is translated into an SRAM read access and an
SRAM write access. The SRAM read access is the direct
result of the partial write transfer and the SRAM write
access is the result of a write buffer request. A partial write
transfer requires an SRAM read access to retrieve the
“missing” data bytes from the SRAM. If the read address
matches in the write buffer, the SRAM has stale data and
the write data provides the requested read data (this
functionality is provided by the read merge component). The
requested read data is merged with the partial write data to
provide a complete 32-bit data word (this functionality is
provided by the write merge component). The address and
the merged write data are written to the write buffer. A future
write buffer request results in an SRAM write access with
the merged write data.

Only the partial AHB-Lite write transfers use the write buffer.

Write buffer. The write buffer is a temporary holding
station for future SRAM write accesses.

The buffer allows SRAM write accesses to be postponed.
This allows for more performance critical AHB-Lite requests
to “overtake” write buffer requests. Memory consistency is
guaranteed by matching the SRAM access address with the
write buffer entries' addresses: a “matching” SRAM read
access uses the read merge component and a matching
SRAM write access invalidates the matching write buffer
entries.

When the write buffer is full, an entry needs to be freed to
accommodate future partial AHB-Lite write transfers.
Therefore, a full write buffer raises the priority of the write
buffer request path.

The write buffer is constructed as a FIFO with four entries
(the order in which entries are written is the same as the
order in which entries are read). Each entry consists of:

m Avalid field

m Aninvalidated field
m Aword address

m A 32-bit data word

Note that the merged write data written to the write buffer
is always a 32-bit data word. Therefore, no byte mask is
required.

When the write buffer is written (an entry is added): the entry
valid field is set to ‘1’ and the invalidated field is set to ‘0’.

When the write buffer is read (an entry is removed): the
entry valid field is set to ‘0’. If the entry invalidate field is ‘1’,
the write buffer request path is selected for an SRAM write

SRAM Controller

access. If the entry valid field is ‘0’, no SRAM access is
performed.

On an SRAM read access, a matching entry provides write
buffer merge data for the read merge component.

On an SRAM write access resulting from a 32-bit AHB-Lite
write transfer, a matching entry invalidated field is set to ‘1’.

The state of the write buffer is reflected by
RAMi_STATUS.WB_EMPTY. The write buffer is not retained
in Deep Sleep power mode. Therefore, when transitioning to
system Deep Sleep power mode, the write buffer should be
empty. Note that this requirement is typically met, because a
transition to Deep Sleep power mode also requires that
there are no outstanding AHB-Lite transfers. If there are no
outstanding AHB-Lite transfers, the write buffer gets SRAM
access.

5.3 Wait States

The programmable wait states represent the number of
clk_hf cycles for a read path through the SRAM memory to
flipflops in either the fast domain (CM4 CPU) or slow domain
(such as CM0+ CPU, DataWire, and DMA controller).

As the wait states are represented in clk_hf cycles, the wait
states do not have to be reprogrammed when the fast clock
domain frequency (clk_fast) or slow clock domain frequency
(clk_slow) is changed. However, it may be necessary to
reprogram the wait states when the high-frequency clock
domain (clk_hf) is changed. This means the required
number of wait states is a function of the clk_hf frequency.

The fast clock domain is timing closed at a higher frequency
than the slow clock domain. Therefore, the read path
through the SRAM memory to flipflops in the fast domain is
faster than the read path through the SRAM memory to
flipflops in the slow domain. In other words, the required
number of “fast” wait states (RAMi_CTL.FAST_WS) should
be less than or equal to the required number of “slow” wait
states (RAMi_CTL.SLOW_WS).

The SRAM controller also has internal SRAM read paths.
These paths are to flipflops in the SRAM controller in the
high-frequency clock domain (clk_hf). For these SRAM
accesses (for example, an SRAM read access to support a
partial AHB-Lite write transfer), the fast wait states are used.
This is because the maximum fast domain frequency
(clk_fast) equals the high-frequency domain frequency
(clk_hf).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 39

6. Inter-Processor Communication

& CYPRESS

> EMBEDDED IN TOMORROW"

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

Inter-processor communication (IPC) provides the functionality for multiple processors to communicate and synchronize their
activities. IPC hardware is implemented using two register structures.

m |PC Channel: Communication and synchronization between processors is achieved using this structure.

m |PC Interrupt: Each interrupt structure configures an interrupt line, which can be triggered by a ‘notify’ or ‘release’ event of
any IPC channel.

The Channel and Interrupt structures are independent and have no correlation to each other as shown in Figure 6-1. This
allows for building varying models of interface shown in Typical Usage Models on page 45.

Figure 6-1. IPC Register Architecture

5 - >

Acquire — Notify events from | |
Notify \ IPCChannel 0-N \
Release \ Release events for \
i \ IPC channels 0-N v
Data register(s) Notify and channels 0-
Status Release Events IPC Interrupt 0 inte-l;cr)u X
IPC Channel O Structure to IPCinterrupt Structure controllir
IPC Channel 1 Structure structures IPC Interrupt 1
Structure
— —
IPC Channel N IPC Interrupt N
Structure Structure

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 40

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

o CYPRESS

~amp> EMBEDDED IN TOMORROW Inter-Processor Communication

6.1 Features

The features of IPC are as follows:

Implements locks for mutual exclusion between processors

Allows sending messages between processors

Supports up to 16 channels for communication

Supports up to 16 interrupts, which can be triggered using notify or release events from the channels

6.2 Architecture

6.2.1 IPC Channel

An IPC channel is implemented as five hardware registers, as shown in Figure 6-2. The IPC channel registers are accessible
to all the processors in the system.

IPC_STRUCTx_ACQUIRE: This register determines the lock feature of the IPC. The IPC channel is acquired by reading
this register. If the SUCCESS field returns a ‘1’, the read acquired the lock.

If the SUCCESS field returns a ‘0, the read did not acquire the lock.

Note that a single read access performs two functions:

o The attempt to acquire a lock.

o Return the result of the acquisition attempt (SUCCESS field).

The atomicity of these two functions is essential in a CPU with multiple tasks that can preempt each other.

The register also has bitfields that provide information about the processor that acquired it. When acquired, this register is

released by writing any value into the IPC_STRUCTx_RELEASE register. If the register was already in an acquired state
another attempt to read the register will not be able to acquire it.

IPC_STRUCTx_NOTIFY: This register is used to generate an IPC notify event. Each bit in this register corresponds to an
IPC interrupt structure. The notify event generated from an IPC channel can trigger any or multiple interrupt structures.

IPC_STRUCTx_RELEASE: Any write to this register will release the IPC channel. This register also has a bit that
corresponds to each IPC interrupt structure. The release event generated from an IPC channel can trigger any or multiple
interrupt structures. To only release the IPC channel and not generate an interrupt, you can write a zero into the IPC
release register.

IPC_STRUCTx_DATA: This is a 32-bit register meant to hold data. It can be considered as the shared data memory for

the channel. Typically, this register will hold messages that need to be communicated between processors. If the
messages are larger than the 32-bit size, place a pointer in the IPC_STRUCTx_DATA register.
IPC_STRUCTx_LOCK_STATUS: This register provides the instantaneous lock status for the IPC channel. The register
provides details if the channel is acquired. If acquired, it provides the processor’s ID, protection context, and other details.
The reading of lock status provides only an instantaneous status, which can be changed in the next cycle based on the
activity of other processors on the channel.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 41

o CYPRESS

~amp> EMBEDDED IN TOMORROW Inter-Processor Communication

Figure 6-2. IPC Channel Structure

s IPC_ACQUIRE ° 5 IPC_NOTIFY o
" rT17r 17T 17T 17T 1T T T T T T TTTTTT LU T 1T T T T T T T T T TTTTTTTT BEENEERRNANENEANES
—_ — Pl Il ([l [l (1 e o) i) ())) [
@ 15} 5 B EEEEIEEEEEEEE
: el 2| |e AR EEEEEREREEEREE
=1 = o HEEEEEEEEEEEEREEE
@ z|z|z|z|z| z| 2| 2| 2| 2| 2| 2| 2| 2| 2|2
N T T T N N Sy A v | 11 1 111 | N T T T N N Ny v |
s IPC_RELEASE ° s IPC_DATA o
IIIIIIIIIIIIIIIﬁﬁgﬁigmw:\cmwm(\“_o IIIIIIIIIIIIIIIILIIIIIIIIIIIIII
pard Dar s D () i) pucl iy)) B) 5
oo |o|o oY w|www|w WL oo -
oo for for oo < oo ez o e fee for @) %
| e[e | e | e e | e [[e e | e | e | e | e | <
ElE|E|E ElElElEIEIEIEIEIEIE
z|z|z|z|2|5|2|Z|2|Z|2|Z|Z|2|2|2 3
N N T N T N Ny v | N S T T N N N e I S I I I |
5 IPC_LOCK_STATUS °
TrT7T T T T T T TTTTTTTTTTT T T T T T T
a — —
w [S) o
x o, o, 2la
8 7] o z
o
g =
<
N T T T N N Sy A v | 11 1 111 |

6.2.2 IPC Interrupt

Each IPC interrupt line in the system has a corresponding IPC interrupt structure. An IPC interrupt can be triggered by a notify
or a release event from any of the IPC channels in the system. You can choose to mask any of the sources of these events
using the IPC interrupt registers. Figure 6-3 shows the registers in an IPC Interrupt structure.

IPC_INTR_STRUCTx_INTR: This register provides the instantaneous status of the interrupt sources. Note that there are 16
notify and 16 release event bits in this register. These are the notify and release events corresponding to the 16 IPC
channels. When a notify event is triggered in the IPC channel 0, the corresponding NotifyO bit is activated in the interrupt
registers. A write of ‘1’ to a bit will clear the interrupt.

IPC_INTR_STRUCTXx_INTR_MASK: The bit in this register masks the interrupt sources. Only the interrupt sources with their
masks enabled can trigger the interrupt.

IPC_INTR_STRUCTx_INTR_SET: A write of ‘1’ into this register will set the interrupt.

IPC_INTR_STRUCTx_INTR_MASKED: This register provides the instantaneous value of the interrupts after they are
masked. The value in this register is (IPC_INTR_STRUCTx_INTR AND IPC_INTR_STRUCTx_INTR_MASK).

Figure 6-3. IPC Interrupt Structure

IPC_INTR_STRUCTX_INTR IPC_INTR_STRUCTX_INTR_MASK

o IS o)
wlt||N|~|o vl |0|N]|I—|o
el(ely el ool el tlelalc el IS IR IR INISISISIQ NS S o I el K I =Y Y T N e) S Y O S Y 1 S R R S S R T L R B A B N R
;;;;;;>—>>—>>—>>—>>—>wwwwwm%gwgm%gwww ;;;;;;>>—>>>>>>>>mwmmmm%%m%m%%mmm
uu_u_u_uu_&EL_L&L_LEL_L&L_LEgﬁ‘gﬁgw<<‘2<2<<ggg clo|c|i| || |efafa)a|efa|z]z]|2|2(2(2]2]|2|2(2]|2]|2|2|2]|2]|2 (2|2
cleE|EIE|EISIEIBIEIBIEISIEIE 5SS |5 (& |5 (||| || (&S]S (S HEEEHEHREREREREEE S E R 0 e b e e e el ol o b n b
olololol|olol2]2le]|2|elelelele|e| === == l512 122 222121222 olololololol2]|2|2e]|elele|el|e|ele]|= ||| =522 2222212 1=] =
Zlz|z|zIz|Z|Z|Z|Z]|Z| Z|Z2|Z2|Z2|Z2|Z2 |0 |w | f |t i | iy i ZlzlzlzIZIz|1Z]Z2|Z|Z|Z|Z|Z|Z|Z|Z2|0)|d o o o o i i i | |
rle|le|d|le|e|¥ ||| ||| || | vle|e|e|e|e || ||| || ||
b= IPC_INTR_STRUCTX_INTR_SET . > IPC_INTR_STRUCTX_INTR_MASKED .
el il ol ST) £=) wlt]|o|lal-|o
vls|olaf=lololo|~]o|v|<|o|lal= a2 IS SIS E][2]2|0 e |e |t ~]= o wlsloflalclololo|~]o|w|<|ola]=lao|2IZ2]SE]2] 0~ |ofv] s [a]a]=]o
<|=l==|=|= o o o | e o | wfw | w bl Bl Bl Bl Bl B [YTY YT (YT TR (VTR VYY) [N YR T TR Ty YR pYR pivy VTR
bl bl Pl sl e e e] e B e £ £ K 21 K1 1 A 1 A B 2 A BT A R e b b o el e B e el o £ 1 1 1 1 A 2 T 1 E E A E A A A
winjuiuiwinl === 1= = = S22 B L L < [< 2 [1< 2 L < < < | < [< HEEEEHEEHEHEHEEEEHEEREER R R A B R F R R R R R B B B
= N AR EEEEEEEE EE A D ey e by i EE g g o o e i g g) ElElElElEIEIEIEIEISISISIEIEIS S wfw | wfw | o) S w fwfuw oo o oo fo|o
HEEEEEE e B EEEE E AR E R E e E E R E EE B H HE 8 EEE E E HEE E E EE B B Bl EEEE E
prof fvj g ol o @ ol prvfl bl v o|o|m
z|lz|z|z]|z]|z HEEEEEEHAHEEHAEHEEE z|z|z|z|z|=z wle|e|x|g|E ||| ||| || |z |

6.2.3 IPC Channels and Interrupts

The IPC block has a set of IPC interrupts associated with it. Each IPC interrupt register structure corresponds to an IPC
interrupt line. This interrupt can trigger an interrupt on any of the processors in the system. The interrupt routing for
processors are dependent on the device architecture.

Each IPC channel has a release and notify register, which can drive events on any of the IPC interrupts. An illustration of this
relation between the IPC channels and the IPC interrupt structure is shown in Figure 6-4.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 42

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Inter-Processor Communication

Figure 6-4. IPC Channels and Interrupts

IPCO IPC 1
Release Notify Release Notify Notify
INTR N INTR N INTR N INTR N
~] INTR3 INTR 3 INTR 3 INTR 3
INTR 2 INTR 2 — INTR2 INTR 2 —
INTR 1 INTR 1 INTR 1 INTR 1
| -{ INTRO INTR 0 INTR 0 INTR 0
—\
k
INTR 0 INTR 1 INTR 2 INTR 3
INTR_NOT N INTR_NOT N INTR_NOT N
INTR _NOT 6 INTR _NOT 6 INTR _NOT 6 INTR _NOT 6
INTR_NOT 5 INTR_NOT 5 INTR_NOT 5 INTR_NOT 5
INTR_NOT 4 INTR_NOT 4 INTR_NOT 4 INTR_NOT 4
INTR_NOT 3 INTR_NOT 3 INTR_NOT 3 INTR_NOT 3
INTR _NOT 2 INTR _NOT 2 INTR _NOT 2 INTR _NOT 2

INTR_NOT 1 INTR_NOT 1

INTR_NOT 1 INTR_NOT 1

INTR_NOT 0 INTR_NOT 0

INTR_NOT 0 INTR_NOT 0

INTR_REL N

INTR_REL 6
INTR_REL 5

INTR_REL 6
INTR_REL 5

INTR_REL N INTR_REL N

INTR_REL 6
INTR_REL 5

INTR_REL 6
INTR_REL 5

INTR_REL 4 INTR_REL 4

INTR_REL 4 INTR_REL 4

INTR_REL 3 INTR_REL 3

INTR_REL 3 INTR_REL 3

INTR_REL 2 INTR_REL 2

INTR_REL 1
INTR_REL 0

INTR_REL 1
INTR_REL 0

INTR_REL 2
INTR_REL 1
INTR_REL 0

INTR_REL 2
INTR_REL 1
INTR_REL 0

Interrupt to
processors

Interrupt to
processors

6.3

The IPC channels can be used to implement locks. Locks
are typically used in multi-core systems to implement some
form of mutually exclusive access to a shared resource.
When multiple processors share a resource, the processors
are capable of acquiring and releasing the IPC channel. So
the processor can assume an IPC channel as a lock. The
semantics of this code is that access to the shared resource
is gated by the processor’s ownership of the channel. So the
processors will need to acquire the IPC channel before they
access the shared resource.

Implementing Locks

A failure to acquire the IPC channel signifies a lock on the
shared resource because another processor has control of
it. Note that the IPC channel will not enforce which
processor acquires or releases the channel. All processors
can acquire or release the IPC channel and the semantics of
the code must make sure that the processor that acquires
the channel is the one that releases it.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Interrupt to
processors

Interrupt to
processors

6.4

IPC channels can be used to communicate messages
between processors. In this use case, the channel is used in
conjunction with the interrupt structures. The IPC channel is
used to lock the access to the data register. The IPC
channel is acquired by the sender and used to populate the
message. The receiver reads the message and then
releases the channel. Thus, between the sender putting
data into the channel and receiver reading it, the channel is
locked for all other task access. The sender uses a notify
event on the receiver's IPC interrupt to denote a send
operation. The receiver acts on this interrupt and reads the
data from the data register. After the reception is complete,
the receiver releases the channel and can also generate a
release event to the senders IPC interrupt. Note that the
action of locking the channel does not, in hardware, restrict
access to the data register. This is a semantic that should be
enforced by software.

Message Passing

Figure 6-5 portrays an example of a sender (Processor A)
sending data to a receiver (Processor B). IPC interrupt A is

43

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

configured to interrupt Processor A. IPC interrupt B is
configured to interrupt Processor B.

1.

The sender will attempt to acquire the IPC channel by
reading the IPC_STRUCTx_ACQUIRE register. If the
channel was acquired, the sender has ownership of the
channel for data transmission. This also changes the
status of the channel and its corresponding
IPC_STRUCTx_LOCK_STATUS register. If the channel
was not acquired, the processor should wait until the
channel is free for acquisition. This can be done by
polling the IPC channel’s
IPC_STRUCTx_LOCK_STATUS register.

Atfter the IPC channel is acquired, the sender has control
of the channel for communication and places the 32-bit
message data in the IPC_STRUCTx_DATA register.

Now that the message is placed in the IPC channel, the
sender generates a notify event on the receiver's
interrupt line. It does this by setting the corresponding bit
in the IPC channel's IPC_STRUCTx_NOTIFY register.
This event creates a notify event at IPC interrupt B
(IPC_INTR_STRUCTX_INTR). If the IPC channel’s
notify event was enabled by setting the mask bit

Inter-Processor Communication

(IPC_INTR_STRUCTx_INTR_MASK [31:23]) in the IPC
interrupt B, this will generate an interrupt in the receiver.

4. When it receives IPC interrupt B, the receiver can poll
the IPC_INTR_STRUCTx_INTR_MASKED register to
understand which IPC channel had triggered the notify
event. Based on this, the receiver identifies the channel
to read and reads from the IPC channel’s
IPC_STRUCTx_DATA register. The receiver has now
received the data sent by the sender. It needs to release
the channel so that other processors/processes can use
it.

5. The receiver releases the channel. It also optionally
generates a release event on the sender’s IPC interrupt
A. This will generate a release event interrupt on the
sender if the corresponding channel release event was
masked.

On receiving the release interrupt, the sender can act on the
event based on the application requirement. It can either try
to reacquire the channel for further transmission or go on to
other tasks because the transmission is complete.

Figure 6-5. Sending Messages using IPC

interupt A ay»{ Status |-y

IPC Channel Receiver
Sender — (Processor B)
4
(Processor A) (12 Acquire @
(3) Notif 3) (g)
- -(5) Release @ |
@ Data \
Y IPC
IPC ! interrupt B

.............. » Hardware action

e User action

In the previous example, the size of the data being transmitted was just 32 bits. Larger messages can be sent as pointers.
The sender can allocate a larger message structure in memory and pass the pointer in the 32-bit data register. Figure 6-6
shows the usage. Note that the user code must implement the synchronization of the message read process.

m The implementation can stall the channel until the receiver has used up all the data in the message packet and the
message packet can be rewritten. This is wasteful because it will stall other inter-process communications as the number

of IPC channels is limited.

The receiver can release the channel as soon as it receives the pointer to the message packet. It implements the
synchronization logic in the message packet as a flag, which the sender sets on write complete and receiver clears on a

read complete.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 44

o CYPRESS

~amp> EMBEDDED IN TOMORROW Inter-Processor Communication

Figure 6-6. Communicating Larger Messages

Message
Packet
Write—————————————— > f————————Read
A
Sender Pointer iPC Receiver

—Interruptm|

* 4Release—

Data Register

6.5 Typical Usage Models

The unique channel and interrupt architecture of the PSoC 6 IPC allows for a range of usage models for multicore
communication. Some of these are listed here as an example. Note that the communication models possible based on the
IPC architecture are not restricted to the ones listed in this document. Also note that, this document only provides a high-level
usage model and does not go into details of data management in the communication. This will need to be determined based
on the specific application use case.

6.5.1 Full Duplex Communication

In this usage model, an IPC channel is used according to the direction of communication between cores. For managing
events an IPC interrupt is used per core. In a dual core system this will translate to what is shown in Figure 6-7.

In this example, the IPC channel X is dedicated to data communication from Core 0 to Core 1 and IPC channel Y is for data
communication from Core 1 to core 0. The IPC interrupt X will signal events on Core 1. Hence its interrupt output is connected
to Core 1's system interrupts. The events are triggered by writing into the IPC interrupts register structure over the system
bus. Similarly, IPC interrupt Y is dedicated to Core 0.

Figure 6-7. Full Duplex IPC for Dual Core Communication

> IPC
—System Int t
Interrupt X ystem Interrup

IPC Channel X

Core 0 Core 1l
IPC Channel Y

 System _| IPC
Interrupt Interrupt Y
) Data transfer/register updates over system bus

—_

Digital signals such as triggers or interrupts

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 45

o CYPRESS

~amp> EMBEDDED IN TOMORROW Inter-Processor Communication

6.5.2 Half Duplex with Independent Event Handling

In this case only one IPC channel is used to set up the transfer between the two cores. This means that only one side controls
data transfer at a time. The channels Lock register must be used to avoid contention of the one shared IPC channel. Two
independent events are supported due to the two IPC interrupt structures being used. This model is shown in Figure 6-8.

