

THIS SPEC IS OBSOLETE

Spec No: 002-01241

Spec Title: AN201241 - S25FL-A TO S25FL-P MIGRATION GUIDE

Replaced by: NONE

S25FL-A to S25FL-P Migration Guide

Author: Doug Kearns

AN201241

This application note discusses the specification differences that must be considered when migrating from the obsolete S25FL-A devices to a S25FL-P Serial Peripheral Interface (SPI) NOR Flash family made on the Cypress 90-nm MirrorBit process in existing designs.

1

Introduction

The S25FL-A Serial Peripheral Interface (SPI) NOR Flash family made on the Cypress 200 nm MirrorBit[®] process is obsolete. The S25FL-P Serial Peripheral Interface (SPI) NOR Flash family made on the Cypress 90 nm MirrorBit process is a suitable replacement. This application note discusses the specification differences that must be considered when migrating from a S25FL-A to a S25FL-P flash device on an existing design.

2 Feature Comparison

The S25FL-P is a feature enhanced SPI family that supports all legacy features of the S25FL-A SPI family. Table 1 details the feature similarities and differences between the S25FL-A and S25FL-P families. The most significant new feature in the S25FL-P family is the ability to support single, dual, or quad mode reads within the same device. Note that use and enabling of this and of all the additional features supported by the S25FL-P are strictly optional. A S25FL-P device will behave as a single I/O, uniform sector SPI flash device, equivalent to the S25FL-A, unless the additional features are enabled by system software or hardware.

Feature	S25FL-A	S25FL-P
MirrorBit NOR process technology	200 nm	90 nm
Supply Voltage V _{CC} Range	2.7 – 3.6 V	2.7 – 3.6 V
Operating Temperature Range	-40 to +85·C	-40 to +85·C
Density Options	4, 8, 16, 32, <mark>64 Mb</mark> it	32, 64, 128 Mbit
IO Quantity	x1	x1, x2, x4
Clock Speed (Standard Read, Single IO)	33 MHz	40 MHz
Clock Speed (Fast Read, Single IO)	50 Mhz	104 MHz
Boot Parameter Sector Size	4, 12, 16 KB (1)	4 KB (2)(3)
Uniform Sector Size	64 KB	64, 256 KB (4)
Program Page (max)	256 B	256 B
Accelerated Programming	No	Yes (5)
Quad-Page Programming	No	Yes
Erase and Program Status SR Bits	No	Yes
Configuration Register	No	Yes
JEDEC standard two-byte Signature	Yes	Yes
RES single byte legacy Signature	Yes	Yes
Extended RDID Cycles	No	Yes
Common Flash Interface (CFI)	No	Yes
Top-down Fractional Array Protection	Yes	Yes
Bottom-up Fractional Array Protection	No	Yes

Table 1. Feature Comparison (Sheet 1 of 2)

Table 1. Feature Comparison (Sheet 2 of 2)

Feature	S25FL-A	S25FL-P
Full Array Program/Erase Lock Capability	No	Yes (6)
One Time Programmable (OTP Region)	No	506 B

Notes

- 1. Boot Sectors only available on S25FL040A models "01" & "02".
- 2. Boot Parameter Sectors currently only available on S25FL032P and S25FL064P.
- 3. Up to thirty two (32) 4 KB parameter sectors.
- 4. 256 KB Uniform sectors only available on S25FL128P model "01".
- 5. Accelerated Programming via application of 9 V to W#/ACC pin on S25FL-P only.
- 6. Full Array Lock currently only available on S25FL032P and S25FL064P "S" models.

Sector Architecture Comparison

The S25FL-A SPI flash was available with several sector (erase block) architectures. The S25FL040A was available with either a uniform 64 KB sector architecture or boot sector architecture where either the top or bottom 64 KB of the array is made up of six smaller sectors (two 16 KB, two 4 KB, and two 12 KB boot sectors). The S25FL008A, S25FL016A, S25FL032A and S25FL064A were only available with uniform 64 KB sectors.

