
1

Application Note Please read the Important Notice and Warnings at the end of this document Revision 1.0

www.infineon.com 1 of 25 2023-10-17

AN2023-03

Infrared Remote Control and Saving Last Speed

Setting
About this document

Scope and purpose

This application note provides examples of how to use the iMOTION™ script language to realize infrared remote

control and FLASH data storage functions on iMOTIONTM devices with Motion Control Engine (MCE).

Intended audience

This document is intended for customers who would like to use iMOTIONTM devices in home appliance
applications.

Table of contents

Infrared Remote Con trol and Saving L ast Speed Setting .. 1

About this document ... 1

Table of contents .. 1

1 Infrared (IR) Remote Control ... 2
1.1 Introduction ... 2

1.2 Overview .. 2
1.3 IR Protocol ... 3

1.3.1 NEC Protocol .. 3

1.3.2 NEC Extended Protocol .. 5
1.3.3 RC5 Philips Protocol ... 6

2 FLASH Data Storage .. 7

2.1 Introduction ... 7

2.2 FLASH Data Storage function.. 7

3 Ceiling Fan Example Design ... 8
3.1 Requirement .. 8
3.2 IR Interface APIs ... 8

3.3 IR Command Decode ... 9

3.4 IR Control and FLASH Data Storage State Machine ... 9
3.4.1 IR decode state machine.. 9
3.4.2 Motor running state machine .. 11

3.4.3 DC bus state machine .. 12

3.5 Script Implementation .. 13
3.5.1 Code for iSD .. 13

4 Test Result ... 19
4.1 IR command test ... 19
4.2 Last speed setting test .. 21

5 Summary ... 22
5.1 The difference between task0 and task1 .. 22
5.2 The delay time for the remote control command .. 22

6 Reference ... 23

Application Note 2 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Infrared (IR) Remote Control

1 Infrared (IR) Remote Control

1.1 Introduction

The Infrared (IR) remote control is a wireless, non-contact control technology with strong anti-interference

ability, reliable information transmission, low power consumption, low cost, easy to realize, and other
significant advantages. The IR remote is widely used by a variety of electronic equipment, especially household

appliances.

The IR remote control has two parts: One is the transmitter part that uses an IR light emitting diode to emit
modulated IR light waves; another is the IR receiver part that converts IR light from the IR transmitter into a
corresponding electrical signal.

The FW5.1 or later release of the iMOTIONTM motion control engine (MCE) provides the script engine, which
supports IR remote control function that consists of a plug-in of the scripting engine and script APIs. The IR
Interface supports the following protocols: NEC, NEC Extended, and RC5 Phillips. For the signal receiving pin,

users can use pin RX0, RX1, or VSP, but not all devices support these three pins. If the IR transmitter supports
these protocols and IR receiver connects to the correct pin, users can use the MCE to decode IR commands
directly. For more information, users can refer to datasheets of relevant devices and the functional reference

manual[1].

1.2 Overview

The hardware is equipped with an IR receiver circuit, which is used to receive IR signals and convert IR signals
into pulse electrical signals. According to the defined protocol format, the firmware decodes the received IR

commands. With the decoded IR command, users can call the corresponding IR APIs to get the variables and

parameters required by the MCE using the script. Figure 1 shows the IR remote control layers. The physical layer

will process the signal received from the IR transmitter and send it to the IR pin. The data link layer and network
layer will decode the signal from the IR pin and define the address and command. The application layer is

implemented by the script, allowing users to obtain the address and command information from the network

layer. For more information about the hardware, users can refer to the user guide[3].

Physical Layer

Data Link Layer

Application Layer

Infrared sensor, Signals receiver

Frame (protocols: NEC, NEC extended, Phillips RC5)

Command and data map to MCE parametersScript

Firmware

Hardware

Network Layer Packet (Addressing, Command)

Figure 1 IR Remote Control Layers

Application Note 3 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Infrared (IR) Remote Control

1.3 IR Protocol

The latest MCE supports three IR protocols: NEC, NEC Extended, and RC5 Phillips. This section introduces the

characteristics of the three protocols.

1.3.1 NEC Protocol

The NEC IR transmission protocol uses pulse distance encoding of the message bits. Each pulse burst (RC

transmitter ON) is 562.5µs in length, at a carrier frequency of 38kHz. Logical bits are transmitted as follows:

⚫ Logical '0' – a 562.5µs pulse burst followed by a 562.5µs space, with a total transmit time of 1.125ms.

⚫ Logical '1' – a 562.5µs pulse burst followed by a 1.6875ms space, with a total transmit time of 2.25ms.

