

Application note Please read the sections “Important notice” and “Warnings” at the end of this document 002-34380 Rev *A

www.infineon.com 2024-09-30

AN234380

How to use Ethernet controller in XMC7000 MCU

family

About this document

Scope and purpose

This application note describes how to set up the Ethernet MAC (EMAC) controller in XMC7000 MCU family
XMC7100/XMC7200 MCUs. This application note shows the basic features, register setting, configuration, and

usage of the Ethernet controller based on the use case.

Intended audience

This document is intended for any who uses the XMC7000 MCU family of products.

Associated part family

XMC7000 MCU family XMC7100/XMC7200 MCU series offers best-in-class compute performance addressing
high-end industrial applications. It is equipped with peripherals such as CAN FD, TCPWM, and Gb Ethernet,

which increase flexibility and offer added value. The XMC™ MCU family offers a single and dual-core Cortex®-M7
Arm® core, both supported by a Cortex®-M0+ enabling designers to optimize their end products to meet the

dynamic and demanding applications.

http://www.infineon.com/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/

Application note 2 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 3
1.1 Ethernet controller features ... 3

2 Operational overview ... 5
2.1 Controller interfaces ... 5
2.1.1 AXI master interface ... 5
2.1.2 AHB slave interface .. 6
2.1.3 Media-independent interface .. 6
2.1.4 MDIO interface .. 6
2.2 DMA interface .. 7
2.2.1 Full store and forward mode using packet buffer DMA .. 7
2.2.2 DMA transaction ... 8
2.3 Ethernet packet buffer .. 8
2.3.1 Packet buffer memory ... 8
2.3.2 Receive buffers ... 8
2.3.3 Transmit buffers ... 9
2.3.4 DMA packet buffer .. 10
2.4 Clock, reset, and power modes .. 10
2.4.1 Clock ... 10
2.4.2 Reset ... 11
2.4.3 Power modes .. 12
2.5 Interrupts ... 12
2.6 PHY interface ... 13

3 Ethernet configuration .. 14
3.1 Register sets .. 14
3.2 Configuration flow ... 14

4 Example configuration... 15
4.1 Ethernet configuration for MII mode with 100 Mbps ... 15
4.1.1 Ethernet I/O port setting .. 15
4.1.2 Clock setting ... 16
4.1.3 IRQ and handler assignment ... 16
4.1.4 Ethernet controller initialization ... 17
4.1.5 Initialization for the PHY transceiver ... 17
4.1.6 Read link status .. 17

5 Glossary ... 18

References .. 19

Revision history... 20

Disclaimer... 21

Application note 3 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Introduction

1 Introduction

The Ethernet MAC (EMAC) module in the device implements a 10/100/1000 Mbps Ethernet MAC compatible with
the IEEE 802.3 standard, supporting media-independent interface (MII), reduced media-independent interface

(RMII), gigabit media-independent interface (GMII), and reduced gigabit media-independent interface (RGMII)
PHY interfaces to support several automotive applications. The interfaces supported depend on the device. See

the device-specific datasheet to determine the interfaces and number of channels supported in the device. See
the architecture reference manual for details of Ethernet interfaces.

To understand the functionality described and terminology used in this application note, see the Ethernet MAC
chapter in the architecture reference manual. Figure 1 shows examples of typical signal paths.

Ethernet PHY

CMO+

CM7_0

CM7_1

Memory

AHB
Slave

MMIO
Regist ers

Decoder

A
B

H
 S

la
ve

 I
/F

Ethernet
MAC

TX
packet
SRAM

RX
packet
SRAM

Ext CLK
25MHz

M
II

/R
G

M
II

IE
E

E
 1

5
8

8
 s

te
p

 c
lo

ck

Physical connection
RJ45/DB9

A
X

I M
a

st
e

r
I/

F

Path 1 Path 2
Path 3

Figure 1 Ethernet controller interface

• Path 1: The ETH-MAC module communicates with the CPU core using the AHB bus while the AXI interface is

used for DMA access to memory.

• Path 2: The ETH-MAC module communicates with the PHY interface using MII, RMII, GMII, and RGMII
interfaces.

• Path 3: The Ethernet PHY converts MII/RGMII signals to physical channel signals.

