AURIX™ TC3xx Microcontroller Training 'y
V1.0.0 (Infineon

Please read the Important Notice and Warnings at the end of this document

(infineon

Scope of work

This example shows how to identify the root cause of a trap.

The tutorial describes what types of traps are supported by the AURIX™
microcontroller, their root causes and how to identify them. AURIX™
architecture supports different types of traps. Three different traps can be
provoked with this example and the tutorial guides the user through the
needed steps to observe the root cause of each trap.

(infineon

Introduction

» A trap occurs as a result of an event such as a Non-Maskable Interrupt
(NMI), an instruction exception, a memory management exception or an
lllegal access. Traps are always active; they cannot be disabled by
software.

» The TriCore™ architecture specifies eight general classes for traps. Each
trap class has its own trap handler. Within each class, specific traps are
distinguished by a Trap Identification Number (TIN).

» Traps can be further classified as synchronous or asynchronous, and as
hardware or software generated.

» Three different combinations of trap types are supported:
— Synchronous and hardware generated
— Asynchronous and hardware generated
— Synchronous and software generated

(in’ﬁneon |

Hardware setup

This code example has been
developed for the board
KIT_A2G_TC397 5V_TFT.

P8 =
Menue O
...o .

2w s
R EREE KN
m 71@10010’
i
[ExR236 R33

[E=8R235

LCD201

Lt
ol
<)
®
3
©°
N
<

Copyright © Infineon Technologies AG 2020. All rights reserved.

Implementation

Supported traps

infineon

The following table provides an overview about all supported traps and their types:

Table8 supported Traps Table8 Supported Traps (cont'd)
TIN |Name synch. / HW/ | Definition TIN |Name synch. / HW/ |Definition
Asynch. SW Asynch. SW
Class 0 — MMU 4 FCU Synch. HW Free Context List Underflow (FCX=0).
0 |var Synch. HW__ |virtuel Address Fill 5 csu synch. HW call Stack Underflow (PCX = 0).
S irtua

1 VAP Synch. : HW Virtual Address Protection. 5 CTvP Synch. oW Context Type (PCXI.ULwrong).
Class 1 — Internal Protection Traps 7 NEST Synch. HW Nesting Error: RFE with non-zero call depth.
1 PRIV Synch. HW Privileged Instruction. N

Class 4 — System Bus and Peripheral Errors
2 MPR Synch. HW Memory Protection Read.

- - 1 PSE Synch. HW Program Fetch Synchronous Error.
3 MPW Synch. HW Memory Protection Write.
- - 2 DSE Synch. HW Data Access Synchronous Error.

4 MPX Synch. HW Memory Protection Execution.

3 S . S i S ‘
5 MPP Synch. HW Memory Protection Peripheral Access. DAE Asynch Hw Data Access Asynchronous Error
o VPN Synch. W Memory Protection Null Address. 4 CAE Asynch HW Coprocessor Trap Asynchronous Error.
7 GRWP Synch. HW Global Register Write Protection. 5 PIE Synch HW Program Memory Integrity Error.
Class 2 — Instruction Errors 6 DIE Asynch HW Data Memory Integrity Error.
1 I0PC synch. HW lllegal Opcode. 7 TAE Asynch HW Temporal Asynchronous Error
2 UOPC Synch. HW Unimplemented Opcode. Class 5— Assertion Traps
3 OPD synch. HW Invalid Operand specification. 1 OVF Synch. SwW Arithmetic Overflow.
4 ALN Synch. HW Data Address Alignment. 2 SOVF Synch. SW Sticky Arithmetic Overflow.
5 MEM Synch. HW Invalid Local Memory Address.
Class 3 — Context Management Class 6 — System call”
1 FCD Synch. HW Free Context List Depletion (FCX = LCX). SYS ‘ Synch. | SW |Sy5tem Call.
2 Cbo Synch. HW Call Depth Overflow. Class 7 — Non-Maskable Interrupt
3 cbu Ssynch. Hw Call Depth Underflow. 0 | NMI Asynch. | HW |Non—Maskab{e Interrupt.

