

AN202108

Migrating from S25FL208K to S25FL116K

Author: Arthur Claus Associated Part Family: S25FL208K S25FL116K Related Application Notes: None

AN202108 discusses the key differences that need to be considered when migrating from a S25FL208K to a S25FL116K. This application note explains how a S25FL116K is a replacement for a S25FL208K.

1 Introduction

S25FL116K, a 16-Mbit SPI Flash, is a replacement device for S25FL208K. The devices are identical in terms of pinout, package composition, and dimensions. This application note discusses the key differences between the devices that need to be considered when migrating from a S25FL208K to a S25FL116K.

2 Replacement Considerations

From a hardware point of view, the S25FL116K is a drop-in replacement for the S25FL208K. It is package and pinout compatible with S25FL208K, and operates over the same temperature and voltage ranges as S25FL208K.

One minor difference is that the S25FL116K has a higher maximum programming current. However, because the current requirement for erase is higher than for programming and since the programming current for both devices is the same, the power supply to the Flash is capable of supplying the required programming current.

From a software point of view, the command sets are similar. The S25FL116K supports several features that the S25FL208K doesn't including Security Registers, SFDP device identification, Wrapped bursts, Erase and Program Suspend and Resume, as well as Quad input/output. The opcodes for reading, programming and erasing are the same on the S25FL208K devices and the S25FL116K. However, the Sector Erase and Chip Erase opcodes can take longer to execute on the S25FL116K. Although the simple status register functions such as 'write enable' and 'write in progress' are compatible and the commands to access them are the same, other status register functions such as 'block protection' and locking the status register are different. The Write Status register opcode may take longer to complete on the S25FL116K. The device IDs are different for the devices.

Table 1 shows the compatibility chart of S25FL208K and S25FL116K. For a detailed comparison, see Table 3.

S25FL208K Feature or Spec	Is S25FL116K Compatible?
Package	Yes
Pinout	Yes
Temperature Range	Yes
Operating Voltage	Yes
Operating Current	No
Standby Current	Yes
Command Set	No
Signal Timing / Frequency	Yes
Data Retention	Yes
Endurance	Yes
Block Protection	No

Table 1. Compatibility Chart

3 Ordering Part Numbers

S25FL208K	S25FL116K
Ordering Part Number	Ordering Part Number
S25FL208K0RMFI01	S25FL116K0XMFI01
S25FL208K0RMFI04	S25FL116K0XMFI04

Table 2. Recommended Ordering Part Numbers for Migration

4 Comparison of S25FL208K and S25FL116K

Table 3 gives a detailed comparison of the devices.

Table 3. Detailed Comparison Table

		S25FL208K	S25FL116K	Comments	
Package Type		01, 04	01, 04	Identical RoHS-compliant packages.	
Pinout/Package O	utline	SOIC-8 (208 mil),SOIC- 8 (150 mil)	SOIC-8 (208 mil),SOIC-8 (150 mil)	Identical pinout, outline, and board footprint.	
Temperature Ranç	je	–40 °C to +85 °C	–40 °C to +85 °C	Identical (S25FL116K is also available in Automotive and Extended temperature ranges)	
Operating Voltage	Range	2.7 V to 3.6 V	2.7 V to 3.6 V	Identical	
4.2	Typical	10 mA @ 33 MHz	6 mA @ 33 MHz		
Read Data ^{1 2} Current	Мах	15 mA @ 33 MHz	9 mA @ 33 MHz	Better	
	Мах	25 mA @ 100 MHz	18 mA @ 108 MHz		
	Typical	12 mA @ 33 MHz	7 mA @ 33 MHz		
Dual Output Read Current ^{1 2}	Max	12 mA @ 33 MHz	10.5 mA @ 33 MHz	Better	
	Мах	25 mA @ 100 MHz	22 mA @ 108 MHz		
Page Program	Typical	15 mA	20 mA	Different. See the Program Current	
Current ³	Max	20 mA	25 mA	section in Critical Considerations.	
Write Status Register	Typical	10 mA	8 mA	Better	
Current ³	Max	18 mA	12 mA	Dellei	
Erase Current ³	Typical	20 mA	20 mA	Identical	
Erase Current	Мах	25 mA	25 mA	iueniical	
Standby	Typical	15 µA	15 µA	Identical	
Current ⁴	Мах	35 µA	35 µA		
Power-Down	Typical	15 µA 2 µA Better		Better	