2.25ms

562.5us 562.5us

1.125ms

562.5us

Logical 1 Logical 0

1.6875ms 562.5us

Figure 2 NEC Logical Define

When a key is pressed on the remote controller, the message transmitted consists of the following:

• a 9ms leading pulse burst (16 times the pulse burst length used for a logical data bit)

• a 4.5ms space

• the 8-bit address for the receiving device

• the 8-bit logical inverse of the address

• the 8-bit command

• the 8-bit logical inverse of the command

• a final 562.5µs pulse burst to signify the end of message transmission.

Figure 3 shows an example using the NEC IR transmission protocol. The four bytes of data bits are each sent

least significant bit first. for an address of 00h (00000000b) and a command of ADh (10101101b).

0 0 00 0 0 0 0 1

9ms

4.5ms

Address

LSB LSB

1 1 1 1 1 1 1

LSB

01 0 011 1 1

LSB

10 1 10 00 0

Command

(Logical Inverse)

27ms 27ms

67.5ms

End

562.5us

Figure 3 Example message frame using the NEC IR transmission protocol.

Application Note 4 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Infrared (IR) Remote Control

Occasionally, a user must modify the speed increment or decrement. When the button on the remote controller
is held down, a repeat code is generated, typically occurring approximately 40ms after the pulse burst that

indicated the completion of the message. Subsequently, this repeat code will be transmitted at regular
intervals of 108ms until the key is eventually released. The repeat code consists of the following, as shown in

Figure 4:

⚫ a 9ms leading pulse burst

⚫ a 2.25ms space

⚫ a 562.5µs pulse burst to mark the end of the space

9ms 2.25ms

562.5us

Figure 4 Repeat code contain

Figure 5 shows two repeat codes after an initial message is sent of the NEC IR transmission protocol.

67.5ms

108ms

11.8125ms

108ms

11.8125ms

Initial Message Repeat Code Repeat Code

40.5ms

Figure 5 Repeat code example

Application Note 5 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Infrared (IR) Remote Control

1.3.2 NEC Extended Protocol

The difference between NEC Extended and NEC is that NEC Extended uses the address logical inverse byte as
part of the address code. Conswequently, the address code of the NEC Extended protocol is changed from 8

bits to 16 bits. Except for the difference in the number of bits of the address code, the other contents of the NEC
Extended protocol are the same as those of the standard NEC protocol. Figure 6 shows the example for an
address of FF00h (1111111100000000b) and a command of ADh (10101101b).

0 0 00 0 0 0 0 1

9ms

4.5ms

Address

(Low)

LSB LSB

1 1 1 1 1 1 1

LSB

01 0 011 1 1

LSB

10 1 10 00 0

Command

(Logical Inverse)

27ms 27ms

67.5ms

End

562.5us

Figure 6 NEC Extended example

Application Note 6 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Infrared (IR) Remote Control

1.3.3 RC5 Philips Protocol

The RC5 Philips IR transmission protocol uses pulse distance encoding of the message bits. Each pulse burst
(RC transmitter ON) is 889µs in length, at a carrier frequency of 36kHz. Logical bits are transmitted as follows:

• Logical '0' – a 889µs pulse burst followed by a 889µs space, with a total transmit time of 1.778ms.

• Logical '1' –a 889µs space followed by a 889µs pulse burst, with a total transmit time of 1.778ms.

889us

1.778ms

889us

Logical 0 Logical 1

889us 889us

1.778ms

Figure 7 RC5 Philips Logical Define

Table 1 shows the RC5 Philips data packet. The message transmitted consists of the following:

• 1 Start Bit: logical 1

• 1 Field Bit: logical 1

• 1 TR Bit: When the remote controller button is released and pressed again, this bit will reverse (0 → 1, 1 →

0). In this way, the receiver can identify whether the key has been pressed or repeatedly pressed

• the 5-bit address

• the 6-bit command

Table 1 RC5 Philips data packet

Start Bit Field Bit TR Bit Address Bits Command Bits

1 1 1 5 6

Figure 8 shows an example using the RC5 Philips IR transmission protocol. The address bits and command bits
are transmitted in the order of their significance, with the most significant bit being sent first. In this particular
scenario, the address being transmitted is 01000b, and the command being transmitted is 001000b.

1 1 1 0 1 0 0 0 0 0 1 0 0 0

Start
bit

Bit
F

Bit
T

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Command

24.892ms

MSB MSB

Figure 8 RC5 Philips example

Application Note 7 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

FLASH Data Storage

2 FLASH Data Storage

2.1 Introduction

In some applications, the system may not work normally due a change in power input, such as sudden power

failure. When incidents like this occur, it is important for the system to store the current operation data at the
time of power failure. This allows for the system to automatically resume operation at it’s previous state once

power is restored.