Please refer to the TriCore™ TC1.6.2 core architecture manual and the AURIX™ TC3xx User’s

Manual for detailed information about each trap.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Infineon

i

Implementation

Trap types

» Synchronous traps:

— Synchronous traps are associated with the execution or attempted execution of specific
instructions or with attempts to access a virtual address that requires the intervention of the
memory-management system.

— The trap is triggered and serviced immediately.

> Asynchronous traps:

— Since asynchronous traps are associated with hardware conditions, they are similar to
interrupts.

— They are routed via the trap vector.

— Some asynchronous traps are triggered indirectly from instructions, that have been previously
executed, but the direct association with the instructions causing the trap is lost.

» Hardware traps:

— Hardware traps are generated in response to exception conditions detected by the hardware.

— In most, but not all cases, the exception conditions are associated with the attempted execution
of a particular instruction.

» Software traps:

— Software traps are generated as an intentional result of executing a system call or an assertion

instruction.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Infineon

i

Implementation

Trap handling

> When a trap occurs, a trap identifier is generated by hardware. The trap identifier has two
components that can be used to determine more information about the trap and why it was caused
(refer to slide Supported traps):
— The Trap Class Number (TCN)
— The Trap Identification Number (TIN)

> In most cases, the debugger will stop the code execution within one of the trap handlers
(implemented in the iLLD header IfxCpu_Trap.c)

> An instance of the structure IfxCpu_Trap is declared within each trap handler. When a trap occurs,
the instance provides four information fields about the trap:
— tCpu: Which CPU caused the trap
- tClass: TCN, Class of the trap (refer to slide Supported traps)
— tld: TIN, Id of the trap (refer to slide Supported traps)
— tAddr: Return Address (RA) (refer to the next slide)

Copyright © Infineon Technologies AG 2020. All rights reserved.

Infineon

i

Implementation

Return Address

> The Return Address (RA) might help to locate the specific line of code which caused the trap.

> The return address, which is stored in the instance of the IfxCpu_Trap structure, is read from the
return address register A[11].

> Depending on the trap type, the return address is different:

— For most of the synchronous traps, the return address is the 32-bit Program Counter (PC)
of the instruction that caused the trap. (The PC holds the address of the instruction which is
currently running when the core is halted.)

— On a System Call (SYS) trap, triggered by the SYSCALL instruction, the return address
points to the instruction immediately following SYSCALL.

— A Free Context List Depletion (FCD) trap is generated after a context save operation that
causes the free context list becoming “almost empty”.

The responsible for the FCD trap can be a hardware interrupt or a trap handler. The
operation responsible for the context save normally is completed before the FCD trap is
executed. Because of this, the return address of the FCD trap is the first instruction of the
trap/interrupt/called routine or the instruction following a Save Lower Context (SVLCX) or
Begin Interrupt Service Routine (BISR) instruction.

— For an asynchronous trap, the return address is the address of the instruction that would
have been executed next, if the asynchronous trap had not been triggered.

Infineon

i

Implementation

Additional debug information

>

The bit field ERROR_ADDRESS of the Data Error Address Register (DEADD) contains the trap
address information for the data memory. The content of the DEADD register is valid if the Data
Synchronous Trap Register (DSTR) or the Data Asynchronous Trap Register (DATR) register
are non-zero (depending on the trap type). The bit fields in the DSTR and the DATR registers can
provide additional information about the trap (refer to the TC3xx User's Manual).
— These information are valid in case traps such as:

— Data Address Alignment (ALN)

— Data Access Synchronous Error (DSE)

— Data Access Asynchronous Error (DAE)

— Invalid Local Memory Address (MEM)

— Memory Protection Write (MPW)

— Memory Protection Read (MPR)

— Memory Protection Peripheral Access (MPP)

— Memory Protection Null Address (MPN)

Copyright © Infineon Technologies AG 2020. All rights reserved.

(infineon

Implementation

Additional debug information

> The Program Memory Interface Synchronous Trap Register (PSTR) contains synchronous trap
information for the program memory system. The register is updated with trap information for
Program Fetch Synchronous Error traps (PSE).

» The Program (or Data) Integrity Error Address Register (PIEAR / DIEAR) and the Program (or

Data) Integrity Error Trap Register (PIETR / DIETR) can be interrogated to determine the source
of the Program (or Data) Memory Integrity Error (PIE / DIE) more precisely.