1.1 Ethernet controller features

The Ethernet MAC module in the device implements a 10/100/1000 Mbps EMAC compatible with the IEEE 802.3
standard, supporting MII, RMII, GMII, and RGMII PHY interfaces to support several automotive applications.

The main features of the Ethernet controller are:

• Full store and forward mode and partial store and forward mode for full-duplex operation

• 10 Mbps, 100 Mbps, or 1 Gbps operation

• MII, RMII, GMII, and RGMII PHY interface modes

• 1536 bytes of maximum frame length

• Three transmit and receive priority queues

• IEEE Std 802.1BA – Audio Video Bridging Systems

Application note 4 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Introduction

• IEEE Std 802.1Qav – Forwarding and Queuing Enhancements for Time-Sensitive Streams

• IEEE Std 802.1AS – Timing and Synchronization for Time-Sensitive Application in Bridged LANs

• IEEE Std 1588 – Precision Time Protocol

• IEEE Std 802.3 – Pause frame and MAC Priority-based Flow Control (PFC) priority-based pause frame support

• Receive and transmit IP, TCP, and UDP checksum offload

• Automatic pad and CRC generation on transmitted frames

• Management Data I/O (MDIO) interface for PHY management

• Strict priority, Deficit Weighted Round Robin (DWRR), or Enhanced Transmission Selection (ETS – 802.1Qaz)
on transmit queues

• Support for 802.3az Energy Efficient Ethernet (EEE)

Application note 5 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

2 Operational overview

Figure 2 shows the block diagram of the EMAC module. EMAC is positioned in the signal path between the MCU

cores and the PHY transceiver.

Figure 2 Block diagram of Ethernet MAC (EMAC)

2.1 Controller interfaces

The Ethernet controller in XMC7000 MCU has the following main interfaces:

• AXI master interface

• AHB slave interface

• Media-independent interfaces (MII, RMII, GMII, RGMII)

• MDIO interface

2.1.1 AXI master interface

The AXI master interface attached to the EMAC provides separate data channels and common address channels
for read and write operations. With stated channels, the interface supports two outstanding transactions on

both the Read and Write channels. EMAC is required to store the configuration parameters for each transmit

and receive frame through descriptors.

Tx and Rx descriptor reads are issued up-front and stored in a local buffer to feed the underlying DMA when

required. This optimizes performance and avoids the need for the underlying DMA to pause while new

descriptor fetches are sent to the system bus. Tx and Rx descriptor writes issued by the underlying DMA are
buffered locally to avoid holding up the underlying DMA when the system delays the completion of descriptor
writes.

Note: The descriptor write transaction is not considered complete until the write response (BRESP)
associated with that transaction has arrived.

Application note 6 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

The DMA can use programmable maximum burst lengths. Single accesses and bursts with up to four beats
(pulses) can be selected. With 64-bit datapath and a burst length setting of four, 32-byte transfers can be made

with a single request. The burst length is controlled via the ETHx_dma_config register. “x” indicates the

channel number.

2.1.2 AHB slave interface

The AHB slave interface is used to program EMAC-related registers. The interface will internally go through a
decoder to identify whether the access is targeted for memory-mapped I/O (MMIO) or the MAC module. The

registers implemented in MMIO will be used to control some configurable inputs of the EMAC interface.

2.1.3 Media-independent interface

EMAC supports four different PHY interfaces – MII, RMII, GMII, and RGMII. Table 1 shows the required settings to

select any of the interfaces.

Table 1 PHY interface selection

CTL.ETH_MODE Network_config[0]

(Speed)

Network_config[10]

(gigabit_mode_enable)

PHY Mode

2’d0 0 0 MII – 10 Mbps

2’d0 1 0 MII – 100 Mbps

2’d1 0 1 GMII – 1000 Mbps

2’d2 0 0 RGMII – 10 Mbps (4 bits/cycle)

2’d2 1 0 RGMII – 100 Mbps (4 bits/cycle)

2’d2 0 1 RGMII – 1000 Mbps (4 bits/cycle)

2’d3 0 0 RMII – 10 Mbps

2’d3 1 0 RMII – 100 Mbps

EMAC interfaces with an external PHY (reference Texas Instruments DP83867) using MII, RMII, or RGMII signals.
RGMII and GMII/MII interfaces are design-time-configurable and mutually exclusive in the Ethernet controller.

