AN73854 (infineon

PSoC™ Creator - Introduction to bootloaders

About this document

Scope and purpose

ANT73854 briefly introduces bootloader theory and technology, and shows how bootloaders are quickly and
easily implemented in PSoC™ 3, PSoC™ 4, and PSoC™ 5LP MCUs using PSoC™ Creator.

Intended audience

This is intended for users who plan to use the PSoC™ MCU.

Application note Please read the sections “Important notice” and “Warnings” at the end of this document 001-73854 Rev.*N
www.infineon.com 2023-12-01

http://www.infineon.com/

PSoC™ Creator - Introduction to bootloaders

(infineon

Table of contents

Table of contents

About this dOCUMENT....ccciiiiiiiiiiiiriiiiiiiriiirisiseiireisrsestseisrssssesss 1
Table Of CONtENES.c..ciuuiiiiiiiiiriiiiiiitiiiriiitiitteiitaitseieseistasnsessssisssssrsss 2
1 INErOUCEION euuiriniiiniiriiirniiiinitiniitaiitieitteicrasrsestsesracsrsessnsssnsssnns 4
2 INFINEON FESOUICES..ceuuiruuireuirruirruiirairseisseicraesssessssssrssnsssnss 5
3 Y 0T O 08 T)] RN 6
4 What is @ DOOtloader?cceuiiiuiiniiinniirniiruinnniinnictainseicseisrasrsesssessses 7
4.1 Terms and defiNITIONS ..c..eeuiruirieieieer ettt ettt st b s bbb s e e e e et e e esesaens 7
4.2 USING @ DOOTIOAAET ...ttt ettt ettt e et s et e s bt et et e sae et e sbeeaaenee 8
4.3 B0oOtloader fUNCION FLOW ...c..ouviuieiieiiieiee ettt sb e sa e e saee 8
5 General bootloader design considerations.....cccceeieeiieiiniineciniincaesiesiaecnesiscsesrescsessesssscaessescassse 10
5.1 BOOtI0AdEr QlEEINATIVESeveeeieieieeeee ettt ettt st sb et b et sa e a e e e sesaens 10
5.2 Memory use and modular CONfIGUIAtIONcvivirierieiiiieereeerere et saeas 11
53 BOOtloader - HOSt LIMING...coueriiiiiiieieeeieeentesteetee ettt sttt ettt b e s bbb e tesae s e e e e enesaens 11
5.4 COMMUNICATION POMTaiiiiiiiiiiiiieeeie ettt re e s et e e ba e e ste e s beesssbe e s bae s baassssaesssseesssaesssaesnssesssaean 12
5.5 RECOVEING FrOM FAIlUIES c..eveeeieeeee ettt sttt sae e saeas 12
5.6 FUBUI@-PIOOTING .ttt sttt ettt sttt et ettt s st besbe st e be b enaeneeneeseesesaens 12
5.6.1 ApPLICation MAN@ZEMENTciiiiiiieierteteeetete ettt sttt sttt e st s et st e besat e b e s baebesaeenaansas 13
5.6.2 T g I oY] =T ot 4o [T 13
5.7 CUSTOMUZATION 1ottt ettt ettt e bt e st e bt e sat e sat e st e sabe s b e e bt e st e satesaseeaseeseenees 13
6 PSoC™ Bootloader - HOW it WOIKS cccuieuiinirnniinniirniinneinnnisrnicrnesnsesssnssscsssnssssssscssssssssssssssssnses 14
6.1 PSOC™ Creator DOOtIoader ProJECESciviriieiereeieeeteree ettt ettt et sttt et s be s e e s saaenees 14
6.2 2 ToYod (oY= o [T @] o o] o 1= TS 15
6.3 CoMMUNICAtION COMPONENT.....iiiiiiiiiieieee ettt ettt e esee e sre e s teesebeesbae s ssesesaessseeesssaessseessssaesnseean 15
6.4 RECOVEING FrOM fAIlUIES ...ttt sb sttt saeae e saeas 15
6.5 Backward COMPatibDilityccccueeeeieiieeececeee ettt a e e nes 16
6.6 BOOI0AAEr MEMOIY USAZE ..eeviriiiiiriieienieeteteseerte st st esae st etesae st e be st e st esseesessesntessesasensessesnsensesnsenses 16
6.7 o =T gl o o =Tt o o TSR 16
6.8 CUSTOMUZATION 1.ttt ettt ettt e bt e bt e bt e s bt e sat e satesabe s be e bt e st esatesasesnseeaseenees 17
7 Add a bootloader to your PSOC™ Creator ProJECtccccceieeceicerinreeceecansssssssscecsssssssssscsssssssssscsscans 18
7.1 BUILAING @ DOOTIOAAEN ..ottt sttt st e se st s st et st et e saaeaesaeesseneas 18
7.2 Adding bootloadable appliCatioNSccccueieiriririreeeeeeeeree ettt 20
7.3 Debugging bootloadable Projects ...ttt ettt ettt 21
7.4 CUStOMIZING YOUr DOOTIOAAETcuviieiieiiiiiieiereese ettt sttt eaes 22
7.5 Calling the DOOTIOAEN ...ttt ettt ettt sbe st sa e s e 23
8 Loading your projects into PSOC™ccceeiiuiireireiiacaesiniiaecsesisscaessssssecsesssscsessssssssassssssassssssassansss 24
8.1 PrOJECE fIlES ottt sttt b e b bt e e et reere e 24
8.2 USE CASES ettt sttt ettt sttt s ba e st s s e e s a e s a e s b bt e s b e e e s b e e s b e e s enba e s baeeas 25
9 Dual-application bootloader considerationscccccereiieireniniinnieniacineniecisccsesiacsesrosisccsessessasess 26
9.1 APPLICation lAUNCH PrOCESS..cuviiiiiiececrtertese ettt sae s e e s e e sre e sraesreesstassbasssaessnesssesnns 27
1O SUMMAKY tietetertecescrcecscasecessssescssessscnsessssssecsssssessssssssessssssssssssssssessssssesssssssssssssssensessssssessssnsese 29
11 Appendix A - Bootloader and device resetcceeeuirnirneiinniirnicrainseiirnicrnsssessssssssesssessssssssssses 30
11.1 Why is DeVICE reSet NEEARATYc..iicieeeieieeeeeetet ettt ettt e s et e be s e e b e sba et essesssensasanensans 30
11.2 EffECt ON AEVICE 1/0 PINS.ciiiiiieiiiiiiieteiesieetee sttt sttt ste et e st st et e s aeetesae s st e besasessessssnsenseensenses 30
11.3 Effect 0N Other fUNCHIONS...c.iiiiiiee ettt sttt saees 31
114 T gaY o] (T ST O o o H USSP 32
Application note 2 001-73854 Rev.*N

2023-12-01

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

Table of contents

12 Appendix B - Bootloader in PSOC™ Creator 3.1 or @arlier....cccccciuieeceeceiienieceececastansecsecesassscsecenes 33
12.1 BUILAING @ DOOTIOAAEN ...ttt sttt ettt et sttt st be st e b sae et eees 33
12.2 Adding bootloadable apPliCAtiONSc.eevecerirriieieeeeeeee ettt ettt sre e beeseeeans 36
12.3 Debugging bootloadable Projects ...ttt ettt sttt 37
12.4 Converting a normal application project to a bootloadable project........ccccoveecirvieninvieninneniencneene 38
12.5 CUSTOMIZING YOUT DOOLIOAUENeouvieieietecteeeee ettt ettt e sre e e e ae e s e sasseennanes 38
3 L= = =T e PN 40
REVISION NISTOIY.u.iuiiiiiiiuiiiiiiiiiiiiniiiiecesioniseecentestessecscassessessecsssssssssscsses 42
Application note 3 001-73854 Rev.*N

2023-12-01

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

Introduction

1 Introduction

This application note gives an overview of bootloader fundamentals and design principles, and demonstrates
how they are implemented in PSoC™ 3, PSoC™ 4, and PSoC™ 5LP in PSoC™ Creator projects.

Note: With the introduction of PSoC™ 6 MCU, Infineon has developed a device firmware update (DFU)
SDK as well as ModusToolbox™ integrated development environment (IDE). The scope of this
application note remains limited to PSoC™ 3, PSoC™ 4, and PSoC™ 5LP; for information on DFU
with PSoC™ 6, see AN213924, PSoC™ 6 MCU Device Firmware Update Software Development Kit
Guide and associated code examples.

This application note assumes that you are familiar with PSoC™ and the PSoC™ Creator integrated
development environment (IDE). If you are new to PSoC™, refer to one of the following getting started
application notes:

o AN54181 - Getting Started with PSoC™ 3

e AN79953 - Getting Started with PSoC™ 4

e AN77759 - Getting Started with PSoC™ 5LP

If you are new to PSoC™ Creator, see the PSoC™ Creator home page.

If you are new to bootloaders in general, see the basic concepts and design principles explained in What is a
bootloader? and General Bootloader Design Considerations.

If you are familiar with bootloaders, and want to see how they are implemented for PSoC™ devices using PSoC™
Creator, see PSoC™ Bootloader - How It Works.

To get an overview of adding a bootloader to your PSoC™ Creator project, see Add a Bootloader to Your
PSoC™ Creator Project.

For a list of bootloader application notes related to I°C, UART, SPI, and USB, refer to Reference. Each
bootloader application note listed in this section has associated code examples.

You can also access bootloader-related example projects from PSoC™ Creator using the menu option File >
Code Example. Search for “bootloader” in the pop-up window to filter the projects related to bootloader.

Click here for a complete list of PSoC™ 3, PSoC™ 4, and PSoC™ 5LP code examples

Application note 4 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://www.infineon.com/dgdl/Infineon-AN213924_PSoC_6_MCU_Device_Firmware_Update_Software_Development_Kit_Guide-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d3171906557
https://www.infineon.com/dgdl/Infineon-AN54181_Getting_Started_with_PSoC_3-ApplicationNotes-v15_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0724f85d49c2
https://www.infineon.com/dgdl/Infineon-AN79953_Getting_Started_with_PSoC_4-ApplicationNotes-v21_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07271fd64bc1
https://www.infineon.com/dgdl/Infineon-AN77759_Getting_Started_with_PSoC_5LP-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071b8fb71dc6
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/
https://www.infineon.com/cms/en/design-support/software/code-examples/psoc-3-4-5-code-examples-for-psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-code_example

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

Infineon resources

2 Infineon resources

Infineon provides a wealth of data at www.infineon.com to help you to select the right device, and quickly and
effectively integrate the device into your design. The following is an abbreviated list of resources related to this
application note:

e Overview: MCU portfolio, Roadmap

¢ Product selectors: PSoC™ 1, PSoC™ 3, PSoC™ 4, PSoC™ 5LP, or PSoC™ 6. In addition, PSoC™ Creator
includes a device selection tool.

o Datasheets: Describe and provide electrical specifications for PSoC™ device families.
o Application notes: Cover a broad range of topics, from basic to advanced level.

e Code Examples: Click here for a complete list of PSoC™ 3, PSoC™ 4, and PSoC™ 5LP code examples; or for
PSoC™ 6.

e PSoC™ Technical reference manuals (TRM): Provide detailed descriptions of the architecture and registers
for PSoC™ device family.

e Training videos: These videos provide guidance on getting started with various Infineon product families and
tools

e CAPSENSE™ design guide: Learn how to design capacitive touch-sensing applications.
e Development kits: Some examples include:

- CY8CKIT-042 and CY8CKIT-040, Pioneer kits, are easy-to-use and inexpensive development platforms for
PSoC™4.

