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This application note compares classic EEPROM/Flash style access with fully memory mapped access in the context 

of SPI F-RAM devices. It discusses the advantages and disadvantages of both methods. Linux on i.MX8 is used as 

a test and benchmarking platform to shed some light on the performance aspects. The results show that memory 

mapped access has clear performance benefits and simplifies the application code compared to the classic serial 

EEPROM/Flash access method. 
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1 Introduction 

Nonvolatile Cypress SPI F-RAM memories can be used in a variety of ways. First, their instruction set is compatible 
with classic serial EEPROM and Flash memories. This feature allows developers to operate F-RAM devices like an 
EEPROM or Flash part using existing software drivers. 

On the other hand, F-RAM devices possess RAM characteristics and advantages: they can be read and written instantly 
on a byte-by-byte basis without the need for erasing or polling like Flash devices. Advanced modern SPI controllers 
can generate the required command sequences on-the-fly in hardware and support memory mapped access via 
pointers. This makes serial F-RAM devices look like normal RAM to the applications. 

The two usage models are presented and compared in detail in the following sections. 

2 EEPROM/Flash Style Access 

If serial F-RAM is used like an EEPROM or Flash device, then the typical control flow is: 
 
1. Open a special device file 

2. Set the file offset to a certain position  

3. Issue a read or write call.  
 

Steps 2 and 3 are repeated as often as needed. 

Adding F-RAM support to existing EEPROM/Flash drivers is usually simple. In many cases, it is enough to add just a 
new device ID to the list of supported devices in the driver source code to make the devices work. SPI commands to 
read and write data are compatible between EEPROM/Flash and F-RAM, and erase commands are simply ignored by 
the F-RAM device. Most applications do not rely on the default value of freshly erased memory (e.g. 0xFF) so this 
behavior is fine. In special cases where they do, the erased memory region can be explicitly set to the expected default 
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value by the erase function. In addition, polling code used in EEPROM/Flash software drivers to detect the end of 
program operations does not affect F-RAM. To such software drivers, F-RAM devices appear to be immediately done 
with any program or erase operation and control returns after a single polling iteration. Alternatively, polling might be 
completely disabled for F-RAM in the drivers. 

In Linux, as a concrete example, the access method requires the user to open a Memory Technology Device (MTD) or 
EEPROM special device file and issue two system calls for every read or write. First, a call of lseek() to position the 

file descriptor to the desired offset and second issue either a read() or write() system call to read or write the data. 

For large blocks of data, the associated system calls and their overhead is insignificant and can be neglected. 
Throughput is the crucial parameter in such cases. For small data sizes (for example, variables of 1-16 bytes), however, 
the system call overhead causes noticeable latencies. 

What makes things more complicated for applications is the need to allocate and manage buffers that are passed to 
the read and write functions. Very often, data is copied back and forth several times in this access method, to and from 
the buffers in the application and then again from the buffers to the SPI controller FIFOs in the device driver and vice 
versa. These copy operations have a negative impact on throughput on fast systems. 

3 Memory Mapped Access  

User managed data buffers and manual movement of data is not needed for memory mapped access (also known as 
Memory Mapped I/O or MMIO). In this access method, applications can read and write to F-RAM simply by 
dereferencing pointers to data objects of the desired size. 

Software assistance is needed only during initialization to probe the device and later to set up an appropriate address 
mapping for the application. Once this mapping has been established, all read and write accesses run completely in 
hardware. This leads to a better performance level compared to classic EEPROM/Flash style access. Primarily, 
latencies are shorter resulting in significantly better results for small data sizes. 

Furthermore, memory mapped access simplifies the code of applications. Data does not have to be copied back and 
forth between buffers, and system calls are not needed to access the F-RAM memory after initialization. 

Finally, advanced features such as code execution directly out of SPI F-RAM (XIP) are only possible with a memory 
mapped setup. Although read-only applications are also possible with SPI Flash in a memory mapped setup, mapped 
writes fail on these devices due to their polling and erase requirements. 

A challenge could be that controller specific setup code must be added to the software drivers. Generic driver code is 
hardly possible. 

4 A Case Study 

To investigate the performance benefits of memory mapped access, a NXP i.MX8QXP SoC with a Cypress Excelon 
Ultra CY15B104QSN F-RAM is used to provide a modern benchmarking platform. 