Note: ETH_MODE must be configured before configuring the ETHx_network_config register. Check the
device-specific datasheet for the PHY supported modes.

2.1.4 MDIO interface

MDIO is a single bi-directional tristate signal between the EMAC and PHY. The PHY maintenance register
(ETHx_phy_management) is implemented as a shift register. Writing to the register starts a shift operation,

which is signaled as complete when Bit 2 is set in the ETHx_network_status register (about 2000 PCLK cycles
later when bits [18:16] are set to 010b in the ETHx_network_config register). An interrupt is generated when this

bit is set.

During this time, the most significant bit (MSb) of the ETHx_phy_management register is output on the

mdio_out pin and the LSb updated from the mdio_in pin with each Management Data Clock (MDC) cycle. This
causes the transmission of a PHY management frame on MDIO. Reading during the shift operation will return

the current contents of the shift register. At the end of the management operation, the bits will have shifted
back to their original locations. For a read operation, the data bits will be updated with the data read from the

Application note 7 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

PHY. It is important to write the correct values to the register to ensure that a valid PHY management frame is
produced.

The MDC should not toggle faster than 2.5 MHz (minimum period of 400 ns), as defined by the IEEE 802.3

standard. MDC is generated by dividing CLK_GR4. Three bits in the ETHx_network_config register determine by

how much PCLK should be divided to produce the MDC.

2.2 DMA interface

Ethernet MAC accesses data from other available system memory such as SRAM through the DMA interface and
stores the fetched data in a local, dedicated Tx/Rx packet buffer. DMA is attached to the Ethernet MAC’s

external FIFO interface to provide a scatter-gather type capability for packet data storage. Configured for

packet buffering mode, DMA uses dual port memory to store the fetched data. This configuration allows the

application to use either of the following operation modes to store and forward the data:

• Full store and forward mode

• Partial store and forward mode

In full store and forward mode, the packet will be replayed directly from the packet buffer memory instead of
being fetched again from the system memory through the AXI. In this way, this mechanism reduces AXI bus

transfers.

In partial store and forward mode, the transmitter will only forward the packet to the MAC when there is

enough frame data stored in the packet buffer. Similarly, in case of a receive operation, the receiver will begin

to forward the packet to the external AXI slave only when enough frame data is stored in the local packet buffer.

This approach makes the following features available:

• Transmit TCP/IP checksum offload

• Priority queuing

• Rx packet flush when there is lack of resources

• Burst padding at end-of-packet and end-of-buffer to maximize AXI efficiency

• Tx/Rx timestamp capture to buffer descriptor entry

2.2.1 Full store and forward mode using packet buffer DMA

In the full store and forward mode, the EMAC starts transmission only when the complete transmit frame is
written into the local Tx buffer. The transmitted frame will be flushed from the local buffer only after the EMAC

completes the transmission and the Tx buffer descriptor (BD) is updated with the status fields.

In the receive process, DMA starts forwarding data to the configured memory address only after the entire

frame has been received without error. The received frame will be flushed from the local packet buffer only
after the frame is copied and the Rx BD is updated with the status fields.

When the EMAC DMA is configured in full store and forward mode, a receive overrun condition occurs when the
receive packet buffer memory is full or because an AXI error has occurred.

The benefits of full store and forward mode are:

• Discard packets that are received with errors before they are partially written out of DMA, thus saving AXI
bandwidth and driver processing overhead

• Retry failed transmit frames from the packet buffer itself, thus saving AXI bus bandwidth

• Implement transmit IP/TCP/UDP checksum offload

Application note 8 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

• Allow multi-buffer frames

2.2.2 DMA transaction

The Ethernet controller DMA uses separate transmit and receive lists of buffer descriptors, with each descriptor
describing a buffer area in the system memory. This allows Ethernet packets to be broken up and scattered
around the system memory.

The DMA controller performs six types of operations on the AMBA bus. In the order of priority these are:

1. Receive buffer manager write/read

2. Transmit buffer manager write/read

3. Receive data DMA write

4. Transmit data DMA read

All read operations are routed to the AXI read channel and all write operations to the AXI write channel. Both

read and write channels may operate simultaneously. Arbitration logic is used when multiple requests are

active on the same channel.