- PSoC™ 4200 MCU lists the series of a programmable UDBs of the PSoC™ 4 MCU family.
- PSoC™ 62 MCU lists the series of performance kits of the PSoC™ 6 MCU family.
- The PSoC™ MiniProg3 device provides an interface for flash programming and debug.

Application note 5 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/
https://www.infineon.com/cms/en/product/microcontroller/
https://www.infineon.com/cms/en/product/
https://www.infineon.com/cms/en/product/microcontroller/legacy-microcontroller/legacy-8-bit-16-bit-microcontroller/psoc-1/
https://www.infineon.com/cms/en/product/microcontroller/legacy-microcontroller/legacy-8-bit-16-bit-microcontroller/psoc-3/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-4-32-bit-arm-cortex-m0-mcu/psoc-4200/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-5-lp-arm-cortex-m3/?term=PSoC%205LP&view=kwr&intc=searchkwr
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/
https://documentation.infineon.com/html/psoc6/bnm1651211483724.html?_ga=2.28330805.822064340.1654107293-1260277680.1654107293
https://documentation.infineon.com/html/psoc6/qvm1650961668471.html
https://www.infineon.com/cms/en/design-support/software/code-examples/psoc-3-4-5-code-examples-for-psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-code_example
https://www.infineon.com/cms/en/design-support/software/code-examples/psoc-6-code-examples-for-psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-code_example
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html
https://media.infineon.com/channel/89141/infineon-academy/1/5uyg312JfC--gRqomoTVcr
https://documentation.infineon.com/html/psoc6/epf1667481159393.html?hl=capsense
https://www.infineon.com/cms/en/design-support/finder-selection-tools/product-finder/evaluation-board/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-store
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-042/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-040/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-4-32-bit-arm-cortex-m0-mcu/psoc-4200/#!designsupport
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/psoc-62/#!designsupport
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit

o~ _.
PSoC™ Creator - Introduction to bootloaders In f| neon

PSoC™ Creator

3 PSoC™ Creator

PSoC™ Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware
and firmware design of systems based on PSoC™ 3, PSoC™ 4, PSoC™ 5LP, and PSoC™ 6. With PSoC™ Creator,

you can:
e Browse the collection of code examples from the File > Code Example menu, as Figure 1 shows
e Explore the library of 100+ Components

e Dragand drop Components to build your hardware system design in the main design workspace
e Review Component datasheets

e Configure Components using configuration tools

e Codesign your application firmware with the PSoC™ hardware

Ble £t View Promct Buld Debug look Wedow Help

Find Code Eample B s OIS A
i 3 UK,
B — 3 s
Rty [DaiCoe -] =
= SRS I ——), [:
| @] Ce216795 _DusiCoresliniy - = CYBC6347821 § ofl
C£216795_DuslCoreSharedMemary | = - cxpsend | 31|
| @] CE219339 DusiCore MOWDT AT Intermupts Al |
Download T
utton il |

oy |rersurceq |

... S— = o
Develop [[Contigurs copsermer—— == s
Firmware 4[5 Load configuntion. g Save configuration] Export Register Map atasheet
: ‘ Mame: CanSenes 1
o~
T — | waCIPRESS [—

4 Moveup & Movedown 3 Delete €50 g mode: | SmadSenae (Full Ao Tune) -] —
Tios | hame Sansnomods Senwng samentis) Finger capsctance PSoC 6 Capacitive Sensing (CapSense”)
O |amnd €50 (sefcan) 1 |Bons) 01657 0

+
Features

Configure @ T
Components + Suppots Se.Capasionce (5551 il Gapoctince £55)
.

sensing method:

olp
¢
b

® Faatures SmartSense™ auto-tuning fechnolagy for CSD sensing to avoid complex
manual tuning pi

Widgets, such as Buttons, Malrix Buttons, Siiders, Touchpads, and

CSDelectrodes: 1 CSKelectrodes: 0 Pinsrequivedt 2 Pins available: 77 1 consumption and uic-olerant capaciive sansing Wchnology

® Contains integrated raphical tuner GUI tool for reai-time tuning, testng, and debupging

Dtasheet oK ooty Caneel
® Provides suparior immunity against ise and low-radiated emission

Figure 1 PSoC™ Creator features

6 001-73854 Rev.*N

Application note
2023-12-01

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

What is a bootloader?

4 What is a bootloader?

Bootloaders are a common part of MCU system design. A bootloader makes it possible for a product's firmware
to be updated in the field. In a typical product, firmware is embedded in an MCU’s flash memory. The MCU is
mounted on a PCB and embedded in a product, as Figure 2 shows.

Your Product

Circuit Board
Connection to

MCU outside world
12C | | | |
| i] i i
Flash \
Memory
< CPU Bootloader
data flow

Figure 2 Bootloader data flow block diagram

At the factory, initial programming of firmware into a product is typically done through the MCU’s Joint Test
Action Group (JTAG) or Serial Wire Debugger (SWD) interface. However, these interfaces are usually not
available in the field - it can be difficult and expensive to open up the product and directly access the PCB. A
better method is to use an existing connection between the product and the outside world. The connection
may be a standard port such as I°C, USB, or UART, or it may be a custom protocol.

4.1 Terms and definitions

Figure 2 shows that the product’s embedded firmware must be able to use the communication port for two
different purposes - normal operation and updating flash. That portion of the embedded firmware that knows
how to update the flash is called a bootloader, as Figure 3 shows.

Target

MCU

Host

Communication
Channel

Flash
Memory

Application
File
Application

Bootloader

Figure 3 Bootloader system

Typically, the system that provides the data to update the flash is called the host, and the system being
updated is called the target. The host can be an external PC or another MCU on the same PCB as the target. The

Application note 7 001-73854 Rev.*N
2023-12-01

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

What is a bootloader?

act of transferring data from the host to the target flash is called bootloading, or a bootload operation, or just
bootload for short. The data that is placed in flash is called the application or bootloadable.

Another common term for bootloading is in-system programming (ISP). Infineon has a product with a similar
name called In-System Serial Programmer (ISSP) and an operation called Host-Sourced Serial Programming
(HSSP). For more information, see Bootloader Alternatives.

4.2 Using a bootloader

A communication port is typically shared between the bootloader and the application. The first step to use a
bootloader is to manipulate the product so that the bootloader, and not the application, is executing.

Once the bootloader is running, the host can send a “start bootload” command over the communication
channel. If the bootloader sends an “OK” response, bootloading can begin.

During bootloading, the host reads the file for the new application, parses it into flash write commands, and
sends those commands to the bootloader. After the entire file is sent, the bootloader can pass control to the
new application.

4.3 Bootloader function flow

A bootloader typically executes first at reset (see Memory Use and Modular Configuration). It can then
perform the following actions:

e Check the application’s validity before letting it run

e Manage the timing to start host communication

e Do the bootload / flash update operation

e And finally, pass control to the application

Figure 4 is a flow diagram that shows how this works.

Note: PSoC™ Creator supports a dual-application option, where the “Go to application” function in
Figure 4 operates in a more complex fashion. For more information, see Application launch
process.

Application note 8 001-73854 Rev.*N

2023-12-01

PSoC™ Creator - Introduction to bootloaders

What is a bootloader?

infineon

Reset

Bootloader

Halt execution

valid in flash?

Application
valid in flash?

Wait for
new application

No

from host?

Wait forever?

Host comm.
start?

Yes
Host comm.

start?

Receive new
application from
host,
install in flash,
overwriting
existing
application

)

Go to application

K—

Figure 4 Bootloader function flow

Application note 9

001-73854 Rev.”N

2023-12-01

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

General bootloader design considerations

5 General bootloader design considerations

There are many considerations to keep in mind when designing a bootloader system.

5.1 Bootloader alternatives
As mentioned previously, a bootloader makes it possible for a product's firmware to be updated in the field.

There are other ways to solve this problem. For example, a flash update function can be coded within the
application itself. However, the application must then be able to overwrite part or all of itself, which adds
complexity. Itis a better design practice to break the bootloader out as a separate module or program.

Another alternative to having a bootloader is to use HSSP. In this method, the MCU’s JTAG or SWD pins are
directly manipulated by an external host to program a new application into flash. The CYS8CKIT-002 PSoC™
MiniProg3 and other programmers use this method.

Although HSSP is commonly used during development and for factory-based programming, it is not usually
used in the field. The most frequent use of HSSP in the field is on PCBs with multiple MCUs, where one MCU
may directly program another MCU.

For details on accessing the PSoC™ JTAG/SWD pins, see the following:

e AN61290 - PSoC™ 3 and PSoC™ 5LP Hardware Design Considerations
e ANB88619 - PSoC™ 4 and Hardware Design Considerations
e Programming specifications for required device as listed in Table 1.

Table1
Device family Programming specification
PSoC™ 3 PSoC 3 Programming Specifications
PSoC™5LP PSoC 5LP Programming Specifications

PSoC™ 4000S, PSoC™ 4100M, PSoC™ 4100S,
PSoC™ 4200D, PSoC™ 4200M, and PSoC™ 4100PS
programming specifications

PSoC™ 4000S, PSoC™ 4100M, PSoC™ 4100S, PSoC™
4200D, PSoC™ 4200M and PSoC™ 4100PS

PSoC™ 4000 CY8C4000 programming specifications
CY8C41XX and CY8C42XX programming
specifications

CYBL10X6X, CY8C4127_BL, and CY8C4247_BL
programming specifications

CYBL10x7x,CY8C4128_BL, CY8C4248_BL (256K),
CY8C4246_L,CY8C4247_L,and CY8C4248_L
programming specifications

PSoC™ 4100/4200

CYBL10X6X, CY8C4127_BL, CY8C4247_BL

CYBL10x7x, CY8C4128_BL, CY8C4248_BL (256K),
CY8C4246_L, CY8C4247_L, CY8C4248_L

For more information on HSSP, see the following:

e AN73054 - PSoC™ 3 and PSoC™ 5LP Programming Using an External Microcontroller (HSSP)
o ANB84858 - PSoC™ 4 Programming Using an External Microcontroller (HSSP)

Application note 10 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit
https://www.infineon.com/dgdl/Infineon-AN61290_PSoC_3_and_PSoC_5LP_Hardware_Design_Considerations-ApplicationNotes-v17_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07254f524a25&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN88619_PSoC_4_Hardware_Design_Considerations-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0735c68558fd&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/cms/en/design-support/tools/programming-testing/psoc-programming-solutions/
https://www.infineon.com/cms/en/design-support/tools/programming-testing/psoc-programming-solutions/
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming+Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification
https://www.infineon.com/dgdl/Infineon-AN73054_PSoC_3_and_PSoC_5LP_Programming_Using_an_External_Microcontroller_(HSSP)-ApplicationNotes-v06_00-EN.pdf?fileId=8ac78c8c7cdc391c017d072b5f3a5012&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN84858_PSoC4_Programming_Using_an_External_Microcontroller_(HSSP)-ApplicationNotes-v15_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07350eca5867&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

General bootloader design considerations

5.2 Memory use and modular configuration

As noted previously, the bootloader code should be separate from application code - frequently they are
designed as completely separate modules. Given that both modules must reside in flash, where should the
bootloader code reside? Some MCUs contain a hard-coded bootload read-only memory (ROM) that is separate
from flash, as Figure 5 shows. Other MCUs use a part of flash for the bootloader, as Figure 6 shows.

