
AURIX™ TC3xx Microcontroller Training

V1.0.1

SPI_CPU_1

for KIT_AURIX_TC375_LK 
SPI communication via QSPI

Please read the Important Notice and Warnings at the end of this document



Scope of work

A QSPI module configured as SPI master sends five bytes to another 

QSPI module which is configured as SPI slave.

QSPI2 is configured in master mode and used to send five bytes to QSPI4 

configured in slave mode. The received data is read by the CPU and 

compared against the transmitted data. Port pin 00.5, to which LED1 is 

connected, indicates the successful transfer.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› The Queued Synchronous Peripheral Interface (QSPI) enables 

synchronous serial communication with external devices based on the 

standardized SPI-bus signals: clock, data-in, data-out and slave select

› The QSPI works in full duplex mode either as Master or Slave with up to 

50 MBit/s

Copyright © Infineon Technologies AG 2021. All rights reserved.



Hardware setup

This code example has been developed 

for the board KIT_A2G_TC375_LITE.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Hardware Setup

› Connect following pins as described and illustrated using wires

Slave:

Master:

QSPI1 (Master) WIRE QSPI2 (Slave)

P10.2 : SCLKO  P15.8 : SCLKI

P10.5 : SLSO_9  P15.1 : SLSI_B

P10.1 : MRST_A  P15.7 : MRST

P10.3 : MTSR  P15.6 : MTSR_B

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Configuring the SPI communication

The configuration of the SPI communication is done once in the setup phase through the 

function initQSPI() in two different steps: 

› QSPI Slave initialization

› QSPI Master initialization

QSPI Slave initialization

› The initialization of the QSPI slave module is done by defining an instance of the 

IfxQspi_SpiSlave_Config structure

› The structure is filled with default values by the function 

IfxQspi_SpiSlave_initModuleConfig()

› Afterwards, the pins, ISR service provider and the priorities are set

› The function IfxQspi_SpiSlave_initModule() is used to initialize the QSPI slave 

module

› Additionally, the buffers used by the QSPI slave are initialized

The above functions can be found in the iLLD header IfxQspi_SpiSlave.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

QSPI Master initialization

› The initialization of the QSPI master module is done by defining an instance of the 

IfxQspi_SpiMaster_Config structure 

› The structure is filled with default values by the function 

IfxQspi_SpiMaster_initModuleConfig()

› Afterwards, the interface operation mode, the pins, ISR service provider and the 

priorities are set

› The function IfxQspi_SpiMaster_initModule() is used to initialize the QSPI master 

module

› A QSPI module controls 16 communication channels, which are individually 

programmable. In this example, the function initQSPI2MasterChannel() initializes the 

channel 9 using an instance of the structure IfxQspi_SpiMaster_ChannelConfig.

Afterwards, the slave select channel number is set through the parameter sls.output

and the baud rate is modified via the parameter base.baudrate

› The function IfxQspi_SpiMaster_initChannel() is used to initialize the QSPI master

channel

› Additionally, the buffers used by the QSPI master are initialized

The above functions can be found in the iLLD header IfxQspi_SpiMaster.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

QSPI Master - Slave communication

› The function transferData() triggers the data transfer between the SPI-Master and the 

SPI-Slave

› The functions IfxQspi_SpiSlave_getStatus() and IfxQspi_SpiMaster_getStatus() 

are used to check the status of the master and the slave in order to delay the transfer 

until both are free

› The function IfxQspi_SpiSlave_exchange() instructs the slave to receive a data 

stream of predefined length

› The function IfxQspi_SpiMaster_exchange() is called in order to instruct the master 

to send the data

› Finally, the function verifyData() checks if the data received by the Slave matches the 

data sent by the Master

› If no errors have occured during the communication, the LED1, connected to port pin 

00.5, is turned on to signal that the transmission was successful

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Configure and control the LEDs

The LED is turned on and off by controlling the port pin to which it is connected using 

methods from the iLLD headers IfxPort.h.

The LED port pin is configured to output push-pull mode using the function 

IfxPort_setPinModeOutput().

During program execution, the LED is switched on and off using the functions 

IfxPort_setPinLow() and IfxPort_setPinHigh().

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

After code compilation and programming the device, start a debug session and perform 

the following steps:

› Set a breakpoint to transferData() in the 
Cpu0_main.c and check the 
spiMasterTxBuffer and spiSlaveRxBuffer
inside spiBuffers structure 

› Run the code example and check if the LED1 
(1) is on (Data transmitted without errors)

› The spiMasterTxBuffer and 
spiSlaveRxBuffer should now show the same 
transmitted and received data

› Remove a cable (e.g. SCLKx), perform a 
Reset and re-run the application to see that 
the data transmission is interrupted and the 
LED1 (1) is off (Data transmission blocked)

Note: when checking the buffers’ data, the debug 
session must be paused.

1

Copyright © Infineon Technologies AG 2021. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


Revision history

Revision Description of change

V1.0.1 Fixed configured channel number in implementation

V1.0.0 Initial version

Copyright © Infineon Technologies AG 2020. All rights reserved.



IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
SPI_CPU_1_KIT_TC375_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

