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About this document 

Scope and purpose 

This application note provides an explanation and script examples of how to use the configurable I2C interface 

provided by iMOTION™ Motion Control Engine (MCE) to communicate with external I2C devices EEPROM 

eliminating the need for a secondary microcontroller to interpret I2C messages. The I2C driver mentioned in 

this application note is available when using an SDPack newer than version 5.2. 

Intended audience 

This application note is intended for customers who want to understand how to use the iMOTION™ 

configurable I2C driver provided by iMOTION™ Motion Control Engine (MCE) SW package. 

  



 

Application Note  Revision 1.0 

 2 of 20 2023-10-25 

 

  

 

How to use iMOTION™ Configurable I2C Interface 
  

Table of contents  

Table of contents 

About this document ....................................................................................................................... 1 

Table of contents ............................................................................................................................ 2 

1 Introduction .......................................................................................................................... 3 

1.1 Overview .................................................................................................................................................. 3 

1.2 iMOTION™ protocol implementation ..................................................................................................... 5 

2 Use Case Example: EEPROM ..................................................................................................... 6 

2.1 EEPROM Write Design Flow ..................................................................................................................... 7 

2.1.1 Pages and byte writes ........................................................................................................................ 8 

2.1.2 Script Implementation ..................................................................................................................... 10 

2.1.3 Test Result ........................................................................................................................................ 11 

2.2 EEPROM Read Design Flow ................................................................................................................... 12 

2.2.1 Script Implementation ..................................................................................................................... 13 

2.2.2 Test Result ........................................................................................................................................ 14 

3 Hardware Design ................................................................................................................... 15 

4 Performance Evaluation ........................................................................................................ 16 

4.1 Timing impact of APIs ........................................................................................................................... 16 

5 Guidelines ............................................................................................................................ 17 

6 References ........................................................................................................................... 18 

Revision history............................................................................................................................. 19 

Disclaimer..................................................................................................................................... 20 

 



 

Application Note  Revision 1.0 

 3 of 20 2023-10-25 

 

  

 

How to use iMOTION™ Configurable I2C Interface 
 

  

1 Introduction 

iMOTION™ Motor Control Engine (MCE) has an I2C driver which allows devices to send and receive information 
and commands using the I2C protocol configured through scripting. Use this application note as a reference for 

writing code, understanding I2C protocol implementations, and predicting performance impact of using the I2C 
Interface. 

 

1.1 Overview 

I2C, or Inter-Integrated Circuit, is a communication protocol used by controllers found in many sensors, 

EEPROMs, I/O expanders, Displays, and NFC receivers. It is also used to communicate simple parameters inside 

VGA and HDMI connectors. This protocol was created in 1982 to improve popular protocols of the time [1]. One 
popular protocol at the time, UART, only uses two wires but can only be used between two devices. Another I2C 

precursor, SPI, can have multiple slaves however it can only have one master and uses 3 or 4 wires. I2C 
combines the benefits of UART and SPI. It uses only two wires and can have multiple slaves. Some other 

benefits of the protocol are: it can have multiple masters, it is synchronous which means the data rate does not 
need to be known by the slaves before communication starts, and it has low requirements for computational 

complexity. 

I2C's connections consist of two lines: the serial data line (SDA) and the serial clock line (SCL). No matter how 

many targets there are, only two lines are required for the entire I2C network. The target is selected by the 

master by sending its address. Each bit transmitted on the data line must be accompanied by a clock pulse on 
the clock line. On each line at any given moment, the two possible states are logic high and logic low. 

I2C communicates in messages. A message is made up of frames, a start condition, a stop condition, and 
ACK/NACK bits. Data inside of a frame is sent with the Most Significant Bit (MSB) first. Figure 1 shows each part 
of an I2C message in the order that they must occur. 