Bootloader ROM memory
N

> Flash memory

Application
code
Address 0 7
Figure 5 Bootloader in separate ROM memory
N
> Flash memory
Application
code
Bootloader
Address 0 7

Figure 6 Bootloader in flash memory

The ROM method lets the application use all of flash, while the flash method allows a flexible bootloader
design. The flash method is generally preferred. The bootloader is usually placed in flash starting at address 0.
Because most CPUs start executing code at address 0, the bootloader runs first at device reset.

One potential problem with the flash method is that the bootloader uses memory that could otherwise be used
by the application. This may impact application design, or cost if an MCU with more memory must be used.
Thus, for the flash method, bootloaders should be designed to be as small as possible. To reduce the size, keep
the requirements and design simple; see Memory Use and Modular Configuration. Keeping the bootloader
small may become difficult if additional features must be included; see Customization.

5.3 Bootloader - Host timing

An important consideration in bootloader design is the timing to begin the communication with the host. As
Figure 4 shows, after determining that the application is valid, the bootloader can wait for a certain amount of
time for the host to start a new bootload operation.

Application note 11 001-73854 Rev.*N
2023-12-01

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

General bootloader design considerations

The wait time typically ranges from 50 to 500 msec. If the wait time is too short, the host may not be able to
reliably start the communication. If it is too long, your product’s overall startup time may be too long.

Another solution to the timing problem is to let the application call the bootloader. Then, the application can
respond to some external event, such as a button press or a message from the host, and start the bootload
operation.

5.4 Communication port

In most cases, the specifications of the communication port shown in Figure 3 on page 7 are set according to
overall product requirements. In addition to those requirements, for robust support of a bootloader system,
the port should be able to do the following:

o Packet-based data transfers. The port should not parse the packets; the bootloader and host should do
that.

o Packet error detection. The port should be able to detect and report packets with invalid data. The rest of
the system should be able to handle invalid packet reports.

e Command-response protocol. Usually, the host sends a command packet to the bootloader and then waits
for a success / fail / status response packet.

o Medium-speed transfers. Because it can take several milliseconds to write a single row of flash, having a
high-speed port may not significantly improve overall bootload time.

o Transfers that can take place while flash is being written. This enables a row of data to be downloaded
while the previous row is being written to flash.

Of all the commonly available protocols in embedded systems, USB supports these features best, although USB
code can use a large amount of flash. UART, I1°C, and SPI are simpler but may require extra code for packet
management. Note that I’C is controlled solely by the master side (usually the host), which makes a command-
response protocol more difficult to implement.

5.5 Recovering from failures

A bootloader should be able to detect, report, and gracefully handle errors that occur during the bootload
operation such as power failure, loss of communication, and flash write error.

This is frequently done by storing in flash some check bits (checksum or CRC) for the application. When the
bootload operation is started, the bits are cleared. If the application is downloaded and installed successfully,
the bits are updated. If, for example, a power failure occurs during bootloading, at reset the bootloader detects
invalid check bits and does not pass control to a partially loaded application. Instead, it waits for the host to
start another bootload operation.

5.6 Future-proofing

Another design consideration is that, after installation, a bootloader should never need to be updated in the
field. Itis possible to make a bootloader that can overwrite or update itself in the field, but it is complex and
best avoided. The key to making a bootloader robust and future-proof is to keep the requirements and design
simple. To avoid defects, use coding best practices and thorough code reviews.

Because the bootloader and application are separate modules, you can use different compilers or even
different development systems to build them. Because tools such as compilers may change between versions,
make sure that the mechanism to transfer control between the two modules remains constant. Also, as you
upgrade your development tools over time, make sure that an old bootloader can still load new applications.

Application note 12 001-73854 Rev.*N
2023-12-01

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

General bootloader design considerations

5.6.1 Application management

Because the bootloader and the application are separate modules, and the application can change, you must
consider how best to transfer control from the bootloader to the application. Some of the methods are as
follows:

1. Jump to afixed location where the application will always start. This method is simple but may be less
flexible for future changes to the bootloader or application.

2. Maintain the application start address in a common area of flash. The bootloader then uses that location as
a pointer to the application start address.

3. Link the application to a bootloader in a common development system, so that the bootloader has a
symbolic address to jump to.

The second method has the best combination of simplicity and flexibility, and is usually the preferred solution.

5.6.2 Flash protection

A bootloader should be able to check its own image in flash memory to see if it is valid. If it is not valid, it must
stop executing. Unfortunately, this makes the product unusable.

The best way to keep the bootloader valid in flash is to use the hardware to make sure that the bootloader is
never overwritten by firmware. One way to do this is to use flash write protection circuits that prevent
accidental overwrites of bootloader flash. See Flash protection for PSoC™ implementation details.

5.7 Customization

Bootloaders should be designed such that they are easy to modify for different product applications. For
example, a bootloader system should be able to easily use different communication ports, even multiple
communication ports.

Also, a bootloader system may need to operate in a high-reliability product, which has three main aspects:

e There may be a need to preserve important pin states during the transition from the bootloader to the
application. This can be a problem if the transition is done through a device reset. See Appendix A for
details.

e Important tasks may need to be done at the same time as bootloading. Extra code may need to be added to
the bootloader to enable a multitasking system. See Customization on page 17.

e Multiple (typically, two) application images are stored in flash. If one becomes corrupted in flash, the
bootloader can pass control to the other image, reducing your product’s mean time between failure (MTBF).
PSoC™ Creator supports dual-image bootloaders.

Application note 13 001-73854 Rev.*N
2023-12-01

_Ref305502563
_Ref305502563

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

PSoC™ Bootloader - How it works

6 PSoC™ Bootloader - How it works

In the previous sections, we looked at general bootloader functions and design considerations. Now, let us see
how these principles are put into practice in PSoC™ 3, PSoC™ 4, and PSoC™ 5LP using PSoC™ Creator.

Note: With the introduction of PSoC™ 6 MCU, Infineon has developed a device firmware update (DFU)
SDK as well as ModusToolbox integrated development environment (IDE). The scope of this
application note remains limited to PSoC™ 3, PSoC™ 4, and PSoC™ 5LP; for information on DFU
with PSoC™ 6, see AN213924, PSoC™ 6 MCU Device Firmware Update Software Development Kit
Guide and associated code examples.

PSoC™ devices have memory and configurable peripheral hardware that make it possible to create highly
capable and flexible bootloader systems. Development is done using PSoC™ Creator, a free IDE provided by
Infineon that is used to build PSoC™-based solutions. For information on PSoC™ devices, see:

e AN54181 - Getting Started with PSoC™ 3
e AN79953 - Getting Started with PSoC™ 4
e AN77759 - Getting Started with PSoC™ 5LP

For information on PSoC™ Creator, see the PSoC™ Creator home page.

Note: The PSoC™ 3, PSoC™ 4, and PSoC™ 5LP implementation of a bootloader system is different from
that for PSoC™ 1. For more information on PSoC™ 1 bootloaders, see AN2100, Bootloader:
PSoC™ 1.

As with all Infineon PSoC™ products and supported IDEs, PSoC™ Creator attempts to reduce your design time
by automating the implementation of basic system functions. The bootloader is no exception - it can literally
take just minutes to add a simple I°C bootloader to your project. For information on how to do this, see Add a
bootloader to your PSoC™ Creator project.

6.1 PSoC™ Creator bootloader projects

PSoC™ Creator uses the term “project” to define a complete, self-contained application. In addition to the CPU
code, a project has data bytes that are used to configure the PSoC™ device’s analog and digital peripherals for
your application.

Itis important to remember that with PSoC™ Creator, bootloaders and applications are implemented in
completely separate projects. Available project types are: Standard (or “normal,” no bootloader), Bootloader,
and Bootloadable. A fourth project type, Dual-App Bootloader, supports dual application images for high-
reliability applications as described in Customization. You can easily change a project type, for example, from
standard to bootloadable.

You must associate a bootloadable project with a bootloader project. A bootloader project can be associated
with multiple bootloadable projects.

Because PSoC™ has no bootload ROM, the bootloader is placed in flash, as Figure 7 shows. A bootloader
project is placed in flash starting at address zero, and is executed first at device reset. It then implements the
program flow shown in Figure 4 on page 9.

Application note 14 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
https://www.infineon.com/dgdl/Infineon-AN213924_PSoC_6_MCU_Device_Firmware_Update_Software_Development_Kit_Guide-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d3171906557&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN54181_Getting_Started_with_PSoC_3-ApplicationNotes-v15_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0724f85d49c2&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN79953_Getting_Started_with_PSoC_4-ApplicationNotes-v21_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07271fd64bc1&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN77759_Getting_Started_with_PSoC_5LP-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071b8fb71dc6&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
https://www.infineon.com/dgdl/Infineon-AN2100_Bootloader_PSOC_1-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0724ab204924&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
_Ref423008257
_Ref423008257
_Ref423008257

o _.
PSoC™ Creator - Introduction to bootloaders II‘I f| neon

PSoC™ Bootloader - How it works

Flash Bootloadable
el project #2
Flash
memory
Bootloadable Bootloadable
project project #1
Standard Bootloader Dual-app
roiect roiect bootloader
proJ pro) project
Address 0
Figure 7 PSoC™ Creator projects and flash memory usage
6.2 Bootloader Options

PSoC™ Creator provides a Bootloader Component, which has configuration options to set the run-time
behavior of the bootloader. Some of the options are:

e Wait for Command: Yes or no to wait for a command from the host before passing control to the
bootloadable.

o Wait for Command Time: Timeout from 1 to 2550 msec, or wait forever. Valid only if Wait for Command is
Yes.

e Communication Component: The communication Component that the bootloader uses. The PSoC™
Creator bootloader supports many types of communication ports, including a custom option.

o Checksum Type: Type of check bits to use with packets to and from the host: checksum or CRC.

For more information, see Figure 9 on page 19 as well as the Bootloader Component datasheet.

6.3 Communication component

A PSoC™ Creator bootloader project must include at least one bootloader-compatible communication
Component. Currently, the I>C Slave, UART, SPI, and USBFS Components are supported for the bootloader as
standard.

If you want to use a nonstandard communication channel for bootloading, you can easily create a custom
Component. You must write an API for the Component that supports just five functions: Start, Stop, Reset,
Read, and Write. For more information on how to create a bootloader custom communication Component, see
the PSoC™ Creator Component Author Guide.

6.4 Recovering from failures

The PSoC™ Creator Bootloader Component uses the top (64-, 128-, or 256-byte) row of flash to store data on the
application (or both applications for the dual-app option). This data includes checksums and other validity bits
for each application. When a bootload starts, these bits are cleared. They are recalculated and updated when
the bootload successfully completes.

If power fails or communication is lost during the bootload operation, the checksum of the bootloadable
project will be incorrect at the next device reset. The bootloader then waits for another command from the host
to start another bootload operation.

Application note 15 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/bootloader-and-bootloadable/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families

PSoC™ Creator - Introduction to bootloaders

(infineon

PSoC™ Bootloader - How it works

6.5 Backward compatibility

PSoC™ Creator is designed such that bootloadable projects built with new versions can be linked to and are
compatible with bootloaders built with older versions.