 $^{1}SCK = 0.1 V_{CC} / 0.9 V_{CC} DO = Open$

²Checker Board Pattern

 3 CS# = V_{CC}

 4 CS# = V_{CC}, V_{\text{IN}} = GND or V_{CC}

		S25FL208K	S25FL116K	Comments	
Current⁴	Max	32 µA	8 µA		
Command Set		3-byte addressing, op- codes	3- byte addressing, op- codes	Status Register command arguments are different. Additional commands supported. See the Command Set section in Critical Considerations.	
Clock Frequency		76 MHz	108 MHz	Better	
Data Retention		20-year data retention typical	20-year data retention Typical	Identical	
Endurance (Progra Cycles)	am/Erase	100k erase/program cycles typical	100k erase/program cycles minimum	Better	
VCC (min) to CS#	Low (t _{vsL})	10 µs Min	10 µs Min	Identical	
	ABh	13h	14h		
Device ID	90h	0113h	0114h	Different. See the Device ID section in Critical Considerations.	
	95h	014014h	014015h		
Write Status	Typical	10 ms	2 ms	Different. See the Status Register	
Register Time	Мах	15 ms	30 ms	section in Critical Considerations.	
Byte Program	Typical	30 µs	15 µs		
Time (First Byte)	Max	50 µs	50 µs	Better or Identical	
Additional Byte Program Time	Typical	6 µs	2.5 µs	Detter er blertigel	
(After First Byte)	Мах	12 µs	12 µs	Better or Identical	
Page Program	Typical	1.5ms	0.7ms	Better	
Time	Мах	5 ms	3 ms	Dellei	
Sector Erase	Typical	50 ms	50 ms⁵	Different. Refer to the Sector Erase	
Time (4 kB)	Мах	300 ms	450 ms⁵	section in Critical Considerations.	
Block Erase	Typical	0.5 s	0.5 s⁵	Liber Cond	
Time (64 kB)	Мах	2 s ⁵	2 s ⁵	- Identical	
	Typical	7 s	11.2 s⁵	Different. See the Device Density	
Chip Erase Time	Max	15 s ⁶	64 s ⁵	section in Critical Considerations.	
Block Protection		See Table 6	See Table 7	Different. See the Block Protection section in Critical Considerations	
Number of Blocks (64K) / Sectors (4K)		16/256	32/512	Different. See the Device Density section in Critical Considerations.	
Flash Array Size		1,048,576 bytes	2,095,152 bytes	Different. See the Device Density section in Critical Considerations.	
Status Registers		1	3	Different. See the Status Register section in Critical Considerations.	

 $^{^{\}rm 5}$ For the S25FL116K all erase times are tested using a random pattern

⁶ Max value shown is for less than 10k cycles. For greater than 10k cycles, max value is 18 s.

5 Critical Considerations

You should consider all the parameter differences mentioned in Table 3 for the migration to S25FL116K. This section discusses the critical differences. System designers should also review the datasheet when migrating to the new part.

5.1 Program Current

The page program current of the S25FL116K is higher than that of the S25FL208K. The typical and worst-case page programming currents are 5 mA higher in the S25FL116K. This should not be an issue for most systems because these currents are the same as the erase currents of the S25FL208K, and the power supply is able to deliver the higher current required. Also, the page programing time for the S25FL116K is faster than the S25FL208K so less energy will be used.

5.2 Command Set

The S25FL116K supports all the commands that the S25FL208K does and adds some additional commands. With one exception, it also has the exact same arguments. The exception is the Write Status Register(s) (01h). On the S25FL204K this op code only takes eight bits of data. The S25FL116K version of the opcode takes 8, 16, or 24 bits of data depending on how many of the status registers you wish to write to. The table below details the command sets.