Figure 6-8. Half Duplex with Independent Event Handling

> IPC
— | +
Interrupt X System Interrupt:

Core O IPC Channel X Core 1

 System _| IPC
Interrupt Interrupt Y
) Data transfer/register updates over system bus

—_—

Digital signals such as triggers or interrupts

6.5.3 Half Duplex with Shared Event Handling

In this model both the IPC channel and interrupt are shared between the two cores. Since the interrupt is also shared, the
access to the interrupt registers must be managed using the IPC lock of the channel. As shown in Figure 6-9, the IPC
interrupt will be set up to trigger interrupts in both cores. Hence the individual core interrupts should have logic in its ISR to
check which core is in control of the IPC and determine if the message and event was for that core.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 46

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Figure 6-9. Half Duplex with Shared Event Handling

Core O

Inter-Processor Communication

L]
—System Interrupt
IPC
Interrupt
X
€System Interrupt
IPC Channel X

=)

—_—

Data transfer/register updates over system bus

Core 1

Digital signals such as triggers or interrupts

Note: Some IPC channel and interrupt structures are reserved as part of the SROM code. Refer to the SROM architecture

and API in Flash Memory Programming on page 149 for a list IPC channels and interrupts being used by this API.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

47

/. Fault Monitoring

& CYPRESS

> EMBEDDED IN TOMORROW"

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

Fault monitoring allows you to monitor various faults generated within the device and take actions based on the fault reported.
The fault structures present in the PSoC 6 MCU monitor access violation faults at protection units (MPU, SMPU, or PPU) and
flash controller bus error/fault. In addition to reporting faults, the fault structures in PSoC 6 MCUs provide a mechanism to log
data from the fault sources and optionally perform soft reset.

The PSoC 6 MCU family supports two centralized fault report/monitoring structures that monitor faults generated within the
device. Each fault report structure can monitor and report faults from up to 96 sources.

71 Features

Each PSoC 6 MCU fault report structure supports:

Monitoring protection unit access violation faults and flash controller bus errors
Four 32-bit data registers to record fault information

Soft reset on fault detection while retaining the fault information

Interrupt on fault detection

Trigger output to DMA for fault data transfer

Fault detected output to a pin for external fault handling

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 48

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

o CYPRESS

s~ EMBEDDED IN TOMORROW Fault Monitoring

7.2 Architecture
Figure 7-1. Fault Report Structure

/ Fault report Structure [x]
- intermupt_fault]

—
g FAULT_STATUS tr_fault[x]

FAULT_DATA0 fault out[x
Fault source 0 Fault Data m
fault_reset_req[x
. . Fault report ault_reset._reqh
3 upto96 ... Pending faults Structure[0]
< FAULT_PENDINGO ~
Retained duri
Fault source 95 Fault Data FAULT_PENDING1 ¢ s:)r;fresst”ng

7
/
/

FAULT_PENDING2

/
/

FAULT_MASKO

Single structure,
used by all fault . FAULT_MASK1

report structures. N, FAULT_MASK2

\ INTR_FAULT

\\ INTR_FAULT_SET

\ INTR_FAULT_MASK

\ INTR_FAULT_MASKED

The PSoC 6 MCU family uses centralized fault report structures. This centralized nature allows for a system wide handling of
faults simplifying firmware development. Only a single fault interrupt handler is required to monitor multiple faults. The fault
report structure provides the fault source and additional fault specific information through a single set of registers; no iterative
search for the fault source and fault information is required.

The fault structure can be configured to capture one or more faults as listed in Table 7-2. When a fault structure is configured
to capture a specific fault, an occurrence of that fault will be recorded as a pending fault. If the fault structure has finished
processing all other faults or if there are no other pending faults, the fault data will be captured into the fault structure
registers. In addition, a successful capture can trigger an interrupt and be processed by either Cortex-M4 or Cortex-M0+
depending on the application requirement.

It should be noted that each fault structure is capable of capturing only one fault at a time and as long as that fault is not
serviced, subsequent faults will not be captured by the fault structure. In addition to capturing faults, the fault structure can
optionally perform a soft reset while retaining the fault information. This reset results in RESET_ACT_FAULT reset cause in
the SRSS_RES_CAUSE register.

7.2.1 Fault Report

The PSoC 6 MCU family supports two fault report structures. Each fault report structure has a dedicated set of control and
status registers. Each fault report structure captures a single fault. The captured fault information includes:

m Fault validity bit that indicates a fault is captured (VALID bit [31] of the FAULT_STRUCTx_STATUS register). This bit is set
whenever a fault is captured. The bit should be cleared after processing the fault information. New faults are captured only
when this bit is ‘0’.

m Fault index, as shown in Table 7-2, identifies the fault source (IDX bits [6:0] of FAULT_STRUCTx_STATUS)

Additional fault information describing fault specifics (FAULT_STRUCTx_DATAO through FAULT_STRUCTx_DATA3
registers). This additional information is fault source specific. For example, an MPU protection violation provides

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 49

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Fault Monitoring

information on the violating bus address, the bus master identifier, and bus access control information in only two

FAULT_DATA registers. The details of the fault information for various faults is explained in Table 7-1.

Table 7-1. Fault Information

Fault Source

Fault Information

MPU/SMPU violation

DATAO[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.
DATA1[15:12]: Protection context identifier.
DATA1[31]: '0' MPU violation; '1": SMPU violation.

Master interface PPU violation

DATAOQ[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.
DATA1[15:12]: Protection context identifier.
DATA1[31]: '0": PPU violation, '1": peripheral bus error.

Peripheral group PPU violation

DATAO[31:0]: Violating address.

DATA1[0]: User read.

DATA1[1]: User write.

DATA1[2]: User execute.

DATA1[3]: Privileged read.

DATA1[4]: Privileged write.

DATA1[5]: Privileged execute.

DATA1[6]: Non-secure.

DATA1[11:8]: Master identifier.
DATA1[15:12]: Protection context identifier.
DATA1[31:30]: ‘0’: PPU violation, ‘1’: timeout detected, ‘2’: peripheral bus error.

Flash controller bus error

FAULT_DATAOQ[31:0]: Violating address.

FAULT_DATA1[31]: '0": FLASH macro interface bus error; '1': memory hole.
FAULT_DATA1[15:12]: Protection context identifier.

FAULT_DATA1[11:8]: Master identifier.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

50

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

71.2.2

In addition to captured fault information, each fault report
structure supports a signaling interface to notify the system
about the captured fault. The interface of fault report
structure ‘X’ supports the following:

m A fault interrupt (interrupt_fauli[x]). Use the
FAULT_STRUCTx_INTR,
FAULT_STRUCTx_INTR_SET,
FAULT_STRUCTx_INTR_MASK and
FAULT_STRUCTx_INTR_MASKED registers to monitor,
set, and mask the FAULT_STRUCTUREIX]'s interrupt.
Only a single interrupt cause is available, which
indicates that a fault is detected. The fault report
registers can be read in the interrupt handler to deduce
the fault. The FAULT bit [0] of the
FAULT_STRUCTx_INTR_MASK register provides a
mask/enable for the interrupt. The FAULT bit [0] of the
FAULT_STRUCTx_INTR register is set to ‘1’ when a
fault is captured. Setting this bit in firmware clears the
interrupt.

Signaling Interface

m A DMA trigger (tr_fault[x]). The fault structure generates
a DMA trigger when VALID bit [31] of the
FAULT_STRUCTx_STATUS register is set. To enable
the ftrigger, set the TR_EN bit [0] of the
FAULT_STRUCTx_CTL register. The trigger can be
connected to a DMA controller, which can transfer
captured fault information from the fault report structure
to memory and can clear the VALID bit [31] of the

Fault Monitoring

FAULT_STRUCTx_STATUS register. See the Trigger
Multiplexer Block chapter on page 273 for more details.

m A chip output signal (fault_out[x]). The fault structure
generates an output signal, which is set when VALID bit
[31] of the FAULT_STRUCTx_STATUS register is set.
This signal can be routed out of the device through the
HSIOM (refer to the device datasheet). The output signal
is enabled by setting the OUT_EN bit [1] of the
FAULT_STRUCTx_CTL register. The output signal can
be used to communicate non-recoverable faults to off-
chip components (possibly resulting in a reset of the
chip).

m Afault reset request signal (fault_reset_req[x]). The fault
structure generates a soft reset when VALID bit [31] of
the FAULT_STRUCTx_STATUS register is set. The
reset capability is enabled by setting RESET_REQ_EN
bit [2] of FAULT_STRUCTx_CTL. The reset request
performs a soft reset. This reset is captured as
RESET_ACT_FAULT in the SRSS_RES_CAUSE
register. The fault information in
FAULT_STRUCTx_STATUS and
FAULT_STRUCTx_DATA registers is retained through
this reset.

Because the device has a single fault_reset_req signal, the
individual fault_reset_req[x] signals from the fault structures
are combined into a single fault_reset_req signal as shown
in Figure 7-2.

Figure 7-2. Fault Reset Request

fault_reset _req[0]

fault_reset_req[1]

7.2.3

A central structure, which is shared by all fault report
structures, keeps track of all pending faults in the system.
The FAULT_STRUCTx_PENDINGx registers reflect what
fault sources are pending and provide a single pending bit
for up to 96 fault sources. The registers are mirrored in all
the fault report structures; that is, they read the same value
in all fault structures. The bit indexing in the registers follow
the fault index captured in Table 7-2. For instance, bit [0] of
FAULT_STRUCTx_PENDINGO captures a CMO+ MPU/
SMPU violation and bit 1] of
FAULT_STRUCTx_PENDING1 captures a peripheral
group#1 PPU violation.

Monitoring

The pending faults are faults that are not yet captured by a
fault structure. When a pending fault is captured by a fault
structure, the associated pending bit is cleared to ‘0’.

Each fault report structure is selective in the faults it
captures. The FAULT_STRUCTx_MASKO,

fault_reset_req
(to device soft reset line)

FAULT_STRUCTx_MASK1, FAULT_STRUCTx_MASK2
registers of a fault structure decide the pending faults that it
captures. These faults are referred to as “enabled” faults.
The FAULT_STRUCTx_MASK registers are unique to each
fault structure. This allows for the following:

m One fault report structure is used to capture recoverable
faults and one fault report structure is used to capture
non-recoverable faults. The former can be used to
generate a fault interrupt and the latter can be used to
activate a chip output signal and/or activate a reset
request.

m Two fault report structures are used to capture the same
faults. The first fault is captured by the structure with the
lower index (for example, fault structure 0) and the
second fault is captured by the structure with the higher
index (for example, fault structure 1). Note that both
structures cannot capture the same fault at the same
time. As soon as a fault is captured, the pending bit is
cleared and the other structure will not be aware of the

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 51

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

fault. Fault structure 0 has precedence over fault
structure 1.

The fault structure captures “enabled” faults only when
VALID bit [31] of FAULT_STRUCTx_STATUS register is ‘0’.
When a fault is captured, hardware sets the VALID bit [31] of
the FAULT_STRUCTx_STATUS register. In addition,
hardware clears the associated pending bit to ‘0’. When a
fault structure is processed, firmware or a DMA transfer

should clear the VALID bit [31] of the
FAULT_STRUCTx_STATUS register. Note that fault
capturing does not consider FAULT bit [0] of

FAULT_STRUCTX_INTR register and firmware should clear
the bit after servicing the interrupt, if the interrupt is enabled.

724

The fault report structure functionality is available in Active
and Sleep (and their LP counterparts) power modes only.
The interfaces between the fault sources and fault report
structures are reset in the Deep Sleep power mode.
Because the fault report structure is an active functionality,
pending faults (in the FAULT_STRUCTx_PENDING
registers) are not retained when transitioning to Deep Sleep
power mode. The fault structure’s registers can be
partitioned based on the reset domain and their retention
capability as follows:

Low-power Mode Operation

m Active reset domain:
FAULT_STRUCTx_INTR,
FAULT_STRUCTx_INTR_SET, and
FAULT_STRUCTx_INTR_MASKED registers. These
registers are not retained in Deep Sleep power mode.

m Deep Sleep reset domain: FAULT_STRUCTx_CTL,
FAULT_STRUCTx_MASK, and
FAULT_STRUCTx_INTR_MASK registers. These
registers are retained in Deep Sleep power mode but
any system reset will reset these registers to the default
state.

m Hard reset domain: FAULT_STRUCTx_STATUS and
FAULT_STRUCTx_DATA registers. These registers are
retained through soft resets (detectable in
SRSS_RES_CAUSE registers). However, hard resets
such as XRES/POR/BOD will reset the registers.

FAULT_STRUCTx_PENDING,

7.2.5

Follow these steps to configure and use a fault structure:

Using a Fault Structure

1. Identify the faults from Table 7-2 to be monitored in the
system.
2. For firmware fault handling through interrupts

a. Set the FAULT bit [0] of the FAULT_STRUCTx_IN-
TR_MASK register.

b. Setthe FAULT bit [0] of the FAULT_STRUCTX_INTR
register to clear any pending interrupt.

Fault Monitoring

c. Enable the FAULTXx interrupt to the CPU by configur-
ing the appropriate ISER register. Refer to the
Interrupts chapter on page 55.

3. For fault handling through DMA

a. Set the TR_EN bit [0] of the FAULT_STRUCTx_CTL
register.

b. Route the tr_fault[x] signal to the trigger input DMA
controller. Refer to the Trigger Multiplexer
Block chapter on page 273.

c. Configure and enable the DMA controller to transfer
FAULT_STRUCTx_STATUS and FAULT_STRUCTx-
_DATA registers to memory and write back ‘0’ to
FAULT_STRUCTx_STATUS register after the trans-
fer is complete. Refer to the DMA Controller chapter
on page 85.

4. For fault handling outside the device

a. Set the OUT_EN bit [1] of FAULT_STRUCTx_CTL
register.

b. Route the fault_out[x] signal to a pin through HSIOM.
Refer to the device datasheet.

c. Use the signal externally for processing the fault —
generate external reset, power cycle, or log fault
information.

5. Set the RESET_REQ_EN bit [2] of the FAULT_-
STRUCTx_CTL register, if a soft reset is required on any
fault detection in the structure.

6. Clear VALID bit [31] of the FAULT_STRUCTx_STATUS
register to clear any fault captured.

7. Set the fault index bits in the FAULT_STRUCTx_MASK
registers for faults that need to be captured by the fault
structure as explained in 7.2.3 Monitoring.

7.2.6 CPU Exceptions Versus Fault

Monitoring

Some faults captured in Table 7-2 also result in bus errors or
CPU exceptions (Cortex-M4 Bus/Usage/Memory/Hard
faults). The faults can be communicated in two ways:

m As a bus error to the master of the faulting bus transfer.
This will result in Bus, Usage, Memory, or Hard fault
exceptions in the CPU.

m As a fault in a fault report structure. This fault can be
communicated as a fault interrupt to any processor in the
system. This allows fault handling on a processor that is
not the master of the faulting bus transfer. It is useful for
faults that cause the master of the faulting transfer to
become unresponsive or unreliable.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 52

https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449

A

ws CYPRESS

g EMBEDDED IN TOMORROW

7.3 Fault Sources

The fault sources can vary between device families. Table 7-2 provides the list of fault sources available in PSoC 6 MCUs.

Table 7-2. Fault Sources

Fault Monitoring

Fault Index Source Description
0 cpuss.mpu_vio[0] CMO+ MPU/SMPU violation
1 cpuss.mpu_vio[1] CRYPTO MPU/SMPU violation
2 cpuss.mpu_vio[2] DWO0 MPU/SMPU violation
3 cpuss.mpu_vio[3] DW1 MPU/SMPU violation
41013 Reserved
14 cpuss.mpu_vio[14] CM4 MPU/SMPU violation (I/D bus)
15 Reserved
16 cpuss.mpu_vio[16] CM4 MPU/SMPU violation (system bus)
17 to 27 Reserved
28 peri.ms_vio[0] CMO+ peripheral master interface PPU violation
29 peri.ms_vio[1] CM4 peripheral master interface PPU violation
30 peri.ms_vio[2] DWO peripheral master interface PPU violation
31 peri.ms_vio[3] DW?1 peripheral master interface PPU violation
e
. . Peripheral group #1 (Crypto block) PPU violation
33 peri.group_vio[1] Register adgdress ran(ger:y0x40100(;00 to Ox401FFFFF
34 peri group_vio[2] PeriF)heraI group #2 (CPUSS, SRSS, eFuse, and profiler) PPU violation
Register address range: 0x40200000 to Ox402FFFFF
35 peri.group_vio[3] PeriPheraI group #3 (I0SS, UDB, LPCOMP, CSD, TCPWM, LCD) PPU violation
Register address range: 0x40300000 to 0x403FFFFF
36 peri group_vio[4] Peri!:)heral group #4 (SMIF) PPU violation
Register address range: 0x40400000 to 0x404FFFFF
37 Reserved
)) Peripheral group #6 (SCB) PPU violation
38 peri.group_vio[6] Register address range: 0x40600000 to Ox406FFFFF
39 Reserved
40 Reserved
Peripheral gr PASS) PPU violation
41 peri.group_vio[9] RZgipstZergdr(')eusps on(ge:Soizn oo%oo%ilomm FFFFFF
T I e
43 to 49 Reserved
50 cpuss.flashc_main_bus_err Flash controller bus error
511095 Reserved

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

53

A
(e

CYPRESS

EMBEDDED IN TOMORROW

7.4 Register List

Fault Monitoring

Name

Description

FAULT_STRUCTx_CTL

Fault control register for enabling DMA trigger, fault output, and fault reset signals

FAULT_STRUCTx_STATUS

Fault status register that stores the validity and fault index of the currently captured fault

FAULT_STRUCTx_DATAO

Fault data register 0 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA1

Fault data register 1 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA2

Fault data register 2 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_DATA3

Fault data register 3 that stores fault information associated with the currently captured fault

FAULT_STRUCTx_PENDINGO

Fault pending register 0 that stores pending (not captured) faults with fault index from 0 to 31

FAULT_STRUCTx_PENDING1

Fault pending register 1 that stores pending (not captured) faults with fault index from 32 to 63

FAULT_STRUCTx_PENDING2

Fault pending register 2 that stores pending (not captured) faults with fault index from 64 to 95

FAULT_STRUCTx_MASKO

Fault mask register 0 that enables the capture of pending faults with fault index from 0 to 31 by the
fault structure

FAULT_STRUCTx_MASK1

Fault mask register 1 that enables the capture of pending faults with fault index from 32 to 63 by the
fault structure

FAULT_STRUCTx_MASK2

Fault mask register 2 that enables the capture of pending faults with fault index from 64 to 95 by the
fault structure

FAULT_STRUCTx_INTR

Fault interrupt register that stores the unmasked status of the fault structure's interrupt

FAULT_STRUCTx_INTR_SET

Fault interrupt set register used to set the fault structure's interrupt through firmware

FAULT_STRUCTx_INTR_MASK

Fault interrupt mask register that masks fault interrupt

FAULT_STRUCTx_INTR_MASKED

Fault interrupt register that stores the masked status of the fault structure's interrupt

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

54

8. Interrupts

& CYPRESS

> EMBEDDED IN TOMORROW"

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

The PSoC 6 MCU family supports interrupts and CPU exceptions on both Cortex-M4 and Cortex-M0+ cores. Any condition
that halts normal execution of instructions is treated as an exception by the CPU. Thus an interrupt request is treated as an
exception. However, in the context of this chapter, interrupts refer to those events generated by peripherals external to the
CPU such as timers, serial communication block, and port pin signals; exceptions refer to those events that are generated by
the CPU such as memory access faults and internal system timer events. Both interrupts and exceptions result in the current
program flow being stopped and the exception handler or interrupt service routine (ISR) being executed by the CPU. Both
Cortex-M4 and Cortex-M0+ cores provide their own unified exception vector table for both interrupt handlers/ISR and
exception handlers.

8.1 Features

The PSoC 6 MCU supports the following interrupt features:

m Supports 147 system interrupts

o Up to 147 Cortex-M4 interrupts

a Up to 32 Cortex-MO+ interrupts

o Up to 41 interrupt sources capable of waking the device from Deep Sleep power mode

Nested vectored interrupt controller (NVIC) integrated with each CPU core, yielding low interrupt latency
Wakeup interrupt controller (WIC) enabling interrupt detection (CPU wakeup) in Deep Sleep power mode
Vector table may be placed in either flash or SRAM

Configurable priority levels (eight levels for Cortex-M4 and four levels for Cortex-M0+) for each interrupt

Level-triggered and pulse-triggered interrupt signals

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 55

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

A
W

8.2

CYPRESS

EMBEDDED IN TOMORROW

Architecture

Figure 8-1. PSoC 6 MCU Interrupts Block Diagram

Interrupt sources
(Peripherals)

r---INT Source 0----
r---INT Source 1---

PSoC 6 Interrupt Architecture

r
—: Select Interrupt Source |

___________ J
y

MO+ Interrupt

multiplexers
240:1
IRQn can be
32x8 connected to any one

MO+ interrupt settings !
Enable / Disable Interrupt :
Set Priority |

Mask Interrupt |

Set NMI source :

| Software trigger

_______ of the 147 (max 240)
i interrupt sources

MO+ processor

!
|- {Smc}-Rao
1

r--=INT Source 2

L--INT Source 146--1

L

[] Available in Deep Sleep

[~ "1 Register control

147

e D---lRQ‘-
1 |

i !
o~ |- {SyncF-IRa7
I 1

i |
o~ - {Syme}-Rast

NVIC

Cortex MO+
Processor core

Wakeup
Wakeup Interrupt

Controller (WIC)

8 (IRQO — IRQ7)

MO0+ Wakeup
M4 Wakeup

j> System Wakeup

IRQn is connected

41 (IRQQ — IRQ40)

to INT source n

-{Sync J---IRQ0-
-[Sync]---RQ1
|

147

-[Sync |--IRQ40
!

-[Sync -IRQ146:

Wakeup Interrupt
Controller (WIC)

NVIC
Cortex M4
Processor core
M4 processor

M4 interrupt settings
Enable / Disable Interrupt
Set Priority
Mask Interrupt
Set NMI source
Software Trigger

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Interrupts

56

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Figure 8-1 shows the PSoC 6 MCU interrupt architecture.
The PSoC 6 MCU has 147 system interrupts that are
generated by various peripherals. These interrupt signals
are processed by the NVIC of the individual core. In the
Cortex-M4 core, the system interrupt source ‘n’ is directly
connected to IRQn. For Cortex-M0+, which has only 32
IRQs, the interrupt source connected to a particular IRQn is
configurable and any of the 147 system interrupts can be
connected to any of the IRQn. The NVIC takes care of
enabling/disabling individual interrupt [IRQs, priority
resolution, and communication with the CPU core. The other
exceptions such as NMI and hard faults are not shown in
Figure 8-1 because they are part of CPU core generated
events, unlike interrupts, which are generated by peripherals
external to the CPU.