The latest MCE firmware provides FLASH data storage function, which can easily be used through the provided
APIs.

2.2 FLASH Data Storage function

All script supported variable types can be stored, but they must be defined with the keyword ‘flash’, for
example:

flash uint8_t FlashVar1;

flash uint16_t FlashVar2;

flash int32_t FlashVar3;

Up to 160 bytes of flash variables can be stored when called by the Flash_Write(). Users have to ensure that this

function is called when the motor is in the STOP or IDLE state. Because all interrupt executions of the MCE are
prohibited during FLASH data storage, it is recommended to call when the motor is stopped to avoid some

unexpected behaviors, such as a lack of motor control. That said, users must consider the flash write lifetime.
Assuming that the system runs for 8 hours every day and needs to store data three times, it can be used around

15 years based on a 50000 erase cycles. Table 2 provides an explanation for the APIs of the flash data storage
plug-in. For the APIs, more details information can find in the functional reference manual[1].

Table 2 Flash data storage APIs

API name Brief description

Flash_Write() Writes all “flash” type variables to flash

Flash_Erase() Erases all data in allocated storage

Flash_GetWriteCount() Returns amount of times flash has been written over lifetime

Flash_GetStatus() Returns status from flash driver

Application Note 8 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

3 Ceiling Fan Example Design

3.1 Requirement

This chapter will show the user how to utilize the infrared control and FLASH data storage functions. The

purpose of the IR function is to provide users with a simple, convenient, and reliable way to control the motor
via an application. We will use a ceiling fan application as an example to explain in detail how to attain the IR

control function through scripting. We will also show users how to use a remote controller to achieve various
speed command responses and employ the FLASH data storage function to save and retrieve the previous
speed setting. Before normal operation, if a fault occurs, the system will attempt to automatically clear the

fault for 5 times. During this period, the system will only operate normally if the fault disappears. Below are the

fundamental system design prerequisites:

1. Respond to the 3 different speed setting commands and map the speed input commands to the relevant
target speed settings.

2. Respond to the repeat command to increase and decrease speed as needed.

3. Respond to the power button press on the matching remote by toggling between the ON or OFF state. When

switching to the ON state, it should resume from the last used speed setting. If there is no previously used
speed setting is available, then it will start at the lowest speed setting.

4. Continuously monitor AC status by checking DC bus voltage level. Respond to AC brown-out event by
initiating storing current speed setting into FLASH.

5. Upon start-up, restore last power status. If it is in ON status, then restore last saved speed setting.

3.2 IR Interface APIs

The MCE firmware is designed with the corresponding IR program interface in mind. In the application process

users only need to call directly, which improves the ease of use and flexibility of the program. The APIs of the IR
Interface plug-in are summarized in Table 3. More details can be found in the functional reference manual [1].

Table 3 IR APIs List

API name Brief description

IR_DriverInit() Initializes IR Driver based on key parameters

IR_DriverDeinit() De-initializes IR Driver

IR_RxBuffer() Returns most recent transmission

IR_GetStatus() Returns status

IR_RxCommand() Returns “Command” section of transmission

IR_RxAddress() Returns “Address” section of transmission

IR_RxRepeats() Returns numbers of transmissions repeated

IR_RxReceived() Returns true if transmission has been received

IR_RxRepeating() Returns true if transmission has not been fully received

Application Note 9 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

3.3 IR Command Decode

This paragraph shows users how to best use specific IR controls. By using the remote controller to send
commands, the IR receiver obtains the signal and uses the IR interface APIs to decode its specific content.

According to the analysis of requirements and the characteristics of this ceiling fan application, the script can
be divided into three state machines. This includes the state machine for IR decode, the state machine for

motor running, and the state machine for DC bus voltage monitoring. In the next chapter, we will discuss each
state machine in detail.

In this ceiling fan application the remote controller has 6 buttons, where buttons 1 to 3 allow for 3 different
speeds respectively. The 4 button is the speed accelerate command and the 5 button is the speed decelerate

command. The other button is the power button, which can switch the start and stop commands of the motor.

If the user presses a numbered button, then the MCE executes the desired speed command. If the power button

is pressed, then the MCE needs to judge the current running state of the motor. If the motor is in the running
state, then the button command should be resolved into a stop command; Conversely, if the motor is in the
stop state, the button command should be interpreted as a start command. At this point, the motor has been
running at the last executed setting speed. If there is no valid setting speed, the motor will run at the lowest

valid speed.