6.6 Bootloader memory usage

As noted previously, a PSoC™ Creator bootloader uses memory that could otherwise be used by an
application. This may impact application design, or cost, and thus bootloader memory usage is an important
consideration. The PSoC™ Creator Bootloader Component memory usage varies significantly, depending on

the following:

e Communication Component used

e Bootloader Component configuration options selected (see Figure 9 on page 19)

e Target device - PSoC™ 3, PSoC™ 4, and PSoC™ 5LP have 8051, ARM® Cortex®-M0 and Cortex® -M0+, and
Cortex®-M3 CPUs, respectively

o Compiler and its optimization settings

For details, see the specifications listed in the Bootloader Component datasheet. For a specific bootloader
project, after building the project, check the .map file generated by the compiler to determine the exact

memory usage.

6.7 Flash protection

All PSoC™ 3, PSoC™ 4, and PSoC™ 5LP devices include a flexible flash-protection system that controls access to
the flash memory. This feature is designed to secure the proprietary code, but it can also be used to protect
against inadvertent writes to the bootloader portion of the flash memory.

The flash memory is organized in rows of 64 to 256 bytes, depending on the device family. You can assign one of
the four protection levels (two levels for PSoC™ 4) to each row; see Table 2. Flash protection levels can only be
changed by performing a complete flash erase. For more information on PSoC™ flash and security features, see
respective device data sheet or Technical Reference Manual (TRM).

Table 2 Flash protection levels
Protection Setting [PSoC™ 3 and PSoC™ 5LP PSoC™ 4
Allowed Not Allowed Allowed Not allowed
Unprotected External read and - External read and -
write, write,
Internal read and Internal read and
write write
Factory Upgrade External write, External read NA NA
Internal read and
write
Field Upgrade Internal read and External read and NA NA
write write
Full Protection Internal read External read and Internal read External write,
write, Internal write (see
Internal write Note below)

Application note

16

001-73854 Rev.”N
2023-12-01

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/bootloader-and-bootloadable/

o _.
PSoC™ Creator - Introduction to bootloaders II‘I f| neon

PSoC™ Bootloader - How it works

Note: To protect the PSoC™ 4 device from external read operations, you must change the device
protection settings to “Protected” in PSoC™ Creator .cydwr system settings and use the PSoC™
Programmer software to program the device. You must also enable “Chip Lock” from Options >
Programmer Options before programming the device for these settings to take effect.

To protect the bootloader portion of flash, set the corresponding rows to “full protection”. PSoC™ Creator lets
you easily select the protection setting for each row. For more information, see the PSoC™ Creator help or one
of the advanced bootloader application notes listed in Reference.

6.8 Customization

A bootloader is a PSoC™ Creator project and, similar to any other PSoC™ Creator project, enables PSoC™ to be
configured for any application. This, in turn, makes it easy to customize a bootloader, especially for high-
reliability applications:

e Other tasks during bootloading: Components can be added to the bootloader project schematic; in many
cases, these Components can perform complex tasks without the use of the CPU.

e Ifyou do need to use the CPU to perform another task while bootloading, the easiest way to do so is to
structure the task as a state machine, embedded in a periodic interrupt handler. This way, the bootloader
and the secondary task can operate as independent processes.

e Preserve pin states: Pin Components can be placed on the schematic and their states set for both device
reset and bootloader startup. For more information on controlling pin states, see AN61290, PSoC™ 3 and
PSoC™ 5LP Hardware Design Considerations, or AN88619, PSoC™ 4 Hardware Design Considerations. See
also Appendix A.

Application note 17 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/dgdl/Infineon-AN61290_PSoC_3_and_PSoC_5LP_Hardware_Design_Considerations-ApplicationNotes-v17_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07254f524a25&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN88619_PSoC_4_Hardware_Design_Considerations-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0735c68558fd&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink

. [
PSoC™ Creator - Introduction to bootloaders In f| neon

Add a bootloader to your PSoC™ Creator project

7 Add a bootloader to your PSoC™ Creator project

Now that we have seen how bootloaders are implemented in PSoC™ Creator, let us look at some practical steps
for doing so. For more details, see one of the advanced bootloader application notes listed in Reference.

If you are using PSoC™ Creator 3.1 or earlier, see Appendix B.

7.1 Building a bootloader

With other MCUs, you usually add a bootloader to an application. However, with PSoC™ Creator, the best
practice is to design in the opposite direction - first, create a bootloader project and then create one or more
bootloadable projects.

Create a new project. Drag onto the project schematic a Bootloader Component and the communication
Component to be used for bootloading. For more details, refer to the respective Getting Started application
note listed in Reference. As Figure 8 shows, the Bootloader and Bootloadable Components are available under
the System tab in the Component Catalog window. The figure also shows a bootloader project schematic with a
Bootloader Component and an 12C communication Component for bootloading.

thmﬂm el
B
Cypress | OffChip qp
L‘ Cypress Component Catalog

+5 Anabog
o CapSense

b -LI"C Slave [SCE rrada) [v3.
C (5CH rrooche) [v3.20]

+ Iz'E-
o] LIM [v3.40]

%) Senal Communication Block (SCEB) [v3.20]
- SMBus/PMBus Slave
Ll
|

| Software Transmit UART [v1.50] \'TWDH-IF.EM Boofdr.cycher | marLc » 4 kX
+ |]
G LART (508 mede) [v1.20]
i UART [v2.50] O
+ g Digital =
i Cisplay 'S
¥ % Ports and Ping \
+ 55 Power Supervision
- ™ 1504
S System ey
| e} Bootioadable [v1.50] —1
#| Bootloader [v1.50] |

@] Clock [v2.20]

@] Die Temperature [v1.0]

#| Emulated EEFROM [v1.10]

& Global Signal Reference [vi.0]

& 1LQ Trim [v2.0]

| Interrupt [v1.70]

| Real-tirme clock (RTC) [w1.10]
&8 Thermal Management

Figure 8 Component catalog and schematic windows

Then, configure the Bootloader Component, as Figure 9 shows. Note the menu to select the communication
Component in Figure 9 - this is the Component that is used to communicate with the host. A bootloader
project must have this Component defined and selected. You can select from all of the bootloader-compatible

Application note 18 001-73854 Rev.*N
2023-12-01

C
PSoC™ Creator - Introduction to bootloaders II'I f| I'IEOI'I

Add a bootloader to your PSoC™ Creator project

communication Components that you have on your schematic or you can select Custom_lInterface and define
your own. You can also select the None, Launcher Only option. This supports only a limited functionality of the
bootloader and does not require a communication Component.

Note: In PSoC™ Creator 3.2, the option None, Launcher Only is not available.

Name: Bootloader

" General | Builtn | qp
Options Optional commands
Communication component: Get flash size
Dual-application bootloader 'T' interface Werify row
(Golden image support e. launcher only Erase row
Auto application switching Get row chechsum
[] Copier Werify application checksum
Wait for command Send data

Wait for command time (ms): 2000 EI Sync bootloader
{0: wait forever) Get application status
Bootloader application version: oo 00 Get metadata

Packet chechsum type: Basic summation hd

Fast bootloadable application validation
Boctloader application validation

O Secuykey: 0c[11][22][33][44][55] [e8]
T | —

Figure 9 Bootloader component configuration

Finally, in the design-wide resources (DWR) window, finish the project by connecting schematic pins to physical
pins, as Figure 10 shows.

Startpage | TopOesgn.crsch [Bdeyewe]

are
-
.
[
-
L
-
L]
.
-
.
-
e
-
-
“
-
“
.
.
e
-
-
-

Peeffssreflied, FEREREEE]

333683383

& Pins | W\ Arsog | (D) Cods | #F Intermups | L5 OMA | 89 System | & Orectves | Q) P&

Figure 10 Bootloader project pin assignments

Application note 19 001-73854 Rev.*N
2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders < In f| neon

Add a bootloader to your PSoC™ Creator project

Build the project. Everything else is done for you, and the result is a basic bootloader project. main.c file has
just one line of code, to call the bootloader start function. This function must be manually added in main.c, as
Figure 11 shows.

SiartPage | TopDesign.cysch -d bR

Figure 11 Bootloader main.c

7.2 Adding bootloadable applications

After the bootloader is created, you can define as many bootloadable applications, that is, projects, as you
want.

A bootloadable project must have on its schematic a Bootloadable Component (see Figure 8 on page 18). The
project must also be associated with a bootloader project, as Figure 12 shows. To do so, select the location of
the bootloader’s.hex and .elffile in the Bootloadable Component configuration dialog; see Project Files for
details.

Application note 20 001-73854 Rev.*N
2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders < In f| neon

Add a bootloader to your PSoC™ Creator project

Boatloadable 1
Bootloadable

(7=
Mame Bootioadable_1

General - Dependencies | Bult-n d b

Bootiaadahls prepscts requine & reference o the assaciated Bactloader propact’s HEX and ELF
HETHH%MWH*M Thee ELF files extension depends on IDE and can be
"o, "o, ".xd, or ofher,

Bootiaadar HEX fila:

..\Boot Ldr.cyden\DFEOS D PE05T_Ked 957" Diabasg’ Bosot L e
F E— -

Baotiaadar ELF fia:

\BootLdr cyden\DPEIST\DPE0ST_Ked_951} Dby’ BootLdr aif

Duntee Lo [#ow J[coes

Figure 12 Bootloadable / bootloader projects link

A PSoC™ Creator workspace can have multiple projects. In many cases, a bootloader project exists in the same
workspace as its associated bootloadables. However, bootloaders and bootloadables can exist in separate
workspaces and separate locations on your PC. Before getting started with PSoC™, it is a good idea to work out
a workspaces / projects plan for your overall system development needs.

Note: Flash protection settings for a bootloadable project are ignored; the associated bootloader
project’s flash protection settings take precedence.

Note: The Bootloadable Component has an option to specify a checksum exclude section, and its size.
This section is typically used to store flash data that may change, e.g. an odometer or a data log,
without affecting the bootloadable checksum validation done by the bootloader. For more
information, see as the Bootloadable Component datasheet.

7.3 Debugging bootloadable projects

In the PSoC™ Creator bootloader system, the bootloader project executes first and then the bootloadable
project. The jump from the bootloader to the bootloadable project is done through a software-controlled
device reset; see Appendix A for details. This resets the debugger interface, which means that the bootloadable
project cannot be run in debugger mode.

Application note 21 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/bootloader-and-bootloadable/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-component_datasheet

o _.
PSoC™ Creator - Introduction to bootloaders II‘I f| neon

Add a bootloader to your PSoC™ Creator project

To debug a bootloadable project, disable the bootloadable component, debug the project, and then convert it
back to Bootloadable after debugging is done.

Another option is to program the Bootloadable project .hex file onto the device and then use the Attach to
running target option for debugging while the bootloadable project is running. In this case, you can debug the
bootloadable project only from the point where the debugger is attached to the device.

7.4 Customizing your bootloader

As mentioned in Customization on page 13, you can customize your bootloader by dragging additional
Components onto your schematic and adding code to main.c. As a simple example, you can add a PWM, a
Clock, and a Pin Component to blink an LED as a “bootloading” indicator, as Figure 13 and Figure 14 show.
The bootloader Component start API must be manually placed in main.c, you can easily configure the
Components to make the LED blink at any desired frequency and duty cycle.

