

www.cypress.com Document Number: 002-29843 Rev. ** 1

AN229843

Memory Mapped Access to SPI F-RAM

Author: Gernot Hoyler

Associated Part Family: Cypress SPI F-RAM

Associated Code Examples: None

Related Application Notes: None

This application note compares classic EEPROM/Flash style access with fully memory mapped access in the context

of SPI F-RAM devices. It discusses the advantages and disadvantages of both methods. Linux on i.MX8 is used as

a test and benchmarking platform to shed some light on the performance aspects. The results show that memory

mapped access has clear performance benefits and simplifies the application code compared to the classic serial

EEPROM/Flash access method.

Contents

1 Introduction .. 1
2 Classic EEPROM/Flash Access 1
3 Memory Mapped Access ... 2
4 A Case Study... 2
5 CPU Caching ... 3
6 Conclusion ... 4

7 Related Documents ... 4
Appendix A. Optimized 16-byte memcpy() 5
Document History .. 6

1 Introduction

Nonvolatile Cypress SPI F-RAM memories can be used in a variety of ways. First, their instruction set is compatible
with classic serial EEPROM and Flash memories. This feature allows developers to operate F-RAM devices like an
EEPROM or Flash part using existing software drivers.

On the other hand, F-RAM devices possess RAM characteristics and advantages: they can be read and written instantly
on a byte-by-byte basis without the need for erasing or polling like Flash devices. Advanced modern SPI controllers
can generate the required command sequences on-the-fly in hardware and support memory mapped access via
pointers. This makes serial F-RAM devices look like normal RAM to the applications.

The two usage models are presented and compared in detail in the following sections.

2 EEPROM/Flash Style Access

If serial F-RAM is used like an EEPROM or Flash device, then the typical control flow is:

1. Open a special device file

2. Set the file offset to a certain position

3. Issue a read or write call.

Steps 2 and 3 are repeated as often as needed.

Adding F-RAM support to existing EEPROM/Flash drivers is usually simple. In many cases, it is enough to add just a
new device ID to the list of supported devices in the driver source code to make the devices work. SPI commands to
read and write data are compatible between EEPROM/Flash and F-RAM, and erase commands are simply ignored by
the F-RAM device. Most applications do not rely on the default value of freshly erased memory (e.g. 0xFF) so this
behavior is fine. In special cases where they do, the erased memory region can be explicitly set to the expected default

http://www.cypress.com/

 Memory Mapped Access to SPI F-RAM

www.cypress.com Document Number: 002-29843 Rev. ** 2

value by the erase function. In addition, polling code used in EEPROM/Flash software drivers to detect the end of
program operations does not affect F-RAM. To such software drivers, F-RAM devices appear to be immediately done
with any program or erase operation and control returns after a single polling iteration. Alternatively, polling might be
completely disabled for F-RAM in the drivers.

In Linux, as a concrete example, the access method requires the user to open a Memory Technology Device (MTD) or
EEPROM special device file and issue two system calls for every read or write. First, a call of lseek() to position the

file descriptor to the desired offset and second issue either a read() or write() system call to read or write the data.

For large blocks of data, the associated system calls and their overhead is insignificant and can be neglected.
Throughput is the crucial parameter in such cases. For small data sizes (for example, variables of 1-16 bytes), however,
the system call overhead causes noticeable latencies.

What makes things more complicated for applications is the need to allocate and manage buffers that are passed to
the read and write functions. Very often, data is copied back and forth several times in this access method, to and from
the buffers in the application and then again from the buffers to the SPI controller FIFOs in the device driver and vice
versa. These copy operations have a negative impact on throughput on fast systems.

3 Memory Mapped Access

User managed data buffers and manual movement of data is not needed for memory mapped access (also known as
Memory Mapped I/O or MMIO). In this access method, applications can read and write to F-RAM simply by
dereferencing pointers to data objects of the desired size.

Software assistance is needed only during initialization to probe the device and later to set up an appropriate address
mapping for the application. Once this mapping has been established, all read and write accesses run completely in
hardware. This leads to a better performance level compared to classic EEPROM/Flash style access. Primarily,
latencies are shorter resulting in significantly better results for small data sizes.

Furthermore, memory mapped access simplifies the code of applications. Data does not have to be copied back and
forth between buffers, and system calls are not needed to access the F-RAM memory after initialization.

Finally, advanced features such as code execution directly out of SPI F-RAM (XIP) are only possible with a memory
mapped setup. Although read-only applications are also possible with SPI Flash in a memory mapped setup, mapped
writes fail on these devices due to their polling and erase requirements.

A challenge could be that controller specific setup code must be added to the software drivers. Generic driver code is
hardly possible.