Copyright © Infineon Technologies AG 2020. All rights reserved.

(infineon

Implementation

Trap provocation

» Three different combinations of trap types can be provoked in this example:
— Synchronous Hardware trap
— Asynchronous Hardware trap
— Synchronous Software trap

> The trap provocation is implemented in the function run_trap_provocation() and can be started by setting
one of the three g_provokeXYTrap (X = Synchronous / Asynchronous; Y = Hardware / Software)
variables.

> The implemented code for the first two traps is based on the MTU_MBIST_1 and SMU_IR_Alarm_1
examples. For further information on the code, please refer to the specific tutorials.

> The third trap is provoked by using two instructions: __mtcr() (Move To Core Register) and trapv
(assembly code). For further information on these instructions, please refer to the TriCore™ TC1.6.2 core
architecture manual - Instruction set manual.

Note: __ mtcr() is an intrinsic function of the Tasking compiler, which moves contents of a data register to the
addressed Core Special Function Register (CSFR). __mtcr() performs a Move to Core Register (MTCR)
TriCore™ instruction and is followed by an ISYNC instruction.

> For a better understanding of the trap behavior, the required code instructions used to avoid the cause of
each trap, are implemented and can be activated by setting the AVOID_PROVOCATION macro to true.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Run and Test

After code compilation and flashing the device, perform the following steps:

> Add the three variables “g_provokeSynchronousHardwareTrap”,

Infineon

i

“‘g_provokeAsynchronousHardwareTrap” and “g_provokeSynchronousSoftwareTrap” in the

Expressions window of the debugger.

> Add the three registers DEADD, DATR and DSTR in the Expressions window of the debugger.

i== Variables | ®s Breakpoints &1 Expressions =2

Expression Type
= g_provokeSynchronousHardwareTrap unsigned short
69 g_provokeAsynchronousHardwareTrap unsigned short
= g_provokeSynchronoussoftwareTrap unsigned short

ial GRP{ CPU).REG(CPUD_DEADD)
51 GRP(CPU).REG(CPUO_DATR)
sa GRP{ CPU).REG(CPUD_DSTR)

oe Add new expression

Unsigned / Readable Writeable
Unsigned / Readable Writeable
Unsigned / Readable Writeable

Copyright © Infineon Technologies AG 2020. All rights reserved.

Value

(oD
Oneld
el

i.h_

Run and Test

Infineon

i

1.1 Synchronous hardware trap

>

Provoke the synchronous hardware trap by setting the value of
“‘g_provokeSynchronousHardwareTrap” in the “Expressions” window to “1”.
Press the “Resume” button to start the program.

Observe the following information:

The debugger stopped in the IfxCpu_Trap_busError() function (ItxCpu_Trap.c).

The “Variables” window of the debugger displays the “trapWatch” structure and the value of its
parameters.

The trap is provoked by CPUQ, it is a trap of class 4, the trap id is 2 and the Return Address
(RA) is 0x80000036 (2147483702,,).

It is a Data Access Synchronous Error (Trap table, class 4 and tin 2).

Copyright © Infineon Technologies AG 2020. All rights reserved.

infineon
Run and Test

1.2 Synchronous hardware trap

> Observe the following information:

— The call stack in the “Debug” window displays the function which was called before the trap
occurred (in this case the function run_trap_provocation(), the address displayed behind this
function equals the Return Address (RA)).

— By clicking on this function, the debugger jumps to the specific code line in the
CPU_Trap_Recognition.c file and to the corresponding assembly line in the “Disassembly”
window. The address of the assembly line equals the Return Address (RA).

¥ Debug
v ¥ CPU_Trap_Recognition_1_KIT_TC397_TFT [TASKING C/C++ Debugger]