Note that the PSoC™ configuration for the bootloader project exists only until the bootloader transfers control
to the bootloadable. The PSoC™ device is then reconfigured for the bootloadable project. If you want the same
functionality in both projects, you can place the same Components and code in both projects.

Start Page / TopDesign.cysch | Btidr.cydwr | main.c | PWM_Lh v dbx

12C_1
12C

sdaf—{ SDA
scl—afm| SCL

Slave

BN/ 000-F]

PWM_1
PWM

tcf

O kill pwmf—+{m| Pin_1

Clock_1 (R~ —pclock
sokiz - [0 }—reset interrupti=

16-bit (Fixed)

<
_Page1 | b

Figure 13 Bootloader project customization

Start Page | TopDesign.cysch *main.c - dbx

\ND PROP Y IN MATION
HE PROPERTY OF your company.

12! #include "project.h"

Bootloader 1 Start():

for(:;)
i

Place your application code here. #/

[1 END OF FILE */ -

Figure 14 Bootloader customization in main.c

Application note 22 001-73854 Rev.*N
2023-12-01

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

Add a bootloader to your PSoC™ Creator project

7.5 Calling the bootloader

As mentioned in Bootloader - Host timing, you can avoid bootloader initial timing issues by having the
application call the bootloader. Then, the application can respond to an external event such as a button press
or a message from the host, and start a bootload operation.

The Bootloader Component has an APl with a public function, Bootloader_Start(). Call this function to start a
bootload operation from the bootloadable project code.

Bootloader_Start() does a software reset of the device, and the bootloader takes over the CPU. Resources and
peripherals are reconfigured for the bootloader; the bootloadable configuration is disabled. Bootloadable
project code, including interrupt handlers, is no longer executed. When the bootload operation is complete, the
CPU is reset again. See Appendix A for details.

Application note 23 001-73854 Rev.*N
2023-12-01

_Ref423009410
_Ref423009410

o~ _.
PSoC™ Creator - Introduction to bootloaders In f| neon

Loading your projects into PSoC™

8 Loading your projects into PSoC™

Similar to standard projects, a bootloader project can be installed in a target PSoC™ device only through JTAG
or SWD, using PSoC™ Creator or PSoC™ Programmer. After a bootloader is installed and active, bootloadable
projects can be installed by a bootload operation instead of through JTAG or SWD.

PSoC™ Creator includes a PC program called Bootloader Host, which does the PC side of a bootload operation.
It communicates with the bootloader in a target PSoC™, either directly through a USB port or through an I*C
port, by use of a programmer such as the CY8CKIT-002 MiniProg3 kit. To use Bootloader Host, you need to
know about the output files generated for bootloader and bootloadable projects.

8.1 Project files

Once built, all PSoC™ Creator projects produce .hex files as outputs. These files can be used with any HSSP
programmer device, including MiniProg3. Hex files contain bytes for both CPU code and project configuration.

For normal and bootloader projects, the .hex file contains code and data bytes for just that project.
Bootloadable .hex files are different in that they contain code and data bytes for the bootloadable and the
associated bootloader project - both projects are programmed in at the same time.

Bootloadable projects are also different from normal projects in that they produce a second file, of type .cyacd,
as an output, as Figure 15 shows. The .cyacd file contains code and data for just the bootloadable project,
without the associated bootloader. It is intended to be used by a bootloader host program, and downloaded to
a target PSoC™ that has the associated bootloader project already installed.

Fle Edt Vew Favorkes Tools Heb i
Ok -) (T O sewch |5 raises | [
Fest) CDoouments anvd Settingsimiea Desktopl ANGO3 1 7180 \Hedlo cydsn| ARM_GCC_4411Debug v . Go
Folders X) deps = ofm.ie LD _Char 1 M0
=) ANG0317 A I CadStart st = oPmo = main kst
S 3 ANGOSI7-P 5 Cm3Start.0 = Cyspe.lst = main.o
S O Bdr 8 core_om3. bt I Cyspx.0
S £ Btidr.cydsn 3 core_em3.0 I3 cyukds,ist
3 D ARM_GCC_441 = CyBootAsmGou. lst Hows.o
8 0 (;ebu)- g"_'y{botiw‘yuo entrysddress bt
3 £ codsosnitens =2 oybtidr_common. bt = Helo.a
¥) DPOOST_Ked 816 B ot _commen.o DTN —
5 £ Generated Scurce T cybtide_loadabie Jst T Helloof
=T wc“;n' I3 oybtidr_badabis.o I3 Helo. et
&) Goocdbye.cydsn gcw'k{ a P
S £ Helo.cydsn = Cyomac.o = Helo. b
s __)&RM GOC 441 = yftter_cfg st = Mello.map
2 6 &_{”" I oyfeter_cfg.0 T LCD_Char 1 12
£ degs T3 CyFiash is T8 LCD_Cha 1.0
B 2 codegerien = Cyflashoo 23 LCD_Char _1_LCDPort it
% () DPEUS!_Ked 816 = cbae S LCD_Char 1 _LCDPOrt.0
Sl | mu.;d_fjcu(e Scnbo FLCD_Char 1 pM st
) TopDesion v
Figure 15 Bootloadable project files
Application note 24 001-73854 Rev.*N

2023-12-01

https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

Loading your projects into PSoC™

8.2 Use cases

After the projects are built and the output files created, you typically use one of the following scenarios (see
also Figure 4 on page 9):

1. Create and build a bootloader project. Program its . hex file into the target PSoC™ using an HSSP
programmer such as MiniProg3.

2. Reset the target PSoC™ to start the bootloader. Because the bootloader is the only project in flash, it waits
forever for bootload commands from the host.

3. Create a bootloadable project, associate it with the bootloader project, and build it. Download its .cyacd file
to the target using a host program and the previously installed bootloader.

For subsequent bootload operations, note that because a valid bootloadable exists in flash, the bootloader
waits for the host for only a short period of time before passing control to the bootloader.

In a factory production scenario, you can do the following instead:

1. Create and build a bootloader project.

2. Create a bootloadable project, associate it with the bootloader project, and build it. Program its .hex file
(which contains both bootloader and bootloadable) into the target PSoC™ device using an HSSP
programmer such as MiniProg3.

3. Reset the target PSoC™ device to start the bootloader. The bootloader sees a valid bootloadable in flash
and, after a possible timeout wait for bootload commands from the host, passes control to the
bootloadable.

Note: If the Bootloader Component has the Fast bootloadable application validation box checked, the
first time the bootloader executes it checks for a valid bootloadable application. If the bootloader
detects a valid bootloadable application, it updates the flash row that contains application
metadata. This may cause a mismatch in a flash checksum production test. Review and adjust
your production test processes accordingly.

If in future you update the bootloadable, you can download its .cyacd file to the target using a host program.
This overwrites the previous version of the bootloadable.

Application note 25 001-73854 Rev.*N
2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders < In f| neon

Dual-application bootloader considerations

9 Dual-application bootloader considerations

The PSoC™ Creator Bootloader and Bootloadable Components support dual application images for high-
reliability applications, as described in Customization. The PSoC™ Creator build process for a dual-application
bootloader is similar to that for single applications, but there are a few differences:

1. Inthe Bootloader Component configuration dialog, check the box Dual-application bootloader, as Figure
16 shows. In PSoC™ Creator 3.2 and earlier, this option is named Multi-Application bootloader.

r . -
Configure 'Booticader |0 o |
Name Boctioader
General Buit-n 4 b
Options Optional commands
Communication component (. o8 v v, Get flash size
V| Dual-appbcation bootioader Vedfy row
Golden image support V' Erase row
7| Ao appication swiching V! Gat row chacksum
v ‘-'cf'/ W' checksum
7! Wat for command v| Send data
Wat for command time (ms) 2000 ¥ Sync boctioader
(0: wat fornver) v Get apphcation status
Boctioader appcation version 0000 Get metadsta
Packet checksum type Basic summaton -
Fast bootioadable appication vakdation
V| Bootioader applcation valdaton '
Securty key |23 &4
| | Dstashest | [oK] ooy || Conce i
Figure 16 Bootloader component configuration

2. Project Files: A dual-application bootloadable project has five output files, instead of the two files shown in
Figure 17. These files allow placement of the bootloadable project as either application 1 or application 2,
as Figure 17 shows. For a high-reliability application, you can place two copies of the same bootloadable
project into flash.

You can also create two different bootloadable projects. You can then install one of them as the first
application and the other as the second application.

Application note 26 001-73854 Rev.*N
2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders In f| neon

Dual-application bootloader considerations

o
@‘\ DA « Hellocydsn » Coted3 » ARM GCC 484 » Debug » = ‘y Fe)
File Edit View Tcols Help
Crganize Open Shace with » Bun New folder - i ®
{ Favorites > deps CySpe.o
Ml Desktop ARM_C_FILE.tat Cyutils bt
Downloads Booticadable lst cywtils.o
Recent Places Booticadable.o GNU_ARM_ASM FILE.ba
& Computer CREne Hello.hex
%2 Dropbox Cm3Start.lst Hello 1.2 Bootloadable

Cm3Start.o Hello_1.cyscd H
- roject #2
A Libranes CyBootAsmGnu st Hello_1.ef \ proj
CyBootAsmGnu.o Hello_1 hex

* Documents
o' Muss cybootioader.lst Hello_1.map
- Pictures cyboctioader.o Hello 2.2
S CyOmacist Hello_2.cyacd Bootloadable

\

B Videos : CyDmaco Hello_2.f project #1
cyfater_ciglst Hello_2hex
& Computer cyftter_cigo Hello_2.map
& osic) oftter g 1.0 Hello-ARM_GCC_884-Debug-SUILDJog Dual-app
&t mkea (\\SPENCER\spencer202) (S cyfittes_cfg 2.0 LCDJst bootloader
— Marcoe (W) 2 Cyflashust Do pI’O]eCt
2t mkea (\172.30.311%) (%) CyFlash.o ?LCD_LCDPort st Address 0
2t Public (\\172.30.31.159) (V) 1 Cylibst LCD_LCDPort.o
2 Download (\\172.3031159) (Z) Olibo 2 LCD_PMUse
) AC on tpems.cypress.com T cymetadatalst LCD_PMo
5 DC on tpms.cypress.com Ccymetadata.o Morary.deps
W My Web Sites on MSN T cyPmulst UNK_options.t
|, ANS4460-Proj.op cyPmo mainlst
CySpc.ist mano
S dems selected Date moddied: 6/24/2015 4359 PM ste crested: 6/24/2015 4:55 PM
vl e 187 M8
S iterns selected & Computer
Figure 17 Dual-application bootloadable project files

As noted previously, .hex files are installed through the JTAG/SWD port, typically when a product is
manufactured. The .hex files contain the bootloader project as well as one or both of the bootloadable projects.

The.cyacd files are installed in the field, for example, with a bootloader host program.

9.1 Application launch process

One of the decisions that a dual-application bootloader must make is which (if any) application to “launch”, or
transfer control to. Each application has two characteristics that drive this decision:

e Active: As noted previously, the PSoC™ Creator Bootloader Component uses the top rows of flash to store
data on the applications (also known as “metadata”). This data includes an “active” bit. Only one of the
applications has its active bit set, and that is the application that is preferred for launching.

o Valid: Before launching, the bootloader tests each application against the check bytes in the metadata to
determine which, if any, of the applications are valid. The test may fail, for example, due to corrupted flash
memory or having no application installed in that flash. In this case, the application is “not valid”.