In the script, the MCE uses the count value speed ‘APP_MOTOR0.TargetSpeed’ instead of the actual target

speed. The relationship between the count value and the target speed is expressed as follows:

 𝐴𝑃𝑃_𝑀𝑂𝑇𝑂𝑅0. 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 =
𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑

𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑
× 16383

In this equation, the count 16383 represents the maximum speed count and the MaxSpeed is configurated in
the iMOTIONTM Solution Designer (iSD).

The relationship between the remote controller, the target speed setting, and the variables in the script for this
design is listed inTable 4.

Table 4 IR control command, variables in script, and target speed setting

Remote

button

IR control

command

Target speed (rpm) APP_MOTOR0.TargetSpeed(count)

Power Power OFF 0 0

Power ON Last speed setting or 125 Last speed setting or 5319

1 Speed_1 125 5319

2 Speed_2 190 8085

3 Speed_3 255 10851

4 Speed accelerate Current speed+ speed step (Max 385) Current speed+ speed step (Max 16383)

5 Speed decelerate Current speed - speed step (Min 125) Current speed - speed step (Min 5319)

3.4 IR Control and FLASH Data Storage State Machine

3.4.1 IR decode state machine

The main work of this part is that the controller receives the IR signal and it decodes the IR power command

and speed target. If the IR instruction changes (the previous command is not equal to the command received
now), then users should ensure the CmdUpdate_Flag is active. This flag is used when the Flash_Write() is called
to avoid repeated calls when the instruction is not updated.
The update of the IR control instruction requires a time delay to suppress multiple start/stops when the power

button is pressed. Considering the APIs call time is 50ms, the delay time should not be less than 50ms. On the

Application Note 10 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

other hand, if the delay time is too long, it will affect the timely response of commands. It is recommended that
users set delay time between 50ms and 500ms.

Figure 9 shows the IR decode state machine. When the ceiling fan is powered on, the IR system starts to work.
Because the execution period of the script is 50ms and the command delay time is 500ms, a counter with a
cycle of 10 is set here. When the counter value reaches 10, enter the ‘IR read’ state. Once users have entered the

IR read state, the counter value will be cleared to 0, and the IR command will be read at the same time. The
power status will then be judged; if the previous one is the Power OFF, then this one is the Power ON, and vice
versa.

Then the speed command will be parsed and the corresponding target speed will be set according to the
different speed commands

It is necessary to store the speed and power state information each time to determine whether the next

command is different with the current command.

IR Read

entry /count = 0;
command = IR_RxCommand();
do /
if(APP_MOTOR0.SwFaults){if(clearcount < 5){clearcount ++; APP_MOTOR0.FaultClear =
CMD_FAULT_CLEAR}}
else{
if(command == power_ON_OFF)
{if(Power_Previous == ON) {power_state = OFF;} else {power_state = ON;}}
if(command == speed_1/2/3/4/5)
{speed_state = Targetspeed_1/2/3/4/5;}
if(Power_Previous != power_state ||Speed_Previous != speed_state)
{CmdUpdate_Flag = 1;} esle {CmdUpdate_Flag = 0;};
Power_Previous = power_state; Speed_Previous =power_state; }
exit /

count>=10

IR Idle

entry /

do /
count++;

exit /

Automatic

Figure 9 IR decode state machine

Table 5 shows the input and output parameters for the IR decode state machine. The output parameters are

sent to the motor running state machine.

Table 5 IR decode state machine input and output parameters

Input parameters Output parameters

NA Power_state

NA Speed_state

NA CmdUpdate_Flag

Application Note 11 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

3.4.2 Motor running state machine

Figure 10 shows the motor running state machine. When the IR receives the Power ON command, the ceiling

fan starts to run at the target speed. During running state, the variable CmdUpdate_Flag will be monitored at
all times to determine whether new instructions are received. If new instructions are received, the variable

FlashWrite_Flag will be set to 1. The motor will stop running when the Power OFF command is received. If the
brown-out event occurs, the system will issue a fault signal and the motor will also stop running. In the stop

state, the command is set as OFF. If the motor sequence state is STOP or FAULT, a brown-out event has
occured, and the FlashWrite_Flag is 1, we will need to store the power state and speed state. At that point, the
script will call the Flash_Write() function to store the data. After this, clearing the FlashWrite_Flag ensures the

Flash_Write() function is called only once due to the limited FLASH write life cycles.