 

Figure 1 Parts of I2C message 

The start and stop conditions are instructions to start and stop communication on the I2C bus and are 

consistent between all devices. The start condition informs all slave devices that communication is about to 
begin and makes the I2C bus busy. The stop condition informs all slaves that communication has finished, 
making the I2C bus free. These two conditions are completed by changing the state of the SDA bus while the 
SCL bus is high. This differs from other data as normally the SDA bus will change at the same time that the SCL 

bus is changing from high to low. A start condition consists of the SDA bus going from high to low while the SCL 

bus is high. The iMOTION™ I2C driver combines the start condition with the address frame (which will be 
detailed in the latter part of this section) to be a part of the same API, I2C_MasterStart(x). A stop condition 
consists of the SDA bus going from low to high while the SCL bus is high. A stop condition can be sent using the 
API I2C_MasterStop(x). See Figure 2 for a visual representation of these two conditions. 
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There are times when the master needs to send a repeated start condition after communication has already 
begun. This is done when communication has begun already but it’s desired to switch the value of the R/W̅ bit. 

The protocol’s allowance of a second start condition while communication is already occurring prevents the 
need for a stop condition, freeing the I2C bus in the middle of communication. A repeated start condition can 

be sent using the API I2C_MasterRepeatedStart(x). 

Highlighted in yellow, Figure 1 mentions “ACK/NACK” bits in every signal combination, except for a stop 
condition. These two bits are called “acknowledge” and “not acknowledge” bits. ACK/NACK bits are used after 

every frame. “Acknowledge” bits can be sent by the master or slave. They indicate that the previous frame was 

received successfully and that the next frame may be sent. The reason this is highlighted in yellow is to indicate 
that this bit is being received, not sent. “Not acknowledge” bits can be interpreted in different ways; this either 
means that there was a problem receiving the frame, or that no more data is desired to be sent. The column on 

the righthand side of figure 2 demonstrates what the ACK/NACK bits look like and show that two APIs can 
control the use of them. 

The address is where an address select code is sent to all slave devices in order to establish a connection with 

only one slave. Depending on the slave device, the address frame may consist of either 8 bits, or 11 bits and is 
only sent once per transmission. The last bit specifies whether the master is about to read or write to the target. 

This bit is usually referred to as the R/W̅ bit as a 1 specifies that a read instruction is about to take place and a 0 
specifies a write instruction. iMOTION™'s I2C driver combines the start condition with the address frame to be a 

part of the same API, I2C_MasterStart(x). 

Once the address frame is sent to select the slave device, data frames may follow. Each data frame consists of 

one byte. The data frame is where the main payload resides. Consult the slave’s datasheet, or read on to the 

use cases in Section 2, to properly format the data inside the data frames. A data frame can be sent using the 
API I2C_Transmit(x). 

For a list of all I2C related APIs with detailed descriptions refer to [2]. 

 

Figure 2 I2C signals 
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1.2 iMOTION™ protocol implementation 

iMOTION™ MCE implements the I2C protocol in firmware and provides a series of API calls enabled by the MCE 
script engine for users to accommodate I2C communication sequences. The iMOTION™ MCE script engine is 
used for customizing system level functionalities which runs in parallel with the motor and PFC control 
algorithm. This script engine is most commonly used to read or modify MCE parameters, to make use of spare 

analog inputs or digital GPIO resources, to support customized UART protocol implementation, or to support 

I2C communication. Once the pinout section of your device’s datasheet is checked and the proper pins are 
connected to the SDA/SCL lines, a script can be created to communicate with any I2C devices by making use of 
I2C APIs. 

Writing and debugging script code is supported by iMOTION™ Solution Designer (iSD) script editor. Install iSD 

online found in the “Design Support” section of our website [4] and then by following the directions found in 
the “Getting Started with iMOTION™ Solution Designer” guide [5] which will give you a walkthrough of creating 

a configuration file, a script, and then programming and debugging the device. For a list of all I2C APIs refer to 
the Functional Reference Manual [2], and for an example of APIs being used to read and write data from an 
EEPROM, continue to Section 2. 
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2 Use Case Example: EEPROM 

iMOTION™ MCE’s I2C interface allows a high level of customization as it transmits one byte of data at a time. An 

example of EEPROM read / write operation is provided in this section to demonstrate how to customize MCE’s 
I2C interface to support EEPROM communication. 