Table 3 shows the decision matrix that the bootloader uses to decide which application to launch. Note that
some of the cases, such as both applications being active, are illegal and should not happen under normal
conditions.

Application note 27 001-73854 Rev.*N
2023-12-01

PSoC™ Creator - Introduction to bootloaders

infineon

Dual-application bootloader considerations

Table 3

Application launch decision matrix

Case

Application #1

Application #2

Active Valid

Active Valid

Bootloader action

0 0

0 0

Stay in bootloader,
wait forever for
host

same as case #0

same as case #0

w

o
o

=
=

Go to Application
#2

same as case #0

same as case #0

same as case #0

~N (o o b

O | O |0 | O
===

= | = |0 | O
= | O | |O

Go to Application
#2

[o0]

same as case #0

same as case #0

10

same as case #0

11

===
O | O | O |Oo

= |—= OO
= | O |k |O

Go to Application
#2

12

Go to Application
#1

13

Go to Application
#1

14

Go to Application
#1

15

Go to Application
#1

Application note

28

001-73854 Rev.”N
2023-12-01

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

Summary

10 Summary

This application note has provided a basic overview of bootloaders - how they are used and important design
considerations. It has also shown how the PSoC™ Creator design environment addresses these considerations
for PSoC™ 3, PSoC™ 4, and PSoC™ 5LP devices.

You have also seen a basic overview of how to use PSoC™ Creator to quickly and easily add a bootloader to your
design. For application notes that cover these topics in more detail, see Reference.

29 001-73854 Rev.”N

Application note
2023-12-01

PSoC™ Creator - Introduction to bootloaders

(infineon

Appendix A - Bootloader and device reset

11 Appendix A - Bootloader and device reset

As noted elsewhere in this application note, transferring control from the bootloader to the bootloadable, or
vice versa, is always done through a device reset. This may be a consideration if your system must continue to
perform mission-critical functions while changing from one program to the other. This section details why reset
must be used, as well as its implications for device performance in your application.

11.1 Why is Device reset needed?

To understand why device reset is needed, it is important to note that the bootloader and bootloadable
projects in your system are each completely self-contained PSoC™ Creator projects. Each project has its own
device configuration settings. Thus, when you change from one project to the other, you can completely
redefine the hardware functions of the PSoC™ device.

To implement complex custom functions, device configuration can involve the setting of thousands of PSoC™
registers. This is especially true for PSoC™’s digital and analog routing features. When you configure the
registers and routing, you must make sure that, in addition to setting the bits for the new configuration, you
reset the bits for the old configuration. Otherwise, the new configuration may not work, and may even damage
the device.

So, when changing between bootloader and bootloadable projects, a device software reset (SRES) is done. This
causes all PSoC™ registers to be reset to their default states. Configuration for the new project can then begin.
Note that by assuming that all PSoC™ registers are initialized to their device reset default states, configuration
time and flash memory usage are both reduced.

11.2

As described in application notes AN61290, PSoC™ 3 and PSoC™ 5LP Hardware Desigh Considerations, and
AN60616, PSoC™ 3 and PSoC™ 5LP Startup Procedure, during the reset and startup process, PSoC™ /0 pins
are in three distinct drive modes, as Table 4 shows.

Effect on device I/O pins

Table 4 PSoC™ 1/0 pin drive modes during device reset
Duration (Typical)
Startup event 1/O pin drive mode Slow IMO Fast IMO Comment
(12 MHz) (48 MHz)
Device reset (SRES) | HI-Z Analog While reset is active, the
active I/Os are held in the HI-Z
. 40 us
Device reset Analog mode.
removed
Nonvolatile latches | NVL setting: Duration depends on code
(NVLs) HI-Z Analog, execution speed and
copied to I/O ports Pull-up, or Pull- ~12ms ~4 ms configuration complexity.
Code starts down
executing
I/O ports and pins PSoC™ Creator Eight possible drive
are configured project N/A modes. See the device
configuration datasheet for details.
Code reaches main() | Code may change
. . N/A
I/O pin function
Application note 30 001-73854 Rev.*N

2023-12-01

https://www.infineon.com/dgdl/Infineon-AN61290_PSoC_3_and_PSoC_5LP_Hardware_Design_Considerations-ApplicationNotes-v17_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07254f524a25&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN60616_PSoC_3_and_PSoC_5LP_Startup_Procedure-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d072f1625537b&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink

. [
PSoC™ Creator - Introduction to bootloaders In f| neon

Appendix A - Bootloader and device reset

For details on NVL usage in PSoC™, see a device datasheet. In your PSoC™ Creator project, the NVL settings are
established in two places:

e /O ports: the Reset tab in the individual Pin Component configurations
e All other NVLs: The System tab in the design-wide resources (DWR) window

NVLs are updated when the device is programmed with your project. Note that a bootloadable project cannot
set NVLs; its DWR settings must match those in the associated bootloader project.

Final I/O drive modes are set by individual Pin Component configurations.

Figure 18 shows the timing diagrams for device startup and configuration. The example in the middle diagram
is for PSoC™ 3; similar processes exist for PSoC™ 4 and PSoC™ 5LP. For more information, see AN60616 -
PSoC™ 3 and PSoC™ 5LP Startup Procedure.

i(— Hardware Startup —9;(—Firmware Staﬁup%é
€— Reset —»¢— Boot -9.
e CPU halted 9(—CPU Specific 5. Main.c
: Source File '5‘ :
GCyFltter cfg. c%
\ Reset Released
v
- == Hardware Startup —, Firmware Startup \
o CPY ¢ KeilStart A51 > & Mainc — -
Configure Clear : OMAC ;
i¢— Debug, —¢— Clear SRAM —)(— IDATA —2f € CyFitter_cfg.c 54— T
" Bootloader ! : configuration
€ CyFitter_cfg.c >
Register DSI config, Digital array, Analog set
;E initialization)ge Digital routing _>§e ClockSetup() > (default)E
Figure 18 Device startup process diagrams
11.3 Effect on other functions

At device reset, UDB registers are reset, so all UDB-based Components cease to exist and their functions are
stopped. The same is also true for configurable analog Components. All fixed peripherals - digital and analog -
are reset to their idle states. This includes the DMA, DFB, timers (TCPWM), I2C, USB, CAN, ADCs, DACs,
comparators, and opamps. All clocks are stopped except the IMO.

All digital and analog routing control registers are reset. This causes all digital and analog switches to be
opened, breaking all connections within the device. This includes all connections to the I/Os except the NVLs.
All hardware-based functions are restored after configuration (see Figure 18). All firmware functions are
restored when the project’s main() function starts executing.

Application note 31 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/dgdl/Infineon-AN60616_PSoC_3_and_PSoC_5LP_Startup_Procedure-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d072f1625537b&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN60616_PSoC_3_and_PSoC_5LP_Startup_Procedure-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d072f1625537b&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink

o _.
PSoC™ Creator - Introduction to bootloaders < II‘I f| neon

Appendix A - Bootloader and device reset

11.4 Example: Fan Control

Let us examine how a bootloader and its associated device reset can be integrated into a typical application
such as fan control. PSoC™ Creator provides a Fan Controller Component, which encapsulates all necessary
hardware blocks including PWMs, tachometer input capture timer, control registers, status registers, and a DMA
channel or interrupt. For more information, see the Fan Controller Application page.

The fan control application is in a bootloadable project. Optionally, the bootloader may be customized to keep
the fan running while bootloading. The fan can also be kept running while the device is reset, during the
transfer between the bootloader to the bootloadable, as Table 5 shows.

Table 5 PSoC™ i/o pin drive modes during device reset for fan controller
1/0 pin drive mode Comment
HI-Z Analog Optionally, add an external pull-up or pull-down resistor to the PWM pin for

100% duty cycle. This may not be needed because the fan may keep spinning
due to inertia.

NVL setting: HI-Z Analog, Optionally, set the PWM Pin Component reset value to Pull-up or Pull-down

Pull-up, or Pull-down for 100% duty cycle. This may not be needed because the fan may keep
spinning due to inertia.

PSoC™ Creator Set the PWM Pin Component drive mode and initial state for 100% duty cycle.

project configuration The PWM Component becomes active but does not run.

main() starts executing When PWM_Start() is called, the PWM starts driving the PWM pin at the

Component’s default duty cycle. Firmware can read the tachometer data and
start actively controlling the duty cycle.

Application note 32 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-5-lp-arm-cortex-m3/

o~ _.
PSoC™ Creator - Introduction to bootloaders In f| neon

Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier

12 Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier

12.1 Building a bootloader

To create a bootloader project, simply create a project of type Bootloader or Multi-App Bootloader, as Figure
19 shows. Note that in the example, the project name “BootLdr” is different from the workspace name
“MyWork” - a PSoC™ Creator workspace can contain multiple projects of different types.

(7)=
- Designl Other 4 b

|E| Empty Templates -

J Empty PSoC 4 Design Creates g PSoC 4, 32 bit, design project.

j Empty PSoC BLP Design Creates a PSoC 5LP, 32 bit, design project. =
[=] PSoC 3 Starter Designs

ﬂ ADC_DMA_VDAC Shows how to transfer data from an ADC to a DAC using DMA with no CPU intervention.

Shows a 16-channel, 12-bit Delta Sigma ADC in PSoC 3 sequenced in hardware; samples are

EI DelSig_16Channel transferred from ADC to SRAM using DMA - without processor intervention.

El DelSig_I2CM Shows the 16-bit differential ADC, hardware multiplexed into 8 channels and transported over [2C.
EI DelSig_I2CS Shows the 16-bit differential ADC, hardware multiplexed into & channels and transported over [2C
ﬂ DelSig_SPIM Shows the 16-bit differential ADC, hardware multiplexed into & channels and transported over SPIL

Shows how to filter an analog input all in hardware, and provides all the DMA setup to transfer the
data from the ADC directly to the Digital Filter Block, bypassing the processor.

E Hiw/ Fan_Control_with_Alert Shows how performing fan control in hardware completely frees up the CPU,

2| Filter_ADC_VDAC

=1 PSeC 4 Starter Designs

EI ADC_Differential_Preamplifier ﬁi;ogvfrs how to sample four different channels with Sequencing ADC and send results to PC using o

Mame: BootLdr
Location:; C:\Users'mit’\Desktop®, D
[-] Advanced

Workspace: [Cmate Mew Workspace ']

Workspace Name: My'Work

Device: |CYBC3866AXI-040 - (Last Used PSoC 3 Device)

Sheet Template: | Empty (11" x 85")

Application Type

Bootloader

Multi App Bootloader

L Bootloadable

Figure 19 Creating a bootloader project in PSoC™ Creator 3.1 or earlier

After a project is created, drag onto the project schematic a Bootloader Component and the communication
Component to be used for bootloading as Figure 20 shows.