In comparison, the S25FL032P and S25FL064P devices suitable for S25FL-A replacement support uniform sector architecture emulation as well as a user configurable top or bottom small boot parameter sector partition architecture where the user determines, via a configuration bit (TBPARM), whether the top or bottom 128 KB of the array is subdivided into thirty-two 4 KB parameter sectors. Table 2 details the sector architectural differences.

Model	Erase Block Quantity	Uniform or Boot Parameter Architecture	Erase Block Architecture
S25FL040A-00	8	Uniform	16x64 KB
S25FL040A-01	13	Top Boot	7x64 KB + 2x12 KB + 4x4 KB + 2x16 KB
S25FL040A-02	13	Bottom Boot	2x16 KB + 4x4 KB + 2x12 KB + 7x64 KB
S25FL008A	16	Uniform	16 x 64 KB
S25FL016A	32	Uniform	32 x 64 KB
S25FL032A	64	Uniform	64 x 64 KB
S25FL064A	128	Uniform	128 x 64 KB
S25FL032P	64 or 94 or 94	Uniform or Bottom Boot or Top Boot	64x64 KB or 32x4 KB + 62x64 KB or 62x64 KB + 32x4 KB
S25FL064P	128 or 158 or 158	Uniform or Bottom Boot or Top Boot	128x64 KB or 32x4 KB + 126x64 KB or 126x64 KB + 32x4 KB

In order to facilitate migration from the uniform sector S25FL-A devices to the S25FL-P device family without system software modification, Cypress has restricted the legacy sector erase command, SE (D8h), to erasing only 64 KB aligned erase blocks on the S25FL-P. Cypress has added support for two additional boot parameter sector erase commands, P4E (20h) for erasing individual 4 KB boot parameter sectors, and P8E (40h) for erasing two adjacent 4 KB boot parameter sectors (8 KB address aligned boot partition group). In this way, the S25FL-P flash family when operated with legacy software will operate as a uniform 64 KB sector architecture device family.

In applications where the S25FL-P is to be used as a uniform 64 KB sector device, for example, as a replacement for a uniform sector S25FL-A device, the TBPARM configuration bit would not be programmed to set boot parameter sector location and the new P4E and P8E commands would not be used.

4

Command and Register Comparison

The S25FL-P family was designed to support migration from S25FL-A with minimal software changes. All commands supported by the S25FL-A are supported by the S25FL-P. Several additional commands are supported by the S25FL-P to enable new features. Table 3 provides a support matrix of SPI commands.