An EEPROM has two types of instructions: read and write, and each of these instructions is made up of 6 and 5 

API functions respectively. There are a few reasons why you may find the need to interface with an EEPROM. 
You may find that some devices such as an NFC interface IC has built-in EEPROM that may store commands. 
This would allow the ability to change variables or request parameter values wirelessly in the field.  

This section explains how to configure the data inside of multiple data frames in order to interact with data 

from a desired memory address inside an EEPROM that has a unique address select code. The way that 

interacting with EEPROM differs from other I2C enabled devices mostly has to do with what’s inside the data 
frames. Lastly, EEPROM’s slow write time may require a mechanism to be introduced which is described in 
section 2.1.1. 

One fundamental mechanism of EEPROM to understand is an internal counter that keeps track of the memory 
address being used, which will be referred to as the memory counter. This exists so that multiple addresses can 
be written to, or read from, with the address being specified only one time. The way it works is that the counter 

increases by one after an action is done to a memory address. Every write instruction and most read 

instructions start by setting the memory counter inside of the EEPROM. The most common size of a memory 
counter is two bytes, which allows addressing up to 65,536 bytes of memory space. The first two data frames in 

the following Figure 3 and Figure 4 demonstrate the memory counter being set. Check the EEPROM’s datasheet 

to ensure that its memory address is neither larger nor smaller or else adjust the amount of data frames 

accordingly. 
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2.1 EEPROM Write Design Flow 

After understanding how the I2C communication protocol works, the pieces can now be put together to write 
data to an EEPROM. This section explains how to write to an EEPROM. 

 

Figure 3 EEPROM write instruction signals 

Figure 3 follows the same pattern that every I2C message follows which was previously described in Section 1.1 

and illustrated in Figure 1. The only difference is that Figure 3 contains four data frames rather than one, and 
instead of having the slave signals highlighted in yellow, it is separated. If you took every API in this figure and 

put it in a script it would write 2 bytes to 2 EEPROM memory addresses. The four data frames are made up of 
two memory address bytes and two bytes to be stored. 

The last bit of the address frame, or the R/W̅ bit, is logic LOW, indicating a write instruction, just as described in 

Section 1.1.  This is achieved by making the least significant bit inside the “I2C_MasterStart()” argument equal 
to 0. 

The words “Data in byte N” in Figure 3 demonstrate that you may continually add more data frames to store 
more data. Please note that there will be a limit to how much data can be stored in one message. The 
EEPROM’s datasheet must be checked for the maximum limit. Look for mention of a “page write” and do not 
exceed the specification. Read on to Section 2.3.1 for more info about a page write. 

In your EEPROM’s datasheet also look for how many memory address locations there are, or look for the size of 
the memory counter. In Figure 1 the size of the memory counter is two bytes. If your EEPROM is small it may 

only require one byte for the memory address. Or if it is bigger than 65,536 bytes it may require more than two 
bytes to set the memory counter. 

Figure 1 does not include all the APIs for a successful write instruction. I2C_DriverInit() API will also need to be 

called. The reason this API is not pictured is because it is not part of an instruction. It should be run upon the 
device starting up. Refer to line 13 of code listing 1 for an example of how it is used and to the Functional 
Reference Manual [2] for more information on using this function and its arguments. 

Keeping in mind factors that can vary, this section gives you all the building blocks needed to build a write 

instruction from scratch. 
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2.1.1 Pages and byte writes 

Be cautious when writing multiple bytes that an EEPROM write cycle does not occur in the middle of a message. 
EEPROM write cycles commonly take 5ms [3] which is substantial compared to the 20us it takes to send one 
data frame in fast mode. This mistake can easily be made if using multiple byte writes when a page write is 
intended. Pages are a type of EEPROM architecture which are a subdivision of the memory. The reason 

manufacturers have these smaller sections of memory is to allow multiple bytes to be written in one single 

write cycle. However, EEPROM with this architecture allows for a different kind of write operation called a byte 
write. Users may prefer multiple byte writes over a page write if they want to protect a section of a page from 
constantly being written to. The drawback of a byte write is that a write cycle occurs after every single byte, 
introducing a large 5ms delay. 

