
AURIX™ TC3xx Microcontroller Training

V1.0.0

Flash_Programming_1

for KIT_AURIX_TC375_LK
Flash programming

Please read the Important Notice and Warnings at the end of this document

Scope of work

This example shows how to flash the Program Flash memory and the

Data Flash memory.

In this example, 64 Bytes of the Program Flash memory (PFLASH) are

flashed and verified afterwards. Furthermore, 64 Bytes of the Data Flash

memory (DFLASH) are flashed and verified.

Before any write operation, the flash memories are erased. If the flash

operation is successful, an LED for each tested memory is turned ON.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

› The Data Memory Unit (DMU) controls command sequences executed on the Program and

Data Flash memories (PFLASH and DFLASH), interfacing with the Flash Standard Interface

(FSI) and the Program Flash Interface (PFI)

› The FSI executes erase, program and verify operations on all flash memories

› The PFI provides a unique point-to-point fast connection for each PFLASH bank to a CPU

› The AURIX™ TC37x device features:

– 2 Program Flash Banks (PFx)

– 2 Data Flash Banks (DFx)

› The AURIX™ TC3xx devices feature PFLASH Banks PFx based on the same sector

structure. PFx banks may vary in size:

– 3 Mbyte Program Flash Bank

– 2 Mbyte Program Flash Bank

– 1 Mbyte Program Flash Bank

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

› AURIX™ TC37x features two Program Flash banks (PF0, PF1) with dimension of 3 Mbyte.

Each Program Flash bank is divided into Physical Sectors with dimension of 1024 Kbytes

and each Physical Sector is divided into 64 Logical Sectors with dimension of 16 Kbytes

› AURIX™ TC37x features two Data Flash banks, DFLASH0 and DFLASH1. Both include

multiple EEPROM sectors commonly used for EEPROM emulation. Only DFLASH0 includes

User Configuration Blocks (UCBs) for data protection and a Configuration Sector (CFS),

which is not directly accessible by the user

› The DFLASH EEPROM can be either configured in single ended mode (default) or in

complement sensing. Depending on the selected mode, the size of each sector is set to 4

Kbytes and respectively 2 Kbytes

› The minimum amount of data that can be programmed in a flash memory is a page

– Program Flash pages are made of 32 Bytes

– Data Flash pages are made of 8 Bytes

› A page can be programmed only after an erase operation

› The smallest unit on which an erase operation can be performed is a Logical Sector

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

› AURIX™ TC37x Program Flash memory

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

› AURIX™ TC37x Data Flash memory

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

› All the flash operations are performed with command sequences

› The DMU has a Command Sequence Interpreter (CSI) to process command sequences

› A minimum sequence of commands for programming the Program Flash memory or the

Data Flash memory, is the following:

– Erase the Logical Sectors to be programmed afterwards

– Wait until the flash memory is ready (not busy)

– Enter page mode

– Wait until the flash memory is ready (not busy)

– Load data to be written in a page

– Write the page

– Wait until the flash memory is ready (not busy)

Note: Code that performs PFLASH programming or erasing should not be executed from the

same PFLASH.

Copyright © Infineon Technologies AG 2021. All rights reserved.

This code example has been developed

for the board KIT_A2G_TC375_LITE.

Hardware setup

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Flashing the Program Flash memory

To perform PFLASH programming, it is recommended to run the code from a memory location

different from the PFLASH that is going to be programmed.

For this reason, before starting the flash operations, the erase and program routines are copied in the

Program Scratch-Pad SRAM (PSPR) of the CPU0 by the function copyFunctionsToPSPR(). This

uses the memcpy() function from the standard c library string.h and assigns a function pointer to the

new memory location.

Then, the actual flash programming operations start by erasing the involved Logical Sectors.

Erase of Logical Sectors

To perform an erase operation, writes have to be enabled on the PFLASH by clearing the EndInit

Protection bit, done through the function IfxScuWdt_clearSafetyEndinitInline().

Then, the erase command sequence for one or more consecutive Logical Sectors can be executed

through the IfxFlash_eraseMultipleSectors() function, executed from the PSPR by the function

pointer eraseSectors().

Finally, the EndInit Protection bit must be set again through the function

IfxScuWdt_setSafetyEndinitInline().

The function IfxFlash_waitUnbusy(), called by the function pointer waitUnbusy(), stalls until the

sector is erased and the PFLASH is ready again.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Write operations

After erasing the needed Logical Sectors, the write operations can start.

The function IfxFlash_enterPageMode() called from the PSPR by the function pointer
enterPageMode() is used to enter page mode.
The function waitUnbusy() is used to stall until the PFLASH is ready and then, the data that has to be
written in a page is loaded calling repetitively the function IfxFlash_loadPage2X32(), executed from
the PSPR with the function pointer load2X32bits().

The loaded page is then written by calling the function pointer writePage(), which executes the
IfxFlash_writePage() function from the PSPR (before and after the write operation, the EndInit
Protection bit is cleared and respectively set).
Finally, waitUnbusy() is called to wait until the page has been written and the PFLASH is ready again
then, the write process can be repeated until all the required data has been successfully written in the
PFLASH.

After the flashing operations, the data is read from the PFLASH exploiting the macro MEM(address),
and, if it is correct, an LED is turned on.

All the functions used for executing the command sequences for the flashing operations can be found
in the iLLD header IfxFlash.h, while the function pointers are declared and assigned in the
Flash_Programming.c file.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Flashing the Data Flash memory

The procedure for flashing the Data Flash memory is the same used for flashing the Program Flash

memory, but in this case the functions for executing the command sequences for erasing, waiting,

loading and writing can be called directly from the PFLASH, thus copying them into the PSPR is not

needed.

After the flashing operations, the data is read from the DFLASH exploiting the macro MEM(address),

and, if it is correct, an LED is turned on.

Configure and control the LEDs

Two LEDs are configured using methods from the iLLD header IfxPort.h.

The port pins to which the LEDs are connected are configured as push-pull output using the

function IfxPort_setPinMode().

To turn on and off the LEDs, the function IfxPort_setPinState() is used.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

After code compilation and flashing the device, observe the behavior of the LEDs.

Check that LED1 (1) and LED2 (2) are turned

on:

› LED1 is turned on to indicate that the

PFLASH memory was correctly written

› LED2 is turned on to indicate that the

DFLASH memory was correctly written

1

2

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

Check the actual PFLASH memory as an additional test:

› Set two breakpoints in the Flash_Programming.c file inside the writeProgramFlash()

function:

– After calling the eraseFlash() function

– After calling the writeFlash() function

› Run the debugger

› In the memory view, add the address 0xA00E0000

› Resume the debugger and check that when it stops at the first breakpoint, the PFLASH is

erased (the memory viewer will show either 0s or 0xEEEEEEEE because it cannot read the

erased memory)

› Resume the debugger again and check that when it stops at the second breakpoint, the

PFLASH is correctly programmed

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

Check the actual DFLASH memory as an additional test:

› Set two breakpoints in the Flash_Programming.c file inside the writeDataFlash() function:

– After calling the IfxFlash_eraseMultipleSectors() function

– After the for loop for writing the DFLASH

› Run the debugger

› In the memory view, add the address 0xAF000000

› Resume the debugger and check that when it stops at the first breakpoint, the DFLASH is

erased (the memory viewer will show either 0s or 0xEEEEEEEE because it cannot read the

erased memory)

› Resume the debugger again and check that when it stops at the second breakpoint, the

DFLASH is correctly programmed

Copyright © Infineon Technologies AG 2021. All rights reserved.

References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-03
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
Flash_Programming_1_KIT_TC375_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