READRead Data Bytes03hIIFAST_READHigh Speed Read Data Bytes0BhIIRDIDRead Identification9FhIIWRENWrite Enable06hIIWRDIWrite Disable04hIISESector EraseD8hII(1)BEBulk EraseC7hIIBUK Erase60hIIPPPage Program02hIINRSRRead from Status Register05hIURSRWrite to Status Register01hIDPDeep Power-Down (DPD)B9hIDORDual Output Read3BhIDIORDual Output Read6BhIQORQuad Output Read6BhIQORQuad Output Read90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIQCRRead Onfiguration Register35hIQPPQuad Page Programming32hIQER8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIQCRRead Configuration Register35hIQPPQuad Page Programming32hIQFPQuad Page Programming32hIQFPQuad Page Programming32hI<	Command	Description	Code	S25FL-A	S25FL-P
RDIDRead Identification9FhIIWRENWrite Enable06hIIWRDIWrite Disable04hIISESector EraseD8hII(1)BEBulk Erase60hIIBUK Erase60hIIPPPage Program02hIRDSRRead from Status Register05hIIIIIDPDeep Power-Down (DPD)B9hIPIORDual Output Read3BhIDORDual VO High PerformanceEBhIQORQuad J/O High PerformanceEBhIQORQuad J/O High PerformanceEBhIREAD_IDRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	READ	Read Data Bytes	03h		
WREN Write Enable 06h I I WRDI Write Disable 04h I I SE Sector Erase D8h I I(1) BE Bulk Erase C7h I I BL Bulk Erase 60h I I PP Page Program 02h I I RDSR Read from Status Register 05h I I WRSR Write to Status Register 01h I I DP Deep Power-Down (DPD) B9h I I I RES Release from DPD ABh I I I DOR Dual Output Read 3Bh I I I QOR Quad Output Read 6Bh I I I QOR Quad J/O High Performance Fast_Read EBh I I QIOR Quad J/O High Performance Fast_Read EBh I I READ_ID Read Mfg and Device ID </td <td>FAST_READ</td> <td>High Speed Read Data Bytes</td> <td>0Bh</td> <td></td> <td></td>	FAST_READ	High Speed Read Data Bytes	0Bh		
WRDI Write Disable 04h I I SE Sector Erase D8h I I(1) BE Bulk Erase C7h I I BE Bulk Erase 60h I I PP Page Program 02h I I RDSR Read from Status Register 05h I I WRSR Write to Status Register 01h I I DP Deep Power-Down (DPD) B9h I I RES Release from DPD ABh I I DOR Dual Output Read 3Bh I I QOR Quad V/O High Performance Fast_Read BBh I I QIOR Quad V/O High Performance Fast_Read BBh I I READ_ID Read Mfg and Device ID 90h I(2) I P4E 4 KB Parameter Sector Erase 20h I(1) P8E 8 KB (2x4 KB) Parameter Sector Erase 40h I (1) <td>RDID</td> <td>Read Identification</td> <td>9Fh</td> <td></td> <td></td>	RDID	Read Identification	9Fh		
SESector EraseD8hII(1)BEBulk EraseC7hIIBUIK Erase60hIIPPPage Program02hIIRDSRRead from Status Register05hIIWRSRWrite to Status Register01hIIDPDeep Power-Down (DPD)B9hIIDRDeep Power-Down (DPD)B9hIIDRDual Output Read3BhIIDORDual Output Read6BhIIQORQuad Output Read6BhIIQIORQuad VIO High Performance Fast_ReadEBhIREAD_IDRead Mfg and Device ID90hI (2)IP4E4 KB Parameter Sector Erase20hI (1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI (1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	WREN	Write Enable	06h		
BEBulk EraseC7hIIBUK Erase60hIPPPage Program02hIRDSRRead from Status Register05hIWRSRWrite to Status Register01hIDPDeep Power-Down (DPD)B9hIDRDual Output Read3BhIDORDual Output Read3BhIDIORDual VO High Performance Fast_ReadBBhIQORQuad Output Read6BhIQIORQuad V/O High PerformanceEBhIREAD_IDRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	WRDI	Write Disable	04h		
BEBulk Erase60hIPPPage Program02hIIRDSRRead from Status Register05hIIWRSRWrite to Status Register01hIIDPDeep Power-Down (DPD)B9hIIDRDual Output Read3BhIIDORDual Output Read3BhIIDIORDual I/O High Performance Fast_ReadBBhIIQORQuad Output Read6BhIIQIORQuad I/O High PerformanceEBhIIREAD_IDRead Mfg and Device ID90hI (2)IP4E4 KB Parameter Sector Erase20hI (1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI (1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	SE	Sector Erase	D8h		(1)