Motor run

entry /
APP_MOTOR0.Command = ON;

APP_MOTOR0.TargetSpeed = speed_state;

do /
if(CmdUpdate_Flag)
{
 FlashWrite_Flag = 1;

}

exit /

Motor stop

entry /
APP_MOTOR0.Command = OFF;
do /
if(BrownOut_Flag&&((MCEOS.Motor_SequencerState == STOP) ||
(MCEOS.Motor_SequencerState == FAULT)))
{
 if(FlashWrite_Flag)
 {Flash_Write();
 FlashWrite_Flag =0;}
}
exit /

Power_state==OFF BrownOut_Flag == 1power_state ==ON

Figure 10 Motor running state machine

Table 6 shows the input and output parameters for the motor running state machine. The input parameters
‘Power_state’,’ Speed_state’, and ‘CmdUpdate_Flag’ are received from the IR decode state machine. The input

parameter ‘BrownOut_Flag’ is received from the DC bus state machine.

Table 6 Motor running state machine input and output parameters

Input parameters Output parameters

Power_state NA

Speed_state NA

CmdUpdate_Flag NA

BrownOut_Flag NA

Application Note 12 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

3.4.3 DC bus state machine

According to the application requirements, the MCE should store the last speed and motor run state setting
when the AC brown-out event occurrence. For this ceiling application, since no AC input signal is sampled, the

DC bus voltage signal is used instead.

The iSD sets the undervoltage protection value. In order to reserve enough power supply voltage to enable data

storage to be completed successfully, we recommend setting a software protection value that is greater than
the undervoltage protection voltage. The value of this threshold should fully consider the design of the system
hardware. The system should meet the requirements of providing sufficient voltage to enable data storage
when the brown-out occurs. If the DC bus voltage remains below this value for a certain duration, the script will

activate the brown-out flag and issue a stop command. Simultaneously, by setting a hysteresis threshold, when

the voltage exceeds this threshold and remains consistently higher for a specific period, the normal power

supply logic will be reinstated, restoring the initial state. The hysteresis setting is used to avoid unexpected

actions that may occur when the voltage value fluctuates at the threshold. The hysteresis value suggestion
should be larger than the voltage fluctuation. Figure 11 shows the relationship.

Time/s

Voltage/V

Rated
working
voltage

Threshold
voltage

Voltage
ripple

Minimum
working
voltage

HysteresisVoltage
ripple

Figure 11 DC Voltage hysteresis diagram

Figure 12 shows the DC bus state machine. The ceiling fan works normally and it enters this state when the
voltage is normal. First, it will check whether there is a valid power state. If the data shows that there is no valid

data in the storage area, then power state is set to OFF and the target speed is set to the lowest speed. During
this state, the script will monitor the DC bus voltage variable FB_MEASURE.VdcFilt constantly and set the

BrownOut_Flag as 0. Once the FB_MEASURE.VdcFilt is detected to be below the threshold for a continuous 10

execution cycles (the number of cycles can be configured using the variable 'DC_Time_Out'), a brown-out event

has occurred, and the system will enter the DC bus abnormal state machine. The DC bus abnormal state
machine will set the BrownOut_Flag as 1. This flag variable is a key parameter used for the Flash_Write()
function.

When the FB_MEASURE.VdcFilt exceeds the threshold, plus the hysteresis, for a continuous period of 10
execution cycles, it can be inferred that the input power has recovered and returned to the normal state of the
DC bus machine.

There are two variables, “threshold” and “hysteresis”, that define the reasonable value. Since the DC bus
voltage reflects the AC input voltage, the lowest voltage that can work should be considered here. In the same
way, the hysteresis value should be considered to avoid the normal fluctuation of the DC bus waveform.

Application Note 13 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

DC bus abnormal

entry /
do /
BrownOut_Flag = 1;

exit /

 FB_MEASURE.VdcFilt<Threshold
&& Continuous 10 execution cycles

DC bus normal

entry /
if((Power_state !=1) && (Power_state !=0))
{
 Power_state = POWER_OFF;
 Speed_state = TARGET_SPEED_1;
 Power_Previous = POWER_OFF;
 Speed_Previous = TARGET_SPEED_1;
}
do /
monitor the FB_MEASURE.VdcFilt ;
BrownOut_Flag = 0;
exit /

 FB_MEASURE.VdcFilt>=Threshold+Hysteresis
&& Continuous 10 execution cycles

Figure 12 DC bus state machine

Table 7 shows the input and output parameters for the motor running state machine. The output parameter

‘BrownOut_Flag’ is sent to the motor running state machine.

Table 7 DC bus state machine input and output parameters

Input parameters Output parameters

NA BrownOut_Flag

3.5 Script Implementation

3.5.1 Code for iSD

Code Listing 1 shows the global parameters define and Code Listing 2 shows the IR remote control how to
realize the process.