Application note 33 001-73854 Rev.*N
2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders In f| neon

Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier

Saarch for 5 L] L] el =
Cypress | Off-Chip qp
u Cypress Component C.L‘.albg
g5 Analog
& 88 CapSense
SF - Communications
= 12C
— b ETI2C Slave [SCE rade)
2 12C [5CB mode) [v3.20]
+ G 125
o] LIN [v3.40]
&) Sensl Communication Block (5CB) [v3.20]
- SMBus/PMBus Slave
#| Software Transmit LART [v1.30]
+ o 5Pl
% UART (508 mode) [v3.20]
i UART [+2.50]
5 Digital
* & Display
Ports and Fing
gy Power Supervision Booticader_|
= System

_____.——'——’>_w - ”“;;5"-”'

(o] Bootloadable [v1.50] EsrE
Clock [v2.20] ' ' Lo i
Die Temperature [v1.0]
Ernulated EEFROM [v1.10]
Global Signal Reference [v2.0]
LG Trien [v2.01
%) Imterrupt [v1.70]

%) Real-time clock (RTC) [w1.10]
&5 Thermal Management

v3.20]

"TopDesignoysch | Boofdr.cpdwr | man.c ~dkX

E’¥J!’GD¢'F’~‘«/

¢ lislEs 2 [2] [=

Figure 20 Component catalog and schematic window

Then, configure the Bootloader Component, as Figure 21 shows. Note the menu to select the communication
Component in Figure 21 —this is the Component that is used to communicate with the host. A bootloader
project must have this Component defined and selected. You can select from all of the bootloader-compatible
communication Components that you have on your schematic or you can select Custom_Interface and define
your own.

Application note 34 001-73854 Rev.*N
2023-12-01

PSoC™ Creator - Introduction to bootloaders

infineon

Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier

Configure 'Bootloader’ m
Mame: Bootloader_1
General [* Built-in 4 b
Options Optional commands
Comiictm et [Ely] 9 Gt
Dual-application bootloader ~ Custom interface Verffy row
o —
[[] Golden image support Erase row
Auto application switching Get row checksum
[] Copier Verify application checksum
Wait for command Send data
Wait for command time {ms): 2000 = Sync bootloader
(0: wait forever) Get application status
Bootloader application version: 0000 [7] Get metadata
Packet checksum type: Basic summation -
Fastb . .
Boctloader application validation
Seautykey: O«
o] — = T =

Figure 21

Bootloader component configuration

Finally, in the design-wide resources (DWR) window, finish the project by connecting schematic pins to physical

pins as Figure 22 shows.

E_—

B8
wow o mom wom .

cEuG
CEuG

Name
5 5
HossssaceossaffJPfsaonzaeecs
© SFEFFEIIEIEEi{jPEIEFEEELf
5 - Siv
= =g
e =g
B e B
(2 ey B
L Lo)
ez e
e L L
=T L4 L)
ey s
%] rem Sow
= o
e ne
CYBC3866AX1-040
o 100-TQFP =
Lo 3
G ne
S n&
R
L)
=5
EE
)
=
3 =
srsffssepsd
B=er s ===+
5 I | i
Pins | W\ Analog | (&) Clocks | ## Interrupts | 25 DMA | # System Directives

/ Port Pin Lock
- - i
hd b d i
Flash Security | [E2 EEPROM 4 b

Figure 22 Bootloader project pin assignments

Application note 35

001-73854 Rev.*N
2023-12-01

PSoC™ Creator - Introduction to bootloaders

Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier

infineon

Build the project. Everything else is done for you, and the result is a basic bootloader project. main.c file has

just one line of code, to call the bootloader start function, as Figure 23 shows.

Start Page =~ TopDesign.cysch Etldr.cvdwr' main.c l * 4P X
1ig / ¥ ==s==s==zss=sss=s===sssss===s==ss=s===== —4
35 * Copyright YOUR COMPANY, THE YEAR
q: * 411 Rights Reserwved
5i * DNPUELISHED, LICEMN3ED SOFTWARE.
?5: *®
"’ * CONFIDENTIAL ANWND PROPRIETARY INFORMATION
81 ¥ WHICH IS THE PROPERTY OF wour cCcompany.
[=H *
105 W o o o o 5 B S S 5 0 S A S
11l wf
125 #include <device.h>
13:
14 woid main()
159 {
165 /% Place your initialization/startup code here (e.g. MyInst 3carc()) */
17 CyBtldr Start():
18!
19; f* CYGlobalIntEnable; */ /¥ Uncomment this line to enable global interrupts. */
20: far(::)
21} {
225 /% Place your application code here. */
23i }
241l
25i
26 /% [] END OF FILE */
27
< >
Figure 23 Bootloader default main.c
12.2 Adding bootloadable applications

After the bootloader is created, you can define as many bootloadable applications, that is, projects, as you
want, using the Bootloadable option shown in Figure 19 on page 33. You can also change an existing Normal

project to type Bootloadable; see page 38 for details.

A bootloadable project must have on its schematic a Bootloadable Component (see Figure 25 on page 38). The
project must also be associated with a bootloader project, as Figure 24 shows. To do so, select the location of
the bootloader’s.hex and .elffile in the Bootloadable Component configuration dialog; see Project files for

details.

Application note 36 001-73854 Rev.*N

2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders In f| neon

Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier

[=

Name: Bootloadable_1

General)/Dependencies }/Built—in] 4 b

Bootloadable projects require a reference to the associated Bootloader project's HEX and ELF
files. The HEX files extension is * hex. The ELF files extension depends on IDE and can be
*eff, “out, *.axf, or other.

Bootloader HEX file:
.\BootLdr.cydsnDP80514DP8051_Keil_951\DebugBoot Ldr hex

Browse...

Bootloader ELF file:
BootLdr cydsn’\DP2051%DP8051_Keil_551hDebug\Boot Ldr eff

Browse...

C o JL o J[oos |

Figure 24 Bootloadable / bootloader projects links

A PSoC™ Creator workspace can have multiple projects. In many cases, a bootloader project exists in the same
workspace as its associated bootloadables. However, bootloaders and bootloadables can exist in separate
workspaces and separate locations on your PC. Before getting started with PSoC™, it is a good idea to work out
a workspaces / projects plan for your overall system development needs.

Note: Flash protection settings for a bootloadable project are ignored; the associated bootloader
project’s flash protection settings take precedence.

Note: If the bootloader is updated, you must also rebuild all bootloadable projects that depend on that
bootloader project. Use the “Clean and Build” option.

12.3 Debugging bootloadable projects

In the PSoC™ Creator bootloader system, the bootloader project executes first and then the bootloadable
project. The jump from the bootloader to the bootloadable project is done through a software-controlled
device reset; see Appendix A for details. This resets the debugger interface, which means that the bootloadable
project cannot be run in debugger mode.

To debug a bootloadable project, convert it to Application Type Normal (Figure 25), debug it, and then convert
it back to Bootloadable after debugging is done.

Another option is to program the Bootloadable project .hex file onto the device and then use the Attach to
running target option for debugging while the bootloadable project is running. In this case, you can debug the
bootloadable project only from the point where the debugger is attached to the device.

Application note 37 001-73854 Rev.*N
2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders In f| neon

Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier

12.4 Converting a normal application project to a bootloadable project

If you have already created a standard (Normal) project and want to convert it to a bootloadable project, you
can change the Application Type of the project to Bootloadable, as Figure 25 shows.

-

Build Settings - [Bootloadable_1 - CYS8C3866AXI-040] m
Configuration: IDebug(Active} v‘
Toolchain: |DP8051 Keil 9.03 v | Processor Type | DP3051 -
—I-Bootloadable_1 -
-i---Code Generation : Bootloadable E
4;---Debug Custom Code Gen Options
J;r--Customizer Skip Code Generation False =
—-DP8051 Keil 9.03 B Fitter
- General Custom Fitter Options
-i—--CompiIer B Synthesis
J;r--ﬁ\ssembler Custom Synthesis Options
+-Linker Quiet Output True

[SRS P S o W | o

Application Type
This property is used to choose the type of application that will
be produced by a build of the project. The available types are...

-.appdatapath C\Users\phal\AppData\Local\Cypress
Semiconductor\PSoC Creaton\2.2 - fdsnotice
-fdswarpdepfile=warp_dependencies.bd
-fdselabdepfile=elab_dependencies.td

Figure 25 Changing application type to bootloadable

After changing the application type, you must add a Bootloadable Component to the project schematic, and
add a bootloader project's .hex file as a dependency, as Figure 24 shows.

12.5 Customizing your bootloader

As mentioned in Customization on page 13, you can customize your bootloader by dragging additional
Components onto your schematic and adding code to main.c. As a simple example, you can add a PWM, a
Clock, and a Pin Component to blink an LED as a “bootloading” indicator, as Figure 26 and Figure 27 show.

This APlin main.c is automatically generated. You can easily configure the Components to make the LED blink
at any desired frequency and duty cycle.

Note that the PSoC™ configuration for the bootloader project exists only until the bootloader transfers control
to the bootloadable. The PSoC™ device is then reconfigured for the bootloadable project. If you want the same
functionality in both projects, you can place the same Components and code in both projects.

Application note 38 001-73854 Rev.*N
2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders In f| neon

Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier

Start Page /TnpDesign.cysch Btldr.cydwr main.c PWM_1.h > 4P X
~
L 12C_1
© 2C
= sdaj—-[] SDA
= scl|—fm SCL
N
-~
T Slave
=
PWM_1
PWM
tc=
[0} kil pwmf— =[] Pin_1
Clock_1[J}- —>clock
sokHz "0 }—reset interruptf=
16-bit (Fixed)
A
<
~_Page 1 J 4 b
Figure 26 Bootloader project customization
Start Page TopDesign.cysch | BHdr.cydwr . main.c X
2 *
3 * Copyright VOUR COMPANY, THE YELR
4 * 41l Rights Reserwved
5 * UNPUELIZHED, LICENZED SOFTUWARE.
6 *
7 * CONFIDENTIAL AMND PROFPRIETARY INFORMATIOCH
8 * WHICH I3 THE PROPERTY OF wour company.
9 *
10 e L L e L L L L L L L T
11:L*/
12! #include <dewvice.h>
13
14: woid mwainf)
15001
1a /% Place your initialization/startup code here (e.g. MylInst Start()) */
17 FUM_1_Start ()]
1a CyBrldr Starti():
i9
20 J% CYGlobalIntEnable: */ /* Uncommwent this line to enable global interrupts. */
21 fori::)
22 {
23 /% Place wour application code here. */
24 H
25ik}
26
274 4% [] END OF FILE */
28 W
IE: b3

Figure 27 Bootloader customization in main.c

For further steps on creating bootloader projects, return to Calling the Bootloader section of the document.

Application note 39 001-73854 Rev.*N
2023-12-01

PSoC™ Creator - Introduction to bootloaders

(infineon

Reference

Reference

For a comprehensive list of PSoC™ 3, PSoC™ 4, and PSoC™ 5LP resources, see KBA86521 in the Infineon

community.