The transfer size is set to 64-bit words by default in the ETHx_network_config register; burst length can be

programmed in the range from single access up to 256 accesses per burst using the ETHx_dma_config register.
It is recommended to set the burst length maximum to ‘4’ to have a quicker arbitration for all masters accessing

the bus.

2.3 Ethernet packet buffer

2.3.1 Packet buffer memory

The Ethernet controller is configured in a packet buffering mode using dedicated SRAM memories (Tx packet

single port SRAM (SPRAM) and Rx packet SPRAM). The EMAC is configured to use SPRAM.

For the MAC receiver, the total buffer size will be 4 KB. The reason to allocate 4 KB for Rx SRAM is to be able to

store at least two maximum length packets (1.5 KB) to avoid dropped packets when operating in full store and
forward mode.

For MAC transmitter, the buffer size will be configured to be 4 KB for Priority Queue 0 and 2 KB for Priority
Queue 1 and Priority Queue 2, respectively.

2.3.2 Receive buffers

Received frames, optionally including frame check sequence (FCS), are written to receive buffers located in the

system memory. The receive buffer depth is programmable in the range of 64 bytes to 16 KB in the DMA
configuration register, with the default being 1536 bytes. If received frames are being routed to different

priority queues via screening registers, it is possible to program different receive buffer depths for each queue.
For queue 0, the receive buffer depth is programmed through the DMA configuration register (offset 0x10). For
other queues, receive buffer depths are programmed through specific queue configuration registers (starting

from offset 0x4a0). The default is 128 bytes.

The start address for each receive buffer is stored in the system memory in a list of receive buffer descriptors at
an address location described by the receive buffer queue pointer. The base address of the receive buffer

queue pointer (also referred to as the list of buffer descriptors) must be configured by software using the
receive buffer queue base address registers.

Application note 9 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

Each buffer descriptor can be of either two or four words, depending on the configured BD mode, where ‘word’
is defined as 32 bits. The first two words (Word 0 and Word 1) are used in both BD modes.

In Extended Buffer Descriptor mode, two BD words (Word 2 and Word 3) are added for timestamp capture if
Timestamp Capture mode is enabled. Therefore, BDs will be of either two or four words size; each BD will have
the same size.

To summarize, each BD must be of:

• 64 bits when Descriptor Time Capture mode is disabled

• 128 bits when Descriptor Time Capture mode is enabled

Note: Writing the base address register of the receive buffer queue may require three AXI clock cycles to
take effect. Therefore, reception cannot be enabled until three AXI clock cycles after the base

address register of the receive buffer queue is updated. Firmware needs to take care of this
restriction.

2.3.3 Transmit buffers

Frames to be transmitted can be stored in one or more transmit buffers. Transmit frames can be between 1 and
1536 bytes long.

Note: Zero-length buffers are allowed; the maximum number of buffers permitted for each transmit

frame is 128.

The start address of each transmit buffer is stored in the system memory in a list of transmit buffer descriptors

located at the transmit buffer queue pointer. Base addresses of the transmit BD list must be configured by
software using base address registers of the transmit buffer queue.

Each buffer descriptor can be of either two or four words, depending on the configured BD mode, where ‘word’

is defined as 32 bits. The first two words (Word 0 and Word 1) are used in both BD modes.

In Extended Buffer Descriptor mode, two BD words are added for timestamp capture if Timestamp Capture

mode is enabled. Therefore, Transmit BDs will be of either two or four words size and each BD will have the

same size.

To summarize, each transmit BD must be of:

• 64 bits when Descriptor Time Capture mode is disabled

• 128 bits when Descriptor Time Capture mode is enabled

Application note 10 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

2.3.4 DMA packet buffer

The packet buffer DMA mode allows multiple packets to be buffered in both transmit and receive directions and
allows the DMA to withstand variable levels of access latencies on the AXI fabric. Using packet buffers, the AXI
bandwidth has been used most efficiently in the device. Figure 3 illustrates the structure of the EMAC
datapaths.