Bulk Erase60hIPPPage Program02hIRDSRRead from Status Register05hIWRSRWrite to Status Register01hIDPDeep Power-Down (DPD)B9hIRESRelease from DPDABhIDORDual Output Read3BhIDIORDual I/O High Performance Fast_ReadBBhIQORQuad Output Read6BhIQIORQuad U/O High PerformanceEBhIREAD_IDRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	BE	Bulk Erase	C7h		
RDSRRead from Status Register05hIRDSRWrite to Status Register01hIDPDeep Power-Down (DPD)B9hIDPDeep Power-Down (DPD)B9hIRESRelease from DPDABhIDORDual Output Read3BhIDIORDual I/O High Performance Fast_ReadBBhIQORQuad Output Read6BhIQORQuad U/O High PerformanceEBhIQIORRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	DE	Bulk Erase	60h		
WRSR Write to Status Register 01h I I DP Deep Power-Down (DPD) B9h I I RES Release from DPD ABh I I DOR Dual Output Read 3Bh I I DIOR Dual Output Read 3Bh I I QOR Quad Output Read 6Bh I I QOR Quad Output Read 6Bh I I QIOR Quad V/O High Performance Fast_Read BBh I I QIOR Quad V/O High Performance Fast_Read BBh I I QIOR Quad V/O High Performance Fast_Read BBh I I PAE 4 KB Parameter Sector Erase 20h I I P4E 4 KB Parameter Sector Erase 20h I I P8E 8 KB (2x4 KB) Parameter Sector Erase 40h I I QPP Quad Page Programming 32h I I RCR Read Configuration Register 35h I I	PP	Page Program	02h		
DPDeep Power-Down (DPD)B9hIIRESRelease from DPDABhIIDORDual Output Read3BhIDIORDual I/O High Performance Fast_ReadBBhIQORQuad Output Read6BhIQIORQuad I/O High PerformanceEBhIREAD_IDRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	RDSR	Read from Status Register	05h		
RESRelease from DPDABhIDORDual Output Read3BhIDIORDual I/O High Performance Fast_ReadBBhIQORQuad Output Read6BhIQIORQuad I/O High Performance Fast_ReadEBhIQIORQuad I/O High Performance Fast_ReadEBhIREAD_IDRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	WRSR	Write to Status Register	01h		
DORDual Output Read3BhIDIORDual I/O High Performance Fast_ReadBBhIQORQuad Output Read6BhIQIORQuad I/O High Performance Fast_ReadEBhIQIORQuad I/O High Performance Fast_ReadEBhIREAD_IDRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	DP	Deep Power-Down (DPD)	B9h		
DionDual I/O High Performance Fast_ReadBBhIQORQuad Output Read6BhIQIORQuad I/O High Performance Fast_ReadEBhIQIORRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	RES	Release from DPD	ABh		
QORQuad Output Read6BhIQIORQuad I/O High Performance Fast_ReadEBhIREAD_IDRead Mfg and Device ID90hI(2)P4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	DOR	Dual Output Read	3Bh		
QIORQuad I/O High Performance Fast_ReadEBhIREAD_IDRead Mfg and Device ID90hI(2)IP4E4 KB Parameter Sector Erase20hI(1)P8E8 KB (2x4 KB) Parameter Sector Erase40hI(1)QPPQuad Page Programming32hIRCRRead Configuration Register35hI	DIOR	Dual I/O High Performance Fast_Read	BBh		
ClockFast_ReadEBITIREAD_IDRead Mfg and Device ID90h (2) P4E4 KB Parameter Sector Erase20h (1)P8E8 KB (2x4 KB) Parameter Sector Erase40h (1)QPPQuad Page Programming32h RCRRead Configuration Register35h	QOR	Quad Output Read	6Bh		
P4E4 KB Parameter Sector Erase20h (1)P8E8 KB (2x4 KB) Parameter Sector Erase40h (1)QPPQuad Page Programming32h RCRRead Configuration Register35h	QIOR	Quad I/O High Performance Fast_Read	EBh		
P8E8 KB (2x4 KB) Parameter Sector Erase40h (1)QPPQuad Page Programming32h RCRRead Configuration Register35h	READ_ID	Read Mfg and Device ID	90h	(2)	
QPP Quad Page Programming 32h I RCR Read Configuration Register 35h I	P4E	4 KB Parameter Sector Erase	20h		(1)
RCR Read Configuration Register 35h	P8E	8 KB (2x4 KB) Parameter Sector Erase	40h		(1)
	QPP	Quad Page Programming	32h		
CLSR Reset Frase and Program Flag	RCR	Read Configuration Register	35h		
	CLSR	Reset Erase and Program Flag	30h		
OTPP Program one byte in OTP area 42h	OTPP	Program one byte in OTP area	42h		
OTPR Read data in OTP area 4Bh	OTPR	Read data in OTP area	4Bh		