Bootloader application notes

AN60317 - PSoC™ 3 and PSoC™ 5LP I12C Bootloader

Describes an I1>°C-based bootloader for PSoC™ 3 and
PSoC™5LP

AN86526 - PSoC™ 4 I°C Bootloader

Describes an I1>°C-based bootloader for PSoC™ 4

AN73503 - PSoC™ 3 and PSoC™ 5LP USB HID
Bootloader

Describes a USB HID-based bootloader for PSoC™ 3
and PSoC™5LP

ANG68272 - PSoC™ 3, PSoC™ 4 and PSoC™ 5LP UART
Bootloader

Describes a UART-based bootloader for PSoC™ 3,
PSoC™ 4 and PSoC™ 5LP

AN84401 - PSoC™ 3 and PSoC™ 5LP SPI Bootloader

Describes a SPI-based bootloader for PSoC™ 3 and
PSoC™5LP

Other Related Application Notes

AN213924 - PSoC™ 6 MCU Device Firmware Update
Software Development Kit Guide

Provides comprehensive information on the Device
Firmware Update (DFU) Software Development Kit
(SDK) to develop DFU systems for PSoC™ 6 MCU

AN73054 - PSoC™ 3 and PSoC™ 5LP Programming
Using an External Microcontroller (HSSP)

Shows how to implement PSoC™ 3 or PSoC™ 5LP
device programming with an external
microcontroller by using modular C code

AN84858 - PSoC™ 4 Programming Using an External
Microcontroller (HSSP)

Shows how to implement PSoC™ 4 device
programming with an external microcontroller by
using modular C code

AN61290 - PSoC™ 3 and PSoC™ 5LP Hardware Design
Considerations

Reviews several topics for designing a hardware
system around a PSoC™ 3 or PSoC™ 5LP device

AN88619 - PSoC™ 4 Hardware Design Considerations

Reviews several topics for designing a hardware
system around a PSoC™ 4 device

AN54181 - Getting Started with PSoC™ 3

Describes PSoC™ 3 devices and how to build your
first PSoC™ Creator project

ANT9953 - Getting Started with PSoC™ 4

Describes PSoC™ 4 devices and how to build your
first PSoC™ Creator project

ANT77759 - Getting Started with PSoC™ 5LP

Describes PSoC™ 5LP devices and how to build your
first PSoC™ Creator project

AN2100 - Bootloader: PSoC™ 1

Describes a UART-based bootloader for PSoC™ 1

PSoC™ Creator Component datasheets

Bootloader and Bootloadable

Implements bootloading functionality

Device documentation

PSoC™ 3 Datasheets

PSoC™ 3 Architecture Technical Reference Manual

PSoC™ 4 Datasheets

PSoC™ 4 Architecture Technical Reference
Manuals

PSoC™ 5LP Datasheets

PSoC™ 5LP Architecture Technical Reference
Manual

Application note 40

001-73854 Rev.”N
2023-12-01

https://community.infineon.com/t5/Knowledge-Base-Articles/How-to-Design-with-PSoC-3-PSoC-4-and-PSoC-5LP-KBA86521/ta-p/248386
https://www.infineon.com/dgdl/Infineon-AN60317_PSoC_3_and_PSoC_5LP_I2C_Bootloader-ApplicationNotes-v14_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07252df14a01&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN86526_PSoC_4_I2C_Bootloader-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d072bb3365042&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN73503_PSoC_USB_HID_Bootloader-ApplicationNotes-v12_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0725d2bb4abf&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN68272_PSoC_3_PSoC_4_PSoC_5LP_and_PSoC_Analog_Coprocessor_UART_Bootloader-ApplicationNotes-v16_00-EN.pdf?fileId=8ac78c8c7cdc391c017d072575b34a51&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN84401_PSoC_3_and_PSoC_5LP_SPI_Bootloader-ApplicationNotes-v05_00-EN.pdf?fileId=8ac78c8c7cdc391c017d072732224bcd&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN213924_PSoC_6_MCU_Device_Firmware_Update_Software_Development_Kit_Guide-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d3171906557&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN60317_PSoC_3_and_PSoC_5LP_I2C_Bootloader-ApplicationNotes-v14_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07252df14a01&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN60317_PSoC_3_and_PSoC_5LP_I2C_Bootloader-ApplicationNotes-v14_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07252df14a01&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN84858_PSoC4_Programming_Using_an_External_Microcontroller_(HSSP)-ApplicationNotes-v15_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07350eca5867&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN84858_PSoC4_Programming_Using_an_External_Microcontroller_(HSSP)-ApplicationNotes-v15_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07350eca5867&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN61290_PSoC_3_and_PSoC_5LP_Hardware_Design_Considerations-ApplicationNotes-v17_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07254f524a25&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN88619_PSoC_4_Hardware_Design_Considerations-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0735c68558fd&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN54181_Getting_Started_with_PSoC_3-ApplicationNotes-v15_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0724f85d49c2&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN79953_Getting_Started_with_PSoC_4-ApplicationNotes-v21_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07271fd64bc1&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN77759_Getting_Started_with_PSoC_5LP-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071b8fb71dc6&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/dgdl/Infineon-AN2100_Bootloader_PSOC_1-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0724ab204924&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/bootloader-and-bootloadable/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-component_datasheet
https://www.infineon.com/cms/en/product/microcontroller/legacy-microcontroller/legacy-8-bit-16-bit-microcontroller/psoc-3/#!documents
https://www.infineon.com/dgdl/Infineon-PSoC_3_Architecture_TRM-AdditionalTechnicalInformation-v14_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f9055f37cd5&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-4-32-bit-arm-cortex-m0-mcu/?utm_source=cypress_search&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-doc_search#!details
https://www.infineon.com/dgdl/Infineon-PSoC5LP_Architecture_TRM-AdditionalTechnicalInformation-v08_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f905e3e7ce9&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual
https://www.infineon.com/dgdl/Infineon-PSoC5LP_Architecture_TRM-AdditionalTechnicalInformation-v08_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f905e3e7ce9&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-5-lp-arm-cortex-m3/#!designsupport
https://www.infineon.com/dgdl/Infineon-PSoC5LP_Architecture_TRM-AdditionalTechnicalInformation-v08_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f905e3e7ce9&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual
https://www.infineon.com/dgdl/Infineon-PSoC5LP_Architecture_TRM-AdditionalTechnicalInformation-v08_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f905e3e7ce9&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual

o~ _.
PSoC™ Creator - Introduction to bootloaders ‘ |n f| neon

Reference

Bootloader application notes

Development kit documentation
PSoC™ 3 Kits

PSoC™ 4 Kits

PSoC™ 5LP Kits

Tool documentation

See the downloads tab for Quick Start and User

™
PSoC™ Creator Guides

Application note 41 001-73854 Rev.*N
2023-12-01

https://www.infineon.com/cms/en/product/microcontroller/legacy-microcontroller/legacy-8-bit-16-bit-microcontroller/psoc-3/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-4-32-bit-arm-cortex-m0-mcu/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-5-lp-arm-cortex-m3/?utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-product_families
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/

PSoC™ Creator - Introduction to bootloaders

(infineon

Revision history

Revision history

Document
revision

Date

Description of changes

* %

2011-11-09

New application note.

*A

2012-07-11

Updated for PSoC™ Creator 2.1

*B

2012-08-22

Updated Figure 13.

*C

2012-11-20

Updated for PSoC™ 5LP and PSoC™ Creator 2.1 SP1.

*D

2013-11-14

Updated for PSoC™ 4. Changed System Reference Guide reference to
Component Author Guide. Added a note to clean and build
bootloadable projects when a bootloader project is changed. Updated
to latest application note template spec.

*E

2014-07-17

Added Appendix A - Bootloader and Device Reset

*F

2014-09-18

Expanded and clarified Table 1 on flash protection. Added a note that
bootloader flash protection settings take precedence and bootloadable
settings are ignored. Added sections on bootloader memory usage and
debugging bootloadable application projects. Other minor edits and
formatting changes.

*G

2015-03-18

Updates for PSoC™ 4200M: Updated Table 1, Figure 7, and Figure 13.
Updated the Related Application Notes section. Added notes to
indicate changes in PSoC™ Creator 3.2 for selecting the application
type. Added a note to explain the method to restrict external reads for a
PSoC™ 4 device. Updated the Introduction section.

*H

2015-07-08

Added sections PSoC™ Resources, PSoC™ Creator, and Dual-Application
Bootloader Considerations.

Updated flash row size statements in various sections.

Updated format to latest template. Miscellaneous minor edits.

*|

2015-09-22

Updated the following for PSoC™ 4200L:
Updated the Building a bootloader section.

Updated Steps 1 and 2 in the Dual-application bootloader
considerations section.

Updated Figure 9, Figure 10 and Figure 16.

*J

2017-05-02

Added support for PSoC™ Analog Coprocessor.

Modified the title from “PSoC™ 3, PSoC™ 4, PSoC™ 5LP, and PSoC™
Analog Coprocessor - Introduction to Bootloaders” to “PSoC™ -
Introduction to bootloaders”.

Modified abstract.

Updated section 7 to contain details relevant only to PSoC™ Creator
version 3.2 and newer.

Added Appendix B to have contents relevant to PSoC™ Creator version
3.1orearlier.

Updated template

*K

2018-02-22

Updated for PSoC™ 4100PS
Updated template

Application note

42 001-73854 Rev.”N
2023-12-01

o~ _.
PSoC™ Creator - Introduction to bootloaders ‘ |n f| neon

Revision history

Document Date Description of changes

revision

*L 2018-12-06 Clarified scope of application note; added reference to PSoC™ 6 MCU
DFU SDK Guide application note.
Ported to latest document template.

*M 2022-12-21 Modified the title from “PSoC™ - Introduction to bootloaders” to
“PSoC™ Creator - Introduction to bootloaders”.
Migrated to IFX template.

*N 2023-12-01 Fixed typos.

Application note

43 001-73854 Rev.”N
2023-12-01

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-12-01
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Go to www.infineon.com/support

Document reference
001-73854 Rev.*N

IMPORTANT NOTICE

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may contair
dangerous substances. For information on the types
in question please contact your nearest Infineor
Technologies office.

Except as otherwise explicitly approved by Infineor
Technologies in a written document signed by
authorized representatives of Infineor
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof car
reasonably be expected to result in personal injury.

https://www.infineon.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	2 Infineon resources
	3 PSoC™ Creator
	4 What is a bootloader?
	4.1 Terms and definitions
	4.2 Using a bootloader
	4.3 Bootloader function flow

	5 General bootloader design considerations
	5.1 Bootloader alternatives
	5.2 Memory use and modular configuration
	5.3 Bootloader - Host timing
	5.4 Communication port
	5.5 Recovering from failures
	5.6 Future-proofing
	5.6.1 Application management
	5.6.2 Flash protection

	5.7 Customization

	6 PSoC™ Bootloader – How it works
	6.1 PSoC™ Creator bootloader projects
	6.2 Bootloader Options
	6.3 Communication component
	6.4 Recovering from failures
	6.5 Backward compatibility
	6.6 Bootloader memory usage
	6.7 Flash protection
	6.8 Customization

	7 Add a bootloader to your PSoC™ Creator project
	7.1 Building a bootloader
	7.2 Adding bootloadable applications
	7.3 Debugging bootloadable projects
	7.4 Customizing your bootloader
	7.5 Calling the bootloader

	8 Loading your projects into PSoC™
	8.1 Project files
	8.2 Use cases

	9 Dual-application bootloader considerations
	9.1 Application launch process

	10 Summary
	11 Appendix A - Bootloader and device reset
	11.1 Why is Device reset needed?
	11.2 Effect on device I/O pins
	11.3 Effect on other functions
	11.4 Example: Fan Control

	12 Appendix B - Bootloader in PSoC™ Creator 3.1 or earlier
	12.1 Building a bootloader
	12.2 Adding bootloadable applications
	12.3 Debugging bootloadable projects
	12.4 Converting a normal application project to a bootloadable project
	12.5 Customizing your bootloader

	Reference
	Revision history