Figure 3 Ethernet MAC datapath structure

In the transmit direction, DMA will continue to fetch packet data up to a limit of 256 packets, or until the Tx
packet buffer memory is full. In the receive direction, if the Rx packet buffer memory becomes full, an overflow
will occur. An overflow will also occur if the limit of 256 packets is breached.

2.4 Clock, reset, and power modes

2.4.1 Clock

Clock requirements and configurations are different for each interface. The following clocks and source of
clocks are required:

• MII

− Both Tx and Rx clocks are supplied from the external PHY.

• RMII

− Both Tx and Rx clocks can be supplied from either an internal reference clock or an external clock source.

Application note 11 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

− The Control register (ETHx_CTL.REFCLK_SRC_SEL) must be used to select the reference clock source
from on-chip system resources or HSIO.

• GMII

− Rx clock is supplied from the external PHY.

− Tx clock source can be selected either from an internal clock source or HSIO.

− ETHx_CTL.REFCLK_SRC_SEL must be used to select the clock source for transmission functionality.

− ETHx_CTL.REFCLK_DIV is used to divide the reference clock and generate the required clock of 125 MHz.

− TX_CLK_OUT will be enabled to supply the Tx reference clock to PHY when an internal clock source is
selected.

• RGMII

− Rx clock is supplied from the external PHY.

− Tx clock source can be selected either from an internal clock source or from HSIO.

− ETHx_CTL.REFCLK_SRC_SEL must be used to select the clock source for transmission functionality.

− ETHx_CTL.REFCLK_DIV is used to divide the reference clock and generate the required clock of 125 MHz.

− TX_CLK_OUT will be enabled to supply the Tx reference clock to PHY when an internal clock source is

selected.

Note: For RGMII and GMII transmit operations, use a precise external clock source instead of the internal

PLL. Ethernet MAC requires clocks to perform internal operation such as buffer data transfers or
timestamp unit (TSU) operations. To perform those operations, the following clocks are used. For

more information about configuring mentioned clocks, see the “Clocking System” chapter in the

reference manuals.

Table 2 Clocks to Ethernet MAC

Check the device datasheet for appropriate clocks to different ethernet instances.

2.4.2 Reset

The Ethernet controller can be operated only in the System Active power mode. In DeepSleep power mode, all
logic including dedicated SRAMs are not retained except for the retention MMIO registers. As such, the retention
MMIO register is reset by a DeepSleep system reset.

Clock Description

CLK_GR4 AHB operations in the EMAC and to generate the MDC clock

CLK_HF5 Timestamp unit (TSU)

CLK_MEM AXI operation

CLK_HF4 Internal reference clock for MII

Application note 12 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

2.4.3 Power modes

The Ethernet controller is an active peripheral. In DeepSleep power mode, only the retention MMIO registers
are retained. Table 3 shows Ethernet MAC availability in different device power modes.

Table 3 Ethernet MAC status in different device power modes

2.5 Interrupts

Several interrupt conditions can be enabled in EMAC. The interrupt outputs from the Ethernet MAC match the
number of supported priority queues. Only EMAC DMA-related events are reported using individual interrupt

outputs because the Ethernet MAC can relate these events to specific queues. All other events generated within

the Ethernet MAC are reported in the interrupt associated with the lowest-priority queue (Queue 0), for which

the interrupt status register is located at offset address 0x024. For all other priority queues, this register is
located at sequential offset addresses starting at 0x400.

At reset, all interrupts are disabled. To enable an interrupt, write to the interrupt enable register with the

relevant interrupt bit set to ‘1’. To disable an interrupt, write to the interrupt disable register with the relevant
interrupt bit set to ‘1’. To check whether an interrupt is enabled or disabled, read the interrupt mask register: if
the bit is set to ‘1’, the interrupt is disabled.

Device power modes EMAC status

Active EMAC is fully operational with power on and clocks running.

LPActive EMAC is fully operational with power on and clocks running; clocks can be

limited to save some power.

Sleep EMAC is fully operational.

LPSleep EMAC is fully operational with power on and clocks running; clocks can be

limited to save some power.

DeepSleep No clock is provided; hence the logic is not functional. All retention registers

will hold the values.

Hibernate Entire EMAC including retention register are not functional.