If only page writes are desired and you want to avoid accidentally sending byte writes, read your EEPROM’s 
pinout description and ensure there is no dedicated pin, such as a WC̅̅̅̅̅ pin, that determines whether a page 

write or byte write should occur [3]. If this pin is logic LOW, multiple write cycles can occur in a single message. 
If the pin is logic HIGH or if there is no WC̅̅̅̅̅ pin then there will only be one write cycle per message. 

When using a page write you must understand the address that the page will end; if you continue writing past 
the end of a page a “roll-over” occurs, i.e. the bytes exceeding the page end are written on the same page, from 
location 0 [3]. If you wish to write to two pages you must send two write instructions. If page one ends at 

address 63 and you wish to write to the next page, a stop instruction should always occur after writing to 

address 63, followed by a new message sets the address to 64. 

If you are writing multiple bytes and intend for byte writes instead of a single page write you must anticipate a 

delay before the EEPROM is ready to receive more data. Code listing 3 shows how to introduce a delay in 
between each instruction using a parameter called RunTimeCounter which increases by one every millisecond. 

This code writes data to five different memory addresses, waiting 5ms in between every data frame. It does this 
after the state of a GPIO changes. After the main bulk of code is run once, the EEPROM’s addresses 0 through 4 

should have the value of 2.  

Following the code, the I2C driver is initialized using the “I2C_DriverInit()” API. For the duration that an 

iMOTION™ device is powered on, driver initialization is only needed once and is therefore located in the 
Script_Task1_init() loop. The API arguments specify that the address is 7 bits and the data rate should be 
400kHz. Inside the Script_Task1 loop on line 12, this code waits for the state of a GPIO input to change and 
checks that 5ms have passed since the last write cycle before proceeding. It does this by subtracting the current 

RunTimeCounter value by the time that was stored when the last write cycle started. It then sends a start 
condition followed by an address frame that contains “A0”. As explained in Section 1.1, write instructions 
always start with the value of 0 for the least significant bit (R/W̅ bit). Next, the memory counter is set to 0 on 
lines 17-18, followed by 5 data frames nested inside of 5 if statements. After each data frame, line 50-51 are run 

which stores the value of the current time in the variable “startTime” and increases the value of “loop” by one. 

 

Code listing 1 Sending one message with 5 byte writes 

001 #SET SCRIPT_TASK1_EXECUTION_PERIOD(5) 

002 #SET SCRIPT_TASK1_EXECUTION_STEP(50) 

003 Script_Task1_init() 

004 { 

005  int loop; 

006  int startTime; 

007  int finished; 

008  I2C_DriverInit(1,0); 

009 } 
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010 Script_Task1() 

011 { 

012  if(finished == 0 & FB_GPIO.GPIO_Status.GPIO10 == 1 & 

MCEOS.RunTimeCounter - startTime > 4) 

013  { 

014   if(loop == 0) 

015   { 

016    I2C_MasterStart(0xA0); //device select 

code 

017    I2C_Transmit(0x00);  //memory address 

018    I2C_Transmit(0x00);  //memory address 

019    I2C_Transmit(2);//write to memory 

020   } 

021   else 

022   { 

023    if(loop == 1) 

024    { 

025     I2C_Transmit(2);//write to memory 

026    } 

027    else 

028    { 

029     if(loop == 2) 

030     { 

031      I2C_Transmit(2);//write to 

memory 

032     } 

033     else 

034     { 

035      if(loop == 3) 

036      { 

037       I2C_Transmit(2);//write 

038      } 

039      else 

040      { 

041       if(loop == 4) 

042       { 

043       

 I2C_Transmit(2);//write 

044        finished = 1; 

045       } 

046      } 

047     } 

048    } 

049   } 

050   startTime = MCEOS.RunTimeCounter; 

051   loop = loop + 1; 

052  } 

053 } 
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2.1.2 Script Implementation 

Code listing 1 shows all the building blocks for a write instruction put together into code that can be run inside 
of an iMOTION device. The script uses I2C to write the values of 3 MCE parameters into the first 5 addresses of 
an EEPROM once there’s a voltage on a GPIO. 