Code Listing 1 IR Remote Control Interface Script Code for iSD (Global.mcs)

001 /**/

002 /*Global variables*/

003 /**/

004 /* status variables */

005 int32_t IR_status;

006 int32_t IR_DriverStatus;

007 /* data and address variables */

008 uint8_t command;

009 uint8_t Repeating;

010 uint8_t mask_cnt;

011 int32_t CMD_STATE;

012 uint8_t FlashWriteFlag;

Application Note 14 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

Code Listing 1 IR Remote Control Interface Script Code for iSD (Global.mcs)

013 uint8_t BrownOut_Flag;

014 uint8_t CmdUpdate_Flag;

015 uint8_t DCabnormal_count;

016 uint8_t DCnormal_count;

017 uint8_t FlashWrite_Flag;

018 uint8_t FlashStatus;

019 uint8_t FlashEmpty;

020 uint8_t FlashInvalid;

021 uint8_t FlashWriteError;

022 uint8_t FaultClearCount;

023 CONST int CMD_SPEED_1 = 26;

024 CONST int CMD_SPEED_2 = 2;

025 CONST int CMD_SPEED_3 = 3;

026 CONST int CMD_ACCELERATE = 6;

027 CONST int CMD_DECELERATE = 5;

028 CONST int CMD_ON_OFF = 1;

029 CONST int TARGET_SPEED_1 = 5319; //5319 =

125rpm/385rpm*16383

030 CONST int TARGET_SPEED_2 = 8085;

031 CONST int TARGET_SPEED_3 = 10851;

032 CONST int MAX_SPEED = 16383;

033 CONST int MIN_SPEED = 5319;

034 CONST int VDC_THRESHOLD = 2313;//150; //Vdc_Max 42.5V

2313 = 24V/42.5V*4096 150 for test

035 CONST int VDC_Hysteresis = 10; //144; //1.5V 2313 =

1.5V/42.5V*4096

036 CONST int STEP_SPEED = 100;

037 CONST int STOP_State = 1;

038 CONST int FAULT_State = 5;

039 CONST int MASK = 0;

040 CONST int READY = 1;

041 CONST int MASK_TIME_OUT = 10;

042 CONST int STOP = 1; //Motor_SequencerState

043 CONST int POWER_ON = 1;

044 CONST int POWER_OFF = 0;

045 CONST int DC_Time_Out = 10;

046 CONST int CMD_FAULT_CLEAR = 1; //CLEARE FAULT

047 flash uint16_t Power_state; // Flash storage data

048 flash uint16_t Speed_state; // Flash storage data

049 flash uint16_t Power_Previous;

050 flash uint16_t Speed_Previous;

Code Listing 2 IR Remote Control Interface Script Code for iSD (Task0.mcs)

001 /*Task1 init function*/

002 Script_Task1_init()

003 {

004 IR_DriverDeInit();

005 /* Initialize IR Interface */

006 /* channel (0-RX0, 1-RX1, 2-VSP), rxinvert, protocol

(0:RC5, 1:NEC, 2:NECextended), address */

007 IR_DriverStatus = IR_DriverInit(2,1,1,128);

Application Note 15 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

Code Listing 2 IR Remote Control Interface Script Code for iSD (Task0.mcs)

008 FlashStatus = Flash_GetStatus();

009 FlashEmpty = FlashStatus & 0x01;

010 FlashInvalid = FlashStatus & 0x02;

011 FlashWriteError = FlashStatus & 0x04;

012 CMD_STATE = READY;

013 mask_cnt = 0;

014 APP_MOTOR0.TargetSpeed = 0;

015 BrownOut_Flag = 0;

016 CmdUpdate_Flag = 0;

017 FlashWrite_Flag = 0;

018 FaultClearCount = 0;

019 APP_MOTOR0.FaultClear = CMD_FAULT_CLEAR;

020 if((Power_state !=1) && (Power_state !=0))

021 {

022 Power_state = POWER_OFF;

023 Speed_state = TARGET_SPEED_1;

024 Power_Previous = POWER_OFF;

025 Speed_Previous = TARGET_SPEED_1;

026 }

027 }

028 /**/

029 /*Task1 function*/

030 Script_Task1()

031 {

032 if(APP_MOTOR0.SwFaults)

033 {

034 if(FaultClearCount < 5)