Application note 13 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Operational overview

2.6 PHY interface

Figure 4 shows the block diagram of the Ethernet PHY module. The Ethernet PHY has all signals used by MII,
RMII, GMII, and RGMII. Figure 4 also shows the physical signals used by individual MII interfaces.

MII RMII GMII RGMIIPHY
Interface

TXD[7:0]

TX_CTL

RX_CTL

TX_CLK

RX_CLK

REF_CLK_OUT

REF_CLK_IN

TX_ER

RXD[7:0]

RX_ER

MDC

MDIO

TXD[3:0] TXD[1:0] TXD[7:0] TXD[3:0]

TX_EN TX_EN TX_EN TX_CTL

RX_DV CRS_DV RX_DV RX_CTL

TX_CLK

RX_CLK RX_CLK RXC

REF_CLK GTX_CLK TXC

TX_ER TX_ER

RXD[3:0] RXD[1:0] RXD[7:0] RXD[3:0]

RX_ER RX_ER RX_ER

Figure 4 Block diagram of Ethernet MAC

Application note 14 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Ethernet configuration

3 Ethernet configuration

3.1 Register sets

Table 4 Ethernet controller register set

Register Name Description

CTL Control register Selects the PHY mode and reference clock, and

enables EMAC

NETWORK_CONTROL Network control register Contains general MAC control functions for both

receiver and transmitter

NETWORK_CONFIG Network config register Contains functions to set the mode of operation for

the Gigabit Ethernet MAC

DMA_CONFIG DMA config register Register to configure DMA transfers for transmit and

receive operations

TRANSMIT_Q_PTR Transmit queue 0 pointer Holds the start address of the transmit buffer queue

(transmit buffers descriptor list)

PHY_MANAGEMENT PHY management register Implemented as a shift register. Writing to the

register starts a shift operation which is signaled as
complete when Bit 2 is set in the network status

register

Table 4 shows the register sets used in example provided in section 4.1 Ethernet configuration for MII mode

with 100 Mbps. For more details on Ethernet controller registers, see the registers reference manuals.

3.2 Configuration flow

Figure 5 shows an example of the configuration flow of Ethernet controller in XMC7000 MCU.

Figure 5 Ethernet controller configuration flow

Application note 15 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Example configuration

4 Example configuration

Ethernet can be useful for an application that involves communication between two ECUs or nodes at higher

bandwidth and speed. The Ethernet controller uses MAC-based source and destination address communication
so that theoretically millions of nodes can be present in the network. This section explains how to use the
Ethernet controller as per the use case.

4.1 Ethernet configuration for MII mode with 100 Mbps

This use case demonstrates how to configure the Ethernet controller for MII mode with link speed 100 Mbps.

The following are the basic parameters:

• Ethernet interface : ETH0 or ETH1

• Ethernet mode : MII

• Link speed : 100 Mbps

• Clock source : CLK_HF5, CLK_HF4 and TX_CLK, RX_CLK from transceiver

• Communication mode : Full duplex

• Ethernet packet size : 1536 bytes

• CPU core : CM7_0

Note: This configuration is generated for the CYT4B devices; the same techniques apply to other devices

(check I/O port and Ethernet interface macro ETHx for different devices and families).

The following sections explain the configuration procedure of this use case.

4.1.1 Ethernet I/O port setting

See the I/O System chapter of the architecture reference manual for details of I/O initialization. The following is

the Ethernet I/O drive mode configuration for MII mode:

Table 5 Ethernet I/O drive mode configuration for MII mode

Signal Drive mode Direction

ETHx_TD0 STRONG_IN_OFF MAC to PHY

ETHx_TD1 STRONG_IN_OFF MAC to PHY

ETHx_TD2 STRONG_IN_OFF MAC to PHY

ETHx_TD3 STRONG_IN_OFF MAC to PHY

ETHx_TXER STRONG_IN_OFF MAC to PHY

ETHx_TX_CTL STRONG_IN_OFF MAC to PHY

ETHx_RD0 HIGHZ PHY to MAC

ETHx_RD1 HIGHZ PHY to MAC

ETHx_RD2 HIGHZ PHY to MAC

ETHx_RD3 HIGHZ PHY to MAC

ETHx_RX_CTL HIGHZ PHY to MAC

ETHx_REF_CLK HIGHZ MAC to PHY

ETHx_TX_CLK HIGHZ PHY to MAC

Application note 16 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Example configuration

Signal Drive mode Direction

ETHx_RX_CLK HIGHZ PHY to MAC

ETHx_MDC STRONG_IN_OFF MAC to PHY

ETHx_MDIO STRONG Bidirectional

4.1.2 Clock setting

The Ethernet controller gets the clock from two sources: CLK_HF4 and CLK_HF5. By default, only CLK_HF0 is
enabled. To enable the CLK_HF4 and CLK_HF5, see the “Clocking System” chapter of the architecture reference

manual.

