1EDI60N12AF
1200 V single-channel gate driver with separate output and short circuit clamping
EiceDRIVER™ Compact single-channel isolated gate driver with 9.4/10 A output current in DSO-8 narrow package with 4 mm creepage. 1EDI60N12AF belongs to the EiceDRIVER™ 1ED Compact 150mil family (1ED-AF family). The driver can operate over a wide supply voltage range, either unipolar or bipolar. For new designs, please check out the latest pin-2-pin EiceDRIVER™ X3 Compact 1ED3140MU12F.
Summary of Features
- EiceDRIVER™ Compact single channel isolated gate driver family
- For 600 V, 650 V, 950 V MOSFETs
- Galvanically isolated coreless transformer gate driver
- 10 A typical sinking and sourcing peak output current
- 40 V absolute maximum output supply voltage
- 120 ns propagation delay with 40 ns input filter
- High common-mode transient immunity CMTI >100 kV/μs
- Separate source and sink outputs
- Short-circuit clamping and active shutdown
- DSO-8 150 mil narrow-body package with 4 mm creepage distance
- 8 V/10 V undervoltage lockout (UVLO) protection with hysteresis
Benefits
- Tailored for all 650 V CoolMOS™ C7, P6 and other super junction MOS transistors
- High switching frequency applications as SMPS, up to 4 MHz
- Integrated filters reduce the need of external filters
- Suitable for operation at high ambient temperature and in fast switching applications
- No need to adapt signal voltage levels between μController and driver
- Active shutdown to ensure a safe IGBT off-state in case the output chip is not connected to the power
- Short-circuit clamping to limit the gate voltage during short circuit
How to make gate driver designs simple
Curious to learn more about how to make your gate driver designs simpler? Join us in this training where we will show you what to consider when selecting the gate driver for your application, go through the drive circuit step by step design, provide an outline of design considerations, while also taking the schematic and layout aspects into consideration!
![](/export/sites/default/media/eLearning/Industrial/gate_drivers/EiceDRIVER_Compact_family/1ED_Compact.jpg_1758632412.jpg)
- EiceDRIVER™ 1ED Compact now including X3 Compact family (1ED31xx), with up to 14 A output current, 200 kV/µs CMTI
- Show system benefit of Miller clamp, separate output, active shutdown, short circuit clamping, 7-ns prop. delay matching
- Perfect for CoolSiC™ SiC MOSFET and IGBT7. VDE 0884-11 & UL 1577. For solar, EV charging, industrial drive, UPS, SMPS
![](/export/sites/default/media/eLearning/Industrial/gate_drivers/Gate-drive-design-cookbook-for-driving-MOSFETs/GD_cookbook.png_1782643958.png)
You will have a glimpse of the different gate driver technologies available at Infineon and their benefits.
For a better understanding we will take a look at the optimization of external gate resistors to drive MOSFETs in a given application.
How to choose gate driver for IGBT discretes and modules
With this training, you will learn how to calculate a gate resistance value for an IGBT application, how to identify suitable gate driver ICs based on peak current and power dissipation requirements, and how to fine-tune the gate resistance value in laboratory environment based on worst case conditions.
How to choose gate driver for SiC MOSFETs and SiC MOSFET modules
Silicon Carbide MOSFETs bring a lot of opportunities to power electronics. However, how to achieve sufficient system benefits by using Silicon Carbide MOSFETs with suitable gate drivers? This training helps you to learn how to calculate a reference gate resistance value for your Silicon Carbide MOSFET; how to identify suitable gate driving ICs based on peak current and power dissipation requirements; and how to fine-tune the gate resistance value in laboratory environment based on worst case conditions.
![](/export/sites/default/media/eLearning/Industrial/gate_drivers/Optocoupler_vs_coreless-transformer_guide.jpg_1757708891.jpg)
- EiceDRIVER™ isolated gate driver family use the state-of-the-art coreless transformer (CT) isolation technology
- The CT based isolated gate driver offers higher current, lower power consumption, better CMTI and best in class propagation delay matching
- Perfect for CoolSiC™ SiC MOSFET and IGBT7. VDE 0884-11 & UL 1577. For solar, EV charging, industrial drive, UPS, etc.