The script initializes the I2C driver inside of the “Script_Task1_init()” function, on line 11. Section 2.6.3 of the 
Functional Reference Manual [2]states that the initialization functions are called once during start-up. The 
“I2C_DriverInit()” API is called within this function because the driver only needs to be initialized during start-
up. The arguments inside of the function specify that the address size is 7 bits. Note that the 

“I2C_MasterStart()” API requires 8 bits as the argument; 7 bits are considered the address and the 8th bit is the 
R/W̅ bit which is was defined above in section 1.1. The next two lines of code after the “I2C_MasterStart()” are 

lines 21 and 22 which are two data frames specifying the memory address. In this case the memory address is 
set to 0. The next five lines of code (23-27) are where the values of three MCE parameters are sent to be stored 

in the EEPROM. The order of these five lines of code mean that the lower byte of the MinSpd parameter will be 
stored in address 0. The upper byte in address 1. The lower byte of TargetSpeed in address 2. The upper byte in 
3. And the entirety of PwmDeadtimeR in address 4.  

One useful practice is to use an OR operator inside of the “start” API to easily see whether the EEPROM is being 
written to or read from. Code listing 1 below shows an example of this on line 20. Another good practice on 

lines 23 and 24 of code listing 1 ensures that the argument of the transmit function is only one byte. On line 24, 

the lower byte of the memory address variable is sent to the EEPROM. An AND operator and bit-shifting ensure 

that only one byte of a 2-byte variable is sent at a time. The same method of transmitting a variable over two 
API functions is employed again in the lines immediately after, 25 and 26 of code listing 1 on an MCE parameter. 

There are a small handful MCE parameters that are only one byte in size, however. Line 27 of Code listing 1 

shows that no operator nor bit-shifting is required to write the value of “PwmDeadtimeR” because it is only one 

byte. For information on parameter size, refer to the Parameter Reference Manual. 

Code listing 2 Write example 

001 #SET SCRIPT_TASK1_EXECUTION_PERIOD(1) 

002 #SET SCRIPT_TASK1_EXECUTION_STEP(50) 

003 /*Global variables*/ 

004 const int deviceSelect = 0xA0; 

005 const int I2C_READ_CMD = 1; 

006 const int I2C_WRITE_CMD = 0; 

007 int writeComplete; 

008  

009 /*************************************************************

*******/ 

010 /*Task0 init function*/ 

011 Script_Task1_init() 

012 { 

013  I2C_DriverInit(1, 0); 

014 } 

015  

016 /*************************************************************

*******/ 

017 /*Task0 script function*/ 

018 Script_Task1() 

019 { 

020  if (FB_GPIO.GPIO_Status.GPIO10 == 1 & writeComplete == 

0) 

021  { 
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022   I2C_MasterStart(deviceSelect|I2C_WRITE_CMD); 

023   I2C_Transmit(0x00); 

024   I2C_Transmit(0x00); 

025   I2C_Transmit(APP_MOTOR0.MinSpd >> 8); 

026   I2C_Transmit(APP_MOTOR0.MinSpd & 0xFF); 

027   I2C_Transmit(APP_MOTOR0.TargetSpeed >> 8); 

028   I2C_Transmit(APP_MOTOR0.TargetSpeed & 0xFF); 

029   I2C_Transmit(APP_MOTOR0.PwmDeadtimeR); 

030   I2C_MasterStop(); 

031   writeComplete = 1; 

032  } 

033 } 

 

2.1.3 Test Result 

In order to find out how long an I2C message will take just take the inverse of the data rate (100kHz for normal 
mode or 400kHz for fast mode) and multiply it by the amount of bits that are within the message. Code listing 2 
in the previous section contains 8 bytes that are being sent as there are eight one-byte values in the arguments 

of the APIs. Along with the eight bytes there are eight ACK/NACK bits, one after every byte, there is one start bit, 

and one stop bit. Using the equation:   
1

400kHz
∗ (8 bytes ∗

8 bits

byte
+ 8 ACK/NACK bits + 1 start bit +

1 stop bit) = 185μs and the equation:   
1

100kHz
∗ (8 bytes ∗

8 bits

byte
+ 8 ACK/NACK bits + 1 start bit +

1 stop bit) = 740μs we can determine that the I2C message will take 740μs in normal mode and 185μs fast 

mode. This data is useful for those who have other operations going on in the script that are time sensitive. 