Notes

 In S25FL-P, the SE command only erases 64 KB or 256 KB sectors and the P4E and P8E commands enable erasure of 4 KB boot parameter sectors.

2. READ_ID command only supported for Top and Bottom boot sector S25FL040A models. Use of JEDEC standard RDID (9Fh) command is recommended.

When migrating from a uniform sector S25FL-A to a S25FL-P, the only software modifications that may be required relate to device identification. Table 4 provides a RDID (9Fh) returned value matrix for all S25FL-A and S25FL-P devices, which also includes the Electronic Signature Byte returned with the RES (ABh command). If migrating between S25FL-A and S25FL-P devices of the same density, no software modifications to the system software device identification routines are required. When migrating from a smaller density S25FL-A to a S25FL032P, if the application uses the Device ID or Electronic Signature values, system software will require modification if the S25FL032A identification values are not supported in the existing system software.

Device	Manufacturer ID Byte 0	Device ID Byte 1	Device ID Byte 2	Extended ID Byte 3	Extended ID Byte 4
S25FL040A-00 (Uniform)	01h	02h	12h	N/A	N/A
S25FL040A-01 (Top)	01h	02h	25h	N/A	N/A
S25FL040A (Bottom)	01h	02h	26h	N/A	N/A
S25FL008A	01h	02h	13h	N/A	N/A
S25FL016A	01h	02h	14h	N/A	N/A
S25FL032A	01h	02h	15h	N/A	N/A
S25FL064A	01h	02h	16h	N/A	N/A
S25FL032P	01h	02h	15h	4Dh	Reserved
S25FL064P	01h	02h	16h	4Dh	Reserved
S25FL128P (64 KB sectors)	01h	20h	18h	03h	01h
S25FL128P (256 KB sectors)	01h	20h	18h	03h	00h

Table 4. RDID Command (JEDEC 9Fh) Device Identification

Note:

Electronic Signature (RES command ABh) outputs Device ID Byte 2. For S25FL040A, 12h is output for all models.

DC and AC Specification Comparison

The S25FL-P family was designed to have DC and AC specifications very similar to the S25FL-A to facilitate migration without modification to system hardware, software, or firmware, e.g. host SPI interface controller timing. Table 5 and Table 6 provide side-by-side comparisons of DC and AC parameter differences, respectively, for single IO applications of the S25FL-A and S25FL-P. Included are comments that indicate the potential for a given S25FL-P specification difference to impact a migration from a S25FL-A device in an existing application. It is advised that customers evaluate the potential impact of any parameter specification difference that has a migration issue severity not equal to "None".

Feature	S25FL-A	S25FL-P	Migration Issue Severity
Output High Voltage V _{OH} (min)	V _{CC} – 0.2 V	V _{CC} – 0.6 V	None
Page Program Current I _{CC2} (max)	28 mA	26 mA	None
Erase Current I _{CC4,5} (max)	24 mA	26 mA	None
I/O Leakage Current (max)	± 1 μΑ	± 2 μΑ	None
Standby Current I _{SB} (typ / max)	20 / 50 µA	80 / 200 μA	Low
Deep Power-Down Current I _{PD} (typ / max)	1.5 / 5 µA	3 / 10 µA	Low

Table 5. DC Parameter Specification Differences

The higher Standby Current consumption (I_{SB}) and Deep Power-Down Current consumption (I_{PD}) of the S25FL-P could cause issues when migrating to the S25FL-P from the S25FL-A. If an application requires minimal idle power consumption, the application software should place the SPI flash in Deep Power-Down mode using the Deep Power-Down (DP) command to minimize idle power consumption.