035 {

036 APP_MOTOR0.FaultClear = CMD_FAULT_CLEAR;

037 FaultClearCount = FaultClearCount + 1;

038 }

039 }

040 else

041 {

042 FaultClearCount = 0;

043 IR_status = IR_RxReceived();

044 Repeating = IR_RxRepeating();

045 }

046 if(CMD_STATE == MASK)

047 {

048 mask_cnt = mask_cnt + 1;

049 if(mask_cnt == MASK_TIME_OUT)

050 {

051 CMD_STATE = READY;

052 mask_cnt = 0;

053 }

054 }

055 /* Received Data valid */

056 if(IR_status || Repeating)

057 {

058 command = IR_RxCommand();

059 if(CMD_STATE == READY)

060 {

061 if(command == CMD_ON_OFF)

Application Note 16 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

Code Listing 2 IR Remote Control Interface Script Code for iSD (Task0.mcs)

062 {

063 if(Power_state == POWER_OFF)

064 {

065 Power_state = POWER_ON;

066 }

067 else

068 {

069 Power_state = POWER_OFF;

070 }

071 }

072 }

073 if(Power_state == POWER_ON)

074 {

075 if(command == CMD_SPEED_1)

076 {

077 Speed_state = TARGET_SPEED_1;

078 }

079 if(command == CMD_SPEED_2)

080 {

081 Speed_state = TARGET_SPEED_2;

082 }

083 if(command == CMD_SPEED_3)

084 {

085 Speed_state = TARGET_SPEED_3;

086 }

087 if(command == CMD_ACCELERATE)

088 {

089 if(Repeating)

090 {

091 Speed_state = Speed_state + STEP_SPEED;

092 if(Speed_state >= MAX_SPEED)

093 {

094 Speed_state = MAX_SPEED;

095 }

096 }

097

098 }

099 if(command == CMD_DECELERATE)

100 {

101 if(Repeating)

102 {

103 Speed_state = Speed_state - STEP_SPEED;

104 if(Speed_state <= MIN_SPEED)

105 {

106 Speed_state = MIN_SPEED;

 }

107 }

108 }

109 }

110 CMD_STATE = MASK;

111 }

112 if((Power_Previous != Power_state) || (Speed_Previous!=

Speed_state))

113 {

Application Note 17 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

Code Listing 2 IR Remote Control Interface Script Code for iSD (Task0.mcs)

114 CmdUpdate_Flag = 1;

115 }

116 else

117 {

118 CmdUpdate_Flag = 0;

119 }

120 if(CmdUpdate_Flag)

121 {

122 FlashWrite_Flag = 1;

123 }

124 Power_Previous = Power_state;

125 Speed_Previous = Speed_state;

126 if(FB_MEASURE.VdcFilt <= VDC_THRESHOLD)

//VDC_THRESHOLD

127 {

128 DCnormal_count = 0;

129 DCabnormal_count = DCabnormal_count + 1 ;

130 if(DCabnormal_count >= DC_Time_Out)

131 {

132 DCabnormal_count = 0;

133 BrownOut_Flag = 1;

134 }

135 }

136 if(FB_MEASURE.VdcFilt >= (VDC_THRESHOLD +

VDC_Hysteresis))

137 {

138 DCabnormal_count = 0;

139 DCnormal_count = DCnormal_count + 1 ;

140 if(DCnormal_count >= DC_Time_Out)

141 {

142 DCnormal_count = 0;

143 BrownOut_Flag = 0;

144 }

145 }

146 if(BrownOut_Flag)

147 {

148 APP_MOTOR0.Command = POWER_OFF;

149 }

150 else

151 {

152 APP_MOTOR0.Command = Power_state;

153 APP_MOTOR0.TargetSpeed = Speed_state;

154 }

155 if(BrownOut_Flag && ((MCEOS.Motor_SequencerState ==

STOP_State) || (MCEOS.Motor_SequencerState == FAULT_State)))

156 //if(BrownOut_Flag)

157 {

158

159 if(FlashWrite_Flag)

160 {

161 Flash_Write();

162 FlashWrite_Flag = 0;

163 }

164 }

Application Note 18 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Ceiling Fan Example Design

Code Listing 2 IR Remote Control Interface Script Code for iSD (Task0.mcs)

165 }

In this application, the call cycle of the APIs requires 50ms. Therefore, the overall script execution cycle must be

at least 50ms. However, it is not advisable to set it excessively long as it would adversely impact the program's
execution efficiency. The script consists of 68 lines of instructions, provided that the execution of all 68 lines is
finished within the designated execution period. This example is set to the execution step as 70. For more
settings, please refer to functional reference manual[1].

Figure 13 shows script task build output information. Figure 14 shows the script setting information.