In addition to the NVIC, the PSoC 6 MCU supports wakeup
interrupt controllers (WIC) and multiple synchronization
blocks. The WIC provides detection of Deep Sleep
interrupts in the Deep Sleep CPU power mode. Each CPU
can individually be in Deep Sleep mode; the device is said
to be in Deep Sleep mode only when both the CPUs are in
Deep Sleep mode. Refer to the Device Power
Modes chapter on page 204 for details. The Cortex-M4 WIC
block supports up to 41 interrupts that can wake up the CPU
from Deep Sleep power mode. The Cortex-M0+ WIC block
supports up to eight interrupts. The device exits Deep Sleep
mode (System Wakeup signal in Figure 8-1) as soon as one
CPU wakes up. The synchronization blocks synchronize the
interrupts to the CPU clock frequency as the peripheral
interrupts can be asynchronous to the CPU clock frequency.

8.3 Interrupts and Exceptions -

Operation

8.3.1

The following sequence of events occurs when an interrupt
or exception event is triggered:

1. Assuming that all the interrupt and exception signals are
initially low (idle or inactive state) and the processor is
executing the main code, a rising edge on any one of the
signals is registered by the NVIC, if the interrupt or
exception is enabled to be serviced by the CPU. The
signal is now in a pending state waiting to be serviced by
the CPU.

2. On detecting the signal from the NVIC, the CPU stores
its current context by pushing the contents of the CPU
registers onto the stack.

Interrupt/Exception Handling

3. The CPU also receives the exception number of the
triggered interrupt from the NVIC. All interrupts and
exceptions have a unique exception number, as given in
Table 8-1. By using this exception number, the CPU
fetches the address of the specific exception handler
from the vector table.

Interrupts

4. The CPU then branches to this address and executes
the exception handler that follows.

5. Upon completion of the exception handler, the CPU
registers are restored to their original state using stack
pop operations; the CPU resumes the main code
execution.

Figure 8-2. Interrupt Handling When Triggered

Rising Edge on Interrupt Line is
registered by the NVIC

A,

CPU detects the request signal
from NVIC and stores its
current context by pushing
contents onto the stack

A,

CPU receives exception
number of triggered interrupt
and fetches the address of the
specific exception handle from
vector table.

A,

CPU branches to the received
address and executes
exception handler

l

CPU registers are restored
using stack upon completion of
exception handler.

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the
highest priority interrupt to the CPU. Thus, a higher priority
interrupt can block the execution of a lower priority ISR at
any time.

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception
number, which is used by the CPU to execute the
appropriate exception handler.

8.3.2

Both CMO+ and CM4 NVICs support level and pulse signals
on the interrupt lines (IRQn). The classification of an
interrupt as level or pulse is based on the interrupt source.

Level and Pulse Interrupts

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 57

A

ws CYPRESS

~ammp> EMBEDDED IN TOMORROW

Figure 8-3. Level Interrupts

IRQN

CPU
Execution
State

Figure 8-4

[

«—IRQn is still high

. Pulse Interrupts

R

Figure 8-3 and Figure 8-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal
is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts:

8.3.3

Exception Vector Table

Interrupts

On a rising edge event of the interrupt signal, the NVIC

registers the interrupt request. The interrupt is now in the
pending state, which means the interrupt requests have
not yet been serviced by the CPU.

The NVIC then sends the exception number along with
the interrupt request signal to the CPU. When the CPU
starts executing the ISR, the pending state of the
interrupt is cleared.

For pulse interrupts, when the ISR is being executed by
the CPU, one or more rising edges of the interrupt signal
are logged as a single pending request. The pending
interrupt is serviced again after the current ISR
execution is complete (see Figure 8-4 for pulse
interrupts).

For level interrupts, if the interrupt signal is still high after
completing the ISR, it will be pending and the ISR is
executed again. Figure 8-3 illustrates this for level
triggered interrupts, where the ISR is executed as long
as the interrupt signal is high.

The exception vector tables (Table 8-1 and Table 8-2) store the entry point addresses for all exception handlers in Cortex-
MO+ and Cortex-M4 cores. The CPU fetches the appropriate address based on the exception number.

Table 8-1. MO+ Exception Vector Table

Exception Number

Exception

Exception Priority

Vector Address

Initial Stack Pointer Value

Not applicable (NA)

Start_Address = 0x0000 or CMOP_SCS_VTOR?

1 Reset -3, the highest priority | Start_Address + 0x04

2 Non Maskable Interrupt (NMI) |-2 Start_Address + 0x08

3 HardFault -1 Start_Address + 0x0C

4-10 Reserved NA Start_Address + 0x10 to Start_Address + 0x28
11 Supervisory Call (SVCall) Configurable (0 — 3) Start_Address + 0x2C

12-13 Reserved NA Start_Address + 0x30 to Start_Address + 0x34
14 PendSupervisory (PendSV) Configurable (0 — 3) Start_Address + 0x38

15 System Timer (SysTick) Configurable (0 — 3) Start_Address + 0x3C

16 External Interrupt (IRQO) Configurable (0 — 3) Start_Address + 0x40

Configurable (0 — 3)

47 External Interrupt (IRQ31) Configurable (0 — 3) Start_Address + 0xBC

a. Start Address = 0x0000 on reset and is later modified by firmware by updating the CMOP_SCS_VTOR register.

Table 8-2. Cortex-M4 Exception Vector Table

Exception Number

Exception

Exception Priority

Vector Address

Initial stack pointer value

Start_Address = 0x0000 or CM4_SCS_VTOR?

1 Reset -3, highest priority Start _Address + 0x0004
2 Non Maskable Interrupt (NMI) |-2 Start _Address + 0x0008
3 Hard fault -1 Start _Address + 0x000C
4 Memory management fault Configurable (0 —7) Start _Address + 0x0010
5 Bus fault Configurable (0 —7) Start _Address + 0x0014
6 Usage fault Configurable (0 —7) Start _Address + 0x0018
7-10 Reserved - -

11 Supervisory call (SVCall) Configurable (0 —7) Start _Address + 0x002C

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 58

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Table 8-2. Cortex-M4 Exception Vector Table (continued)

Interrupts

Exception Number Exception Exception Priority Vector Address
12-13 Reserved - -

14 Pend Supervisory (PendSV) Configurable (0 —7) Start _Address + 0x0038

15 System Tick timer (SysTick) Configurable (0 —7) Start _Address + 0x003C

16 External interrupt (IRQO) Configurable (0 —7) Start _Address + 0x0040

182 External interrupt (IRQ145) Configurable (0 —7) Start _Address + 0x0284

183 External interrupt (IRQ146) Configurable (0 —7) Start _Address + 0x0288

a. Start Address = 0x0000 on reset and is later modified by firmware by updating CM4_SCS_VTOR register.

In Table 8-1 and Table 8-2, the first word (4 bytes) is not
marked as exception number zero. This is because the first
word in the exception table is used to initialize the main
stack pointer (MSP) value on device reset; it is not
considered as an exception. In the PSoC 6 MCU, both the
vector tables can be configured to be located either in flash
memory or SRAM. The vector table offset register (VTOR)
present as part of Cortex-MO+ and Cortex-M4 system
control space registers configures the vector table offset
from the base address (0x0000). The CMOP_SCS_VTOR
register sets the vector offset address for the CM0O+ core
and CM4_SCS_VTOR sets the offset for the M4 core. The
VTOR value determines whether the vector table is in flash
memory (0x10000000 to 0x10100000) or SRAM
(0x08000000 to 0x08048000). Note that the VTOR registers
can be updated only in privilege CPU mode. The advantage
of moving the vector table to SRAM is that the exception
handler addresses can be dynamically changed by
modifying the SRAM vector table contents. However, the
nonvolatile flash memory vector table must be modified by a
flash memory write.

The exception sources (exception numbers 1 to 15) are
explained in 8.4 Exception Sources. The exceptions marked
as Reserved in Table 8-1 are not used, although they have
addresses reserved for them in the vector table. The
interrupt sources (exception numbers 16 to 162) are
explained in 8.5 Interrupt Sources.

8.4

This section explains the different exception sources listed
in Table 8-1 and Table 8-2 (exception numbers 1 to 15).

Exception Sources

8.4.1

Device reset is treated as an exception in PSoC 6 MCUs.
Reset exception is always enabled with a fixed priority of -3,
the highest priority exception in both the cores. When the
device boots up, only the Cortex-M0+ core is available. The
CMO+ core executes the ROM boot code and can enable
Cortex-M4 core from the application code. The reset
exception of the CMO+ core is tied to the device reset or
startup. When the Cortex-MO+ core releases the Cortex-M4
reset, the M4 reset exception is executed. A device reset

Reset Exception

can occur due to multiple reasons, such as power-on-reset
(POR), external reset signal on XRES pin, or watchdog
reset. When the device is reset, the initial boot code for
configuring the device is executed by the Cortex-M0+ out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the Cortex-M0+ code
execution jumps to flash memory. Flash memory address
0x10000004 (Exception#1 in Table 8-1) stores the location
of the startup code in flash memory. The CPU starts
executing code out of this address. Note that the reset
exception address in the SRAM vector table will never be
used because the device comes out of reset with the flash
vector table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is de-asserted. Note that the
reset exception flow for Cortex-M4 is the same as Cortex-
MO+. However, Cortex-M4 execution begins only after
CMO+ core de-asserts the M4 reset.

8.4.2

Non-maskable interrupt (NMI) is the highest priority
exception next to reset. It is always enabled with a fixed
priority of —2. Both the cores have their own NMI exception.
There are three ways to trigger an NMI exception in a CPU
core:

Non-Maskable Interrupt Exception

m NMI exception from a system interrupt: Both Cortex-
MO+ and Cortex-M4 provide an option to trigger an NMI
exception using one of the 147 system interrupts. The
NMI exception triggered due to the interrupt will execute
the NMI handler pointed to by the active vector table.
The CPUSS_CMx_NMI_CTL register selects the
interrupt source that triggers the NMI from hardware.
NMI is triggered when any of the four interrupts are
triggered; that is, the interrupts are logically ORed. See
Figure 8-5.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 59

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Interrupts

Figure 8-5. NMI Trigger

CPUSS_CM4_NMI_CTLx

CPUSS_CMOP_NMI_CTLx

Or

10\1\

B
----- INT Source 0---- n P—
System interrupt 1023’\}\
sources [T INT Source 1---)
T INT Source 2 " "J&E&W \’:Z> CM‘(‘):\‘M'
n<= A
(device E P B CMO+ NMI
dependent) H 1023}
--=INT Sourcé n-1---4 FR N S B

m NMI exception by setting NMIPENDSET bit (user NMI
exception): An NMI exception can be triggered in
software by setting the NMIPENDSET bit in the interrupt
control state registers (CMOP_SCS_ICSR and
CM4_SCS_ICSR). Setting this bit will execute the NMI
handler pointed to by the active vector table in the
respective CPU cores.

m System Call NMI exception: This exception is used for
nonvolatile programming and other system call
operations such as flash write operation and flash
checksum operation. Inter processor communication
(IPC) mechanism is used to implement a system call in
PSoC 6 MCUs. A dedicated IPC mailbox is associated
with each core (MO+ and M4) and the debug access port
(DAP) to trigger a system call. The CPU or DAP
acquires this dedicated mailbox, writes the system call
opcode and argument to the mailbox, and notifies a
dedicated IPC structure. Typically, the argument is a
pointer to a structure in SRAM. This results in an NMI
interrupt in the CMO+ core. Note that all the system calls
are serviced by Cortex-MO+ core. A Cortex-M0+ NMI
exception triggered by this method executes the NMI
exception handler code that resides in SROM. Note that
the NMI exception handler address is automatically
initialized to the system call API located in SROM (at
0x0000000D) by the boot code. The value should be
retained during vector table relocations; otherwise, no
system call will be executed. The NMI handler code in
SROM is not read/write accessible because it contains
nonvolatile programming routines that cannot be
modified by the user. The result of the system call is
passed through the same IPC mechanism. For details,
refer to the Inter-Processor Communication chapter on
page 40.

8.4.3

Both CM0+ and CM4 cores support HardFault exception.
HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of —1, meaning it has higher
priority than any exception with configurable priority. A
HardFault exception is a catch-all exception for different

HardFault Exception

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

types of fault conditions, which include executing an
undefined instruction and accessing an invalid memory
addresses. The CPU does not provide fault status
information to the HardFault exception handler, but it does
permit the handler to perform an exception return and
continue execution in cases where software has the ability
to recover from the fault situation.

8.4.4 Memory Management Fault

Exception

A memory management fault is an exception that occurs
because of a memory protection-related fault. The fixed
memory protection constraints determine this fault, for both
instruction and data memory transactions. This fault is
always used to abort instruction accesses to Execute Never
(XN) memory regions. The memory management fault is
only supported by the M4 core. The priority of the exception
is configurable from O (highest) to 7 (lowest).

8.4.5 Bus Fault Exception

A Bus Fault is an exception that occurs because of a
memory-related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in
the memory system. The bus fault is supported only by the
M4 core. The priority of the exception is configurable from 0
(highest) to 7 (lowest).

8.4.6

A Usage Fault is an exception that occurs because of a fault
related to instruction execution. This includes:

Usage Fault Exception

m an undefined instruction

m an illegal unaligned access

m invalid state on instruction execution

m an error on exception return

The following can cause a usage fault when the core is
configured to report them:

m an unaligned address on word and halfword memory
access

m division by zero

60

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

The usage fault is supported only by the M4 core. The
priority of the exception is configurable from 0 (highest) to 7
(lowest).

8.4.7 Supervisor Call (SVCall) Exception

Both CMO+ and CM4 cores support SVCall exception.
Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue an
SVCall that requires privileged access to the system.

The priority of an SVCall exception can be configured to a
value between 0 and 3 for CM0+ and 0 to 7 for CM4 core by
writing to the bitfields PRI_11 of the System Handler Priority
Register 2 (CMOP_SCS_SHPR2 and CM4_SCS_SHPR?2).
When the SVC instruction is executed, the SVCall exception
enters the pending state and waits to be serviced by the
CPU. The SVCALLPENDED bit in the System Handler
Control and State Register (CMOP_SCS_SHCSR and
CM4_SCS_SHCSR) can be used to check or modify the
pending status of the SVCall exception.

8.4.8 PendSupervisory (PendSV)

Exception

Both CMO+ and CM4 cores support PendSV exception.
PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable similar to
SVCall. The PendSV exception is triggered by setting the
PENDSVSET bit in the Interrupt Control State Register
(CMOP_SCS_ICSR and CM4_SCS_ICSR). On setting this
bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the
PENDSVCLR bit in the Interrupt Control State Register. The
priority of a PendSV exception can be configured to a value
between 0 and 3 for CMO+ and 0 to 7 for M4 by writing to the
bitfields PRI_14 of the System Handler Priority Register 3.
See the Armv6-M Architecture Reference Manual for more
details.

8.4.9 System Tick (SysTick) Exception

Both CMO0+ and CM4 cores in PSoC 6 MCUs support a
system timer, referred to as SysTick, as part of their internal
architecture. SysTick provides a simple, 24-bit decrementing
counter for various timekeeping purposes such as an RTOS
tick timer, high-speed alarm timer, or simple counter. The
SysTick timer can be configured to generate an interrupt
when its count value reaches zero, which is referred to as a
SysTick exception. The exception is enabled by setting the
TICKINT bit in the SysTick Control and Status Register
(CMOP_SCS_SYST_CSR and CM4_SCS_SYST_CSR).

Interrupts

The priority of a SysTick exception can be configured to a
value between 0 and 3 for CMO+ and 0 to 7 for M4 by writing
to the bitfields PRI_15 of the System Handler Priority
Register 3 (SHPR3). The SysTick exception can always be
generated in software at any instant by writing a one to the
PENDSTSET bit in the Interrupt Control State Register.
Similarly, the pending state of the SysTick exception can be
cleared by writing a one to the PENDSTCLR bit in the
Interrupt Control State Register.

8.5

The PSoC 6 MCU supports 147 interrupts from peripherals.
The source of each interrupt is listed in Table 8-3. These
system interrupts are mapped directly to Cortex-M4 core
(IRQO to IRQ146 or exception 16 to 162). For Cortex-MO+
core, any of the 147 interrupts can be routed to the available
32 interrupts (IRQO to IRQ31 or exception 16 to 47). The
CPUSS_CMO_INT_CTLx registers are used to make this
interrupt selection in CMO+.

Interrupt Sources

The interrupts include standard interrupts from the on-chip
peripherals such as TCPWM, serial communication block,
CSD block, watchdog, ADC, and so on. The interrupt
generated is usually the logical OR of the different
peripheral states. The peripheral interrupt status register
should be read in the ISR to detect which condition
generated the interrupt. These interrupts are usually level
interrupts. The appropriate interrupt registers should be
cleared in the ISR to deassert the interrupt. Usually a write
1" is required to clear the registers. If the interrupt register is
not cleared in the ISR, the interrupt will remain asserted and
the ISR will be executed continuously. See the 1/0
System chapter on page 240 for details on GPIO interrupts.

As seen from Table 8-3, 41 interrupts (IRQO to IRQ40) are
capable of waking up the device from Deep Sleep power
mode. For Cortex-M4, IRQO to IRQ40 directly map to these
sources. However, in the Cortex-M0+, only the first eight
IRQ lines support Deep Sleep wakeup. This means the 41
Deep Sleep wakeup-capable interrupts can be connected to
the first eight IRQ lines of Cortex-MO0+, if such a wakeup is
desired. Therefore, reserve and use the first eight IRQ lines
of Cortex-MO+ for Deep Sleep wakeup-capable sources.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 61

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

A

ws CYPRESS

WA EWEEIGED (N TOMORRAW Interrupts
Table 8-3. List of PSoC 6 MCU Interrupt Sources
System Interrupt Cortele\:Ij;IlE))::eption Power Mode Interrupt Source
NMI 2 Active Any of the below 147 IRQ source
IRQO 16 Deep Sleep GPIO Interrupt - Port 0
IRQ1 17 Deep Sleep GPIO Interrupt - Port 1
IRQ2 18 Deep Sleep GPIO Interrupt - Port 2
IRQ3 19 Deep Sleep GPIO Interrupt - Port 3
IRQ4 20 Deep Sleep GPIO Interrupt - Port 4
IRQ5 21 Deep Sleep GPIO Interrupt - Port 5
IRQ6 22 Deep Sleep GPIO Interrupt - Port 6
IRQ7 23 Deep Sleep GPIO Interrupt - Port 7
IRQ8 24 Deep Sleep GPIO Interrupt - Port 8
IRQ9 25 Deep Sleep GPIO Interrupt - Port 9
IRQ10 26 Deep Sleep GPIO Interrupt - Port 10
IRQ11 27 Deep Sleep GPIO Interrupt - Port 11
IRQ12 28 Deep Sleep GPIO Interrupt - Port 12
IRQ13 29 Deep Sleep GPIO Interrupt - Port 13
IRQ14 30 Deep Sleep GPIO Interrupt - Port 14
IRQ15 31 Deep Sleep GPIO All Ports
IRQ16 32 Deep Sleep GPIO Supply Detect Interrupt
IRQ17 33 Deep Sleep Low-Power Comparator Interrupt
IRQ18 34 Deep Sleep Serial Communication Block #8 Interrupt
IRQ19 35 Deep Sleep Multi-Counter Watchdog Timer (MCWDTO) Interrupt
IRQ20 36 Reserved
IRQ21 37 Deep Sleep Real-Time-Clock (Backup domain) Interrupt
IRQ22 38 Deep Sleep LVD and WDT Interrupt
IRQ23 39 Deep Sleep Continuous Time block (CTBm) Interrupt
IRQ24 40 Deep Sleep
IRQ25 41 Deep Sleep CPUSS Inter Process Communication Interrupt #0
IRQ26 42 Deep Sleep CPUSS Inter Process Communication Interrupt #1
IRQ27 43 Deep Sleep CPUSS Inter Process Communication Interrupt #2
IRQ28 44 Deep Sleep CPUSS Inter Process Communication Interrupt #3
IRQ29 45 Deep Sleep CPUSS Inter Process Communication Interrupt #4
IRQ30 46 Deep Sleep CPUSS Inter Process Communication Interrupt #5
IRQ31 47 Deep Sleep CPUSS Inter Process Communication Interrupt #6
IRQ32 47 Deep Sleep CPUSS Inter Process Communication Interrupt #7
IRQ33 48 Deep Sleep CPUSS Inter Process Communication Interrupt #8
IRQ34 49 Deep Sleep CPUSS Inter Process Communication Interrupt #9
IRQ35 50 Deep Sleep CPUSS Inter Process Communication Interrupt #10
IRQ36 51 Deep Sleep CPUSS Inter Process Communication Interrupt #11
IRQ37 52 Deep Sleep CPUSS Inter Process Communication Interrupt #12
IRQ38 53 Deep Sleep CPUSS Inter Process Communication Interrupt #13
IRQ39 54 Deep Sleep CPUSS Inter Process Communication Interrupt #14
IRQ40 55 Deep Sleep CPUSS Inter Process Communication Interrupt #15
IRQ41 56 Deep Sleep CPUSS Inter Process Communication Interrupt #16
IRQ42 57 Active Serial Communication Block #0
PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 62

A

ws CYPRESS

WA EWEEIGED (N TOMORRAW Interrupts

Table 8-3. List of PSoC 6 MCU Interrupt Sources (continued)
System Interrupt Cortele\:Ij;IlE))::eption Power Mode Interrupt Source
IRQ43 58 Active Serial Communication Block #1
IRQ44 59 Active Serial Communication Block #2
IRQ45 60 Active Serial Communication Block #3
IRQ46 61 Active Serial Communication Block #4
IRQ47 62 Active Serial Communication Block #5
IRQ48 63 Active Serial Communication Block #6
IRQ49 64 Active Serial Communication Block #7
IRQ50 65 Active CapSense interrupt