4 A Case Study

To investigate the performance benefits of memory mapped access, a NXP i.MX8QXP SoC with a Cypress Excelon
Ultra CY15B104QSN F-RAM is used to provide a modern benchmarking platform.

The OS in this case is Linux (kernel 4.14.98) that runs the Cypress SPI Memories Driver stack version v19.4. This
software driver supports both classic MTD as well as memory mapped access. The CY15B104QSN is operated in QPI
mode at a SPI clock frequency of 100 MHz SDR. Thus, the maximum theoretical throughput for both read and write
operations is limited to 50 MiB/s1.

The i.MX8QXP FlexSPI controller supports memory mapped accesses via a small configurable table. This Look Up
Table (LUT) can hold up to 32 sequences to synthesize SPI bus transactions on-the-fly in hardware. Index registers in
the controller can be set to inform the processor which sequence(s) to execute for memory mapped read and writes,
for example, if a pointer is dereferenced. It might be a single sequence or a set of multiple sequences, for example, if
a Write Enable command plus a Program command has to be issued for a write operation. For QPI reads and writes to
F-RAM, the following LUT entries/sequences can be used:

 /* 4-4-4 Quad read sequence with 3 address bytes */

 writel(LUT0(CMD, PAD4, SPI_QUAD_READ_HP) | LUT1(ADDR, PAD4, ADDR24BIT),

 base + FLEXSPI_LUT(SEQID_AHB_READ_444_3, 0));

 writel(LUT0(MODE8, PAD4, 0) | LUT1(DUMMY, PAD4, flex->quad_spi_dummy),

 base + FLEXSPI_LUT(SEQID_AHB_READ_444_3, 1));

1 MiB is used to denote 1,000,000 Bytes (vs. MB which is usually 1,048,576 Bytes).

http://www.cypress.com/
https://github.com/cypresssemiconductorco/F-RAM/blob/master/Linux%20Driver%20Support%20for%20QSPI%20F-RAM/linux-4.14.0-cy-spimem-v19.4.zip

 Memory Mapped Access to SPI F-RAM

www.cypress.com Document Number: 002-29843 Rev. ** 3

 writel(LUT0(FSL_READ, PAD4, 0),

 base + FLEXSPI_LUT(SEQID_AHB_READ_444_3, 2));

 writel(0, base + FLEXSPI_LUT(SEQID_AHB_READ_444_3, 3));

 /* 4-4-4 Program with 3 address bytes (two sequences) */

 writel(LUT0(CMD, PAD4, SPI_WRITE_ENABLE),

 base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 0));

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 1));

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 2));

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 3));

 writel(LUT0(CMD, PAD4, SPI_PROGRAM) | LUT1(ADDR, PAD4, ADDR24BIT),

 base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 4));

 writel(LUT0(FSL_WRITE, PAD4, 0),

 base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 5));

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 6));

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 7));

Note that CY15B104QSN has a sticky WREN (Write Enable) bit in the status register. Once this bit has been set, the
device does not need explicit Write Enable commands anymore preceding every memory write operation. Thus, only
the second sequence of the listed sequence pair for the write path is used.

Another optimization technique used is prefetching that can be done automatically by the i.MX8QXP FlexSPI controller.
This feature affects and speeds up the read path for all access methods. It always loads data blocks of full 2 kB from
F-RAM into some hardware buffers. Read requests from the software are then served out of these buffers.

Table 1 summarizes the measured results and shows the performance benefits of direct memory mapped access. In
particular, latencies are much shorter compared to the standard Flash style access method (by more than 20x). The
extremely short latencies leverage the instant nonvolatility feature of F-RAM and help in situations where system power
is lost abruptly. Memory mapped access becomes a complimentary requirement in those instances, shortening the time
window where data is at risk.

Table 1. Benchmarking Results for CY15B104QSN on i.MX8QXP

 Read Throughput Write Throughput Read Latency Write Latency

Flash Style MTD Access 41.7 MiB/s 15.3 MiB/s 4.6 us 14.6 us

Memory Mapped Access 48.5 MiB/s 27.5 MiB/s 0.2 us 0.2 us

In this benchmark, throughput results are measured by reading or writing the entire device. For the memory mapped
case, memcpy() is called to copy all main array data from F-RAM to normal system DRAM or vice versa. See

Appendix A for some ARMv8-A specific memcpy() optimizations. With hardware prefetching disabled, read throughputs

are of the same order as write throughputs.

Latencies denote the delay after a write or read operation has been issued by the software application until the data is
physically transferred on the SPI bus. In this benchmark, latencies are measured by issuing small 1 byte read and write
operations.

5 CPU Caching

By default, CPU caching is disabled on most platforms for the entire I/O memory space. This enforces ordered and
uncombined memory accesses and is a must, for example, to fill hardware FIFOs or to program or erase Flash devices.