Figure 13 Task bulid information

Figure 14 The execution period and the step for the IR control

Application Note 19 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Test Result

4 Test Result

All the functions in this document are implemented by the script language code and tested with the evaluation
board REF-SHA35IMD111TSYS. For more information, please refer to the evaluation board user guide[3].

4.1 IR command test

Figure 15 and Figure 16 show the IR command of Power ON and OFF. Figure 17 shows the speed command

change status.

Stop state Ceiling fan startup

Power ON command

CH1: Phase U current

CH2: IR_INV command signal

CH4: Vbus voltage

Figure 15 IR command Power ON

Application Note 20 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Test Result

Running state Stop state

Power OFF command

CH1: Phase U current

CH2: IR_INV command signal

CH4: Vbus voltage

Figure 16 IR command Power OFF

Speed_2 Speed_3

Speed_3 command

CH1: Phase U current

CH2: IR_INV command signal

CH4: Vbus voltage

Figure 17 IR Speed command change test

Application Note 21 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Test Result

Figure 18 shows the repeating command for the speed accelerate and speed decelerate functions.

MAX speed limit

Min speed limit

Repeating command
Speed accelerate

Repeating command
Speed decelerate

CH1: Phase U current

CH2: IR_INV command signal

CH4: Vbus voltage

Figure 18 Repeating command for speed accelerate and speed decelerate

4.2 Last speed setting test

Figure 19 shows the flash data storage function. At first, the ceiling fan was in normal running. Then the brown-

out event occurred and the ceiling would stop, storing the power and speed state. Finally, when the power
recovered, the ceiling fan resumed from the last speed setting.

Normal running Brown-out Power recover

CH1: Phase U current

CH2: IR_INV command signal

CH4: Vbus voltage

Figure 19 resume from the last speed setting after power recover

Application Note 22 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Summary

5 Summary

5.1 The difference between task0 and task1

Task0 is executed in an interrupt program, while task1 is executed in a background program. Whether the script

is placed in task0 or task1, users should comprehensively consider the CPU load of the whole program. We
recommend that the CPU load should not be higher than 90% when executing the entire program, otherwise,

the script function may cause CPU overload, thus affecting the operation of the MCE and PFC.
Figure 20 shows an example of CPU load. The example in this application note is using script Task 0 because it
uses 70.9% CPU load. It is recommended to use script in task1 when CPU load is higher than 90%.

Figure 20 CPU load

5.2 The delay time for the remote control command

As explained in section 3.4.1, the APIs associated with IR control require 50ms to be called within the MCE.
Consequently, the scripting design's delay time does not necessarily have to be faster than this value. However,

it should not be excessively long, considering both user experience and program execution efficiency. The delay
time needs to be carefully evaluated in a comprehensive manner by the user.

Application Note 23 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Reference

6 Reference

[1] Functional Reference Manual iMOTION™ Motion Control Engine

[2] How to Use iMOTION™ Script Language

[3] REF-SHA35IMD111TSYS User guide Full-featured starter kit for low voltage ceiling fan motor designs

[4] IMI111T - iMOTION™ IPM for motor control data sheet

https://www.infineon.com/dgdl/Infineon-Functional_Reference_Manual_iMOTION_Solution_Designer-UserManual-v01_01-EN.pdf?fileId=8ac78c8c850f4bee01853e4882b37df2

Application Note 24 of 25 Revision 1.0

 2023-10-17

Infrared Remote Control and Saving Last Speed Setting

Table of contents

P U B L I C

Revision history

Document

version

Date of release Description of changes

1.0 2023-10-17 Initial release

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-10-17

AN-2023-03

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	Infrared Remote Control and Saving Last Speed Setting
	About this document
	Table of contents
	1 Infrared (IR) Remote Control
	1.1 Introduction
	1.2 Overview
	1.3 IR Protocol
	1.3.1 NEC Protocol
	1.3.2 NEC Extended Protocol
	1.3.3 RC5 Philips Protocol

	2 FLASH Data Storage
	2.1 Introduction
	2.2 FLASH Data Storage function

	3 Ceiling Fan Example Design
	3.1 Requirement
	3.2 IR Interface APIs
	3.3 IR Command Decode
	3.4 IR Control and FLASH Data Storage State Machine
	3.4.1 IR decode state machine
	3.4.2 Motor running state machine
	3.4.3 DC bus state machine

	3.5 Script Implementation
	3.5.1 Code for iSD

	4 Test Result
	4.1 IR command test
	4.2 Last speed setting test

	5 Summary
	5.1 The difference between task0 and task1
	5.2 The delay time for the remote control command

	6 Reference