IRQ51 66 Active CPUSS DataWire #0, Channel #0
IRQ52 67 Active CPUSS DataWire #0, Channel #1
IRQ53 68 Active CPUSS DataWire #0, Channel #2
IRQ54 69 Active CPUSS DataWire #0, Channel #3
IRQ55 70 Active CPUSS DataWire #0, Channel #4
IRQ56 71 Active CPUSS DataWire #0, Channel #5
IRQ57 72 Active CPUSS DataWire #0, Channel #6
IRQ58 73 Active CPUSS DataWire #0, Channel #7
IRQ59 74 Active CPUSS DataWire #0, Channel #8
IRQ60 75 Active CPUSS DataWire #0, Channel #9
IRQ61 76 Active CPUSS DataWire #0, Channel #10
IRQ62 77 Active CPUSS DataWire #0, Channel #11
IRQ63 78 Active CPUSS DataWire #0, Channel #12
IRQ64 79 Active CPUSS DataWire #0, Channel #13
IRQ65 80 Active CPUSS DataWire #0, Channel #14
IRQ66 81 Active CPUSS DataWire #0, Channel #15
IRQ67 82 Active CPUSS DataWire #1, Channel #0
IRQ68 83 Active CPUSS DataWire #1, Channel #1
IRQ69 84 Active CPUSS DataWire #1, Channel #2
IRQ70 85 Active CPUSS DataWire #1, Channel #3
IRQ71 86 Active CPUSS DataWire #1, Channel #4
IRQ72 87 Active CPUSS DataWire #1, Channel #5
IRQ73 88 Active CPUSS DataWire #1, Channel #6
IRQ74 89 Active CPUSS DataWire #1, Channel #7
IRQ75 90 Active CPUSS DataWire #1, Channel #8
IRQ76 91 Active CPUSS DataWire #1, Channel #9
IRQ77 92 Active CPUSS DataWire #1, Channel #10
IRQ78 93 Active CPUSS DataWire #1, Channel #11
IRQ79 94 Active CPUSS DataWire #1, Channel #12
IRQ80 95 Active CPUSS DataWire #1, Channel #13
IRQ81 96 Active CPUSS DataWire #1, Channel #14
IRQ82 97 Active CPUSS DataWire #1, Channel #15
IRQ83 98 Active CPUSS Fault Structure Interrupt #0
IRQ84 99 Active CPUSS Fault Structure Interrupt #1
IRQ85 100 Active Crypto Accelerator Interrupt

IRQ86 101 Active Flash Macro Interrupt

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 63

A

ws CYPRESS

WA EWEEIGED (N TOMORRAW Interrupts
Table 8-3. List of PSoC 6 MCU Interrupt Sources (continued)
System Interrupt Cortele\:Ij;IlE))::eption Power Mode Interrupt Source
IRQ87 102 Active Cortex-M0+ CTI #0
IRQ88 103 Active Cortex-M0+ CTI #1
IRQ89 104 Active Cortex-M4 CTI #0
IRQ90 105 Active Cortex-M4 CTI #1
IRQ91 106 Active TCPWM #0 (32-bit), Counter #0
IRQ92 107 Active TCPWM #0 (32-bit), Counter #1
IRQ93 108 Active TCPWM #0 (32-bit), Counter #2
IRQ94 109 Active TCPWM #0 (32-bit), Counter #3
IRQ95 110 Active TCPWM #0 (32-bit), Counter #4
IRQ96 111 Active TCPWM #0 (32-bit), Counter #5
IRQ97 112 Active TCPWM #0 (32-bit), Counter #6
IRQ98 113 Active TCPWM #0 (32-bit), Counter #7
IRQ99 114 Active TCPWM #1 (16-bit), Counter #0
IRQ100 115 Active TCPWM #1 (16-bit), Counter #1
IRQ101 116 Active TCPWM #1 (16-bit), Counter #2
IRQ102 117 Active TCPWM #1 (16-bit), Counter #3
IRQ103 118 Active TCPWM #1 (16-bit), Counter #4
IRQ104 119 Active TCPWM #1 (16-bit), Counter #5
IRQ105 120 Active TCPWM #1 (16-bit), Counter #6
IRQ106 121 Active TCPWM #1 (16-bit), Counter #7
IRQ107 122 Active TCPWM #1 (16-bit), Counter #8
IRQ108 123 Active TCPWM #1 (16-bit), Counter #9
IRQ109 124 Active TCPWM #1 (16-bit), Counter #10
IRQ110 125 Active TCPWM #1 (16-bit), Counter #11
IRQ111 126 Active TCPWM #1 (16-bit), Counter #12
IRQ112 127 Active TCPWM #1 (16-bit), Counter #13
IRQ113 128 Active TCPWM #1 (16-bit), Counter #14
IRQ114 129 Active TCPWM #1 (16-bit), Counter #15
IRQ115 130 Active TCPWM #1 (16-bit), Counter #16
IRQ116 131 Active TCPWM #1 (16-bit), Counter #17
IRQ117 132 Active TCPWM #1 (16-bit), Counter #18
IRQ118 133 Active TCPWM #1 (16-bit), Counter #19
IRQ119 134 Active TCPWM #1 (16-bit), Counter #20
IRQ120 135 Active TCPWM #1 (16-bit), Counter #21
IRQ121 136 Active TCPWM #1 (16-bit), Counter #22
IRQ122 137 Active TCPWM #1 (16-bit), Counter #23
IRQ123 138 Active UDB Interrupt #0
IRQ124 139 Active UDB Interrupt #1
IRQ125 140 Active UDB Interrupt #2
IRQ126 141 Active UDB Interrupt #3
IRQ127 142 Active UDB Interrupt #4
IRQ128 143 Active UDB Interrupt #5
IRQ129 144 Active UDB Interrupt #6
IRQ130 145 Active UDB Interrupt #7
PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 64

A

ws CYPRESS

WA EWEEIGED (N TOMORRAW Interrupts
Table 8-3. List of PSoC 6 MCU Interrupt Sources (continued)

System Interrupt Cortele\:Ij;IlE))::eption Power Mode Interrupt Source
IRQ131 146 Active UDB Interrupt #8

IRQ132 147 Active UDB Interrupt #9

IRQ133 148 Active UDB Interrupt #10

IRQ134 149 Active UDB Interrupt #11

IRQ135 150 Active UDB Interrupt #12

IRQ136 151 Active UDB Interrupt #13

IRQ137 152 Active UDB Interrupt #14

IRQ138 153 Active UDB Interrupt #15

IRQ139 154 Active SAR ADC Interrupt

IRQ140 155 Active 12S Audio Interrupt

IRQ141 156 Active PDM/PCM Audio Interrupt

IRQ142 157 Active Profiler Interrupt

IRQ143 158 Active Serial Memory Interface Interrupt

IRQ144 159 Active USB Interrupt (High)

IRQ145 160 Active USB Interrupt (Medium)

IRQ146 161 Active USB Interrupt (Low)

IRQ147 162 Active CTDAC Interrupt
PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 65

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

8.6

Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. Both M4 and MO+ cores in PSoC 6 MCUs provide
flexibility in choosing priority values for different exceptions.
All exceptions other than Reset, NMI, and HardFault can be
assigned a configurable priority level. The Reset, NMI, and
HardFault exceptions have a fixed priority of -3, -2, and -1,
respectively. In PSoC 6 MCUs, lower priority numbers
represent higher priorities. This means that the Reset, NMI,
and HardFault exceptions have the highest priorities. The
other exceptions can be assigned a configurable priority
level between 0 and 3 for Cortex-MO+ and 0 to 7 for Cortex-
M4.

Interrupt/Exception Priority

Both MO+ and M4 support nested exceptions in which a
higher priority exception can obstruct (interrupt) the
currently active exception handler. This pre-emption does
not happen if the incoming exception priority is the same as
or lower than the active exception. The CPU resumes
execution of the lower priority exception handler after
servicing the higher priority exception. The CMO+ core in the
PSoC 6 MCU allows nesting of up to four exceptions; the
CM4 core allows up to eight exceptions. When the CPU
receives two or more exceptions requests of the same
priority, the lowest exception number is serviced first.

The registers to configure the priority of exception numbers
1 to 15 are explained in Exception Sources on page 59.

The priority of the 32 CM0+ and 147 CM4 interrupts can be
configured by writing to the respective Interrupt Priority
registers (CMOP_SCS_IPR and CM4_SCS_IPR). This is a
group of eight (CM0+) and 60 (CM4) 32-bit registers with
each register storing the priority values of four interrupts, as
given in Table 8-4 and Table 8-5.

Table 8-4. Interrupt Priority Register Bit Definitions for
Cortex-M0+ (CMOP_SCS_IPR)

Interrupts

8.7 Enabling and Disabling

Interrupts

The NVICs of both CM0+ andCM4 core provide registers to
individually enable and disable the interrupts in software. If
an interrupt is not enabled, the NVIC will not process the
interrupt requests on that interrupt line. The Interrupt Set-
Enable Register (CMOP_SCS_ISER and CM4_SCS_ISER)
and the Interrupt Clear-Enable Register (CMOP_SCS_ICER
and CM4_SCS_ICER) are used to enable and disable the
interrupts respectively. These registers are 32-bit wide and
each bit corresponds to the same numbered interrupt in
CMO+. For CM4 core, there are eight ISER/ICER registers.
These registers can also be read in software to get the
enable status of the interrupts. Table 8-6 shows the register
access properties for these two registers. Note that writing
zero to these registers has no effect.

Table 8-6. Interrupt Enable/Disable Registers

Register Operation | Bit Value Comment
1 T le the i
Write 0 enable the interrupt
Interrupt Set 0 No effect
Enable Register Read 1 Interrupt is enabled
0 Interrupt is disabled
Write 1 To disable the interrupt
Interrupt Clear 0 No effect
Enable Register Read 1 Interrupt is enabled
0 Interrupt is disabled

Bits Name Description
7:6 PRI_NO Priority of interrupt number N.
15:14 PRI_N1 Priority of interrupt number N+1.
23:22 PRI_N2 Priority of interrupt number N+2.
31:30 PRI_N3 Priority of interrupt number N+3.

Table 8-5. Interrupt Priority Register Bit definitions for
Cortex-M4 (CM4_SCS_IPR)

Bits Name Description
75 PRI_NO Priority of interrupt number N
15:13 PRI_N1 Priority of interrupt number N+1
23:21 PRI_N2 Priority of interrupt number N+2
31:29 PRI_N3 Priority of interrupt number N+3

The ISER and ICER registers are applicable only for the
interrupts. These registers cannot be used to enable or
disable the exception numbers 1 to 15. The 15 exceptions
have their own support for enabling and disabling, as
explained in Exception Sources on page 59.

The PRIMASK register in the CPUs (both CMO+ and CM4)
can be used as a global exception enable register to mask
all the configurable priority exceptions irrespective of
whether they are enabled. Configurable priority exceptions
include all the exceptions except Reset, NMI, and HardFault
listed in Table 8-1. When the PM bit (bit 0) in the PRIMASK
register is set, none of the configurable priority exceptions
can be serviced by the CPU, though they can be in the
pending state waiting to be serviced by the CPU after the
PM bit is cleared.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 66

o CYPRESS

~mg> EMBEDDED IN TOMORROW Interrupts

8.8 Interrupt/Exception States
Each exception can be in one of the following states.

Table 8-7. Exception States

Exception State Meaning
Inactive The exception is not active and not pending. Either the exception is disabled or the enabled exception has not been
triggered.
Pending The exception request has been received by the CPU/NVIC and the exception is waiting to be serviced by the CPU.
An exception that is being serviced by the CPU but whose exception handler execution is not yet complete. A high-
Active priority exception can interrupt the execution of lower priority exception. In this case, both the exceptions are in the

active state.

The exception is being serviced by the processor and there is a pending request from the same source during its

Active and Pending exception handler execution.

The Interrupt Control State Register (CMOP_SCS_ICSR and CM4_SCS_ICSR) contains status bits describing the various
exceptions states.

m The VECTACTIVE bits ([8:0]) in the ICSR store the exception number for the current executing exception. This value is
zero if the CPU does not execute any exception handler (CPU is in thread mode). Note that the value in VECTACTIVE
bitfields is the same as the value in bits [8:0] of the Interrupt Program Status Register (IPSR), which is also used to store
the active exception number.

m The VECTPENDING bits ([20:12]) in the ICSR store the exception number of the highest priority pending exception. This
value is zero if there are no pending exceptions.

m The ISRPENDING bit (bit 22) in the ICSR indicates if a NVIC generated interrupt is in a pending state.

8.8.1

When a peripheral generates an interrupt request signal to the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts executing the corresponding exception handler routine, the
exception is changed from the pending state to the active state. The NVIC allows software pending of the 32 (CM0+) or 147
(CM4) interrupt lines by providing separate register bits for setting and clearing the pending states of the interrupts. The
Interrupt Set-Pending register (CMOP_SCS_ISPR and CM4_SCS_ISPR) and the Interrupt Clear-Pending register
(CMOP_SCS_ICPR and CM4_SCS_ICPR) are used to set and clear the pending status of the interrupt lines. These registers
are 32 bits wide, and each bit corresponds to the same numbered interrupt. In the case of CM4, there are eight sets of such
registers to accommodate all 147 interrupts. Table 8-8 shows the register access properties for these two registers. Note that
writing zero to these registers has no effect.

Pending Interrupts/Exceptions

Table 8-8. Interrupt Set Pending/Clear Pending Registers

Register Operation Bit Value Comment
. 1 To put an interrupt to pending state
Write
Interrupt Set-Pending Register 0 No effect
(ISPR) 1 Interrupt is pending
Read
0 Interrupt is not pending
) 1 To clear a pending interrupt
Write
Interrupt Clear-Pending Register 0 No effect
(ICPR) 1 Interrupt is pending
Read - -
0 Interrupt is not pending

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the ISER register.

Note that the ISPR and ICPR registers are used only for the
peripheral interrupts. These registers cannot be used for
pending the exception numbers 1 to 15. These 15
exceptions have their own support for pending, as explained
in Exception Sources on page 59.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 67

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

8.9 Stack Usage for Interrupts/

Exceptions

When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and RO0. Both
Cortex-M4 and Cortex-M0O+ have two stack pointers - MSP
and PSP. Only one of the stack pointers can be active at a
time. When in thread mode, the Active Stack Pointer bit in
the Control register is used to define the current active stack
pointer. When in handler mode, the MSP is always used as
the stack pointer. The stack pointer always grows
downwards and points to the address that has the last
pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the
control register to store the general-purpose register
contents. After the stack push operations, the CPU enters
handler mode to execute the exception handler. When
another higher priority exception occurs while executing the
current exception, the MSP is used for stack push/pop
operations, because the CPU is already in handler mode.
See the CPU Subsystem (CPUSS) chapter on page 31 for
details.

8.10 Interrupts and Low-Power

Modes

The PSoC 6 MCU family allows device (CPU) wakeup from
low-power modes when certain peripheral interrupt requests
are generated. The Wakeup Interrupt Controller (WIC) block
generates a wakeup signal that causes the CPU to enter
Active mode when one or more wakeup sources generate
an interrupt signal. After entering Active mode, the ISR of
the peripheral interrupt is executed.

The Wait For Interrupt (WFI) or Wait For Event (WFE)
instruction, executed by the CPU, triggers the transition into
Sleep, and Deep Sleep modes. Both the WFI and WFE
instructions are capable of waking up on interrupts.
However, the WFE requires the interrupts to be unmasked in
the CPU’s Priority Mask register. Refer to the PRIMASK
register definition on the Arm website. In addition, the WFE
instruction puts the CPU to sleep based on the status of an
event bit and wakes up from an event signal, typically sent
by the other CPU. WFI does not require PRIMASK
unmasking and can wake up the CPU from any pending
interrupt masked to the NVIC or WIC. However, WFI cannot
wake up the CPU from event signals from other CPUs. The
sequence of entering the different low-power modes is
detailed in the Device Power Modes chapter on page 204.

Interrupts

Chip low-power modes have two categories of interrupt
sources:

m Interrupt sources that are available in the Active, Sleep,
and Deep Sleep modes (watchdog timer interrupt, RTC,
GPIO interrupts, and Low-Power comparators)

m Interrupt sources that are available only in the Active and
Sleep modes

When using the WFE instruction in CM4, make sure to call
the WFE instruction twice to properly enter and exit Sleep/
Deep Sleep modes. This behavior comes from the event
register implementation in Arm v7 architecture used in
Cortex-M4. According to the ARM V7 architecture reference
manual (Section B1.5.18 Wait For Event and Send Event):

m Areset clears the event register.

m Any WFE wakeup event, or the execution of an
exception return instruction, sets the event register.

A WFE instruction clears the event register.

m Software cannot read or write the value of the event
register directly.

Therefore, the first WFE instruction puts CM4 to sleep and
second WFE clears the event register after a WFE wakeup,
which sets the event register. So the next WFE will put the
core to sleep.

Note that this behavior is not present in Arm v6 architecture
used in Cortex-M0+. Therefore, in CMO+ only one WFE
instruction is sufficient to successfully enter or exit Sleep
and Deep Sleep modes.

8.11 Interrupt/Exception —

Initialization/ Configuration

This section covers the different steps involved in initializing
and configuring exceptions in the PSoC 6 MCU.

1. Configuring the Exception Vector Table Location: The
first step in using exceptions is to configure the vector
table location as required - either in flash memory or
SRAM. This configuration is done as described in
Exception Vector Table on page 58.

The vector table should be available in SRAM if the
application must change the vector addresses
dynamically. If the table is located in flash, then a flash
write operation is required to modify the vector table
contents. The ModusToolbox IDE uses the vector table
in SRAM by default.

2. Configuring Individual Exceptions: The next step is to
configure individual exceptions required in an
application, as explained in earlier sections.

a. Configure the exception or interrupt source; this
includes setting up the interrupt generation
conditions. The register configuration depends on
the specific exception required. Refer to the
respective peripheral chapter to know more about
the interrupt configuration supported by them.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 68

http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/CHDBIBGJ.html#BABCHBFJ

o CYPRESS

g EMBEDDED IN TOMORROW

b. Define the exception handler function and write the
address of the function to the exception vector table.
Table 8-1 gives the exception vector table format; the
exception handler address should be written to the
appropriate exception number entry in the table.

8.12 Register List

Interrupts

Set up the exception priority, as explained in
Interrupt/Exception Priority on page 66.

Enable the exception, as explained in Enabling and
Disabling Interrupts on page 66.

Table 8-9. Register List

Register Name

Description

CPUSS_CMO_NMI_CTL

Cortex-M0+ NMI control register

CPUSS_CMO_INT_CTLO

Cortex-MO+ interrupt control O register

CPUSS_CMO_INT_CTL1

Cortex-MO+ interrupt control 1 register

CPUSS_CMO_INT_CTL2

Cortex-MO+ interrupt control 2

CPUSS_CMO_INT_CTL3

Cortex-MO+ interrupt control 3

CPUSS_CMO_INT_CTL4

Cortex-MO+ interrupt control 4

CPUSS_CMO_INT_CTL5

Cortex-MO+ interrupt control 5

CPUSS_CMO_INT_CTL6

Cortex-MO+ interrupt control 6

CPUSS_CMO_INT_CTL7

Cortex-MO+ interrupt control 7

CPUSS_CM4_NMI_CTL

Cortex-M4 NMI control register

SYSTEM_CMOP_SCS_ISER

Cortex-MO+ interrupt set-enable register

SYSTEM_CMOP_SCS_ICER

Cortex-MO+ interrupt clear enable register

SYSTEM_CMOP_SCS_ISPR

Cortex-MO+ interrupt set-pending register

SYSTEM_CMOP_SCS_ICPR

Cortex-MO+ interrupt clear-pending register

SYSTEM_CMOP_SCS_IPR

Cortex-MO+ interrupt priority register

SYSTEM_CMOP_SCS_ICSR

Cortex-MO+ interrupt control state register

SYSTEM_CMOP_SCS_VTOR

Cortex-MO+ vector table offset register

SYSTEM_CMOP_SCS_AIRCR

Cortex-MO+ application interrupt and reset control register

SYSTEM_CMOP_SCS_SHPR2

Cortex-M0+ system handler priority register 2

SYSTEM_CMOP_SCS_SHPR3

Cortex-M0+ system handler priority register 3

SYSTEM_CMOP_SCS_SHCSR

Cortex-M0+ system handler control and state register

SYSTEM_CM4_SCS_ISER

Cortex-M4 interrupt set-enable register

SYSTEM_CM4_SCS_ICER

Cortex-M4 interrupt clear enable register

SYSTEM_CM4_SCS_ISPR

Cortex-M4 interrupt set-pending register

SYSTEM_CM4_SCS_ICPR

Cortex-M4 interrupt clear-pending register

SYSTEM_CM4_SCS_IPR

Cortex-M4 interrupt priority registers

SYSTEM_CM4_SCS_ICSR

Cortex-M4 interrupt control state register

SYSTEM_CM4_SCS_VTOR

Cortex-M4 vector table offset register

SYSTEM_CM4_SCS_AIRCR

Cortex-M4 application interrupt and reset control register

SYSTEM_CM4_SCS_SHPR2

Cortex-M4 system handler priority register 2

SYSTEM_CM4_SCS_SHPR3

Cortex-M4 system handler priority register 3

SYSTEM_CM4_SCS_SHCSR

Cortex-M4 system handler control and state register

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

69

9. Protection Units

& CYPRESS

> EMBEDDED IN TOMORROW"

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

Protection units are implemented in the PSoC 6 MCU to enforce security based on different operations. A protection unit
allows or restricts bus transfers. The rules are enforced based on specific properties of a transfer. The rules that determine
protection are implemented in protection structures (a register structure). A protection structure defines the protected address
space and the protection attributes. The hardware that evaluates these protection structures, to restrict or permit access, is
the protection unit. The PSoC device has different types of protection units such as MPU, SMPU, and PPU. Each have a
distinct set of protection structures, which helps define different protection regions and their attributes.

9.1 Architecture

Figure 9-1 shows a conceptual view of implementation of the PSoC protection system.

Figure 9-1. Conceptual View of PSoC Protection System

Bus Masters
Test
CPU1 CPU2 | « =« =« = DMA
_Controller
Bus Master’s. Bus Master’s. Bus Master’s. Bus Master’s
Protection Protection Protection Protection
Attribute Attribute Attribute Attribute
\
Sets rules to
Protection check against
Unit
\/
MFIash SRAM I,\E/Ixternal ... Plslrlpheral Protection
emory emory emory Structures|
L
PSoC 6 Memory Map -

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 70

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

The functioning of a secure system is based on the
following:

m Bus masters: This term refers to the bus masters in the
architecture. In a PSoC 6 device, an example of a bus
master is a Cortex-M core, DMA, or a test controller.

m Protection units: Protection units are the hardware
engines that enforce the protection defined by protection
structures. There are three types of protection units,
acting at different levels of memory access with different
precedence and priority of protection — MPU, SMPU,
and PPU.

m Protection structure: A protection structure is a register
structure in memory that sets up the rules based on
which each protection unit will evaluate a transfer. Each
protection unit associates itself to multiple protection
structures. The protection structure associated with a
protection unit are evaluated in the order starting with
the protection structure with the largest index. For
example, if there are 16 protection structures associated
with a protection unit, then the evaluation of a transfer
starts from protection structure 15 and counts down.
Physically a protection structure is a register structure in
the memory map that defines a protection rule. Each
protection structure constitutes the following:

o Defines a memory region on which the rule is
applied. It designates what the bus transfer needs to
be evaluated against this protection structure.