The OS in this case is Linux (kernel 4.14.98) that runs the Cypress SPI Memories Driver stack version v19.4. This 
software driver supports both classic MTD as well as memory mapped access. The CY15B104QSN is operated in QPI 
mode at a SPI clock frequency of 100 MHz SDR. Thus, the maximum theoretical throughput for both read and write 
operations is limited to 50 MiB/s1. 

The i.MX8QXP FlexSPI controller supports memory mapped accesses via a small configurable table. This Look Up 
Table (LUT) can hold up to 32 sequences to synthesize SPI bus transactions on-the-fly in hardware. Index registers in 
the controller can be set to inform the processor which sequence(s) to execute for memory mapped read and writes, 
for example, if a pointer is dereferenced. It might be a single sequence or a set of multiple sequences, for example, if 
a Write Enable command plus a Program command has to be issued for a write operation. For QPI reads and writes to 
F-RAM, the following LUT entries/sequences can be used: 

 
 /* 4-4-4 Quad read sequence with 3 address bytes */ 

 writel(LUT0(CMD, PAD4, SPI_QUAD_READ_HP) | LUT1(ADDR, PAD4, ADDR24BIT), 

        base + FLEXSPI_LUT(SEQID_AHB_READ_444_3, 0)); 

 writel(LUT0(MODE8, PAD4, 0) | LUT1(DUMMY, PAD4, flex->quad_spi_dummy), 

        base + FLEXSPI_LUT(SEQID_AHB_READ_444_3, 1)); 

                                            
1 MiB is used to denote 1,000,000 Bytes (vs. MB which is usually 1,048,576 Bytes). 
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 writel(LUT0(FSL_READ, PAD4, 0), 

        base + FLEXSPI_LUT(SEQID_AHB_READ_444_3, 2)); 

 writel(0, base + FLEXSPI_LUT(SEQID_AHB_READ_444_3, 3)); 

 

 /* 4-4-4 Program with 3 address bytes (two sequences) */ 

 writel(LUT0(CMD, PAD4, SPI_WRITE_ENABLE), 

        base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 0)); 

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 1)); 

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 2)); 

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 3)); 

 writel(LUT0(CMD, PAD4, SPI_PROGRAM) | LUT1(ADDR, PAD4, ADDR24BIT), 

        base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 4)); 

 writel(LUT0(FSL_WRITE, PAD4, 0), 

        base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 5)); 

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 6)); 

 writel(0, base + FLEXSPI_LUT(SEQID_FRAM_WRITE_444_3, 7)); 

 
Note that CY15B104QSN has a sticky WREN (Write Enable) bit in the status register. Once this bit has been set, the 
device does not need explicit Write Enable commands anymore preceding every memory write operation. Thus, only 
the second sequence of the listed sequence pair for the write path is used. 

Another optimization technique used is prefetching that can be done automatically by the i.MX8QXP FlexSPI controller. 
This feature affects and speeds up the read path for all access methods. It always loads data blocks of full 2 kB from 
F-RAM into some hardware buffers. Read requests from the software are then served out of these buffers. 

Table 1 summarizes the measured results and shows the performance benefits of direct memory mapped access. In 
particular, latencies are much shorter compared to the standard Flash style access method (by more than 20x). The 
extremely short latencies leverage the instant nonvolatility feature of F-RAM and help in situations where system power 
is lost abruptly. Memory mapped access becomes a complimentary requirement in those instances, shortening the time 
window where data is at risk. 

Table 1. Benchmarking Results for CY15B104QSN on i.MX8QXP 

 Read Throughput Write Throughput Read Latency Write Latency 

Flash Style MTD Access 41.7 MiB/s 15.3 MiB/s 4.6 us 14.6 us 

Memory Mapped Access 48.5 MiB/s 27.5 MiB/s 0.2 us 0.2 us 

 
In this benchmark, throughput results are measured by reading or writing the entire device. For the memory mapped 
case, memcpy() is called to copy all main array data from F-RAM to normal system DRAM or vice versa. See  

Appendix A for some ARMv8-A specific memcpy() optimizations. With hardware prefetching disabled, read throughputs 

are of the same order as write throughputs. 