& [] & Disassembly Fater location he
3 It
v & Generic Infineon AURIX Board [taskingdebugger.exe] 000008008080001¢: nop
v {® Thread [core 0] (Suspended : User Request) 80000020B00081e: nop
- ™~ 3 67 if(g_provokeSynchronousHardwareTrap) /* The following code is ba
= IfxCpu_Trap_busError() at IfxCpu_Trap.c:178 0x80000300 CPU_Trap_Recognition.c 2 | (¢ IfxCpu_Trap.c 0090000080060020: movh.a w1, #ax7080 £
= i i " 59-wvoid run_trap_provocation(veid) 80080880E0000024 1 lea al5,[al5]ex4
= run_trap_provocation() at CPU_Trap_Recognition.c:79 0x80000036 60 { - P Oe0000600860025, | 1d.hu d15. [a15]0%0
= core0_main() at Cpu0_Main.c:64 0x80002094 . i 000E00E0BEE0082C: jz d15,6x80000042
= : £ if(g_provokeSynchronousHardwareTrap) /* Code is based 70 IfX_MTU_MC *mc = (Ifx_MTU_MC *)(IFXMTU_MC_ADDRESS_BASE + @xl
»® Thread [core 1] (Running : User Request) 6: { 000006E0EGERGE2e: movh.a 215, #9x 086
»® Thread [core 2] (Running : User Request) [* Get pointer to Read Data and Bit Flip Register 6000000080000032: lea als, [al5]@x3900
) : . 79 mc->RDBFL[8] . U++;
@ Thread [core 3] (Running : User Request) 64 Ifx MC *mc = (Ifx _MC *)(IFXMTU_MC_ADDRESS_BASE + @ - poepoeeeseesse3s: ld.hu d1s, [a15]exse
»® Thread [core 4] (Running : User Request) b ggggggggsggggg;ai azuh d15, %0x1 d
#if AVOID_PROVOCATION €: st [a15]ex6e,d15
»® Thread [core 5] (Running : User Request) - - - . ©6000000080000040: jg ex8ee0008c
IfxMtu_enableModule(); /* Enable MTU clock */ 85 else if(g_provokeAsynchronousHardwareTrap) The following code
IfxScukdt_clearSafetyEndinit(IfxSculidt_getSafe 0000000080000042 Tﬂvh-a aliﬁ[mx??ﬂa
: . % 8000000080000046 : ea als,[a15]exe
Tfxiitu_enableMbistShell (MBIST_REGISTER); /* En e | 2o Sl
#endif ooooPeePEEREERde: jz d15,6xB80008066
95 MODULE SMU.AGC.B.IGCS@ = 1;

mc->RDBFL[8] . U++;
#if AVOID_PROVOCATION

IfxScukdt_setSafetyEndinit(IfxSculidt_getSafety
#endif

Copyright © Infineon Technologies AG 2020. All rights reserved.

Infineon

i

Run and Test

1.3 Synchronous hardware trap

>

Observe the following additional information:

— The LBE bit field in the DSTR register is set (Load Bus Error - Data load from bus causing
error, refer to AURIX™ TC3xx User’s Manual).

— The DEADD register displays the address 0xf0063960, which is the address of the modified
register which caused the trap.

— By running a file search (Search -> File) for the address, the search finds the specific RDBFLO
register which equals the modified MBIST DMA register.

== Variables ®e Breakpoints “% Expressions &
Expression Type Value
9= g_provokeSynchronousHardwareTrap unsigned short 1
6= g_provokeAsynchronousHardwareTrap unsigned shart 0
4= g_provokeSynchronousSoftwareTrap unsigned short 0
150 GRP(CPU).REG(CPUD_DEADD) Unsigned / Readable Writeable OufO063960
1 GRP(CPU).REG(CPUO_DATR) Unsigned / Readable Writeable 00
tii GRP(ICPU).REG{CPUO_DSTR) Unsigned / Readable Writeable (e

w Add new expression
0 Memory < Search k5
'Oxf0063960° - 1 match in workspace
v 5 CPU_Trap_Recognition_1_KIT_TC397_TFT
v £ Libraries

v E% Infra
v B Sfr
v £ TC398
v &2 _Reg

v [IfxMtu_reg.h
> 10.86%: #define MTU_MCA41_RDBFLO /*lint --e(923, 9078)*/ (*(volatile Ifx_MTU_MC_RDBFL*)DxF0063960u)

Copyright © Infineon Technologies AG 2020. All rights reserved.

Run and Test

Infineon

i

2.1 Asynchronous hardware trap

>
>

Restart the program by pressing the “Restart” button in the debugger.

Provoke the asynchronous hardware trap by setting the value of
“‘g_provokeAsynchronousHardwareTrap” in the “Expressions” window to “1”.
Press the “Resume” button to start the program.