Feature	S25FL-A	S25FL-P	Migration Issue Severity
READ Command Clock (max)	33 MHz (1)	40 MHz	None
Fast Read / other command Clock Frequency (max)	50 Mhz	104 MHz	None
Clock Low Period t _{WH} (min)	9 ns	4.5 ns	None
Clock Low Period t _{WL} (min)	9 ns	4.5 ns	None
CS# Setup to SCK t _{CSS} (min)	5 ns	3 ns	None
CS# Hold from to SCK t _{CSH} (min)	5 ns	3 ns	None
CS# High Time t _{CS} (Read Instruction) (min)	100 ns	10 ns	None
CS# High Time t _{CS} (Program/Erase) (min)	100 ns	50 ns	None
DATA Setup to SCK t _{SU:DAT} (min)	5 ns	3 ns	None
DATA Hold from to SCK t _{HD:DAT} (min)	5 ns	2 ns	None
SCK Low to Output Valid t _V (single output) (max)	10 ns	8 ns	None
HOLD# Setup to SCK t _{HLCH} (min)	5 ns	3 ns	None
HOLD# Hold from to SCK t _{HLHH} (min)	5 ns	3 ns	None
HOLD# enable to Output Invalid t _{HZ} (max)	10 ns	8 ns	None
HOLD# disable to Output Valid t _{LZ} (max)	10 ns	8 ns	None
CS# disable to Deep Power Down t _{DP} (max)	3 µs	10 µs	Low
Write Protect Set Up Time t _{WPS} (min)	15 ns	20 ns	Low
Write Protect Hold Time t _{WPH} (min)	15 ns	100 ns	Medium
Write Status Register Time t _W (max)	150 ns	50 ns	None
Page Program Time t _{PP} (typ / max)	1.5 / 3 ms	1.5 / 3 ms	None
Accelerated Page Program Time t _{EP} (typ / max)	n/a	1.2 / 2.4 ms	None
Sector Erase Time t _{SE} (64 KB sector) (typ / max)	0.5 / 3 s	0.5/2 s	None
Bulk Erase Time t_{SE} (32 Mbit (2)) (typ / max)	25 / 192 s	32 / 64 s	None
V_{CC} Power Up to Device Ready t_{PU} (min)	10 ms	300 µs	None

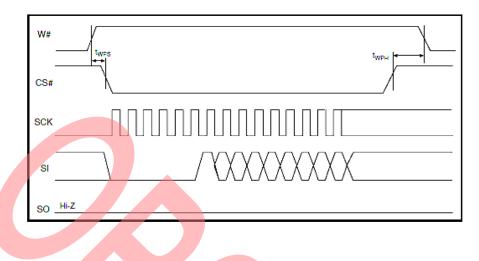
Table 6. AC Parameter Specification Differences

Notes

1. 25 MHz max for S25FL064A.

2. Comparison between identical density S25FL032A and S25FL032P.

The longer transition to Deep Power-Down mode (t_{DP}) from CS# negation of the S25FL-P will not cause migration issues from the S25FL-A. This specification difference will only have a system level impact on those battery powered applications with extreme energy storage constraints that frequently re-enter Deep Power-Down mode. The specification difference ramification is a slightly higher overall power consumption


(0.68 mW maximum) for the 7 μs maximum longer transition into Deep Power-Down mode of the S25FL-P versus the S25FL-A.

The longer Write Protect Set Up time (t_{WPS}) of the S25FL-P is unlikely to cause migration issues from the S25FL-A. A. The longer Write Protect Hold time (t_{WPH}) of the S25FL-P may cause migration issues from the S25FL-A, depending on host SPI and/or GPIO controller timing. Figure 1 depicts the relative W# and CS# inputs edge timing requirements when performing a Write Registers command in the specific case where the device was in and is returning to the Hardware Protected mode (HPM). HPM is entered by setting the Status Register Write Disable bit (SRWD = 1) and asserting W# < Vil. The implication of these specification differences are the W# input must be disabled at least 20 ns prior to CS# assertion initiating a WRR command entry (a 5 ns increase over the S25FL-A) and the W# input must not be asserted for 100 ns following CS# negation concluding a WRR command entry (a 85 ns increase over the S25FL-A). If an application uses the W# and SRWD write protection mode feature, these timing requirements must be verified to avoid issues when migrating to the S25FL-P from the S25FL-A.