Command Name	Opcode	S25FL2K	S25FL116K
Write Status Register(s)	01h	1-Byte	1,2, or 3-Bytes
Read Status Register-1	05h	None	None
Read Status Register-2	35h	NA	None
Read Status Register-3	33h	NA	None
Write Enable	06h	None	None
Write Enable for Volatile Status Register	50h	None	None
Write Disable	04h	None	None
Set Burst with Wrap	77h	NA	3-Bytes Dummy 1-Byte Data
Page Program	02h	3-Bytes Address Up to 256-Bytes data	3-Bytes Address Up to 256-Bytes data
Sector Erase (4 kB)	20h	3-Bytes Address	3-Bytes Address
Block Erase (64 kB)	DBh	3-Bytes Address	3-Bytes Address
Chip Erase	C7h/60h	None	None
Erase / Program Suspend	75h	NA	None
Erase / Program Resume	7Ah	NA	None
Read Data	03h	3-Bytes Address	3-Bytes Address
Fast Read	0Bh	3-Bytes Address 1-Byte Dummy	3-Bytes Address 1-Byte Dummy
Fast Read Dual Output	3Bh	3-Bytes Address 1-Byte Dummy	3-Bytes Address 1-Byte Dummy
Fast Read Quad Output	Fast Read Quad Output 6Bh		3-Bytes Address 1-Byte Dummy
Fast Read Dual I/O BBh		NA	3-Bytes Address 1-Byte Mode
Fast Read Quad I/O	EBh	NA	3-Bytes Address 1-Byte Mode

Table 4. Command Comparison

Command Name	Opcode	S25FL2K	S25FL116K
Software Reset Enable	66h	NA	None
Software Reset	99h	NA	None
Continuous Mode Reset	FFh	NA	None
Deep Power Down	B9h	None	None
Release from Power Down/Device ID	ABh	3-Bytes Dummy	3-Bytes Dummy
Manufacturer / Device ID	90h	2-Bytes dummy 1-Byte 0	2-Bytes dummy 1-Byte 0
JEDEC ID	9Fh	None	None
Read SFDP Register / Read Unique ID	5Ah	NA	2-Bytes 0 1-Byte Address 1-Byte Dummy
Read Security Registers	48h	NA	3-Bytes Address 1-Byte Dummy
Erase Security Registers	44h	NA	3-Bytes Address
Program Security Registers	42h	NA	3-Bytes Address up to 256-Bytes data

5.3 Device ID

Table5 shows the opcodes that could be used to retrieve the device ID from the flash and their values. Software that checks the device ID of the S25FL208K will need to be changed to recognize the device ID returned by the S25FL116K.

Opcode	S25FL208K Value	S25FL116K Value
ABh	13h	14h
90H	0113h	01014h
9FH	014014h	014015h

Table 5. Device ID Values

5.4 Status Register

5.4.1 Status Registers

The S25FL116K has three status registers where the S25FL208K only has one. The basic status bits Write In Progress (WIP) and Write Enable (WE) are in the same locations and accessed by the same opcodes. The protection bits are different and are detailed in the Block Protection section of this document. For more details about the two additional status registers in the S25FL116K, please see the datasheet referred to in the Related Documents section.

5.4.2 Status Write Time

The write status register opcode takes longer on the S25FL116K than it does on the S25FL208K. Any software that uses a delay to determine when this operation is finished will need to have the delay lengthened or replaced with the polling of the WIP bit in the status register. When WIP = 0, the operation is complete. Software that already polls WIP will not require any changes.

5.4.3 Status Register Locking

The S25FL208K provides a method for locking the value of the Status Register. Setting bit 7 (Status Register Protect SRP) in the Status Register to 1 will cause Status Register writes to fail if the write protect signal (WP#) is held LOW. The S25FL116K provides the same functionality. In Status Register 1, bit 7 is the Status Register Protect 0 (SPR0), and in Status Register 2, bit 0 is Status Register Protect 1 (SPR1). If SPR1 is 0, its default value, then SPR0 provides the same functionality as the S25FL208K's SRP. If SPR1 is set to 1, then the protection is permanently locked if SR0 is 1, and locked until the next power cycle if SR0 is 0.