Observe the following information:

The debugger stopped in the IfxCpu_Trap_busError() function (ItxCpu_Trap.c).

The “Variables” window of the debugger displays the “trapWatch” structure and the values of
its parameters.

The trap is provoked by CPUQ, it is a trap of class 4, the trap id is 3 and the Return Address
(RA) is 0x80000024 (2147483684).

It is a Data Access Asynchronous Error (Trap table, class 4 and tin 3).

Copyright © Infineon Technologies AG 2020. All rights reserved.

Infineon

(7\

Run and Test

2.2 Aynchronous hardware trap

> Observe the following information:

— The call stack in the “Debug” window displays the function which was called before the trap
occurred (in this case the function run_trap_provocation(), the address displayed behind this
function equals the Return Address (RA)).

— By clicking on this function, the debugger jumps to the specific code line in the
CPU_Trap_Recognition.c file and to the corresponding assembly line in the “Disassembly”
window. The address of the assembly line equals the return address.

— Because it is an asynchronous trap, the specific code line is not pointing to the line which is
causing the trap. It is the code line of the instruction that would have been executed next, if the
asynchronous trap had not been triggered.

— Since there is no other instruction within the function run_trap_provocation(), it is impossible
to find the line of code by using the Return Address (RA) in this example

= Fnter Incation
CPU Tiap Re = Disassembly * nter Incation he
0000000080000010:
" t16 vokeSynchronousSoftwareTr FALSE;
Debug E-pro! pe h ©0000000860208012

9000008080000014 noj
2000000080000016: noj|
©000000080000018: N«
B00000808000801a

v % CPU_Trap_Recognition_1_KIT_TC397_TFT [TASKING C/C++ Debugger]
v @& Generic Infineon AURIX Board [taskingdebugger.exe]

333 Fl
28238 2
.5 888988%

o " \ 500000008000001C
v 4 Thread [core 0] (Suspended) 64 LEEEEEEEEEEE'S
= |fxCpu_Trap_busError() at IfxCpu_Trap.c:178 0x80000300 S linucsrse: provocat onivard) o opeanccncze: monr BProvakesynchrancucharduareTrap) /* The fallawing
= run_trap_provocation() at CPU_Trap_Recognition.c:67 0x80000024 o7 LR REprovokRsChTonousH AEOHTe Liap) N/ A e to L IbRinead 6000000080000624: | lea a15, [a15]ex4
6 { . 08000000860060268: 1d.hu d15, [al5]exe
= r 4 € * Get the pointe Read Data and Bit Flip Registe ELEEEEEEREELER RIS jz d15,0x80000042
core0_main() at Cpu0_Main.c:64 0x80002094 Ifx_MTU_MC *mc (W b VC)(!FXNTU MC. ADDRESS BAS 7@ ‘ ’ Ifx_MTU_MC *me = (Ifx_MTU_MC *)(IFXMTU_MC_ADDRESS
~ 4 Thread [core 1] (Suspended) 71 AT pnovocn:ou 000000008000002e: movh.a 215, #0xf006
A - 2 0000000080000032: lea 15, [al5])ex3%00
= |fxScuCcu_getPlIFrequency() at IfxScuCcu.c411 0x80000720 73 Ifxitu_enable “0" 1 e(); 79 me->ROBFL[8].U++;
5 = i 4 IfxSc "‘"‘ clearsafetyEndinit(IfxScukdt_getsafetyW 0000000080000035: 1d.hu d15, [a15]exse
= |fxScuCcu_getSourceFrequency() at IfxScuCcu.c461 0x80000766 . ndi:*"" nablel ”" ‘5“ 11(MBIST_REGISTER); 000008008000003a: add d15, #0x1
= If . a - 177 ot She ©00000008000003c: st.h [al5]exee,d1s
IfxCpu_waitEvent() at IfxScuCcu.h:1,729 0x80000232 7 ¢ notify the repister value. If the sbove staps are 006000080080040° g ox aeaaeaa
= corel 00 <803002f4 SROBFL 01 U 85 else if(g_provokeAsynchronousHardwareTrap) /* The fol
corel_main() at 0x803002 (e)- 0000000080000042: movh.a a1s, " yox7000
v« Thread [core 2] (Suspended) 81 #if AVOID_PROVOCATION 0000000080000046: lea als,[al5])exe
Rty) 82 IfxScuWdt_setSafetyEndinit(IfxSculdt_getSafetybiat ceooceoeseoeeeda: 1d.hu d15, [a15]exe
= _Core2_start() at Ifx_Ssw_Tc2.c:136 0x80600216 83 #endif 0000000080000642:]z d15,8x80000066
a } a5 MODULE_SMU.AGC.B.IGCS8 = 1;

Copyright © Infineon Technologies AG 2020. All rights reserved.