6

Package Options and Recommended Migration Part Numbers

The S25FL-A and S25FL-P devices are made available in a variety of package options. Table 7 provides details of the different package options by SPI flash family and density. Footprint compatible S25FL-P migrations options exist for the majority of S25FL-A devices. Table 8 details the recommended S25FL-P ordering part number (OPN) migration path from all S25FL-A OPNs. All packages are supported in Pb-free plating only.

Device	SO-8 (150 mil)	SO-8 (208 mil)	USON-8	WSON-8	SO-16
S25FL040A	I				
S25FL008A			I		
S25FL016A					
S25FL032A					
S25FL064A					
S25FL032P					
S25FL064P					
S25FL128P					

Table 7. SPI Package Options

Table 8. Recommended Model to Mode	el Migrations	(Sheet 1	of 2)		

S25FL-A Ordering Part Number	Package	Recommended S25FL-P Ordering Part Number	Footprint Compatible		
S25FL040A0LM(A,F)I00(0,1, 3)	SO-8 (208 mil)	S25FL032P0XMFI01(0,1,3)	Yes		
S25FL040A0LM(A,F)I01(0,1, 3)	SO-8 (208 mil)	S25FL032P0XMFI01(0,1,3)	Yes		
S25FL040A0LM(A,F)I02(0,1, 3)	SO-8 (208 mil)	S25FL032P0XMFI01(0,1,3)	Yes		
S25FL040A0LN(A,F)I00(0,1, 3)	USON-8	S25FL032P0XNFI01(0,1,3)	Yes		
S25FL040A0LN(A,F)I01(0,1, 3)	USON-8	S25FL032P0XNFI01(0,1,3)	Yes		
S25FL040A0LN(A,F)I02(0,1, 3)	USON-8	S25FL032P0XNFI01(0,1,3)	Yes		
S25FL040A0LV(A,F)I00(0,1,3)	SO-8 (150 mil)	S25FL032P0XMFI01(0,1,3)	No		

S25FL-A Ordering Part Number	Package	Recommended S25FL-P Ordering Part Number	Footprint Compatible
S25FL040A0LV(A,F)I01(0,1,3)	SO-8 (150 mil)	S25FL032P0XMFI01(0,1,3)	No
S25FL040A0LV(A,F)I02(0,1,3)	SO-8 (150 mil)	S25FL032P0XMFI01(0,1,3)	No
S25FL008A0LM(A,F)I00(0,1, 3)	SO-8 (208 mil)	S25FL032P0XMFI01(0,1,3)	Yes
S25FL008A0LN(A,F)l00(0,1, 3)	USON-8	S25FL032P0XNFI01(0,1,3)	Yes
S25FL016A0LM(A,F)I00(0,1, 3)	SO-16	S25FL032P0XMFI00(0,1,3)	Yes
S25FL016A0LM(A,F)I01(0,1, 3)	SO-8 (208 mil)	S25FL032P0XMFI01(0,1,3)	Yes
S25FL016A0LN(A,F)I00(0,1, 3)	WSON-8	S25FL032P0XNFI00(0,1,3)	Yes
S25FL032A0LM(A,F)I00(0,1, 3)	SO-16	S25FL032P0XMFI00(0,1,3)	Yes
S25FL064A0LM(A,F)I00(0,1, 3)	SO-16	S25FL064P0XMFI00(0,1,3)	Yes

Table 8. Recommended Model to Model Migrations (Sheet 2 of 2)

Conclusion

7

The S25FL-A can be replaced with the S25FL-P in most applications without any hardware or software modifications. A small number of parameter specification differences exist between these two SPI flash families and it is important that careful examination of the impact of these specification differences be reviewed for each design.

Document History Page

Document Title: AN201241 - S25FL-A to S25FL-P Migration Guide

Document Number: 002-01241					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
**			07/27/2009	Initial version.	
*A	4928052	MSWI	09/21/2015	Updated to Cypress template.	
*B	5824244	AESATMP8	07/19/2017	Updated logo and Copyright.	
*C	6283727	BWHA	08/20/2018	Obsolete document. Completing Sunset Review.	

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2009-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1s) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.