Note: For transmit and receive operations in MII mode, Ethernet MAC gets the clock from the PHY.

4.1.3 IRQ and handler assignment

To enable an interrupt for a peripheral, the peripheral interrupt source should be mapped to one of the CPU
interrupt sources (available from 0 to 7). Any number of peripheral interrupt sources can be mapped to a CPU
interrupt source. For more details, see the “Interrupts” chapter in the architecture reference manual.

Enable the system IRQ with CPU_Int_Idx3 in the CM7_0 control register. Here, the CPU interrupt ID 3 is used to
map the Ethernet interrupt sources to the CPU core:

CPUSS_CM7_0_SYSTEM_INT_CTL |= 0x10000003; // Use

CPU_Int_Idx3

Assign the handler eth_intr_src_handler for ETH_INTR_SRC in VTOR:

SystemIrqUserTableRamPointer[ETH_INTR_SRC] = eth_intr_src_handler; //

ETH_INTR_SRC

Assign the handler eth_intr_src_q1_handler for ETH_INTR_SRC_Q1 in VTOR:

SystemIrqUserTableRamPointer[ETH_INTR_SRC_Q1] = eth_intr_src_q1_handler; //

ETH_INTR_SRC_Q1

Assign the handler eth_intr_src_q2_handler for ETH_INTR_SRC_Q2 in VTOR:

SystemIrqUserTableRamPointer[ETH_INTR_SRC_Q2] = eth_intr_src_q2_handler; //

ETH_INTR_SRC_Q2

Set the interrupt priority for CPU_Int_Idx3 source in NVIC:

NVIC->IP [CPU_Int_Idx3] = (uint8_t)((priority << (8 - __NVIC_PRIO_BITS))

Enable the interrupt for CPU_Int_Idx3 in NVIC:

NVIC->ISER[(CPU_Int_Idx3 >> 5UL)] = (uint32_t)(1UL << (((uint32_t)

CPU_Int_Idx3) & 0x1FUL));

Application note 17 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Example configuration

4.1.4 Ethernet controller initialization

Set MII mode (by default) and enable the Ethernet controller:

ETHx->unCTL = 0x80000000;

Set the communication mode to full-duplex, set no broadcast frames, frame size to 1536 bytes, divide PCLK by
16, set 64-bit AMBA bus width, and set the receive bad preamble frame:

ETHx->unNETWORK_CONFIG = 0x24240122; // by default 10/100 operations

using MII

Set the DMA burst up to 4, use 8 KB of addressable space for receive, use 4 KB of addressable space for transmit,
set the DMA receive buffer size to 1536 bytes, enable transmitter and receiver extended BD mode, and set the

DMA address bus width to 32 bits:

ETHx->unDMA_CONFIG = 0x34180704;

Enable the transmit queue and configure the start address of the transmit buffer descriptor list:

ETHx->unTRANSMIT_Q2_PTR = (uint32_t) &g_txBuffer2;

ETHx->unTRANSMIT_Q1_PTR = (uint32_t) &g_txBuffer1;

ETHx->unTRANSMIT_Q_PTR = (uint32_t) &g_txBuffer0;

Note: Base addresses of transmit and receive descriptor lists must be aligned to the data-word
boundary, i.e., 32-bit boundary for 32-bit DMA addressing.

Enable interrupts for receive complete, transmit buffer underrun, retry limit collision, transmit frame

corruption, transmit complete, and receive overrun:

ETHx->unINT_ENABLE = 0x000004FE

Enable MAC receiver and transmitter, and MDIO in the ETHx_network_control register:

ETHx->unNETWORK_CONTROL = 0x0000001C;

Write tx_start_pck bit to 1 to start the transmission:

ETHx->unNETWORK_CONTROL |= 0x00000200;

4.1.5 Initialization for the PHY transceiver

Check for appropriate PHY and see the device datasheet for more details on register, commands, and data

read/write.