(in/fifneon

Run and Test

2.3 Asynchronous hardware trap

> Due to the fact that the Return Address (RA) cannot be used, the following information might help

to locate the cause of the trap:

— The SBE bit field in the DATR register is set (Store Bus Error - Data store to bus causing error,
refer to AURIX™ TC3xx User’'s Manual).

— The DEADD register displays the address 0xf003682c, which is the address of the modified
register that caused the trap.

— By running a file search (Search -> File) for the address, the search finds the specific
SMU_AGC register which equals the modified register. The name of the modified register helps
to find the code line which is causing the trap (By using another search for “AGC”).

“= Variables | ®s Breakpoints &1 Expressions & [1 Memory | 4 Search 53

Expression Type Value 'AGC' - 1.724 matches in working set 'ActiveProject’
= g_provokeSynchronousHardwareTrap unsigned short 0 « 5 CPU_Trap_Recognition_1_KIT_TC397_TFT
= g_provokeAsynchronousHardwareTrap unsigned short 1 - [5 Libraries
¢4 g_provokeSynchronousSoftwareTrap unsigned short 0 - [,_—ﬁ iLLD
44 GRP({ CPU).REG(CPUO_DEADD) Unsigned / Readable Writeable 0xf003682¢ - [,_—; Tc39R

~ 4 GRP{ CPU J.REG(CPUO_DATR) Unsigned / Readable Writeable Ox8 &

it RES Readable,Writ-=='~ o Vi

Wil SBE Readablewrit [0 Memory | 47 Search &2 I %

i RES_3 Readable,Writ '0xf003682¢ - 1 match in working set 'ActiveProject’ e Pms

W CWE ReadableWrit ~ = CPU_Trap_Recegnition_1_KIT_TC397_TFT . (= Smu

1 CFE Readablewrit v (2 Libraries & Infra N

it RES_6 Readable,Writ w 22 Infra w | CPU_Trap_Recognition.c

1 SOE Readable,Writ v (25 sfr o 95 MODULE_SMU.AGC.B.IGCS0 = 1;
i SME Readable,Writ v @5 TCaoB

1t RES_9 Readable,Writ v Reg

iii GRP(CPU).REG(CPUD_DSTR)

¢ Add new expression

Unsigned / Re

v |._uf IfxSmu_reg.h
& 0% #define SMU_AGC /*lint —-e(923, 9078)*/ (*{volatile Ifx_SMU_AGC*E

Copyright © Infineon Technologies AG 2020. All rights reserved.

Run and Test

Infineon

i

3.1 Synchronous software trap

>
>

Restart the program by pressing the “Restart” button in the debugger.
Provoke the synchronous software trap by setting the value of
“‘g_provokeSynchronousSoftwareTrap” in the “Expressions” window to “1”.
Press the “Resume” button to start the program.

Observe the following information:

The debugger stopped in the IfxCpu_Trap_assertion() function (IfxCpu_Trap.c).

The “Variables” window of the debugger displays the “trapWatch” structure and the value of its
parameters.

The trap is provoked by CPUQ, it is a trap of class 5, the trap id is 1 and the Return Address
(RA) is 0x80000086 (2147483782,).

It is an Arithmetic Overflow Error (Trap table, class 5 and tin 1).

Copyright © Infineon Technologies AG 2020. All rights reserved.

Run and Test

3.2 Synchronous software trap

> Observe the following information:
— The call stack in the “Debug” window displays the function which was called before the trap
occurred (in this case the function run_trap_provocation(), the address displayed behind this
function equals the Return Address (RA)).
— By clicking on this function, the debugger jumps to the specific code line in the
CPU_Trap_Recognition.c file and to the corresponding assembly line in the “Disassembly”
window. The address of the assembly line equals the Return Address (RA).

