
AURIX™ TC3xx Microcontroller Training

V1.0.2

MCMCAN_1

for KIT_AURIX_TC397_TFT
MCMCAN data transmission

Please read the Important Notice and Warnings at the end of this document



Scope of work

MCMCAN is used to exchange data between two nodes, implemented 

in the same device using Loop-Back mode.

A CAN message is sent from CAN node 0 to CAN node 1 using Loop-Back 

mode. After the CAN message transmission, an interrupt is generated and 

an LED is turned on to confirm successful message transmission. Once the 

CAN message is successfully received by the CAN node 1, an interrupt is 

generated. Inside the interrupt service routine the content of the received 

CAN message is compared to the content of the transmitted CAN message. 

In case of a success, another LED is turned on to confirm successful 

message reception.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› MCMCAN is the new CAN interface replacing MultiCAN+ module from the 

AURIX™ TC2xx family

› The MCMCAN module supports Classical CAN and CAN FD according 

to the ISO 11898-1 standard and Time Triggered CAN (TTCAN) 

according to the ISO 11898-4 standard

› The MCMCAN module consists of M_CAN as CAN nodes (in case of 

AURIX™ TC39x device, 4 nodes) which are CAN FD capable. Each CAN 

node communicates over two pins (TXD and RXD). Additionally, there is 

an internal Loop-Back Mode functionality available for test purposes

› A configurable Message RAM is used to store the messages to be 

transmitted or received. The message RAM is shared by all the CAN 

nodes within a MCMCAN module

Copyright © Infineon Technologies AG 2021. All rights reserved.



Hardware setup

This code example has been 

developed for the board 

KIT_A2G_TC397_5V_TFT.

In this example, LEDs D107 (LED1) 

and D108 (LED2) are used.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Application code can be separated into three segments:

› Initialization of the MCMCAN module with the accompanying node and filter 

initialization, implemented in the initMcmcan() function

› Initialization of the pins that are connected to the LEDs. LEDs are used to verify

the success of a CAN message transmission and reception. This is done inside 

the initLeds() function

› Transmission of the configured CAN message, implemented in the 

transmitCanMessage() function

Additionally, two interrupt service routines (ISRs) are implemented:

› On TX interrupt, the LED1 is turned on to indicate successful CAN message 

transmission (implemented in canIsrTxHandler())

› On RX interrupt, the ISR verifies the received CAN message and turns on the 

LED2 to indicate successful reception (implemented in canIsrRxHandler())

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

MCMCAN module initialization

Initialization is performed in three phases:

› A default CAN module configuration is loaded into the configuration structure by 

using the function IfxCan_Can_initModuleConfig()

Afterwards, the initialization of the CAN module with the user configuration is done 

with the function IfxCan_Can_initModule()

› A default CAN node configuration is loaded into the configuration structure by 

using the function IfxCan_Can_initNodeConfig(). Initialization of the CAN nodes 

(CAN node 0 and 1) with the different CAN node ID values and definition of Loop-

Back Mode usage for both nodes is done with the function 

IfxCan_Can_initNode(). CAN node 0 is defined as “source node” while CAN node 

1 represents a “destination node”. Additionally, an interrupt configuration for both 

“source node” and “destination node” is done in this phase

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

MCMCAN module initialization

› The configuration structure of the CAN filter assigns the CAN filter 0 to the receive 

buffer 0. The acceptance criteria in this case is the matching message ID value. 

Afterwards, the initialization of the CAN filter with the user configuration is done 

with the function IfxCan_Can_setStandardFilter()

All functions used for the MCMCAN module, node and filter initialization are declared 

in the iLLD header IfxCan_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Initialization of the pins connected to the LEDs

LEDs are used to verify the success of a CAN message transmission and reception. 

Before using the LEDs, the port pins to which the LEDs are connected must be 

configured.

› First step is to set the port pins to level “HIGH”; this keeps the LEDs turned off as 

a default state (IfxPort_setPinHigh() function)

› Second step is to set the port pins to push-pull output mode with the 

IfxPort_setPinModeOutput() function

› Finally, the pad driver strength is defined through the function 

IfxPort_setPinPadDriver()

All functions are declared in the iLLD header IfxPort.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

CAN message transmission

Before a CAN message is transmitted, two messages need to be initialized. TX 

message (message that will be transmitted) is initialized with the predefined content. 

RX message (message where the received CAN message will be stored) is initialized 

with some invalid data (after successful CAN transmission the data will be replaced 

with the valid data).

› Initialization of both TX and RX messages is done by using 

IfxCan_Can_initMessage()

› A CAN message is transmitted by using the IfxCan_Can_sendMessage()

function. A CAN message will be continuously transmitted as long as the returned 

status is IfxCan_Status_notSentBusy (this status occurs if there is a pending 

transmit request)

All functions are declared in the iLLD header IfxCan_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Interrupt Service Routines (ISRs)

Two interrupt services routines are implemented: one ISR that is triggered with the 

successful CAN message transmission and a second one that is triggered with the 

successful CAN message reception.

› TX interrupt service routine clears the pending interrupt flag with the 

IfxCan_Node_clearInterruptFlag() function and indicates that the CAN message 

has been transmitted successfully by turning on LED1

› RX interrupt service routine clears the pending interrupt flag by using 

IfxCan_Node_clearInterruptFlag() function and reads the received CAN 

message with the IfxCan_Can_readMessage() function. Afterwards, the received 

data is compared against the transmitted data. In case of success, the LED2 is 

turned on to indicate that the received message is correct

The function IfxCan_Node_clearInterruptFlag() is declared in the iLLD header 

IfxCan.h while the function IfxCan_Can_readMessage() is declared in the iLLD

header IfxCan_Can.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

After code compilation and flashing the device, perform the following steps:

› Check that LED1 D107 (1) is 

turned on (successful CAN 

message transmission by CAN 

node 0)

› Check that LED2 D108 (2) is 

turned on (successful CAN 

message reception by CAN

node 1)

1

2

Copyright © Infineon Technologies AG 2021. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


Revision history

Revision Description of change

V1.0.2 Update of version to be in line with the code example’s version

V1.0.1 Removed mention of the IfxCan_Node_clearRxBufferNewDataFlag() function

V1.0.0 Initial version

Copyright © Infineon Technologies AG 2021. All rights reserved.



IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-03
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
MCMCAN_1_KIT_TC397_TFT

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