The script in code listing 2 was tested while a sensorless motor control function was running and it was 

observed that the CPU load increases by 3.1% while the I2C driver writes.  
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2.2 EEPROM Read Design Flow 

Follow along to learn how to use the data in any EEPROM that uses I2C within a script. Figure 4 shows an 
example of an EEPROM read instruction. If the four APIs in figure 4 were put into a script, it would return two 
bytes stored at an address and, as described in Section 1.1, the address used would be determined by the value 
of the memory counter, and the memory counter will increase by one after a byte is sent. In the address frame 

the R/W̅ bit is logic high indicating a read instruction. The EEPROM then immediately sends back the data. The 

“I2C_GetDataACK()” API is used next to both utilize the data from the EEPROM and send an acknowledge bit. 
The value returned will always be one byte. As mentioned in Section 1.1, “acknowledge” bits indicate that the 
previous frame was received successfully and that the next frame may be sent. Therefore, the data stored in the 
next address is sent after this “acknowledge” bit. The words “Data out byte N” suggest that you may 

continually add more “acknowledge” bytes to receive more data. “I2C_GetDataNack()” should be used when no 

more data is needed. This API sends a “not acknowledge” bit, indicating that no more data is needed. Lastly, a 

stop condition ends communication on the data line. 

 

Figure 4 Read instruction 

If you wish to change the memory counter’s value before reading, additional steps are required. Figure 5 adds a 
start condition, address frame, and two data frames to the previous example. 

 

Figure 5 Read Instruction with memory counter setting 

Looking more closely at the new start condition, address frame, and two data frames, notice that Figure 5’s 
new address frame has a logic low as its R/W̅ bit, meaning a write instruction is beginning. The reason it 

appears that a write instruction is beginning rather than a read instruction is because the memory counter 

needs to be written to. No data in the EEPROM will be overwritten. After the address frame there are two data 
frames. This contains the two-byte value of the memory counter. Check your EEPROM’s datasheet for how 

many memory address locations there are, or look for the size of the memory counter. If your EEPROM is small 
it may only require one byte for the memory address. Or if it is bigger than 65,536 bytes it may require more 
than two bytes to set the memory counter. After the memory counter is set there is another start condition and 

address frame, this time with the R/W̅ bit being high, switching the instruction to a read instruction. A start 
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condition and address frame is always required to switch from a write instruction to a read instruction, or vice 
versa. This means that a start condition does not always indicate a new message; it may be used in the middle 

of a message. 

Along with the new start condition, address frame, and two data frames, Figure 5 changes one other thing from 

the previous example. There’s a new API name called “I2C_MasterRepeatedStart()”. A new API is needed to 
control an additional SCL pulse before the start condition which prevents an accidental stop condition.  

After the repeated start condition, Figure 5 is identical to the previous example. Three more APIs are used to: 
return the data of two bytes, send an ACK which indicates another byte is needed, send a NACK byte which 
indicates no more bytes are needed, then a stop condition. 

 

2.2.1 Script Implementation 

See Code listing 2 for an example of reading from EEPROM. The code reads from 4 EEPROM memory locations 

and applies the values to 2 parameters, MinSpd and TargetSpeed. The entire process is done within the 
Script_Task1_init() function which is convenient for users who want to immediately apply previously stored 
values upon startup. The example writes zero to the memory counter so that the memory locations read are 0-

4.  