% Debug =
v # CPU_Trap_Recognition_1_KIT_TC397_TFT [TASKING C/C++ Debugger]
¥ & Generic Infineon AURIX Board [taskingdebugger.exe]
¥ o Thread [core 0] (Suspended)
= |fuCpu_Trap_assertion() at fxCpu_Trap.c:189 0x800002bc
= run_trap_provocation() at CPU_Trap_Recognition.c:121 0x80000086
= core0_main() at Cpul_Main.c64 0x80002094
v o Thread [core 1] (Suspended)
= Ifx5cuCcu_getPlIFrequency() at IfxScuCou.c411 0x80000720
= |fxScuCeu_getSourceFrequency() at IfxScuCeu.c461 0x80000766
= IfxCpu_waitEvent() at IfxSocuCcu.h:1,729 0x80000232
= corel_main() at 0x803002f4
~ o Thread [core 2] (Suspended)
= _ Core2_start() at Ifx_Ssw_Tc2.c:134 0x80600202
~ o Thread [core 3] (Suspended)
= Oxafffc000() at Oxafffc000

¢ CPU Trap_Re...

IfxSmu_lock(&MODULE_SMU);
#endif

else if(g_provokeSynchronousSoftwareTrap)

Ifx_CPU_PSW psw;

* Variable of the

* Get the content of the Program S
psw.U = __mfcr(CPU_PSW);
psw.B.USB = ©x40; E

Set the over

112 #if AVOID_PROVOCATION
113 psw.B.USB = @xe;
114 #endif

__mter(CPU_PSW,psw.U);

trap

w bit is set, an Arithmetic O

__asm("trapv");

else

IfxSculdt_setSafetyEndinit(IfxSculWdt_getSafetyWatchdogP:

* After configuration, set a temporary lock of the SMU

= Disassembly *
géeoooaosoeeea’4:

118

pegoe0a0s0000878:;
oegoeonose0Ree7a:

116

Pe0oe0B05000007e:
B0e0e00EE0000082:

121

> @oepe0e0s00eess:

1es

BPBPEeER0ERBE88Ea:

127

fegoeocaose0eeesc:

574

Pe00e0B0E000008e:
eeeeeoees0000092:
eeeeeoeeB0000096:

Copyright © Infineon Technologies AG 2020. All rights reserved.

(in’ﬁneon

Fnter lnca
mfer de, #exfeod
psw.B.USB = @x48; /* Set the
mov dl5,#exde
insert d15,de,d15,#0x18,#0x8
__mter{CPU_PSK,psw.U); * Write th
mter #0xfeod,d1s
isync
_asm("trapv");
trapv
psw.U = __mfer(CPU_PSW);
ig 8x3680008c
ret
Ifx__imaskldmst(event, 1, _ mfcr(CPU_CO
mfer d15,#exfelc
imask de/d1,#8x1,d15,#8x1
ldmst [a4]exe,de/d1

(infineon

References

@ » AURIX™ Development Studio is available online:
@ @ » https://lwww.infineon.com/aurixdevelopmentstudio
)

AURIX™

Use the ,/mport..." function to get access to more code examples.

> More code examples can be found on the GIT repository:
» https://github.com/Infineon/AURIX_code_examples

v

For additional trainings, visit our webpage:
https://www.infineon.com/aurix-expert-training

v

~

For questions and support, use the AURIX™ Forum:
https://www.infineonforums.com/forums/13-Aurix-Forum

v

Copyright © Infineon Technologies AG 2020. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-12
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2020 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
CPU_Trap_Recognition_1
_KIT_TC397_TFT

IMPORTANT NOTICE

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is-exclusively
intended for technically trained staff. It is the
esponsibility of ustomer’s technical
departments to—evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

(infineon

For further information on the product,
technology, delivery terms and conditions and
prices please “contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly “approved b
Infineon Technologies in a written\ document
signed by authorized representatives of\Infineon
Technologies, Infineon Teehnologies’ products
may not be used in—any applications where a
failure of the-product or any consequences of the
use thereof can reasonably be expected to result
n personalinjury.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