- Base address
- Size of memory block
o Aset of protection attributes
- RIW/IX
- User/privilege
- Secure/non Secure
- Protection context

m Protection attributes: These are properties based on
which a transfer is evaluated. There are multiple
protection attributes. The set of protection attributes
available for a protection structure depends on the
protection unit it is associated with. Protection attributes
appear in two places:

o Protection structures: Protection attributes associ-
ated with a protection structure set the rules for
access based on these attributes.

o Bus master's protection attribute: Each bus master
has its own access attributes, which define the bus
master's access privileges. Some of these attributes,
such as secure/non-secure, are set for a master.
Other attributes such as protection context and user/
privilege attribute are dynamic attributes, which
change based on bus master's context and state.

In summary, a PSoC 6 device has protection units that act
as a gate for any access to the PSoC memory map. The
rules for protection are set by the protection structures.

Protection Units

Each bus master is qualified by its own protection attribute.
For every bus transfer, the protection unit compares the bus
master's protection attribute and accessed address against
the rules set in the protection structures and decides on
providing or denying access.

9.2 PSoC 6 Protection

Architecture

When there is a memory (SRAM/flash/peripheral) access by
a bus master, the access is evaluated by a protection unit
against the protection attributes set in protection structures
for the memory location being accessed. If the bus master’s
protection attributes satisfy the protection attributes set in
the protection structures, then access is allowed by the
protection unit. If there is an access restriction, a fault
condition is triggered and a bus error occurs. Thus
protection units secure bus transfer address range either in
memory locations (SRAM/flash) or peripheral registers.
From an architectural perspective, there is no difference
between memory protection and peripheral protection.
However, from an implementation perspective, separate
memory and peripheral protection is provided.

Two types of protection units, memory protection units
(MPU) and shared memory protection units (SMPU), are
provided in the CPU subsystem (CPUSS) to protect memory
locations. A separate protection unit type is provided for
peripheral protection (PPU) in the PERI:

m Abus master may have a dedicated MPU. In a CPU bus
master, the MPU is typically implemented as part of the
CPU and is under control of the OS/kernel. In a non-
CPU bus master, the MPU is typically implemented as
part of the bus infrastructure and under control of the
OS/kernel of the CPU that “owns or uses” the bus
master. If a CPU switches tasks or if a non-CPU
switches ownership, the MPU settings are typically
updated by OS/kernel software. The different MPU types
are:

a An MPU that is implemented as part of the CPU. This
type is found in the Arm CM0+ and CM4 CPUs.

o An MPU that is implemented as part of the bus infra-
structure. This type is found in bus masters such as
crypto and test controller. The definition of this MPU
type follows the Arm MPU definition (in terms of
memory region and access attribute definition) to
ensure a consistent software interface.

m SMPUs are intended for implementing protection in a
situation with multiple bus masters. These protection
units implement a concept called Protection Context. A
protection context is a pseudo state of a bus master,
which can be used to determine access attributes across
multiple masters. The protection context is a protection
attribute not specific to a bus master.The SMPUs can
distinguish between different protection contexts; they
can also distinguish secure from non-secure accesses.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 71

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

This allows for an effective protection in a multi-core
scenario.

m PPUs are protection units provided in the PERI register
space for peripheral protection. The PPU attributes are
similar to the SMPU, except that they are intended for
protecting the peripheral space. Refer to the registers
TRM for details. The PPUs are intended to distinguish
between different protection contexts and to distinguish
secure from non-secure accesses and user mode
accesses from privileged mode accesses. There are two
types of PPU structures.

o Fixed PPUs implement protection for fixed address
regions that typically correspond to a specific periph-
eral

o Programmable PPUs allows the user to program the
address region to be protected

The platform’s DMA controller does not have an MPU.
Instead, a DMA controller channel inherits the access
control attributes of the bus transfer that programmed the
channel.

The definition of SMPU and PPU follows the MPU definition
and adds the capability to distinguish accesses from
different protection contexts (the MPU does not include
support for a protection context). If security is required, the
SMPU and possibly PPUs MMIO registers must be
controlled by a secure CPU that enforces system-wide
protection.

Figure 9-2 gives an overview of the location of MPUs,
SMPUs, and PPUs in the system. Note that a peripheral
group PPU needs to provide access control only to the
peripherals within a peripheral group (group of peripherals
with a shared bus infrastructure).

As mentioned, the MPU, SMPU, and PPU protection
functionality follows the Arm MPU definition:

m Multiple protection structures are supported.

m Each structure specifies an address range in the unified
memory architecture and access attributes. An address
range can be as small as 32 bytes.

A protection violation is caused by a mismatch between a
bus master’'s access attributes and the protection structure
and access attributes for the memory region configured in
the protection structure.

A bus transfer that violates a protection structure results in a
bus error.

For AXI transfers, the complete address range is matched. If
a transfer references multiple 32-byte regions (the smallest
protection structure address range is 32 bytes), multiple
cycles are required for matching — one cycle per 32-byte
region.

Protection violations are captured in the fault report
structure to allow for failure analysis. The fault report
structures can generate an interrupt to indicate the

Protection Units

occurrence of a fault. This is useful if the violating bus
master cannot resolve the bus error by itself, but requires
another CPU bus master to resolve the bus error on its
behalf.

For a buffered mode of transfer
(CPUSS_BUFF_CTL[WRITE_BUFF]), the behavior during
protection violation is different. When

CPUSS_BUFF_CTL[WRITE_BUFF] is set to ‘1°, the write
transfers on the bus are buffered. So the transfer is first
acknowledged when the buffer receives the transfer. A
protection violation will be only evaluated when the actual
write happens at the destination register. This leads to the
write transfer not generating a bus error for buffered mode.
However, a fault will be registered as soon as the transfer
tries to write the destination location. Therefore, for buffered
writes, the user must verify the fault structure to make sure
no violations have occurred.

A protection violation results in a bus error and the bus
transfer will not reach its target. An MPU or SMPU violation
that targets a peripheral will not reach the associated
protection evaluation (PPU). In other words, MPU and
SMPU have a higher priority over PPU.

Protection unit addresses the following:

m Security requirements. This includes prevention of
malicious attacks to access secure memory or
peripherals. For example, a non-secure master should
not be able to access key information in a secure
memory region.

m Safety requirements. This includes detection of
accidental (non-malicious) software errors and random
hardware errors. Enabling failure analysis is important
so the root cause of a safety violation can be
investigated. For example, analyzing a flash memory
failure on a device that is returned from the field should
be possible.

To address security requirements, the Cortex MO+ is used
as a ‘secure CPU'’. This CPU is considered a trusted entity.
Any access by the CPU tagged as “secure” will be called
“secure access”.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 72

http://www.cypress.com/trm220777
http://www.cypress.com/trm220777
http://www.cypress.com/trm220777

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Figure 9-2. PSoC 6 Protection Architecture

Bus Masters

DMA Test
CMO+ CM4 Crypto (Datawire)| |Controller
[AmMPU [Am MPU
T 1 5 A H

Flash SRAM
I t i AHB. I
PPU PPU PPU
A A A
y Y A
GPIO Fixed Programmable
Function Analog and Digital
Blocks Blocks

The different types of protection units cater to different use cases for protection.

Table 9-1. Protection Use Cases

MPU: Memory Protection Unit
SMPU: Shared Memory Protection Unit
PPU: Peripheral Protection Unit

Protection Units

Protection Unit Type

Use

Used to protect memory between tasks within in a single Arm core. A task in one of the Arm cores can

Arm MPU protect its memory from access by another task in the same core.

MPU Same as the Arm MPU, but for other bus masters such as the test controller or crypto, which do not have a
built-in MPU in their block IP.

SMPU Used to protect memory addresses that are shared between multiple bus masters.

Fixed PPU protection These protect specific peripheral memory space. The protection structures have a preprogrammed memory

structures region and can be used only to protect the peripheral it was intended for.

Programmable PPU

protection structures

These protect the peripheral space but the memory region is not fixed. So users can easily program it to

protect any space in the peripheral memory region.

9.3 Register Architecture

The protection architecture has different conceptual pieces and different sets of registers correspond to each of these

concepts.

9.3.1 Protection Structure and Attributes

The MPU, SMPU, and PPU protection structure definition follows the Arm definition. Each protection structure is defined by:

m An address region
m Access control attributes

A protection structure is always aligned on a 32-byte boundary in the memory space. Two registers define a protection
structure: ADDR (address register) and ATT (attribute register). This structure alignment and organization allow
straightforward protection of the protection structures by the protection scheme. This is discussed later in this chapter.

Address region: The address region is defined by:

m The base address of a region as specified by ADDR.ADDR.

m The size of a region as specified by ATT.REGION_SIZE.
m Individual disables for eight subregions within the region, as specified by ADDR.SUBREGION_DISABLE.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

73

o CYPRESS

~mg> EMBEDDED IN TOMORROW Protection Units

The REGION_SIZE field specifies the size of a region. The region size is a power of 2 in the range of [256 B, 4 GB]. The base
address ADDR specifies the start of the region, which must be aligned to the region size. A region is partitioned into eight
equally sized sub-regions. The SUBREGION_DISABLE field specifies individual enables for the sub-regions within a region.
For example, a REGION_SIZE of “0x08” specifies a region size of 512 bytes. If the start address is 0x1000:5400 (512-byte
aligned), the region ranges from 0x1000:5400 to 0x1000:55ff. This region is partitioned into the following eight 64-byte
subregions:

subregion 0 from 0x1000:5400 to 0x1000:543f
subregion 1 from 0x1000:5440 to 0x1000:547f

subregion 7 from 0x1000:55c0 to 0x1000:55ff.

If the SUBREGION_DISABLE is 0x82 (bitfields 1 and 7 are ‘1°), subregions 1 and 7 are disabled; subregions 0, 2, 3, 4, 5, and
6 are enabled.

In addition, an ATT.ENABLED field specifies whether the region is enabled. Only enabled regions participate in the protection
“matching” process. Matching identifies if a bus transfer address is contained within an enabled subregion
(SUBREGION_DISABLE) of an enabled region (ENABLED).

Protection attributes: The protection attributes specify access control to the region (shared by all subregions within the
region). Access control is performed by comparing against a bus master's protection attributes of the bus master performing
the transfer. The following access control fields are supported:

m Control for read accesses in user mode (ATT.UR field).

Control for write accesses in user mode (ATT.UW field).
Control for execute accesses in user mode (ATT.UX field).
Control for read accesses in privileged mode (ATT.PR field).
Control for write accesses in privileged mode (ATT.PW field).
Control for execute accesses in privileged mode (ATT.PX field).
Control for secure access (ATT.NS field).

Control for individual protection contexts (ATT.PC_MASK][15:0], with MASK][0] always constant at 1). This protection
context control field is present only for the SMPU and PPU.

The execute and read access control attributes are orthogonal. Execute transfers are typically read transfers. To allow
execute and read transfers in user mode, both ATT.UR and ATT.UX must be set to ‘1’. To allow data and read transfers in user
mode, only ATT.UR must be set to “1’. In addition, the ATT.PC_MATCH control field is supported, which controls “matching”
and “access evaluation” processes. This control field is present only for the SMPU and PPU protection structures.

For example, only protection context 2 can access a specific address range. These accesses are restricted to read and write
secure accesses in privileged mode. The access control fields are programmed as follows:

ATT.UR is 0: read accesses in user mode not allowed.

ATT.UW is 0O: write accesses in user mode not allowed.

ATT.UX is 0: execute accesses in user mode not allowed.

ATT.PRis 1: read accesses in privileged mode allowed.

ATT.PW is 1: write accesses in privileged mode allowed.

ATT.PX is 0: execute accesses in privileged mode not allowed.

ATT.NS is 0: secure access required.

ATT.PC_MASK is 0x0005: protection context 1 and 3 accesses enabled (all other protection contexts are disabled).

ATT.PC_MATCH is 0: the PC_MASK field is used for access evaluation. Three separate access evaluation subprocesses
are distinguished:

o Asubprocess that evaluates the access based on read/write, execute, and user/privileged access attributes.
o A subprocess that evaluates the access based on the secure/non-secure attribute.

o Asubprocess that evaluates the access based on the protection context index (used only by the SMPU and PPU
when ATT.PC_MATCH is 0).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 74

o CYPRESS

~mg> EMBEDDED IN TOMORROW Protection Units

If all access evaluations are successful, access is allowed. If any process evaluation is unsuccessful, access is not allowed.
Matching the bus transfer address and access evaluation of the bus transfer (based on access attributes) are two
independent processes:

m Matching process. For each protection structure, the process identifies whether a transfer address is contained within the
address range. This identifies the “matching” regions.

m Access evaluation process. For each protection structure, the process evaluates the bus transfer access attributes
against the access control attributes.

A protection unit typically has multiple protection structures and evaluates the protection structures in decreasing order. The
first matching structure provides the access control attributes for the evaluation of the transfer's access attributes. In other
words, higher-indexed structures take precedence over lower-indexed structures.

The following pseudo code illustrates the process.
match = O;
for (i = n-1; i >= 0; 1--)// n: number of protection regions

if (Match (“transfer address”, “protection context”

“MMIO registers ADDR and ATT of protection structure 1)) {
match = 1; break;

3

I

if (match)
AccessEvaluate (“transfer access attributes”, “protection context”
“MMIO register ATT of protection structure i1”);
else
“access allowed”

Notes:

m If no protection structure provides a match, the access is allowed.

m If multiple protection structures provide a match, the access control attributes for the access evaluation are provided by
the protection structure with the highest index.

An example of using the PC_MATCH feature is as follows. Two SMPU structures are configured to protect the same address

range:

m Case 1: SMPU#2: PC = 3, PC_MATCH = 0 SMPU#1: PC =2, PC_MATCH =0

To access the master of protection context 2, SMPU#2 has the highest index and address match, but attributes do not
match; therefore, access is restricted. The SMPU#1 is not evaluated because the PC_MATCH is 0.

m Case 2: SMPU#2: PC = 3, PC_MATCH = 1 SMPU#1: PC =2, PC_MATCH =0

The SMPU#2 address matches but PC does not match and is skipped because PC_MATCH is 1. SMPU#1 is evaluated
and the address and attributes match; therefore, access is allowed.

As mentioned, the protection unit evaluates the protection structures in decreasing order. From a security requirements
perspective, this is of importance: a non-secure protection context must not be able to add protection structures that have a
higher index than the protection structures that provide secure access. The protection structure with a higher index can be
programmed to allow non-secure accesses. Therefore, in a secure system, the higher programmable protection structures
are protected to only allow restricted accesses

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 75

o CYPRESS

~mg> EMBEDDED IN TOMORROW Protection Units

9.4 Bus Master Protection Attributes

The protection structures set up the rules for different memory regions and their access attributes. The bus master’'s own

protection attributes are used by the protection units to regulate access, based on rules set by the protection structures. Not

all bus masters provide all protection attributes that are associated with a bus transfer. Some examples are:

m None of the bus masters has a native protection context attribute. This must be set dynamically based on the task being
executed by the bus master.

m The Arm Cortex M4 and Arm Cortex MO+ CPUs provide a user/privilege attribute, but do not provide a secure/non-secure
attribute natively. This must be set at a system level.

To ensure system-wide restricted access, missing attributes are provided by register fields. These fields may be set during the
boot process or by the secure CPU.

m The SMPU MS_CTL.PC_MASK][] and MPU MS_CTL.PC]] register fields provide protection context functionality.

m The SMPU MS_CTL.P register field provides the user/privileged attribute for those masters that do not provide their own
attribute.

m The SMPU MS_CTL.NS register provides the secure/non-secure attribute for those masters that do not provide their own
attribute.

m Masters that do not provide an execute attribute have the execute attribute set to ‘0’.

The DMA controller channels inherit the access control attributes of the bus transfers that configured the DMA channel.
m All the bus masters in the system have SMPU and MPU MS_CTL registers associated with them.

m The MPU MS_CTL.PC_SAVED field (and associated protection context O functionality, which is discussed later in the
chapter) is only present for the CM0+ master.

m The SMPU MS_CTL.P, MS_CTL.NS, and MS_CTL.PC_MASK fields are not present for the DMA. The bus transfer
attributes are provided through “inheritance”: the bus transfer attributes are from the master that owns the DMA channel
that initiated the bus transfer.

m The MPU MS_CTL register is not present for the DMA masters. The protection context (PC) bus transfer attribute is
provided through inheritance.

9.5 Protection Context

Each bus master has a MPU MS_CTL.PC[3:0] protection context field. This protection context is used as the protection
context attribute for all bus transfers that are initiated by the master. The SMPUs and PPUs allow or restrict bus transfers
based on the protection context attribute.

Multiple masters can share a protection context. For example, a CPU and a crypto controlled by the CPU may share a
protection context (the CPU and crypto PC][] fields are the same). Therefore, the CPU and crypto share the SMPU and PPU
access restrictions.

A bus master protection context is changed by reprogramming the master's PC[] field. Changing a protection context is

required for CPU bus masters that may transition between multiple tasks, each catering to different protection contexts. As

the protection context allows or restricts bus transfers, changes to the protection context should be controlled and should not

compromise security. Furthermore, changes to the protection context should incur limited CPU overhead to allow for frequent

protection context changes. Consider a case in which a CPU executes two software stacks with different protection contexts.

To this end, each bus master has an SMPU MS_CTL.PC_MASK][15:0] protection context mask field that identifies what

protection contexts can be programmed for the bus master:

m The protection context field MS_CTL.PC[3:0]. This register is controlled by the associated bus master and has the same
access restrictions as the bus master’'s MPU registers.

m The protection context mask field MS_CTL.PC_MASK][15:0]. This register is controlled by the secure CPU and has the
same access restrictions as the SMPU registers.

The PC_MASK]] field is a “hot-one” field that specifies whether the PCJ] field can be programmed with a specific protection
context. Consider an attempt to program PCJ] to ‘3’

m If PC_MASK]3]is ‘1", PC[] is set to “3”.

m If PC_MASK][3]is ‘0", PC[] is not changed.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 76

o CYPRESS

~mg> EMBEDDED IN TOMORROW Protection Units

9.6 Protection Context 0

Protection context 0 has dedicated functionality not available to the user. In a system that requires protection, a “root of trust”
must be established. In the PSoC 6 MCU, the Arm CM0+ CPU is intended to be used as the “secure CPU” that executes both
Cypress code and customer code.

m The Cypress code for the secure CPU, either in ROM or in flash, is considered trustworthy. The Cypress ROM code can
be considered as the root of trust, and is used to authenticate Cypress flash code. Cypress code can be used to provide
flash programming, secure provisioning, or other Cypress proprietary functionality.

m The customer code for the secure CPU is programmed in flash. Therefore, Cypress has no control over this code. It
cannot be assumed that this code is trustworthy and is not compromising Cypress-trusted code.

As both Cypress-trusted code and customer untrusted code are executed on the same CPU, the general protection scheme
based on master specific protection contexts, which is completely software-controlled, does not suffice to distinguish the two
different types of code. For example, a scheme that relies on separate protection contexts for the two different types of code
relies on cooperation, which is something that cannot be relied upon if the customer code is untrusted: nothing prevents
customer code from taking the protection context of Cypress code.

Hardware support is provided to control the secure CPU protection context. This support assigns special meaning to
protection context 0. Well-defined entry into Cypress-trusted code in ROM changes the protection context to 0. Protection
context 0 provides unlimited (unprotected) access to all memory regions and peripherals. The protection context is changed
to 0 under the following two conditions:

m A secure CPU reset. This results in the execution of the reset exception handler. The vector address is provided from
ROM address 0x0000:0004. As this is a ROM address, this address can be trusted. If the vector address is also in ROM,
the handler’s entry point can be trusted.

Note that after a secure CPU reset, all interrupts are disabled and CPU execution is deterministic (fully determined by the
reset exception handler).

m A secure CPU exception/interrupt handler entry. The handler vector address is provided by the vector table with base
address VECTOR_TABLE_BASE. After a secure CPU reset, this VECTOR_TABLE_BASE is 0x0000:00000 and the
handler vector address is related to this base. As this is a ROM address, this address can be trusted. However, the CPU
can relocate VECTOR_TABLE_BASE to an SRAM address for example, and the handler vector addresses can be
programmed to any value. The programmed value may result in customer-provided handler code. As a result, the
handler’s entry point cannot be trusted. Fortunately, it is possible to detect whether the vector address from the vector
table is different from a specific address. The protection context is only changed to 0 if the secure CPU vector handler
address is the same as the specific vector address CM0_PCO0_HANDLER. Note that the customer code can relocate the
vector table, but a change to protection context 0 requires that the vector address is not modified and still equal to
CMO_PCO_HANDLER.

Protection context 0 identifies Cypress-trusted code and provides unlimited access:

m The protection structures are not applied; no protection structure match will “hit” on a protection context 0 address. The
user/privileged and secure/non-secure transfer attributes have no protection functionality for protection context 0.

m Hardware changes the protection context to 0 and Cypress-trusted software is responsible for re-establishing the
protection context that applied before the Cypress-trusted code is entered. To this end, the secure CPU has two protection
context fields in its MS_CTL register (hardware changes both fields):

o APC[3:0] field, which specifies the current protection context.

o APC_SAVED[3:0] field, which specifies the protection context that applied when the protection context was changed
to 0.

The Cypress-trusted exception handler is responsible for updating the MS_PC field when leaving the Cypress-trusted code.
For all n, PROT_MPUn_MS CTL.PC and PROT_MPUn_MS CTL.PC_SAVED are set to ‘1’. Also for all n, bit 0 of
PROT_SMPU_MSn_CTL.PC_MASK is set to ‘1’ to allow PC to have a value of 1.

The Cypress-trusted exception handler is responsible for re-establishing the MS_PC field with the MS_PC_SAVED field when
leaving the Cypress-trusted code.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 77

o CYPRESS

~mg> EMBEDDED IN TOMORROW Protection Units

9.7 Protection Structure

9.71 Protection Violation

If an MPU, SMPU, or PPU detects a not-allowed transfer, the bus transfer results in a bus error. The bus transfer does not
reach its target memory location or peripheral register. In addition, information on the violating bus transfer is communicated
to the fault report structure.

9.7.2 MPU

The MPUs are situated in the CPUSS and are associated to a single master. An MPU distinguishes user and privileged
accesses from a single bus master. However, the capability exists to perform access control on the secure/non-secure
attribute.