As described in section 2.2, the last bit of the first address frame must be a 0 when you want to set the value of 
the memory counter before reading. You can see this demonstrated in line 12, followed by two bytes with the 

value of zero. This sets the value of the memory counter to zero. Lines 12 and 15 use an OR operator to control 
the last bit, the R/W̅ bit. This is done so you can easily see what type of instruction you’re using when glancing 

at the script. Lines 16 and 17 use bit-shifting and an OR operator to combine two bytes. In this example address 

0 contains the desired value of the lower byte of MinSpd and address 1 contains the desired value of the upper 

byte of MinSpd. To achieve this, the value that the first “I2C_GetDataACK()” API returns is shifted by 8 bits to the 
left and combined with the value of another “I2C_GetDataACK()” API via an OR operator. Line 17 does the same 

thing except using an “I2C_GetDataNACK()” API this time to indicate that no more data is needed.  

Code listing 3 Read example with memory counter setting 

034 #SET SCRIPT_TASK1_EXECUTION_PERIOD(100) 

035 #SET SCRIPT_TASK1_EXECUTION_STEP(50) 

036 const int deviceSelect = 0xA0; 

037 const int I2C_READ_CMD = 1; 

038 const int I2C_WRITE_CMD = 0; 

039 /*************************************************************

*******/ 

040 /*Task1 init function*/ 

041 Script_Task1_init() 

042 { 

043  I2C_DriverInit(1, 0); 

044   

045  I2C_MasterStart(deviceSelect | I2C_WRITE_CMD); 

046  I2C_Transmit(0x00); 

047  I2C_Transmit(0x00); 

048  I2C_MasterRepeatedStart(deviceSelect | I2C_READ_CMD); 

049  APP_MOTOR0.MinSpd = I2C_GetDataACK() << 8 | 

I2C_GetDataACK(); 

050  APP_MOTOR0.TargetSpeed = I2C_GetDataACK() << 8 | 

I2C_GetDataNACK(); 

051  I2C_MasterStop(); 
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052 } 

053  

054 /*************************************************************

*******/ 

055 /*Task1 script function*/ 

056 Script_Task1() 

057 { 

058 } 

 

2.2.2 Test Result 

In order to find out how long an I2C message will take just take the inverse of the data rate (100kHz or 400kHz) 
and multiply it by the amount of bits that are within the message. Code listing 3 in the previous section 
contains 8 bytes that are being sent and received. Four of the APIs contain a one-byte argument and the 
following four APIs return one byte. Along with the eight bytes there are eight ACK/NACK bits (one after every 

byte), there is also one start bit, and one stop bit. Using the equation: 
1

400kHz
∗ (8 bytes ∗

8 bits

byte
+ 2 bits) =

165μs and the equation: 
1

100kHz
∗ (8 bytes ∗

8 bits

byte
+ 2 bits) = 660μs we can determine that the I2C message 

will take 660μs in normal mode and 165μs in fast mode.  

The script in code listing 3 was tested while a sensorless motor control function was running and it was 

observed that the CPU load increases by 3.1% while the I2C driver reads. 
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3 Hardware Design 

According to the I2C specification, the SDA and SCL lines must be connected to a positive supply voltage via 

pull-up resistors so that when the lines are free they are high [3]. Refer to iMOTIONTM device datasheets to find 
out which pin corresponds to the SDA pin and SCL pin. Note its SDA/SCL pins can usually be used for other 
purposes which will no longer be available. Look for pinout diagrams in the datasheet and most often you will 
see other functionalities next to the SDA or SCL text. Once the I2C driver is initialized, the other functionalities 
will be disabled. 

There is, however, one case where one pin may be used for more than one functionality. This is the rare case 
when RXD0 or TXD0 are multiplexed with SCL/SDA. RXD0 and TXD0 are the only pins that can be used to 

program devices. UART1 cannot be used to program devices, only for communication after programming has 

occurred. If the "Solution Designer COMM port" parameter is set to "UART1 " you still may not use UART1 to 
program; UART0 only. Because of this fact precautionary measures must be taken to prevent UART commands 

from being sent on the I2C lines or I2C messages from being sent to UART devices.  