4.1.6 Read link status

Check for the link status register of the application board PHY in the datasheet. If the link status is OK,

configuration is proper, and setup is ready to send/receive Ethernet packets.

For configuring different MII settings, see the architecture reference manual and registers reference manual.

Application note 18 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Glossary

5 Glossary

Table 6 Glossary

Terms Description

AHB Advanced High-Performance Bus connects the components that need higher bandwidth

AXI Advanced eXtensible Interface connects the on-chip components for high-performance, high-

speed parallel communication. It is a part of ARM specification.

BD Buffer Descriptor

CLK_HF This is derived from the system clock using a peripheral clock divider. See the “Clocking

System” chapter of the architecture reference manual for details.

DMA Direct Memory Access. See the DMA chapter of the architecture reference manual for details.

DeepSleep Power mode that only low-frequency peripherals are available. See the DeepSleep Mode section

in the “Device Power Modes” chapter of the architecture reference manual for details.

FCS Frame Check Sequence

GPIO General-purpose Input/Output

HSIOM High-Speed I/O Matrix. See the High-Speed I/O Matrix section in the “I/O System” chapter of the

architecture reference manual for details.

I/O Port I/O port provides the interface between the CPU core and peripheral components to the

outside world. See the “I/O System” chapter of the architecture reference manual for details.

LAN Local Area Network

MAC Media Access Controller

MDC Management Data Clock

MDIO Management Data Input Output

PCLK PCLK is source clock for different peripheral functions; for Ethernet MAC it is used to generate

the MDIO bus clock i.e., Management Data Clock (MDC).

PHY Physical interface to the Ethernet controller

RGMII Reduced Gigabit Media-Independent Interface

RMII Reduced Media-Independent Interface

SPRAM Single Port SRAM

TSU Timestamp Unit

Application note 19 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

References

References

The following are the XMC7000 MCU family series datasheets and technical reference manuals. Contact

Technical support to obtain these documents.

[1] Device datasheets

− XMC7200 datasheet 32-bit Arm® Cortex®-M7 microcontroller XMC7000 MCU family

− XMC7100 datasheet 32-bit Arm® Cortex®-M7 microcontroller XMC7000 MCU family

[2] Technical reference manuals

− XMC7000 MCU family architecture technical reference manual

− XMC7200 registers technical reference manual

− XMC7100 registers technical reference manual

https://www.cypress.com/support

Application note 20 002-34380 Rev *A

 2024-09-30

How to use Ethernet controller in XMC7000 MCU family

Revision history

Revision history

Document

revision

Date Description of changes

** 2022-01-12 Initial release

*A 2024-09-30 Updated Clock mode information

 Important notice Warnings

Edition 2024-09-30

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-34380 Rev *A

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Ethernet controller features

	2 Operational overview
	2.1 Controller interfaces
	2.1.1 AXI master interface
	2.1.2 AHB slave interface
	2.1.3 Media-independent interface
	2.1.4 MDIO interface

	2.2 DMA interface
	2.2.1 Full store and forward mode using packet buffer DMA
	2.2.2 DMA transaction

	2.3 Ethernet packet buffer
	2.3.1 Packet buffer memory
	2.3.2 Receive buffers
	2.3.3 Transmit buffers
	2.3.4 DMA packet buffer

	2.4 Clock, reset, and power modes
	2.4.1 Clock
	2.4.2 Reset
	2.4.3 Power modes

	2.5 Interrupts
	2.6 PHY interface

	3 Ethernet configuration
	3.1 Register sets
	3.2 Configuration flow

	4 Example configuration
	4.1 Ethernet configuration for MII mode with 100 Mbps
	4.1.1 Ethernet I/O port setting
	4.1.2 Clock setting
	4.1.3 IRQ and handler assignment
	4.1.4 Ethernet controller initialization
	4.1.5 Initialization for the PHY transceiver
	4.1.6 Read link status

	5 Glossary
	References
	Revision history
	Disclaimer