As an MPU is associated to a single master, the MPU protection structures do not provide protection context control
attributes.

Figure 9-3. MPU Functionality

Protection structures
are 32 B aligned

123
3] 2
Two MMIO registers AN § %
. \ (%]
per protection structure ' Y \ MPU protection :‘__) @ %
s ADDR o\ \ structures 2 22
LI B e e e e e I B B £ £3
=) Zuw MPU protection
& o @ structure 0 l l
o w <
a)
2 2° - fault
I T T T T O Y O N B L1 1@y MPU protection > autt_req
structure 1 €¢—— fault_ack
o ATT ° Memory —>» fault_data
L L e B I B i)
a | MPU protection pr?tt e:nt;,%n ///
5 ou No protection olx|z|e|x|z|e structure 2 unit ()
2 Do context attributes === 2)P)1P
2 4 structures
TN T T T N N

The SMPU is situated in the CPUSS and is shared by all bus masters. The SMPU distinguishes between different protection
contexts and distinguishes secure from non-secure accesses. However, the capability exists to perform access control on the
user/privileged mode attribute.

Figure 9-4. SMPU Functionality

Protection structures

. . 1]
(pairs) are 64 B aligned 2 ag)
< <t
Two MMIO registers \\ 3 3
er protection structure N - S E 8
P . % SMPU protection s 835
= ADDR N N structures 2 22
T 11 I T I - £ £%
5 Zm | SMPU protection |
8 o3 structure pair 0 l l
o w <
a X &
Q 8o ; = » fault_re:
PN TN T T T T T T T T A T .z W M YA SMPU protection | g Pl f:ﬂltfaccli
structure pair 1 S —
& ATT o / & Shared » fault_data
T T 17T T T T T T T T T T T T T 17T - memory ,
8 z 2 % / | SMPU protection | protection 7
=11 on <% structure pair 2 i
2 §| 2 > = HNEAEEE p unit (SMPU) Interface to fault
Zlo 4 8} structures
a o
[I T T Y Y Y A ‘
Shared SMPU protection structures
for all SMPUs in the system

Note that a single set of SMPU region structures provides the same protection information to all SMPUs in the systems.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 78

o CYPRESS

9.7.4

EMBEDDED IN TOMORROW

PPU

Protection Units

m The PPUs are situated in the PERI block and are associated with a peripheral group (a group of peripherals with a shared
AHB-Lite bus infrastructure). A PPU is shared by all bus masters. The PPU distinguishes between different protection
contexts; it also distinguishes secure from non-secure accesses and user mode from privileged mode accesses.

Figure 9-5. PPU Functionality

Protection structures

[2]
(pairs) are 64 B aligned g ?’)
Two MMIO registers \\ 3 8
per protection structure N\ - S S 3
. PPU protection ko] 85
s ADDR PN \ structures % é .-g
IS I O I I I I Y Y B T T T 7 T 11 - =1 5w
=) 2w | PPU protection |
S k] structure pair 0 l i
o w <
o s
2 2° : > fault_r
I T T T T T Y Y T L1121 | PPU protection | » faul(ec‘](
ATT structure pair 1 < ault_ac
o o Peripheral —» fault_data
T T T T T T T T T T T T T T T 11T i
2|3 ‘ X PPU protection protection 7
gL Sy 2= | structure pair2 | Anit(BRY) 4
2|< o5 B AR R E P Interface to fault
zZ|o 4 o= o =) structures
< [I Y I

There are two types of PPU structures: fixed and programmable.

m The fixed PPU structures protect fixed areas of memory and hence a specific predetermined peripheral region. In other
words, the ADDR, SUBREGION_DISABLE, and REGION_SIZE fields are fixed for a specific device. Refer to the
registers TRM for a definition of fixed PPUs and the address regions they protect. Their protection attributes are
configurable. Fixed PPUs protect peripheral regions in three levels. The PPU_GR structures protect at the MMIO level.
The PPU_SL structures protect each slave in each MMIO. The PPU_RG structures protect each instance of a block in the
slave. For example, IPC channels in IPC are protected by PPU_RG structures while the entire IPC block is protected by

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

PPU_SL register.

The programmable PPU structures can have
configurable protection attributes and address regions.
These are similar to SMPU structures but are intended
to be used with the peripheral register space. These
protection structures are typically used to protect
registers in a specific block, which are not covered by
the resolution of fixed PPU structures.

Note that the memory regions of the fixed master
structures, fixed slave structures, and programmable
master structures are fixed by hardware and are
mutually exclusive; that is, they do not overlap. The
memory regions of the programmable slave structure
are software-programmable and can potentially overlap.
Therefore, it is important to assign priority to the
protection structure matching process. The order in
which these are evaluated are as follows:

a0 The fixed master structures are evaluated in
decreasing order.

o The fixed slave structures are evaluated in decreas-
ing order.

o The programmable master structures are evaluated
in decreasing order.

o The programmable slave structures are evaluated in
decreasing order.

The programmable slave structures are evaluated last.

These structures are software-programmable and can

potentially overlap (overlapping should not allow

software to circumvent the protection as provided by the
fixed protection structure pairs).

Each peripheral group has a dedicated PPU. The
protection information is provided by peripheral group
MMIO registers. A peripheral group PPU uses fixed
protection structure pairs for two purposes.

o Fixed protection structure pairs protect peripherals
(one pair for each peripheral). The master structure
protects the MMIO registers of the pair (the memory
region encompasses the MMIO registers of the pair's
master structure and slave structure). The slave
structure protects the peripheral (the memory region
encompasses the peripheral address region).

0 Fixed protection structure pairs protect specific
peripheral subregions (one pair for each subregion).
The master structure protects the MMIO registers of
the pair. The slave structure protects the peripheral
subregion. These pairs can be used to protect, for
example, individual DW channels in the DW periph-
eral or individual IPC structures in the IPC periph-
eral.

Note that the memory regions of the fixed peripheral
master structures, fixed peripheral slave structures, and
fixed peripheral subregion master structures are fixed by
hardware and are mutually exclusive; that is, they do not
overlap. The memory regions of the fixed peripheral
subregion slave structures are fixed by hardware and
typically are a subset of a peripheral address region, and

79

http://www.cypress.com/trm220777

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

therefore overlap with a fixed peripheral slave structure.
Therefore, it is important to assign priority to how the
protection structure matching process:

a The fixed peripheral subregion master structures are
evaluated in decreasing order.

o The fixed peripheral subregion slave structures are
evaluated in decreasing order.

o The fixed peripheral master structures are evaluated
in decreasing order.

o The fixed peripheral slave structures are evaluated in
decreasing order.

It is important to evaluate the fixed peripheral subregion
master structures first. This allows software to assign
different protection for a subregion of a peripheral.

975 Protection of Protection Structures

The MPU, SMPU, and PPU-based protection architecture is
consistent and provides the flexibility to implement different
system-wide protection schemes. Protection structures can
be set once at boot time or can be changed dynamically
during device execution. For example, a CPU RTOS can
change the CPU’s MPU settings; a secure CPU can change
the SMPU and PPUs settings. But such a system will be left
insecure if there is no way to protect the protection
structures themselves. There must be a way to restrict
access to the protection structures.

The protection of protection structures is achieved using
another protection structure. For this reason, protection
structures are defined in pairs of master and slave. We refer
to the slave and master protection structures as a protection
pair. Note that the address range of the master protection
structure is known, that is, it is constant.

The first (slave) protection structure protects the resource
and the second (master) protection structure protects the
protection (address range of the second protection structure
includes both the master and slave protection structures).

The protection architecture is flexible enough to allow for
variations:

m Exclusive peripheral ownership can be shared by more
than two protection contexts.

m The ability to change ownership is under control of a
single protection context, and exclusive or non-exclusive
peripheral ownership is shared by multiple protection
contexts.

Note that in secure systems, typically a single secure CPU
is used. In these systems, the ability to change ownership is
assigned to the secure CPU at boot time and not
dynamically changed. Therefore, you must assign the
secure CPU its own, dedicated protection context.

Both PPU and SMPU is intended to distinguish between
different protection contexts and to distinguish secure from
non-secure accesses. Therefore, both PPU and SMPU

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Protection Units

protection use protection structure pairs. In the SMPU, the
slave protection structure provides SMPU protection
information and the master protection structure provides
PPU protection information (the master and slave protection
structures are registers).

80

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

9.7.6

Different protection structure types are used because some
resources, such as peripheral registers, have a fixed
address range. Protection of protection structures requires
pairs of neighboring protection structures.

Protection Structure Types

Three types of protection structures with a consistent
register interface are described here:

m Programmable protection structures. These are 32-byte
protection structures with a programmable address
range. These structures are used by the MPUs.

m Fixed protection structure pairs. These are 64-byte
master/slave protection structure pairs, consisting of two
32-byte protection structures. These structures are used
by the PPUs. Both structures have a fixed, constant
address region. The master structure has the UX and PX
attributes as constant ‘0’ (execution is never allowed)
and the UR and PR attributes as constant ‘1’ (reading is
always allowed). The slave structure has the UX and PX
attributes as constant ‘1°.

m Programmable protection structure pairs. These are 64-
byte master/slave protection structure pairs, consisting
of two 32-byte protection structures. These structures
are used by the PPU and SMPU. The master structure
has a fixed, constant address region. The slave structure

Protection Units

has a programmable address region. The master
structure has the UX and PX attributes as constant ‘0’
(execution is never allowed) and the UR and PR
attributes as constant ‘1’ (reading is always allowed).
The PPU slave structure has the UX and PX attributes
as constant ‘1. The SMPU slave structure has
programmable UX and PX attributes.

Note that the master protection structure in a protection
structure pair is required only to address security
requirements. The distinction between the three protection
structure types is an implementation optimization. From an
architectural perspective, all PPU protection structures are
the same, with the exception that for some protection
structures the address range is fixed and not programmable.

As mentioned earlier, a protection unit evaluates the
protection regions in decreasing protection structure index
order. The protection structures are evaluated in the
following order:

m Fixed protection structures for specific peripherals or
peripheral register address ranges.

m Programmable protection structures.

In other words, fixed structures take precedence over
programmable structures.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 81

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Figure 9-6. Fixed Protection Structure Pair

PPU, fixed protection structure pair

Slave structure
= ADDR 5
1T 1T T T T 17T 17T 17T 17T T T T T T T T T T T T
Constant ADDR[23:0], encompassing peripheral Constant
slave MMIO registers SUBREGION_DISABLE
I I N T I | I N Y N Y Y I Y I | 1 N Y I I I |
5 ATT °
T 1T T T T T T T T T 171
T w— | ¥
0| | 53y 2
® = N S 1%} o x
212 | Ego 28 2L |E|E|x|35
z | Ory o= o D
w|o o
a
I I | [N N Y N Y Y Y Y I A |
Master structure
) IS}
T T T T T 11 1T T T T 17T 17T 17T 1T 171 T T T T T
Constant ADDR[23:0], encompassing master and Constant
slave protection structures SUBREGION_DISABLE
I I N O I | [N N Y N Y Y Y Y I A | [I Y I I I |
P ATT °
T T 1T T T T 17T 17T 17T 1T 171
T - _| ¥
30l | 5By 2= =l
2z 5 2 N 52 DI nin 1]
2= Sno Sk Zlx e fe|x|P]x
Z| | Oy (S o a|> =]
w 8 o
L1 11 [N I N N Y I I I I A |

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Protection Units

82

A",

-

. CYPRESS

EMBEDDED IN TOMORROW

Figure 9-7. Programmable Protection Structure Pair

PPU, programmable protection structure pair

Slave structure

< ADDR -
rrTrrrrrrr1rr 1 1 1 1 1T T 1T T 177 T T T 17T
=) z
= ouw
& o B
o w <
a 4 (%]
Q =
| I Y O Y S I [I o | 11 1P 111
5 ATT °
LI rT 17T 17T T 17T 1T 1T T TT
T | N
315 Su @z =lelulzle
2N 5 1)
wfo = o 5
1111 | N T N Y I Y [Y I I |
Master structure
® o
rrrrrrr7rr7r7rr1rr7 1711717171717 1T TT L
Constant ADDR[23:0], encompassing master and Constant
slave protection structures SUBREGION_DISABLE
| I Y O Y T N I [I o | | N T N I |
5 ATT °
T 1T 17 T T T T T T T T T T T T 7
alT 2 X
[gouy 2= ® =
215 | 583 e 21|z |%[3]&
&lo o Q o al> >
1111 N T N Y Y [I I |
SMPU, programmable protection structure pair
Slave structure
= ADDR o
rrTrrrrrrr1rr 1 1 1 1 1T T 1T T 177 T T T T 1T
= z
g oy
N
T T
a A (%)
2 50
| I Y O Y S I [I o | I T T I
5 ATT °
LI rT 17T 17T T 17T 1T 1T T TT
olz > X
wle oy 2= » o |x|z|x
gg‘ 85 E‘g zé%u_:::
) () e i
1111 | T N Y I Y [I Y I |
Master structure
® o
rrrrrrr7rr7r7rr1rr7 1711717171717 1T TT L
Constant ADDR[23:0], encompassing master and Constant
slave protection structures SUBREGION_DISABLE
| I Y O Y T N I [I o | | N T N I |
s ATT °
| T T T T T T T T T T T T 7
alE z 2 x
ole soy 2=
® =N < (%]
25| | 5go = 21x 8 x5 [3|e
Z[Oy o o a5 =]
] (n_z a
1111 N T N I Y [Yy I |

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

Protection Units

83

&= CYPRESS

~mg> EMBEDDED IN TOMORROW Protection Units

Note: By default, both CPUs (CMO+ and CM4) are in protection context 0 when they come out of reset. In protection context
0, the master is able to access all memory regardless of its protection settings. The master’s protection context will need to be
changed from protection context 0 to make any protection structure configuration effective. Multiple protection structures may
be preconfigured as part of the boot code, which sets up a secure environment at boot time. See the Boot Code chapter on
page 173 for details of these configurations.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 84

10. DMA Controller

& CYPRESS

> EMBEDDED IN TOMORROW"

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

The DMA transfers data to and from memory, peripherals, and registers. These transfers occur independent from the CPU.
The DMA can be configured to perform multiple independent data transfers. All data transfers are managed by a channel.
There can be up to 32 channels in the DMA. The number of channels in the DMA controller can vary with devices. Refer to
the device datasheet for the number of channels supported in the device. A channel has an associated priority; channels are
arbitrated according to their priority.

10.1 Features

The DMA controller has the following features:

Supports up to 32 channels per DMA controller; see the device datasheet for details
Supports multiple DMA controller instances in a device

Four levels of priority for each channel

Descriptors are defined in memory and referenced to the respective channels
Supports single, 1D, or 2D transfer modes for a descriptor

Supports transfer of up to 65536 data elements per descriptor

Configurable source and destination address increments

Supports 8-bit, 16-bit, and 32-bit data widths at both source and destination
Configurable input trigger behavior for each descriptor

Configurable interrupt generation in each descriptor

Configurable output trigger generation for each descriptor

Descriptors can be chained to other descriptors in memory

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 85

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
https://www.cypress.com/CY8C62x4DS
https://www.cypress.com/CY8C62x4DS
www.cypress.com/ds218449
www.cypress.com/ds218449

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

10.2 Architecture

DMA Controller

Figure 10-1. DMA Controller

DMA
System Pending » Priority > Data Transfer Engine P Trigger out
Triggers P triggers Decoder (active request) B Interrupt
Trigger Bus slave DMA Bus master
Multiplexer interface registers interface

1L

iy

A data transfer is initiated by an input trigger. This trigger
may originate from the source peripheral of the transfer, the
destination peripheral of the transfer, CPU software, or from
another peripheral. Triggers provide Active/Sleep
functionality and are not available in Deep Sleep and
Hibernate power modes.

The data transfer details are specified by a descriptor.
Among other things, this descriptor specifies:

m The source and destination address locations and the
size of the transfer.

m The actions of a channel; for example, generation of
output triggers and interrupts. See the Interrupts chapter
on page 55 for more details.

m Data transfer types can be single, 1D, or 2D as defined
in the descriptor structure. These types define the
address sequences generated for source and
destination. 1D and 2D transfers are used for “scatter
gather” and other useful transfer operations.

10.3

The DMA controller supports multiple independent data
transfers that are managed by a channel. Each channel

Channels

Table 10-1. Channel States

1L

Descriptors

Memory

connects to a specific system trigger through a trigger
multiplexer that is outside the DMA controller.

Channel priority: A channel is assigned a priority
(CHi_CTL.PRIO) between 0 and 3, with 0 being the highest
priority and 3 being the lowest priority. Channels with the
same priority constitute a priority group. Priority decoding
determines the highest priority pending channel, which is
determined as follows.

m The highest priority group with pending channels is
identified first.

m Within this priority group, round-robin arbitration is
applied.

Channel state: At any given time, one channel actively
performs a data transfer. This channel is called the active
channel. A channel can be in one of four channel states.
The active channel in a DW controller can be determined by
reading the DWx_STATUS[ACTIVE] and
DWx.STATUS[CH_IDX].

Pending state of a channel is determined by reading the
DW_CH_STRUCT_CH_STATUS[PENDING] associated
with that channel. If a channel is enabled and is not in the
Pending or Active state, then it is considered blocked.

Channel State Description
Disabled The channel is disabled by setting CHi_CTL.ENABLED to ‘0’. The channel trigger is ignored in this state.
Blocked The channel is enabled and is waiting for a trigger to initiate a data transfer.
. The channel is enabled and has received an active trigger. In this state, the channel is ready to initiate a data transfer but
Pending o .
waiting for it to be scheduled.
. The channel is enabled, has received an active trigger and has been scheduled. It is actively performing data transfers. If
Active) .
there are multiple channels pending, the highest priority pending channel is scheduled.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 86

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

The data transfer associated with a trigger is made up of
one or more ‘atomic transfers’ or ‘single transfers’; see
Table 10-2 for a better understanding. A single trigger could
be configured to transfer multiple “single transfers”.

A channel can be marked preemptable
(CHi_CTL.PREEMPTABLE). If preemptable, and there is a
higher priority pending channel, then that higher priority
channel can preempt the current channel between single
transfers. If a channel is preempted, the existing single
transfer is completed; the current channel goes to pending
state and the higher priority channel is serviced. On
completion of the higher priority channel's transfer, the
pending channel is resumed. Note that preemption has an
impact on the data transfer rates of the channel being
preempted. Refer to “DMA Performance” on page 93 for
these performance implications.

A channel has two access control attributes that are used by
the shared memory protection units (SMPUs) and peripheral
protection units (PPUs) for access control. These fields are
typically inherited from the master that modified the
channel’s control register.

m The Privileged Mode (CHi_CTL.P) attribute can be set to
privileged or user.

m The Non-secure (CHi_CTL.NS) attribute can be set to
secure or non-secure.

A descriptor associated with each channel describes the
data transfer. The descriptor is stored in memory and
CHi_ CURR_PTR provides the descriptor address
associated with channel “i” and Chi_IDX provides the
current X and Y indices into the descriptor.

A channel's descriptor state is encoded as part of the
channel’s register state. The following registers provide a
channel’s descriptor state:

m CH_CTL. This register provides generic channel control
information.

m CH_CURR_PTR. This register provides the address of
the memory location where the current descriptor is
located. The user firmware must initialize this register. If
the descriptors are chained, the DMA hardware
automatically sets this register to the next descriptor
pointer.

m CH_IDX. This register provides the current X and Y
indices of the channel into the current descriptor. User
firmware must initialize this register. DMA hardware sets
the X and Y indices to 0, when advancing from the
current descriptor to the next descriptor in a descriptor
list.

Note that channel state is retained in Deep Sleep power
mode.

10.3.1

Every DMA channel has an interrupt line associated with it.
The INTR_TYPE parameter in the descriptor determines the

Channel Interrupts

DMA Controller

event that will trigger the interrupt for the channel. In
addition each DMA channel has INTR, INTR_SET,
INTR_MASK, and INTR_MASKED registers to control their
respective interrupt lines. INTR_MASK can be used to mask
the interrupt from the DMA channel. The INTR and
INTR_SET can be used to clear and set the interrupt,
respectively, for debug purposes.

The DW_CH_STRUCT_CH_STATUS[INTR_CAUSE] field
provides the user a means to determine the cause of the
interrupt being generated. The following are different values
for this register:

m 0: No interrupt generated

m 1: Interrupt based on transfer completion configured
based on INTR_TYPE field in the descriptor

2: Source bus error

3: Destination bus error

4: Misaligned source address

5: Misaligned destination address

6: Current descriptor pointer is null
7: Active channel is in disabled state

8: Descriptor bus error
m 9-15: Not used.

For error related interrupt causes (INTR_CAUSE is 2, 3,...,
8), the channel is disabled (hardware sets
CH_CTL.ENABLED to ‘0’).

The bus errors are typically caused by incompatible
accesses to the addresses in question. This may be due to
those addresses being protected or having read or write
restrictions. Source and destination bus errors can also
occur due to mismatch in data sizes (see “Transfer Size” on
page 91).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 87

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

DMA Controller

10.4 Descriptors

The data transfer between a source and destination in a channel is configured using a descriptor. Descriptors are stored in
memory. The descriptor pointer is specified in the DMA channel registers. The DMA controller does not modify the descriptor
and treats it as read only. A descriptor is a set of up to six 32-bit registers that contain the configuration for the transfer in the
associated channel. There are three types of descriptors.

Table 10-2. Descriptor Types

Descriptor Type

Description

Single transfer

Transfers a single data element

1D transfer

Performs a one-dimensional “for loop”. This transfer is made up of X number of single transfers

A > B
Atl | ——————» B+l
A+2 » B+2

2D transfer

Performs a two-dimensional “for loop”. This transfer is made up of Y number of 1D transfers

* A - B
1°' 1D transfer A+t > B+1
A+2 - B+2
]]
| |
1 1
A+X-1 » B+X-1
— A+X > B+X
A+X+1 > B+X+1
2" 1D transfer A¥X+2 > B+X+2
| |
| [A*+2X-1 B+2X-1

Y™ 1D transfer I I
I I

Single Transfer:

The following pseudo code illustrates a single transfer.

// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA SIZE is the type associated with the DATA_SIZE

DST_ADDR[0] = (t_DATA_SIZE) SRC_ADDR[O0];

1D Transfer:

The following pseudo code illustrates a 1D transfer. Note that the 1D transfer is represented by a loop with each iteration

executing a single transfer.

// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA _SIZE is the type associated with the DATA_SIZE

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

88

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
DST_ADDR[X_IDX * DST_X_INCR] =

DMA Controller

(t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR];:

}

2D Transfer:

The following pseudo code illustrates a 2D transfer. Note that the 2D transfer is represented by a loop with each iteration

executing an inner loop, which is the 1D transfer.

// DST_ADDR is a pointer to an object of type defined by DST_TRANSFER_SIZE
// SRC_ADDR is a pointer to an object of type defined by SRC_TRANSFER_SIZE
// t_DATA SIZE is the type associated with the DATA_SIZE

for (Y_IDX = 0; Y_IDX <= Y_COUNT; Y_IDX++) {

for (X_IDX = 0; X_IDX <= X_COUNT; X_IDX++) {
DST_ADDR[X_IDX * DST_X_INCR + Y_IDX * DST_Y_INCR] =
(t_DATA_SIZE) SRC_ADDR[X_IDX * SRC_X_INCR + Y_IDX * SRC_Y_INCR];

}
}

The parameters in the descriptor help configure the different aspects of the transfers explained.

Figure 10-2 shows the structure of a descriptor.

Figure 10-2. Descriptor Structure

Descriptor

DESCR_SRC

[Source Address |

DESCR _DST

[Destination Address |

DESCR_CTL

[DESCR TYPE]

TR_IN_TYPE

TR_OUT_TYPE

SCR_TRANSFER_SIZE

DST_TRANSFER_SIZE

DATA SIZE

[INTR_TYPE | CH_DISABLE | WAIT_FOR_DEACT |

[X Size |

[SRC_X_INR

DST_X_INCR |

[Y Size |

[SRC_Y_INR

DST_Y_INCR |

DESCR_NEXT_PTR

[Next Descriptor Address |

10.4.1

Source and Destination Address: The source and
destination addresses are set in the respective registers in
the descriptor. These set the base addresses for the source
and destination location for the transfer. In case the
descriptor is configured to transfer a single element, this
field holds the source/destination address of the data
element. If the descriptor is configured to transfer multiple
elements with source address or destination address or both
in an incremental mode, this field will hold the address of the
first element that is transferred.

DESCR_TYPE: This field configures whether the descriptor
has a single, 1D, or 2D type.

Address Configuration

Trigger input type, TR_IN_TYPE: This field determines
how the DMA engine responds to input trigger signal. This
field can be configured for one of the following modes:

m Type 0: A trigger results in execution of a single transfer.
Regardless of the DESCR_TYPE setting, a trigger input
will trigger only a single element transfer. For example,
in a 1D transfer, the DMA will transfer only one data
element in every trigger.

m Type 1: A trigger results in the execution of a single 1D
transfer. If the DESCR_TYPE was set to single transfer,
the trigger signal will trigger the single transfer specified
by the descriptor. For a DESCR_TYPE set to 1D
transfer, the trigger signal will trigger the entire 1D
transfer configured in the descriptor. For a 2D transfer,

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 89

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

the trigger signal will trigger only a single iteration of the
Y loop transfer.

m Type 2: A trigger results in execution of the current
descriptor. Regardless of DESCR_TYPE, the trigger will
execute the entire descriptor. If there was a next
descriptor configured for the current descriptor, this
trigger setting will not automatically trigger the next
descriptor.

m Type 3: A trigger results in execution of the current
descriptor and also triggering the next descriptor. The
execution of the next descriptor from this point will be
determined by the TR_IN_TYPE setting of the next
descriptor.

Trigger out type, TR_OUT_TYPE: This field determines
what completion event will generate the output trigger
signal. This field can be configured to one of the following
modes:

m Type 0: Generates a trigger output for completion of
every single element transfer.

m Type 1: Generates a trigger output for completion of a
1D transfer

m Type 2: Generates a trigger output for completion of the
current descriptor. This trigger output is generated
independent of the state of the DESCR_NEXT_PTR.

m Type 3: Generates a trigger output on completion of the
current descriptor, when the current descriptor is the last
descriptor in the descriptor chain. This means a trigger is
generated when the descriptor execution is complete
and the DESCR_NEXT_PTRis ‘0’.

Interrupt Type, INTR_TYPE: This field determines which
completion event will generate the output interrupt signal.
This field can be configured to one of the following modes:

m Type 0: Generates an interrupt output for completion of
every single element transfer.

m Type 1: Generates an interrupt output for completion of a
1-D transfer.

m Type 2: Generates an interrupt output for completion of
the current descriptor. This interrupt output is generated
independent of the state of the DESCR_NEXT_PTR.

m Type 3: Generates an interrupt output on completion of
the current descriptor, when the current descriptor is the
last descriptor in the descriptor chain. This means an
interrupt is generated when the descriptor execution is
complete and the DESCR_NEXT_PTR is ‘0’.

WAIT_FOR_DEACT: When the DMA transfer based on the
TR_IN_TYPE is completed, the data transfer engine checks
the state of trigger deactivation. The data transfer on the
second trigger is initiated only after deactivation of the first.
The WAIT_FOR_DEACT parameter will determine when the
trigger signal is considered deactivated. The first DMA
transfer is activated when the trigger is activated, but the
transfer is not considered complete until the trigger is
deactivated. This field is used to synchronize the controller’s

DMA Controller

data transfers with the agent that generated the trigger. This
field has four settings:

m 0 — Pulse Trigger: Do not wait for deactivation. When a
trigger is detected, the ftransfer is initiated. After
completing the transfer, if the trigger is still active then it
is considered as another trigger and the subsequent
transfer is initiated immediately.

m 1 - Level-sensitive waits four slow clock cycles after the
transfer to consider as a deactivation. When a trigger is
detected, the transfer is initiated. After completing the
transfer, if the trigger is still active then it is considered
as another trigger after waiting for four cycles. Then, a
subsequent transfer is initiated. The transfer
corresponding to the trigger is considered complete only
at the end of the four additional cycles. Even trigger
output events will be affected based on this delay. This
parameter adds a four-cycle delay in each trigger
transaction and hence affects throughput.

m 2 — Level-sensitive waits 16 slow clock cycles after the
transfer to consider as a deactivation. When a trigger is
detected, the transfer is initiated. After completing the
transfer, if the trigger is still active then it is considered
as another trigger after waiting for 16 cycles. Then, a
subsequent transfer is initiated. The transfer
corresponding to the trigger is considered complete only
at the end of the 16 additional cycles. Even trigger
output events will be affected based on this delay. This
parameter adds a 16-cycle delay in each trigger
transaction and hence affects throughput.

m 3 — Pulse trigger waits indefinitely for deactivation. The
DMA transfer is initiated after the trigger signal
deactivates. The next transfer is initiated only if the
trigger goes low and then high again. A trigger signal
that remains active or does not transition to zero
between two transaction will simply stall the DMA
channel.

The WAIT_FOR_DEACT field is used in a system to
cater to delayed response of other parts of the system to
actions of the DMA. Consider an example of a TX FIFO
that has a trigger going to the DMA when its not full.
Free space in FIFO will trigger a DMA transfer to the
FIFO, which in turn will deactivate the trigger. However,
there can be a delay in this deactivation by the agent,
which may cause the DMA to have initiated another
transfer that can cause a FIFO overflow. This can be
avoided by using the four or 16 clock cycle delays.

X Count: This field determines the number of single
element transfers present in the X loop (inner loop). This
field is valid when the DESCR_TYPE is set to 1D or 2D
transfer.

Source Address Increment (X loop) (SCR_X_INCR): This
field configures the index by which the source address is to
be incremented for every iteration in an X loop. The field is
expressed in multiples of SRC_TRANSFER_SIZE. This field
is a signed number and hence may be decrementing or

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 90

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

incrementing. If the source address does not need to be
incremented, you can set this parameter to zero.

Destination Address Increment (X loop) (DST_X_INCR):
This field configures the index by which the destination
address is to be incremented, for every iteration in an X
loop. The field is expressed in multiples of
DST_TRANSFER_SIZE. This field is a signed number and
hence may be decrementing or incrementing. If the
destination address does not need to be incremented, you
can set this parameter to zero.

Y Count: This field determines the number of 1-D transfers
present in the Y loop (outer loop). This field is valid when the
DESCR_TYPE is set to 2-D transfer.

Source Address Increment (Y loop) (SCR_Y_INCR): This
field configures the index by which the source address is to
be incremented, for every iteration in a Y loop. The field is
expressed in multiples of SRC_TRANSFER_SIZE. This field
is a signed number and hence may be decrementing or
incrementing. If the source address does not need to be
incremented, you can set this parameter to zero.

Destination Address Increment (X loop) (DST_Y_INCR):
This field configures the index by which the destination
address is to be incremented, for every iteration in a 'Y loop.
The field is expressed in multiples of
DST_TRANSFER_SIZE. This field is a signed number and
hence may be decrementing or incrementing. If the
destination address does not need to be incremented, you
can set this parameter to zero.

Channel Disable (CH_DISABLE): This field specifies
whether the channel is disabled or not after completion of
the current descriptor (independent of the value of the

Table 10-3. Transfer Size Settings

DMA Controller

DESCR_NEXT_PTR). A disabled channel will ignore its
input triggers.

10.4.2

The word width for a transfer can be configured using the
transfer/data size parameter in the descriptor. The settings
are diversified into source transfer size, destination transfer
size, and data size. The data size parameter (DATA_SIZE)
sets the width of the bus for the transfer. The source and
destination transfer sizes set by SCR_TRANSFER_SIZE
and DST_TRANSFER_SIZE can have a value either the
DATA_SIZE or 32 bit. DATA_SIZE can have a 32-bit, 16-bit,
or 8-bit setting.

Transfer Size

The source and destination transfer size for the DMA must
match the addressable width of the source and destination,
regardless of the width of data that must be moved. The
DATA_SIZE parameter will correspond to the width of the
actual data. For example, if a 16-bit PWM is used as a
destination for DMA data, the DST_TRANSFER_SIZE must
be set to 32 bit to match the width of the PWM register,
because the peripheral register width for the TCPWM block
(and most PSoC 6 MCU peripherals) is always 32-bit wide.
However, in this example the DATA_SIZE for the destination
may still be set to 16 bit because the 16-bit PWM only uses
two bytes of data. SRAM and Flash are 8-bit, 16-bit, or 32-
bit addressable and can use any source and destination
transfer sizes to match the needs of the application.

Table 10-3 summarizes the possible combinations of the
transfer size settings and its description.

SCR_TRANSFER_ | DST_TRANSFER_ . o

DATA_SIZE SIZE SIZE Typical Usage Description
8-bit 8-bit 8-bit Memory to Memory No data manipulation
8-bit 32-bit 8-bit Peripheral to Memory Higher 24 bits from the source dropped
8-bit 8-bit 32-bit Memory to Peripheral Higher 24 bits zero padded at destination

L i L . . Higher 24 bits from the source dropped and
8-bit 32-bit 32-bit Peripheral to Peripheral higher 24 bits zero padded at destination
16-bit 16-bit 16-bit Memory to Memory No data manipulation
16-bit 32-bit 16-bit Peripheral to Memory Higher 16 bits from the source dropped
16-bit 16-bit 32-bit Memory to Peripheral Higher 16 bits zero padded at destination

o " L . . Higher 16 bits from the source dropped and

16-bit 32-bit 32-bit Peripheral to Peripheral higher 16-bit zero padded at destination
32-bit 32-bit 32-bit Peripheral to Peripheral No data manipulation
10.4.3 Descriptor Chaining

Descriptors can be chained together. The DESCR_NEXT_PTR field contains a pointer to the next descriptor in the chain. A
channel executes the next descriptor in the chain when it completes executing the current descriptor. The last descriptor in
the chain has DESCR_NEXT_PTR set to ‘0’ (NULL pointer). A descriptor chain is also referred to as a descriptor list. It is

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 91

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

DMA Controller

possible to have a circular list; in a circular list, the execution continues indefinitely until there is an error or the channel or the

controller is disabled by user code.

10.5 DMA Controller

Figure 10-3. DMA Controller Overview

DMA
System Pending > Priority > Data Transfer Engine - Trigger out
Triggers P triggers Decoder (active request) » Interrupt
Trigger Bus slave DMA Bus master
Multiplexer interface registers interface

1L

iys

10.5.1 Trigger Selection

Trigger signals can be generated from different sections of
the chips. A trigger multiplexer block helps route these
trigger signals to the destination. The DMA is one such
destination of triggers. The trigger multiplexer block is
outside the DMA block and is discussed in the Trigger
Multiplexer Block chapter on page 273.

10.5.2 Pending Triggers

Pending triggers keep track of activated triggers by locally
storing them in pending bits. This is essential because
multiple channel triggers may be activated simultaneously,
whereas only one channel can be served by the data
transfer engine at a time. This component enables the use
of both level-sensitive (high/‘1’) and pulse-sensitive (two
high/*1’ clk_slow cycles) triggers.

m Level-sensitive triggers are associated with a certain
state, for example, a FIFO being full. These triggers
remain active as long as the state is maintained. It is not
required to track pending level-sensitive triggers in the
DMA controller because the triggers are maintained
outside the controller.

m Pulse-sensitive triggers are associated with a certain
event, for example, an ADC sample has become
available. It is essential to track these triggers in the
DMA controller because the trigger pulse may disappear
before it is served by the data transfer engine. Pulse
triggers should be high/1’ for two clk_slow cycles.

The priority decoder determines the highest priority
pending channel.

1L

Descriptors

Memory

The data transfer engine is responsible for the data
transfer from a source location to a destination location.
When idle, the data transfer engine is ready to accept the
highest priority activated channel. It is also responsible for
reading the channel descriptor from memory.

Master I/F is an AHB-Lite bus master that allows the DMA
controller to initiate AHB-Lite data transfers to the source
and destination locations as well as to read the descriptor
from memory.

Slave I/F is an AHB-Lite bus slave that allows the main CPU
to access DMA controller control/status registers.

10.5.3 Output Triggers

Each channel has an output trigger. This trigger is high for
two slow clock cycles. The trigger is generated on the
completion of a data transfer. At the system level, these
output triggers can be connected to the trigger multiplexer
component. This connection allows a DMA controller output
trigger to be connected to a DMA controller input trigger. In
other words, the completion of a transfer in one channel can
activate another channel or even reactivate the same
channel.

DMA output triggers also connect to digital system
interconnects (DSI) and some DSI signals connect to the
trigger multiplexer inputs. Trigger outputs routing to other
DMA channels or other peripheral trigger inputs is achieved
using the trigger multiplexer. Refer to the Trigger Multiplexer
Block chapter on page 273.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 92

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

10.5.4 Status registers

The controller status register (DWx_STATUS) contains the
following information.

m ACTIVE - Active channel present, yes/no.

P — Active channel's access control user/privileged

NS — Active channel's access control secure/non-secure

CH_IDX — Active channel index if there is an active
channel

PRIO — Active channel priority
PREEMPTABLE — Active channel pre-emptable or not

STATE - State of the DW controller state machine. The
following states are specified:

0 Default/inactive state

o Loading descriptor: This state is when the controller
has recognized the channel that was triggered and
become active and is now loading its respective
descriptor.

o Loading data element: Reading data from source
address

Table 10-4. DMA Steps and Performance

DMA Controller

a Storing data element: Writing data into the destina-
tion address

o Update of active channel control information
a Waiting for input trigger deactivation

10.5.5 DMA Performance

The DMA block works on the clk_slow domain and hence all
clocks described in this section are in clk_slow units.

Every time a DMA channel is triggered the DMA hardware
goes through the following steps:

m Trigger synchronization

m Detection, priority decoding, and making channel
pending

Start state machine and load channel configuration
Load DMA descriptor

Load next DMA descriptor pointer

m Moving first element of data from source to destination.

Each of these steps involve multiple cycles for completion.
Table 10-4 shows the number of cycles needed for each
step.

Operation Cycles
Trigger Synchronization 2
Detection, priority decoding and making channel pending 1
Start state machine and load channel config 3

Load descriptors

4 for single transfer
5 for 1-D transfer
6 for 2-D transfer

Load next pointer

1

Moving data from source to destination

3

Total

14 for single transfer

For subsequent transfers on a preloaded descriptor, cycles are needed only to move the data from source to destination.
Therefore, transfers such as 1-D and 2-D, which are not preempted, incurs all the cycles only for the first transfer; subsequent
transfers will cost three cycles.

Based on the configuration of TRIG_IN_TYPE, the trigger synchronization cycles may be incurred for each single element
transfer or for each 1-D transfer.

The descriptor is four words long for a single transfer type, five words for 1-D transfer, and six words for a 2-D transfer. Hence,
the number of cycles needed to fetch a descriptor will vary based on its type.

Another factor to note is the latency in data or descriptor fetch due to wait states or bus latency.

The DMA performance for different types of transfers can be summarized as follows.
m Single transfer

o 14 cycles per transfer + latency due to wait states or bus latency
m 1D transfer

a1 To transfer n data elements

Number of cycles =12+ n*3 +m

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 93

o CYPRESS

~mg> EMBEDDED IN TOMORROW DMA Controller

m is the total number of wait states seen by DMA while loading or storing descriptors or data. An additional cycle is
required for the first transfer, to load the X-Loop configuration register.

2D transfer
a If the 2 D transfer is transferring n elements then
Number of cycles =13 +n*3 +m

m is total number of wait states seen by DMA while loading or storing descriptors or data. Two additional cycles are
required for the first transfer, to load the X-loop and Y-Loop configuration register.

Note: Descriptors in memory and memory wait states will also affect the descriptor load delay.

Wait states: Memory accesses can have a wait state associated with them. These wait states need to be accounted into
the calculation of throughput.

Channel arbitration: Some time channels are not immediately made active after reception of trigger. This is due to other
active channels in the system. This can lead to multiple cycles being lost before the channel is even made active.

Preemption: The choice of making a DMA channel preemptable impacts its performance. This is because every time a
channel is prempted:

o The channel is in a pending state for as long as the higher priority channel is running

o On resumption, the channel descriptor needs to be fetched again. This is additional cycles for every resume. So if
there are a large number of high-priority channels, making a low-priority channel preemptible can have adverse effects
on its throughput. On the other hand, if there is a low-priority channel that is transferring a large amount of data, then
not making it preemptable can starve other high-priority channels for too long.

Sometimes, users can also distribute channels across multiple DW blocks to avoid conditions of preemption and deal with
the contention at the bus arbitration level.

Bus arbitration: Several bus masters access the bus, including the CPU cores and multiple DMA (DW) and DMAC. This
makes any access to data movement over the bus subject to arbitration with other masters. Actions such as fetching the
descriptor or data can be stalled by arbitration. The arbitration of the bus is based on the arbitration scheme configured in
PROT_SMPU_MSx_CTL[PRIO]

Transfer width: The width of the transfer configured by the Data_size parameter in the descriptor is important in the
transfer throughput calculation. 32-bit transfers are four times faster than 8-bit transfers.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 94

11. Cryptographic Function Block (Crypto)
&2 CYPRESS

EMBEDDED IN TOMORROW™

This PSoC 6 MCU technical reference manual (TRM) provides comprehensive and detailed information about the
functions of the PSoC 6 MCU device hardware. It is divided into two books: architecture TRM and registers TRM. The
TRM is not recommended for those new to the PSoC 6 MCU, nor as a guide for developing PSoC 6 MCU applications.
Use these documents instead:

m Device datasheet

m Peripheral Driver Library (PDL) documentation
m Application notes
[

Code examples

The Cryptographic block (Crypto) provides hardware implementation and acceleration of cryptographic functions.
Implementation in hardware takes less time and energy than the equivalent firmware implementation. In addition, the block
provides True Random Number generation functionality in silicon, which is not available in firmware.

111 Features

Advanced encryption standard (AES)

Data Encryption and Triple Data Encryption Standards (DES, TDES)
Secure Hash Algorithm (SHA)

Cyclic redundancy checking (CRC)

Pseudo random number generator (PRNG)

True random number generator (TRNG)

Vector unit (VU) to support asymmetric key cryptography, such as RSA and ECC.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 95

www.cypress.com/ds218449
https://www.cypress.com/CY8C62x4DS
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.cypress.com/search/all?sort_by=changed&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A574&f%5B2%5D=field_related_products%3A114026
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

o CYPRESS

11.2

EMBEDDED IN TOMORROW

Architecture

Cryptographic Function Block (Crypto)

The following figure gives an overview of the cryptographic block.

Figure 11-1. Crypto Block Diagram

l AHB-Lite infrastructure I

v v
AHB-Lite Slave Interface AHB-Lite Master
Interface
Memory Buffer
Control (up to 16KB)
Interru‘pt Instruction & clk_sys
- FIFO Status ¢
(MMIO)
Memory interface
Asymmetric Symmetric Hashing Others
RSA DES SHA1 TRNG
ECC TDES SHA2 PRNG
AES SHA3 CRC

The crypto block has the following interfaces:

An AHB-Lite slave interface connects the block to the
AHB-Lite infrastructure. This interface supports 8/16/32-
bit AHB-Lite transfers. MMIO register accesses are 32-
bit only. Memory buffer accesses can be 8/16/32-bit.

An AHB-Lite master interface connects the block to the
AHB-Lite infrastructure. This interface supports 8/16/32-
bit AHB-Lite transfers. The interface enables the crypto
block to access operation operand data from system
memories, such as Flash or SRAM.

A single interrupt signal “interrupt” is used to signal the
completion of an operation.

A clock signal “clk_sys” interface connects to the SRSS.

The block has the following components:

An AHB-Lite slave interface.
An AHB-Lite master interface.

A component that contains MMIO control and status
registers.

A memory buffer, for internal operation operand data.

A memory interface that directs operation operand data
requests to either the block internal memory buffer or to
the AHB-Lite master interface.

An instruction controller component that decodes
instructions from an instruction FIFO. The controller
issues the instructions to the function specific
components.

m Cryptographic function specific components.

The following sections explain each component in detail.

11.3 Instruction Controller

The instruction controller consists of an instruction FIFO, an

instruction decoder, and a general-purpose register file.

m The instruction FIFO is software-programmable through
MMIO registers that are accessed through the AHB-Lite
slave interface. Software writes instructions and
instruction operand data to the instruction FIFO. The
FIFO consists of eight 32-bit FIFO entries.

m The instruction decoder decodes the instructions (and
the associated instruction operand data) from the
instruction FIFO. The instruction decoder issues the
decoded instruction to a specific functional component.
The functional component is responsible for instruction
execution.

m The general-purpose register file consists of sixteen 32-
bit registers. An instruction specifies the specific use of
register-file registers. Registers are used to specify
instruction operand data, such as memory locations (for
example, for DES, AES, and SHA instructions) or
immediate data operations (for example, for vector unit
instructions).