5.5 Sector Erase

The maximum sector erase time for the S25FL116K is longer than the maximum sector erase time for the S25FL208K. Software that uses the WIP bit in the Status Register will not have to be modified. If software uses a delay to determine when the operation is finished, the delay may need to be lengthened or replaced with the polling of the WIP bit. When WIP = 0, the operation is complete.

5.6 Device Density

The fact that the S25FL116K has a higher density than the S25FL208K raises several issues that must be accounted for. The sections below detail these issues.

5.6.1 Chip Erase

Because the S25FL116K has a flash array that is twice the size of that in the S25FL208K, the time required to execute the Chip Erase (C7h/60h) opcode will be twice as long. Any software that uses time delays instead of checking the Write In Progress (WIP) bit in the status register may need to be modified to account for the longer chip erase time.

5.6.2 Addressable Flash Array

The flash array in the S25FL116K requires 21 bits (A0-A20) to have it completely addressed. It is necessary that migrated software control the additional address bit. If the additional address bit is not constant, it is possible that data will not be where it is expected to be.

5.7 Block Protection

The block protection mechanisms for the S25FL116K and the S25FL208K are different. The S25FL208K provides methods to protect blocks (64K) starting from the top of the address space and sectors (4K) starting at the bottom of the address space. The S25FL116K can be configured to protect blocks the same as the S25FL208K, but cannot duplicate the sector protection scheme. The next two sections detail how the device protection mechanisms work.

5.7.1 S25FL208K Block protection

On S25FL208K, there are four nonvolatile bits that determine what portions of the device are protected. These bits are the BP0-3 bits in the Status Register (bits 2-5). The BP3 bit determines what type of regions are protected. If BP3 = 0, then 64K blocks are protected from the top of the address space. If BP3 = 1, then 4K blocks are protected from the bottom of the address space. The BP0-3 bits determine which sectors (4K) or blocks (64K) are protected. The table below summarizes the protection.

Status	Status Register Bit			S25FL208K
BP3	BP2	BP1	BP0	SZOFLZUON
0	0	0	0	None
0	0	0	1	Block 15 (0F0000h-0FFFFFh)
0	0	1	0	Blocks 14-15 (0E0000h-0FFFFFh)
0	0	1	1	Blocks 12-15 (0C0000h-0FFFFFh)
0	1	0	0	Blocks 8-15 (080000h-0FFFFFh)
0	1	0	1	Blocks 0-15 (000000h-0FFFFh)
0	1	1	0	Blocks 0-15 (000000h-0FFFFFh)
0	1	1	1	Blocks 0-15 (000000h-0FFFFFh)
1	0	0	0	None

Table 6. S25FL208K Block Protection Detail	s
--	---

Status Register Bit				S25FL208K
BP3	BP2	BP1	BP0	SZSFLZUON
1	0	0	1	Sectors 0-254 (000000h-0FEFFFh)
1	0	1	0	Sectors 0-252 (000000h-0FCFFFh)
1	0	1	1	Sectors 0-247 (000000h-0F6FFFh)
1	1	0	0	Sectors 0-239 (000000h-0EFFFh)
1	1	0	1	Sectors 0-223 (000000h-0DFFFFh)
1	1	1	0	Sectors 0-191 (000000h-0BFFFFh)
1	1	1	1	Sectors 0-255 (000000-0FFFFFh)

5.7.2 S25FL116K Block Protection

For the S25FL116K there are six bits that determine the protection behavior in two status registers.

Block Protect bits 0-2 (BP0-2), which are bits 2-4 in status register 1, control which regions are protected.

The Top / Bottom Protect bit (TB), which is bit 5 in Status Register 1, controls whether protection is applied from the top or bottom of the address space. Please note that this bit is in the same position as the BP3 bit of the S25FL208K, so care must be taken to ensure that migrated software does not accidently set this bit.

The Sector/Block Protect bit (SEC), which is bit 6 in Status Register 1, controls whether the regions protected are sectors (4K) or blocks (64K).

The Compliment Protect bit, which is bit 6 in Status Register 2, controls whether the regions defined by the BP0-2 bits are protected or available for modification.

All the protection bits are nonvolatile.