Latencies denote the delay after a write or read operation has been issued by the software application until the data is 
physically transferred on the SPI bus. In this benchmark, latencies are measured by issuing small 1 byte read and write 
operations.  

5 CPU Caching 

By default, CPU caching is disabled on most platforms for the entire I/O memory space. This enforces ordered and 
uncombined memory accesses and is a must, for example, to fill hardware FIFOs or to program or erase Flash devices. 

For F-RAM memories, however, CPU caches might be enabled in combination with memory mapped access to push 
the performance envelope further. With CPU caching, the natural burst size on the SPI bus for reads and writes is one 
cache line (64 bytes on i.MX8QXP). This makes better use of the available SPI bus bandwidth compared to a series of 
smaller transfers. However, during a power drop data might get lost if it resides in a cache line that has not yet been 
written back to F-RAM. Whereas for normal RAM memories this behavior is perfectly acceptable, for F-RAM it is not.  

Enabling a simple read caching scheme (that is, with a write though cache policy) is safe for F-RAM, as data is written 
immediately back to the F-RAM array in this configuration. 

If the application has clear synchronization points (for example, saving full camera images), then even a write back 
policy might be enabled. Smaller write operations can be combined with this scheme to build highly efficient full 64-byte 
cache line writes. However, barrier and cache maintenance instructions must be added to the synchronization points 
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of the source code, in this case to flush the cache from time to time. Such instructions cause data that has accumulated 
in the CPU cache to be explicitly written back, and thus eliminate the risk of data loss. 

6 Conclusion 

Most of today’s SPI controllers support memory mapped access to external devices. Therefore, with these controllers, 
memory mapped access has become a viable option to consider and customers can benefit from it, specifically in case 
of F-RAM. 

Memory mapped access to F-RAM has clear performance benefits and simplifies the application code compared to the 
classic serial EEPROM/Flash access method. It is universal, flexible, and integrates F-RAM seamlessly into a modern 
system.  

By carefully analyzing and optimizing the application code, a combination of memory mapped access with CPU caching 
can further improve both throughput and latency. 

7 Related Documents 

Technical Documents 

ARM Cortex-A Series Programmer’s Guide for 
ARMv8-A, Version 1.0, 2015 

Describes the 64-bit ARMv8 architecture, its instruction set and cache 
behavior 

i.MX 8DualXPlus/8QuadXPlus Applications 
Processor Reference Manual, Rev. D, 11/2018 

Describes the NXP i.MX8QXP processor with its FlexSPI memory 
controller including all registers 

 

  

http://www.cypress.com/


  Memory Mapped Access to SPI F-RAM 

www.cypress.com Document Number: 002-29843 Rev. ** 5 

Appendix A. Optimized 16-byte memcpy() for ARMv8-A 

The default memcpy() implementation for ARMv8-A in Linux uses load-pair and store-pair assembly instructions that 

move two 8-byte registers at once. Unfortunately, these instructions trigger two 8-byte SPI bursts on the bus instead of 
a single 16-byte burst. To improve the situation, memcpy() can be optimized to use a 16-byte FP/SIMD register plus 

the corresponding load/store instructions, as shown below. This change creates the desired 16-byte SPI bursts on the 
bus. 

 

memcpy16: 

 sub sp, sp, #48 

 str x0, [sp, 24] 

 str x1, [sp, 16] 

 str x2, [sp, 8] 

 str wzr, [sp, 44] 

 b .L8 

.L9: 

 ldrsw x0, [sp, 44] 

 lsl x0, x0, 4 

 ldr x1, [sp, 24] 

 add x2, x1, x0 

 ldrsw x0, [sp, 44] 

 lsl x0, x0, 4 

 ldr x1, [sp, 16] 

 add x0, x1, x0 

 ldr q0, [x0] 

 str q0, [x2] 

 ldr w0, [sp, 44] 

 add w0, w0, 1 

 str w0, [sp, 44] 

.L8: 

 ldrsw x1, [sp, 44] 

 ldr x0, [sp, 8] 

 lsr x0, x0, 4 

 cmp x1, x0 

 bcc .L9 

 nop 

 add sp, sp, 48 

 ret 
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