Litix Basic LED Driver for Rear Combination Light

Nick Ng, IFAP ATV SMD SAE SG

Details on the System Demonstrator

Wiping indicator ECU

- •
- •

Tail2 ECU

BCM for LED lighting Channel 1: Wiping indicator (1Hz frequency) Channel 2: Tail 1 light Channel 3: Stop 1 light Channel 4: Tail 2 light (Diagnostic for channel 1/2/3/4)

 LED topology:3s11p (3 in serial, 11 in parallel)

Partitioning with Litix Basic LED Drivers

5

Trade-off between different partitioning

Benefits of Thermal Simulation

Present Customer's Methodology

Copyright © Infineon Technologies AG 2015. All rights reserved.

Improving Thermal Capability of SSOP14 device

FR4 Board size= 76.2mm x 116.4mm

Thermal Simulations – Outer LDM (with FloTherm-PCB)

Thermal Measurement Results - Outer LDM

Maximum Temperature: 78deg Channel: STOP-CENTER 100mA Device: TLD1120

92.5 94.4 ٥C **\$FLIR** Spot 1 94.3 97.6 90.0 99.6 Box 50.0

Maximum Temperature: 99deg Channel: STOP-CENTER 100mA Device: TLD1120

Vbat=18V, Tamb=25deg

96.3 °C **\$FLIR** Spot 2 105 A 101 Spot 3 Spot 4 104 90.0 Spot 5 105 3 Max. (50.0

Maximum Temperature: 107deg Channel: STOP-CENTER 100mA Device: TLD1120

Comparison between Litix Basic vs Discrete solution

10

LDM	Existing Solution	LITIX [™] Basic Solution	
TAIL, STOP and T/STOP			
System Cost	100%	~85%	
PCB Area	Same (for thermal reasons)		
PCB Weight	160g	120g	
Thermal Performance (e.g. Vin=16V, T=25°C)	107°C max. case temp.	99°C max. case temp.	
Time to Market	Longer (different driver solution for each LED load)	Shorter (standardization of schematic and layout)	
Reliability	Lower (many external components)	Higher (integration->less components)	
Flexibility	Lower (needs new concepts for new requirements)	Higher (prepared for LED diagnosis, DC/DC feedback,)	
Min. Input Voltage	Similar		
Protection	-	Over-load and over-temperature	

Advanced Dynamic Turn Indicator

Nick, IFAP ATV SMD SAE

Dynamic vs Static Direction Indicator

Pag

Summary of Investigations

Research/Investigation Findings from OICA

	Static Direction Indicator	Dynamic Direction Indicator	dynamic vs. static ∆
Questionnaire for distraction: Is Dynamic Better ?			70%
1-cycle correct determination of direction	60 %	84%	+ 40%
3-cycle direction found (missed)	72%	95%	+38%
Reaction time 3-cycle for correct determination	1,854 sec	1,261 sec	(- 0,593 sec) - 32%

With a dynamic effect of the wiping within 150ms to 200ms, it shows improvements in the direction detection and reaction speed.

Regulatory impact on Sweeping Turn Indicator

 Is not practicable in US due to the minimum requirements of the effective projected luminous lens area:

	Passenger cars, multipurpose passenger vehi- cles, trucks, trailers, and buses of less than 2032 mm in overall width minimum effective projected luminous lens area (sq mm)			
Lighting device		Multiple compartment lamp or multiple lamps		
	Single com- partment lamp	Each compart- ment or lamp	Combined compartments or lamps	
Front turn signal lamp	2200		2200	
Rear turn signal lamp	5000	2200	5000	
Stop lamp	5000	2200	5000	

ECE regulations:

-No requirements of the effective projected luminous lens area.

- Amber direction indicator in the rear.

Implementation Concept for Rear Turn Indicator (DCDC + Floating gate switch)

ae 14

Implementation Concept for Rear Turn Indicator (Discrete logic + Basic LED)

Implementation Concept for Rear Turn Indicator (MCU + Basic LED)

Copyright © Infineon Technologies AG 2013. All rights reserved.

Comparison Between Solutions

	DCDC + Floating gate switch	Simple descrete timer + logic + Basic LED	MCU + Basic LED
I FD topology	Serial (floating switch)	Serial + Parallel	Serial + Parallel
	Able to support high current LED >300mA depending on the Rdson of		
LED Current	floating switch	Lower current LED (<100mA) preferred	Lower current LED (<100mA) preferred
	DCDC Boost, DCDC Buck,	Timer,logic gates, flip-flops, multiplexer,	
BOM	Floating switch (SPIDER+)	LDO, Basic LED drivers	MCU, Basic LED drivers, LDO
Estimated BOM Cost	High	Medium	Low
EMC	High	Low	Low
Board size	Big	Big	Small
Remarks:			
	Suitable for high current LED, lower power dissipation,	Low BOM cost, Open shelf components ready-to-use	Simple programming, smaller BOM
Pros	less cooling required	Lower EMC, shorter start-up time	Lower EMC, Programmable
		High heat dissipation at driver, Potential headroom issue at low supply voltage,	High heat dissipation at driver, potential headroom issue at low supply voltage.
Cons	High BOM cost, higher EMC	difficult to program	Longer start-up time.

This configuration has been implemented

in HQ

This configuration is used in this project

Wiping Indicator System Requirement

Copyright © Infineon Technologies AG 2013. All rights reserved.

Wiping Turn Indicator Hardware (PCB FR4, 4 layer)

Communication Interface

External communication interface:

- Tx/Rx Bluetooth Board
- Tx/Rx LIN board (*future)
- Can be used to relay ECU
- diagnostic information, support LIN programming during manufacturing and ECU control.

Thermal Simulation with Flotherm PCB

Condition:

- Temp: 85degC
- Environment: Still air
- Vbat_max=16V

MCU

From simulation, board 80mm*50mm is optimized for dissipation of 4 Basic LED devices. Thermal vias are required below the thermal pads of the Basic LED. No hot spots observed in simulation.

Operation of Wiping Indicator – Concept

Copyright © Infineon Technologies AG 2013. All rights reserved.

Transient Evaluation (2) with dummy load

Measurement (@25degC): 1-3)ON-OFF duration = 450ms 1-4)Duration between OUT1 and OUT12 turn-on time = 160ms

Thermal Evaluation @ VBAT_Max Condition

- Ta=25degC
- VS=16V, DC 50%, ~1.1Hz switching frequency

3D IR View

Thermal Simulation vs Evaluation @ Tamb=25degC

 r_{c} r_{b} r_{c} r_{c} r_{b} r_{c

- Thermal trend is similar.
- Sim vs Eva deviation about 10%:

i)In Sim, connectors not modelled (potential heatsink), more copper area at top/bottom layer.

ii)In Eva, thermal equilibrium may not be reached yet at point of result captured.

Part of your life. Part of tomorrow.