For F-RAM memories, however, CPU caches might be enabled in combination with memory mapped access to push
the performance envelope further. With CPU caching, the natural burst size on the SPI bus for reads and writes is one
cache line (64 bytes on i.MX8QXP). This makes better use of the available SPI bus bandwidth compared to a series of
smaller transfers. However, during a power drop data might get lost if it resides in a cache line that has not yet been
written back to F-RAM. Whereas for normal RAM memories this behavior is perfectly acceptable, for F-RAM it is not.

Enabling a simple read caching scheme (that is, with a write though cache policy) is safe for F-RAM, as data is written
immediately back to the F-RAM array in this configuration.

If the application has clear synchronization points (for example, saving full camera images), then even a write back
policy might be enabled. Smaller write operations can be combined with this scheme to build highly efficient full 64-byte
cache line writes. However, barrier and cache maintenance instructions must be added to the synchronization points

http://www.cypress.com/

 Memory Mapped Access to SPI F-RAM

www.cypress.com Document Number: 002-29843 Rev. ** 4

of the source code, in this case to flush the cache from time to time. Such instructions cause data that has accumulated
in the CPU cache to be explicitly written back, and thus eliminate the risk of data loss.

6 Conclusion

Most of today’s SPI controllers support memory mapped access to external devices. Therefore, with these controllers,
memory mapped access has become a viable option to consider and customers can benefit from it, specifically in case
of F-RAM.

Memory mapped access to F-RAM has clear performance benefits and simplifies the application code compared to the
classic serial EEPROM/Flash access method. It is universal, flexible, and integrates F-RAM seamlessly into a modern
system.

By carefully analyzing and optimizing the application code, a combination of memory mapped access with CPU caching
can further improve both throughput and latency.

7 Related Documents

Technical Documents

ARM Cortex-A Series Programmer’s Guide for
ARMv8-A, Version 1.0, 2015

Describes the 64-bit ARMv8 architecture, its instruction set and cache
behavior

i.MX 8DualXPlus/8QuadXPlus Applications
Processor Reference Manual, Rev. D, 11/2018

Describes the NXP i.MX8QXP processor with its FlexSPI memory
controller including all registers

http://www.cypress.com/

 Memory Mapped Access to SPI F-RAM

www.cypress.com Document Number: 002-29843 Rev. ** 5

Appendix A. Optimized 16-byte memcpy() for ARMv8-A

The default memcpy() implementation for ARMv8-A in Linux uses load-pair and store-pair assembly instructions that

move two 8-byte registers at once. Unfortunately, these instructions trigger two 8-byte SPI bursts on the bus instead of
a single 16-byte burst. To improve the situation, memcpy() can be optimized to use a 16-byte FP/SIMD register plus

the corresponding load/store instructions, as shown below. This change creates the desired 16-byte SPI bursts on the
bus.

memcpy16:

 sub sp, sp, #48

 str x0, [sp, 24]

 str x1, [sp, 16]

 str x2, [sp, 8]

 str wzr, [sp, 44]

 b .L8

.L9:

 ldrsw x0, [sp, 44]

 lsl x0, x0, 4

 ldr x1, [sp, 24]

 add x2, x1, x0

 ldrsw x0, [sp, 44]

 lsl x0, x0, 4

 ldr x1, [sp, 16]

 add x0, x1, x0

 ldr q0, [x0]

 str q0, [x2]

 ldr w0, [sp, 44]

 add w0, w0, 1

 str w0, [sp, 44]

.L8:

 ldrsw x1, [sp, 44]

 ldr x0, [sp, 8]

 lsr x0, x0, 4

 cmp x1, x0

 bcc .L9

 nop

 add sp, sp, 48

 ret

http://www.cypress.com/

 Memory Mapped Access to SPI F-RAM

www.cypress.com Document Number: 002-29843 Rev. ** 6

Document History
Document Title: AN229843 - Memory Mapped Access to SPI F-RAM

Document Number: 002-29843

Revision ECN Submission
Date

Description of Change

** 6835272 06/08/2020 New Application Note.

http://www.cypress.com/

 Memory Mapped Access to SPI F-RAM

www.cypress.com Document Number: 002-29843 Rev. ** 7

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products
Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community
Community | Code Examples | Projects | Videos | Blogs
| Training | Components

Technical Support
cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor

An Infineon Technologies Company
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the
United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph,
grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you
do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive,
nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and
reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims
of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with
Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/cypressgithub
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	INFIN PMI Cypress Cover Page Letter
	002-29843
	1 Introduction
	2 EEPROM/Flash Style Access
	3 Memory Mapped Access
	4 A Case Study
	5 CPU Caching
	6 Conclusion
	7 Related Documents
	Appendix A. Optimized 16-byte memcpy() for ARMv8-A
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

