FF17MR12W1M1HP_B11 1200 V CoolSiC™ MOSFET搭載ハーフブリッジモジュール
EasyDUAL™ 1B パッケージ 1200 V/17 mΩ CoolSiC™ MOSFET ハーフブリッジモジュール: NTC温度センサー、PressFIT ピン搭載、熱伝導材料 (TIM) 塗布済み
特長
- 最高クラスの高さ12 mmのパッケージ
- 最先端WBG材料とEasyモジュールパッケージの組合せ
- きわめて低い浮遊インダクタンス
- 広い逆バイアス安全動作領域 (RBSOA)
- 進化した1200V CoolSiC™ MOSFET M1Hテクノロジー
- 推奨ゲート駆動電圧範囲を+15 ~ +18 Vおよび0 V ~ -5 Vに拡大
- 最大ゲートソース間電圧を+23 V/-10 Vに拡大
- 過負荷状態でのTvjopが175℃まで向上
- PressFITピン
- NTC温度センサーを搭載
- 熱伝導材料 (TIM)
利点
- 卓越したモジュール効率により、システムコストの優位性を実現
- システム効率向上による冷却コストの低減
- 高周波駆動により電力密度を向上
- システムコスト低減による最高のコストパフォーマンス
Customers of power electronics require ever more modern, easy connection technologies, which also provide a higher reliability to meet the trends to higher temperatures and new applications.
This training covers the properties of Silicon Carbide which change the way how an inverter is designed compared to Si-chips. With that in mind, we explain SiC specific degradation mechanisms and how to ensure that SiC devices survive in the application, considering these special failure modes, by applying the reliability tests Infineon developed. These are internally mandatory for SiC device qualifications to ensure better quality, safety, and reliable device performance for years.
With this training you will learn how to calculate a reference gate resistance value for your Silicon Carbide MOSFET, how to identify suitable gate driving ICs based on peak current and power dissipation requirements and to fine-tune the gate resistance value in laboratory environment based on worst case conditions.
With the growing market of electrical vehicles, the industry has put forward more requirements for the performance of charging piles.
This e-learning will show you that the emergence of CoolSiC™ MOSFETs has improved the charging pile industry to make the EV charger smaller, faster and with higher efficiency.