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

11.3.1

An instruction consists of a sequence of one, two, or three
instruction words. Most instructions are encoded by a single
instruction word.

Instructions

The instruction FIFO can hold up to eight 32-bit instruction
words. A CPU writes instruction words to the instruction
FIFO (INSTR_FF_WR register) and the crypto block
decodes the instruction words to execute the instructions.
INSTR_FF_STATUS.USED specifies how many of the eight
instruction FIFO entries are used. The instruction FIFO
decouples the progress of CPU execution from the crypto
block execution: the CPU can write new instruction words to
the FIFO, while the block executes previously written
instructions.

There are multiple interrupt causes associated with the
instruction FIFO and the instruction decoder:

m The INTR.INSTR_FF_OVERFLOW interrupt cause is
activated on a write to a full instruction FIFO.

m THE INTR.INSTR_FF_LEVEL interrupt cause is
activated when the number of used FIFO entries
(INSTR_FF_STATUS.USED) is less than a specified
number of FIFO entries (INSTR_FF_CTL.LEVEL).

m The INTR.INSTR_OPC_ERROR interrupt cause is
activated when an instruction's operation code is not
defined.

m The INTR.INSTR_CC_ERROR interrupt cause is
activated when a vector unit instruction has an
undefined condition code.

Most instructions perform specific cryptographic
functionality. For example, the AES instruction performs and
Advanced Encryption Standard (AES) block cipher
operation. Some instructions perform more generic
functionality: most generic instructions move operand data
between different locations. Higher level symmetric cipher
and hash functionality is implemented using a combination
of cryptographic instructions and generic instructions.
Higher level asymmetric cipher functionality is implemented
using a set of vector unit (VU) instructions.

11.3.2

The instruction operands are found in one of the following
locations:

Instruction Operands

m System memory

Memory buffer

Instruction FIFO instruction words
Load and store FIFOs

Register buffer

Vector unit register-file

System memory. The system memory includes all memory-
mapped memories attached to the bus infrastructure that

Cryptographic Function Block (Crypto)

are accessible by the crypto block through the master bus
interface.

Memory buffer. The crypto block memory buffer is an
internal SRAM with a capacity of up to 16 KB. This internal
SRAM provides better latency and bandwidth characteristics
than the system memory. Therefore, frequently accessed
vector unit instruction operand data is typically located in the
memory buffer.

Both the block’s external system memory and internal
memory buffer are accessed through the same memory
interface component. The access address specifies if the
access is to the system memory or the internal memory
buffer (also see VU_CTL.ADDR[31:14]).

External bus masters can access both the system memory
and the crypto’s internal memory. The external bus masters
access the internal memory through the slave bus interface.

Instruction FIFO. For some instructions, immediate
operand data is provided by the instruction words. The
limited 32-bit instruction words only allow for limited
immediate operand data.

Load and store FIFOs. Most instructions have stream-like
operand data: sequences of bytes that are specified by the
access address of the start byte. The two load FIFOs
provide access to source operand data and the single store
FIFO provides access to destination operand data. Typically,
vector unit instruction operand data is “streamed” from the
crypto block memory buffer.

Register buffer. Most symmetric and hash cryptographic
instructions benefit from a large (2048-bit) register buffer.
This register buffer provides access flexibility that is not
provided by the load and store FIFOs. The register buffer is
shared by different instructions to amortize its cost (silicon
area). After an Active reset or a crypto block reset
(CTL.ENABLED), the register buffer is set to ‘0’.

Vector unit register file. Most vector unit instructions
perform large integer arithmetic functionality. For example,
the VU ADD instruction can add two 4096-bit numbers.
Typically, operand data is “streamed” from the memory
buffer. In addition, a vector unit register file with sixteen
registers is provided. Each register specifies the location of
a number (start word access address) and the size of the
number (the size is in bits).

11.3.3

The load and store FIFOs provide access to operand data in
a “streaming” nature. Operand data is streamed through the
memory interface from or to either the internal memory
buffer or the system memory.

Load and Store FIFO Instructions

Two independent load FIFOs provide access to streamed
source operand data. Each FIFO has a multi-byte buffer to
prefetch operand data.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 97

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

One store FIFO provides access to streamed destination
operand data. The FIFO has a multi-byte buffer to
temporarily hold the data before it is written to the memory
interface.

Streamed operand data is specified by a memory start
address and an operand size in bytes.

Table 11-1. FF_START Instruction

Cryptographic Function Block (Crypto)

Three FIFO instructions are supported: FF_START,
FF_STOP, and FF_CONTINUE. The FF_START and
FF_STOP instructions are supported for both the load and
store FIFOs. The FF_CONTINUE instruction is only
supported for the load FIFOs. The FF_START and
FF_CONTINUE instructions consist of three instruction
words. The FF_STOP instruction consists of a single
instruction word.

Instruction Format

FF_START (ff_identifier, address[31:0], size[31:0])

IWO[31:24] = “operation code”
IWO[3:0] = ff_identifier // “8”: load FIFO O,
Encoding // “9”: load FIFO 1,
// “12”: store FIFO
IW1[31:0] = address[31:0]
IW2[31:0] = size[31:0]
Mnemonic Operation Code Functionality
Clear the FIFO multi-byte buffer. Start streaming size[31:0] operand data bytes,
starting at address[31:0].
This instruction is supported by both load and store FIFOs. For load FIFOs, data
FF_START 0x70 bytes are read through the memory interface. For the store FIFO, data bytes are
written to the memory interface.
The INSTR_OPC_ERROR interrupt cause is set when the ff_identifier is not a legal
value.

Table 11-2. FF_STOP instruction

Instruction Format

FF_STOP (ff_identifier)

IWO[31:24] = “operation code”
Encodin IWO[3:0] = ff_identifier // “8”: load FIFO O,
9 /7 “9”: load FIFO 1,
// “12”: store FIFO
Mnemonic Operation Code Functionality
Stop streaming
This instruction is supported by both load and store FIFOs. For load FIFOs, the multi-
FF_STOP 0x72 bytg buffer |§ clear.ed. For the sf[ore FIFO, the multi-byte buffer is written to the mem-
ory interface; that is, the buffer is flushed.
The INSTR_OPC_ERROR interrupt cause is set when the ff_identifier is not a legal
value.

Table 11-3. FF_CONTINUE Instruction

Instruction Format

FF_CONTINUE (ff_identifier, address[31:0], size[31:0])

IWO[31:24] = “operation code”
IWO[3:0] = ff_identifier // “8”: load FIFO O,
Encoding // “9”: load FIFO 1,
IW1[31:0] = address[31:0]
IW2[31:0] = size[31:0]
Mnemonic Operation Code Functionality
Do not clear the FIFO multi-byte buffer. Continue streaming size[31:0] oper-
and data bytes, starting at address[31:0]. This instruction can only be started
when a previous FF_START or FF_CONTINUE instruction for the same load
FIFO has read all its operand data bytes from the memory interface (see
FF_CONTINUE 0x71 LOADO1/_FF_STATUS.BUSY).
This instruction is only supported by the load FIFOs.
The INSTR_OPC_ERROR interrupt cause is set when the ff_identifier is not a
legal value.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

98

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Cryptographic Function Block (Crypto)

The status of the load and store FIFOs is provided through the LOADO_FF_STATUS, LOAD1_FF_STATUS, and
STORE_FF_STATUS registers.

11.3.4

Register Buffer Instructions

The 2048-bit register buffer has two 1024-bit partitions: reg_buff[1023:0] and reg_buff[2047:1024]. The reg_buff[1023:0]
partition has eight 128-bit subpartitions:

block0[127:0] = reg_buff[0*128+127:0*128]
block1[127:0] = reg_buff[1*128+127:1*128]
block2[127:0] = reg_buff[2*128+127:2*128]
block3[127:0] = reg_buff[3*128+127:3*128]
block4[127:0] = reg_buff[4*128+127:4*128]
block5[127:0] = reg_buff[5*128+127:5*128]
block6[127:0] = reg_buff[6*128+127:6*128]
block7[127:0] = reg_buff[7*128+127:7*128]

The reg_buff[1023:0] partition consists of 128 bytes: Byte offset 0 identifies reg_buff[7:0] and Byte offset 127 identifies

reg_buff[1023:1016].

Some instructions work on the complete register buffer and some instructions work on 128-bit subpartitions.

Table 11-4. CLEAR Instruction

Instruction Format

CLEAR O

Encoding IW[31:24] = “operation code”
Mnemonic Operation Code Functionality
reg_buff[2047:0] = O;
CLEAR O0x64 This instruction is used to set the register buffer to ‘0’. This instruction is useful to

prevent information leakage from the register buffer.
The instruction also sets DEV_KEY_STATUS.LOADED to '0'".

Table 11-5. SWAP Instruction

Instruction Format

SWAP O

Encoding IW[31:24] = “operation code”
Mnemonic Operation Code Functionality
temp = reg_buff[1023:0];
SWAP 0x65 reg_buff[1023:0] = reg_buff[2047:1024];

reg_buff[2047:1024] = temp;
This instruction swaps/exchanges the two register buffer partitions.

Table 11-6. XOR Instruction

Instruction Format

XOR (offset[6:0], size[7:0])

IW[31:24] = “operation code”
Encoding IW[14:8] = offset
IW[7:0] = size // in the range [0,128]
Mnemonic Operation Code Functionality
data = GetFifoData (LOADO_FIFO, size);
data = data << (offset*8);
XOR 0x66 reg_buff[1023:0] = reg_buff[1023:0] ~ data;

This instruction always uses load FIFO 0.

Note: This instruction can only access the lower register buffer partition.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

99

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Table 11-7. STORE Instruction

Cryptographic Function Block (Crypto)

Instruction Format STORE (offset[6:0], size[7:0])
IW[31:24] = “operation code”
Encoding IW[14:8] = offset
IW[7:0] = size // in the range [0,128]
Mnemonic Operation Code Functionality
data = reg_buff[1023:0]
STORE 0x67 data = data >> (offset*8);
SetFifoData (STORE_FIFO, size, data)

Table 11-8. BYTE_SET Instruction

Instruction Format BYTE_SET (offset[6:0], byte[7:0])
IW[31:24] = ““operation code”
Encoding IW[14:8] = offset
IW[7:0] = byte
Mnemonic Operation Code Functionality
BYTE_SET 0x68 reg_buff[offset*8 + 7: offset*8] = byte;

Some instructions work on (up to) 128-bit subpartitions or blocks. In addition, these instructions can work on the load and
store FIFOs. The instructions' source and destination operand identifiers are encoded as follows:

0: block0[127:0] = reg_buff[0*128+127:0*128]
1: block1[127:0] = reg_buff[1*128+127:1*128]
2: block2[127:0] = reg_buff[2*128+127:2*128]
3: block3[127:0] = reg_buff[3*128+127:3*128]
4: block4[127:0] = reg_buff[4*128+127:4*128]
5: block5[127:0] = reg_buff[5*128+127:5%128]
6: block6[127:0] = reg_buff[6*128+127:6*128]
7: block7[127:0] = reg_buff[7*128+127:7*128]
8: load FIFO 0
9: load FIFO 1
12: store FIFO

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

100

A
(e

CYPRESS

EMBEDDED IN TOMORROW

Table 11-9. BLOCK_MOV Instruction

Cryptographic Function Block (Crypto)

Instruction Format

BLOCK_MOV (reflect[1], size[3:0], dst[3:0], src0[3:0])

IW[31:24] = “operation code”
1W[23] = reflect
Encoding IW[19:16] = size
IW[15:12] = dst
IW[3:0] = srcO
Mnemonic Operation Code Functionality
size = (size == 0) ? 16 : size;
datal = dataO = GetBlock (srcO, size);
if (reflect) { // assume size of 16 B / 128 bit
temp = dataO;
for (i =0; i <16; 1 +=1) {
BLOCK_MOV 0x40 for 9 = 0; 3 <8 § +=1){

// reflection of bits in a byte
datal[8*i + j] = dataO[8*i + 7-j];
3
}
b

SetBlock (dst, size, datal);

Table 11-10. BLOCK_XOR Instruction

Instruction Format

BLOCK_XOR (size[3:0], dst[3:0], srcl[3:0], srcO[3:0])

IW[31:24] = “operation code”

IW[19:16] = size
Encoding IW[15:12] = dst

IW[7:4] = srcl

IW[3:0] = srcO
Mnemonic Operation Code Functionality

size = (size == 0) ? 16 : size;

BLOCK_XOR 0x41 data0 f GetBlock (src0O, size);

datal = GetBlock (srcl, size);
SetBlock (dst, size, data0 ~ datal);

Table 11-11. BLOCK_SET

Instruction

Instruction Format

BLOCK_SET (size[3:0], dst[3:0], byte[7:0])

IW[31:24] = “operation code”
. IW[19:16] = size
Encoding IW[15:12] = dst
IW[7:0] = byte
Mnemonic Operation Code Functionality
i = i == ? - i -
BLOCK_SET Ox42 size (size 0) ? 16 : size;

SetBlock (dst, size, {16{byte[7:01}})

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

o CYPRESS

> EMBEDDED IN TOMORROW Cryptographic Function Block (Crypto)

Table 11-12. BLOCK_CMP Instruction

Instruction Format BLOCK_CMP (size[3:0], src1[3:0], src0[7:0])
IW[31:24] = “operation code”
. IW[19:16] = size
Encoding IW[7:4] = srcl
IW[3:0] = srcO
Mnemonic Operation Code Functionality
size = (size == 0) ? 16 : size;
data0 = GetSourceBlock (srcO, size);
BLOCK_CMP 0x43 datal = GetSourceBlock (srcl, size);
RESULT.DATA |= (dataO[size*8-1:0] != datal[size*8-1:0]);
Table 11-13. BLOCK_GCM Instruction
Instruction Format BLOCK_GCM (when GCM parameter is "1%)
Encoding IW[31:24] = “operation code”
Mnemonic Operation Code Functionality
Perform a GCM multiplication:
m {block2, blockl} = XMUL (blockl, block3)
BLOCK GCM 0x43 B blockl = GCM_Reduce ({block2, blockl})
- The instruction uses three specific 128-bit blocks. The XMUL operation is
part of the BLOCK_GCM instruction and is a carry-less multiplication. The
reduction is specific for the GCM cipher mode.

GetBlock is defined as follows:
GetBlock (src, size) {
switch (src) {
0: return blockO[127:0];
: return block1[127:0];
2: return block2[127:0];
3: return block3[127:0];
4: return block4[127:0];
5: return block5[127:0];
6: return block6[127:0];
7: return block7[127:0];
default: return GetFifoData (src, size);

SetBlock is defined as follows:
SetBlock (dst, size, data) {
switch (dst) {
0: block0[127:0] = data;

1: blockl1l[127:0] = data;
2: block2[127:0] = data;
3: block3[127:0] = data;
4: block4[127:0] = data;
5: block5[127:0] = data;
6: block6[127:0] = data;
7: block7[127:0] = data;
default: SetFifoData (dst, size, data);

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J 102

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Cryptographic Function Block (Crypto)

The GetFifoData function is defined as loading “size” bytes from a load FIFO. Up to 16 bytes can be loaded as data[127:0].
The first (top) loaded FIFO entry is mapped on data[7:0], the second loaded FIFO entry is mapped on data[15:8], and so on.
The SetFifoData function is defined as storing size bytes from a load FIFO. Up to 16 bytes can be stored as data[127:0]. The
first stored FIFO entry is mapped on data[7:0], the second stored FIFO entry is mapped on data[15:8], and so on.

11.4 Hash Algorithms

11.4.1 SHA1 and SHAZ2

The SHA1 and SHAZ2 functionality includes three hash instructions per the SHA standard (FIPS 180-4).
m The SHA1 instruction provides all SHA1 functionality (SHA1 always uses 512-bit blocks).

m The SHA2_256 instruction provides SHA2 functionality for 512-bit blocks.

m The SHA2_ 512 instruction provides SHA2 functionality for 1024-bit blocks.

The instructions support different block sizes and hash sizes:

Instruction Block Size Hash Size
SHA1 512 bits 160 bits
SHA2_256 512 bits 256 bits
SHA2_512 1024 bits 512 bits

The SHA1 instruction supports a single algorithm with a specific message digest size. The SHA2_256 and SHA2_ 512
instructions support multiple algorithms with different message digest sizes.

Instruction Algorithm Hash Size Message Digest Size
SHA1 SHA-1 160 bits 160 bits
SHA-224 256 bits 224 bits
SHA2_256
SHA-256 256 bits 256 bits
SHA-384 512 bits 384 bits
SHA-512 512 bits 512 bits
SHA2_512
SHA-512/224 512 bits 224 bits
SHA-512/256 512 bits 256 bits

A SHA algorithm calculates a fixed-length hash value from a
variable length message. The hash value is used to produce
a message digest or signature. It is computationally
impossible to change the message without changing the
hash value. The algorithm is stateless: a given message
always produces the same hash value. To prevent “replay
attacks”, a counter may be included in the message.

The variable length message must be preprocessed: a ‘1’ bit
must be appended to the message followed by ‘0’s and a bit
size field. The preprocessed message consists of an integer
multiple of 512 bit or 1024 bit blocks. The SHA component
processes a single block at a time:

m The first SHA instruction on the first message block uses
an initial hash value as defined by the standard (each
SHA algorithm has a specific initial hash value).

m Subsequent SHA instructions on successive message
blocks use the produced hash value of the previous SHA
operation.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

The SHA instruction of the last message block produces the
final hash value. The message digest is a subset of this final
hash value.

The SHA
functionality:

instructions do not perform the following

m Preprocessing of a message.

m Initialization of the register buffer with the algorithm’s
specific initial hash value.

m Copy the algorithm’s message digest to memory.

Software is required to preprocess the message. The
FIFO_START instruction can be used to load (load FIFO)
the register buffer with the initial hash value and to store
(store FIFO) the message digest.

A SHA instruction uses “round weights” that are derived
from the message block. Each SHA round uses a dedicated
round weight. The “round weights” are derived on-the-fly (a
new round weight is calculated when needed, and replaces

103

A
(e

CYPRESS

EMBEDDED IN TOMORROW

a round weight from a previous round). The following table

Cryptographic Function Block (Crypto)

reg_buff[511:0] and the SHA2_512 instruction uses

provides the number of rounds. reg_buff[1023:0].
m reg_buff[1535:1024] is used for the hash value. Before
Instruction Rounds the first SHA instruction, this region is written with the
SHA1 80 algorithm’s initial hash value. The algorithms with hash
HA2 2 " values smaller than 512 bits only use the lower bits of
SHAZ_256 6 this region.
SHA2_512 80 m reg_buff[2047:1536] is used as a working copy of the

The instructions use register buffer operands. Specifically,

the instructions use reg_bu
]

block. The SHA1 and S

f[2047:0]:

reg_buff[1023:0] is used for the round weights. Before
an instruction, this region is written with the message

HA2_256 instructions use

Table 11-14. SHA1 Instruction

hash value. This working copy is updated during the
SHA rounds and copied to reg_buff[1535:1024] at the
end of the instruction.

The instructions are described in the following tables.

Instruction Format SHA1L O
Encoding IW[31:24] = “operation code”
Mnemonic Operation Code Functionality
Perform a SHA1 function on a 512-bit message block in reg_buff[511:0] with
SHA1 0x69 the current 160-bit hash value in reg_buff[1183:1024]. The resulting hash

value is provided in reg_buff[1183:1024]. At the end of the instruction,
reg_buff[1023:0] is set to ‘0’.

Table 11-15. SHA2_256 Instruction
Instruction Format SHA2_256 ()
Encoding IW[31:24] = “operation code”
Mnemonic Operation Code Functionality
Perform a SHA2 function on a 512-bit message block in reg_buff[511:0] with
SHA2_ 256 Ox6a the current 256-bit hash value in reg_buff[1279:1024]. The resulting hash

value is provided in reg_buff[1279:1024]. At the end of the instruction,
reg_buff[1023:0] is set to ‘0’.

Table 11-16. SHA2_512 Instruction
Instruction Format SHA2_512 (O
Encoding IW[31:24] = ““operation code”
Mnemonic Operation Code Functionality
Perform a SHA2 function on a 1024-bit message block in reg_buff[1023:0]
SHA2 512 0x6b with the current 512-bit hash value in reg_buff[1535:1024]. The resulting hash

value is provided in reg_buff[1535:1024]. At the end of the instruction,
reg_buff[1023:0] is set to ‘0’.

PSoC 6 MCU: CY8C62x6, CY8C62x7 Architecture TRM, Document No. 002-20730 Rev. *J

104

o CYPRESS

~ammp> EMBEDDED IN TOMORROW Cryptographic Function Block (Crypto)
11.4.2 SHA3 m The rate r, which is the number of consumed message
bits or produced digest bits per application of the Keccak
The Secure Hash Algorithm-3 (SHA-3) is a family of six permutation (SHA3 instruction).
algorithms: m The capacity ¢, which is defined as b-r.
SHA3-224 All six hash algorith tructed b ddi
six hash algorithms are constructed by padding a
= SHA3-256 message M and applying the Keccak-p[1600, 24]
m SHA3-384 permutation repeatedly. The algorithms differ in terms of the
m SHA3-512 rate r and the padding.
m SHAKE128 The permutation’s rate r determines the speed of the
m SHAKE256 algorithm: a higher rate requires less applications of the

. . e permutation function (SHA3 instruction).
Each of these algorithms relies on a specific instance of the

Keccak-p[b, nr] permutation, with b = 1600 and nr = 24. The The permutation’s capacity c determines the security of the
parameter b specifies the permutation bit width (1600 bits) algorithm: a higher capacity provides higher security.
and the parameter nr specifies the number of permutation

Table 11-17 i i ’ ity.
rounds (24 rounds). able lists the algorithms’ rate and capacity. In

addition, it lists the size of the message digest. Note: The
The permutation bit width b is the sum of: SHAS3 hash algorithms have fixed-length digests and the
SHAKE extendable output functions have variable-length
digests.

Table 11-17. Algorithm Rate and Capacity

Algorithm Rate, Capacity Digest Length
SHA3-224 r=1152b,c=448b 224 b (28 B)
SHA3-256 r=1088b,c=512b 256 b (32 B)
SHA3-384 r=832b,c=768b 384 b (48 B)
SHA3-512 r=576b,c=1024b 512 b (64 B)
SHAKE128 r=1344b,c=256b Variable length
SHAKE256 r=1088b,c=512b Variable length

The padded message has a length that is an integer multiple of the r