If developing on or referencing the EVAL-M7-111T schematic, resistors R110 and R111 must be removed in order 

for I2C communication to function properly. This is because the SDA/SCL pins of the EVAL board are connected 
to the TX and RX pins of an XMC4200 MCU that deals with debugging UART messages, and it may respond to 

signals that are unrecognized or misinterpreted. If you neglect to disconnect the two resistors and send an I2C 
command on the SDA line while monitoring the bus with an oscilloscope, you will notice undesirable signals 

being sent by the XMC4200 MCU. These signals will likely introduce unexpected behavior to any device 

connected to the I2C lines. If desired, one may use the micro-USB connector on the EVAL board to program the 

device prior to removing the two resistors. Doing so would allow one to lock in a final configuration before 
permanently disconnecting the "debugger" XMC4200 MCU from the I2C lines. If continued development of 

configuration files and additional programming is needed, an iMOTION link is a useful tool in this case as it can 

easily be connected and disconnected to the I2C lines. 

Along with disconnecting UART devices from the SDA/SCL lines while I2C is being used, this should also be 

avoided when UART signals are being transmitted as this can create unexpected behavior within I2C devices 
such as EEPROM memory being altered, or unexpected I2C messages being sent. Achieving this is trickier than 
plugging in/unplugging an iMOTION link. This will require hardware to be introduced to disconnect the I2C lines 

from the rest of the system. Figure 6 shows a circuit with switches that disconnect an EEPROM from the rest of 

the system. This would allow users to open the connection, then utilize UART to program the device, then close 
the connection so that I2C can communicate. This may seem like a lot of work, however don't forget that this is 
only important during development; UART0 is only needed for programming which will not be occurring after 
development. UART1 can take care of all other UART needs and so no UART-enabled devices will be connected 

to the pins in the field. Check the device’s datasheet to ensure that UART0 can be used at the same time as I2C. 

 

Figure 6 Breaking connection to I2C bus 
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4 Performance Evaluation 

4.1  Timing impact of APIs 

The first step to count how many bits are being sent in a message and multiply by the inverse of the selected 

data rate and using equation 1. 
 

1

data rate (Hz)
∗ bits = seconds for a message to complete 

Equation 1 Message duration equation 

To see how long each API will take, count how many bits an API transmits or receives, plus the ACK/NACK bit 
being sent back from another device. Refer back to Figure 2 if you forget how many bits each API transmits or 
receives. The "I2C_MasterStart" and "I2C_MasterRepeatedStart" will send either 9 or 12 bits. They either send a 
7-bit address or 10-bit address (depending on what was selected during initialization) plus one r/w bit, plus one 

ACK/NACK bit. Data frames, on the other hand, always contain one byte plus one ACK/NACK bit. Along with 
Figure 2, the Function Reference Manual [2] shows that the APIs that deal with data frames 
(I2C_Transmit(),I2C_GetDataACK(), and I2C_GetDataNACK()) only ever send 8 bits or receive 8 bits. 

Expect the message to take 810ns longer than what is calculated since that is how long it takes for the start bit 

to show up on the SDA line after the I2C_MasterStart() API is called. 

If the target device does not respond after having sent a read instruction, the script will wait for a maximum of 

250μs. After that time or a response is received, the script will continue on. If no response is sent back from the 

target for the whole 250μs an error flag will be set. 
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5 Guidelines 

1. We recommend using Task 1 when creating a script that utilizes I2C. I2C does not affect the motor 

control and PFC functions as it gets what is left of the CPU bandwidth. 

2. Functionalities (other than UART0) that are multiplexed with SDA/SCL pins cannot be used after the I2C 

driver is initialized. 

3. If an I2C error occurs, a flag will be set that is visible using the “I2C_GetStatus()” API. Handling error 
flags can prevent execution faults from occurring. A “No response” flag will be set if the slave device 
does not respond. For more information on flags read the Functional Reference Manual [2]. You should 

not allow there to be 4 “get data” APIs executed while the target device is not responding. Executing 4 

I2C_GetDataACK()/I2C_GetDataNACK() APIs while there is a no response error will cause an execution 

fault to occur. Utilize the I2C_GetStatus() and the I2C_Control() APIs to check and clear the no response 
flag. As described in the Functional Reference Manual [2], bit 26 of the data that I2C_GetStatus() returns 
contains if a no response error has occurred and using I2C_Control() can clear the flag. 
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