The following tables summarize the protection behavior on the S25FL116K.

	Status Register Bit				S25FL116K
SEC	тв	BP2	BP1	BP0	Protected Region
Х	Х	0	0	0	None
0	0	0	0	1	Block 31 (1F0000h – 1FFFFFh)
0	0	0	1	0	Blocks 30-31 (1E0000h-1FFFFFh)
0	0	0	1	1	Blocks 28-31 (1C0000h-1FFFFFh)
0	0	1	0	0	Blocks 24-31 (180000h-1FFFFFh)
0	0	1	0	1	Blocks 16-31 (100000h-1FFFFFh)
0	1	0	0	1	Block 0 (000000h-00FFFFh)
0	1	0	1	0	Blocks 0-1 (000000h-01FFFFh)
0	1	0	1	1	Blocks 0-3 (000000h-03FFFFh)
0	1	1	0	0	Blocks 0-7 (000000h-07FFFFh)
0	1	1	0	1	Blocks 0-15 (000000h-0FFFFFh)
х	Х	1	1	Х	Blocks 0-31 (000000h-1FFFFFh)
1	0	0	0	1	Sectors 511 (1FF000h-1FFFFFh)
1	0	0	1	0	Sectors 510-511 (1FE000h-1FFFFFh)
1	0	0	1	1	Sectors 508-511 (1FC000h-1FFFFFh)

Table 7. S25FL116K Block Protection Details (CMP = 0)

	Status Register Bit				S25FL116K
SEC	тв	BP2	BP1	BP0	Protected Region
1	0	1	0	Х	Sectors 504-511 (1F8000h-1FFFFFh)
1	1	0	0	1	Sector 0 (000000h-000FFFh)
1	1	0	1	0	Sectors 0-1 (000000h-001FFFh)
1	1	0	1	1	Sectors 0-3 (000000h-003FFFh)
1	1	1	0	Х	Sectors 0-7 (000000h-007FFFh)

Table 8. S25FL116K Block Protection Details (CMP = 1)

Status Register Bit					S25FL116K
SEC	ТВ	BP2	BP1	BP0	Protected Region
Х	Х	0	0	0	All
0	0	0	0	1	Block 0-30 (000000h – 1EFFFFh)
0	0	0	1	0	Blocks 0-29 (000000h -1DFFFFh)
0	0	0	1	1	Blocks 0-27 (000000h -1BFFFFh)
0	0	1	0	0	Blocks 0-23 (000000h-17FFFFh)
0	0	1	0	1	Blocks 0-15 (000000h-0FFFFFh)
0	1	0	0	1	Block 1-31 (010000h-1FFFFFh)
0	1	0	1	0	Blocks 2-31 (020000h-1FFFFFh)
0	1	0	1	1	Blocks 4-31 (040000h-1FFFFFh)
0	1	1	0	0	Blocks 8-31 (080000h-1FFFFFh)
0	1	1	0	1	Blocks 16-31 (100000h-1FFFFFh)
Х	Х	1	1	Х	None
1	0	0	0	1	Sectors 0-510 (000000h-1FEFFFh)
1	0	0	1	0	Sectors 0-509 (000000h-1FDFFFh)
1	0	0	1	1	Sectors 0-507 (000000h-1FBFFFh)
1	0	1	0	Х	Sectors 0-503 (000000h-1F7FFFh)
1	1	0	0	1	Sector 1-511 (001000h-1FFFFFh)
1	1	0	1	0	Sectors 2-511 (002000h-1FFFFFh)
1	1	0	1	1	Sectors 4-511 (004000h-1FFFFFh)
1	1	1	0	Х	Sectors 8-511 (008000h-1FFFFFh)

6 Summary

AN202108 discussed the differences between the S25FL208K and the S25FL116K that need to be considered during migration to the S25FL116K.

7 Related Documents

S25FL208K Datasheet S25FL116K Datasheet

Document History

Document Title: AN202108 - Migrating from S25FL208K to S25FL116K

Document Number: 002-02108

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	4898666	AHCL	09/01/2015	New application note
*A	5866805	AESATMP8	08/29/2017	Updated logo and Copyright.

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software products.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.