

AN98475

Migration from Winbond W25Q16DV to S25FL116K SPI Flash Family

AN98475 provides conversion guidelines for migrating from the Winbond® W25Q16DV SPI series to the Cypress S25FL116K SPI Flash Family, and discusses the specification differences.

Contents

1	Intro	duction	1
2	Feat	ure Comparison and Differences	2
	2.1	Hardware Package	3
	2.2	Block Structure	4
	2.3	Program Method	4
	2.4	Multi-I/O Operation	4
	2.5	Status Registers	4
	2.6	Block Protection Scheme	5
	2.7	Variable Latency	7
	2.8	Burst Read Mode	7
	2.9	OTP (One-Time Program) Area	7

	2.10	Reset Operations	7			
		Unique ID				
3	Corr	nmand Set Comparison	8			
4	Timi	ing Considerations	9			
	4.1	Power-Up Timing	9			
	4.2	Data In Setup/Hold Time	10			
	4.3	Further Timing Comparison	10			
5	Con	clusion	10			
Document History Page11						
Wor	ldwide	e Sales and Design Support	12			

1 Introduction

Cypress S25FL1-K flash is a feature rich and cost-optimized serial peripheral interface (SPI) non-volatile NOR flash family manufactured on a 90 nm 3-volt floating gate process technology node. This application note provides conversion guidelines for migrating from the Winbond[®] W25Q16DV SPI series to the Cypress S25FL116K SPI Flash Family.

This application note is based on information available to date from data sheets and other application notes publicly available from Cypress and Winbond. Please refer also to the latest relevant specifications. The document discusses the specification differences when migrating from W25Q16DV to S25FL116K.

2

Feature Comparison and Differences

Winbond W25Q16DV products are well suited for migration to Cypress S25FL116K products. Some of the reasons are compatible pinouts, packages, command set, and 4-kB sector structure.

Both Cypress S25FL116K and Winbond W25Q16DV devices support Single (Standard) I/O, Dual I/O, and Quad I/O modes.

The main differences between Cypress S25FL116K and Winbond W25Q16DV are:

- Data program scheme (See Program Method on page 4.)
- Status register structure (See *Status Registers* on page 4.)
- Block protection scheme (See *Block Protection Scheme* on page 5.)
- Unique ID (See *Unique ID* on page 7.)

Table 1. High Level Feature Support Comparison

Feature / Parameter	S25FL116K	W25Q16DV
Single (Standard) IO Operations	\checkmark	
Dual IO Operations	1	\checkmark
Quad IO Operations	1	\checkmark
Standard Normal Read SCK Frequency (max)	50 MHz	50 MHz
Standard Fast Read SCK Frequency (max)	108 MHz	104 MHz
Dual Fast Read SCK Frequency (max)	108 MHz	104 MHz
Quad Fast Read SCK Frequency (max)	108 MHz	104 MHz
Wrapped Read Modes	1	\checkmark
Program Page Size	256 Bytes	256 Bytes
Program Suspend and Resume	1	\checkmark
Erase Suspend and Resume	1	\checkmark
Quad Page-Program	_	\checkmark
4 kB, 64 kB, and Chip Erase	1	\checkmark
32-kB Block Erase	_	\checkmark
Write Protection	1	\checkmark
Volatile Configuration	1	\checkmark
Software Reset	1	\checkmark
One Time Programmable Region(s)	3 x 256 Bytes	3 x 256 Bytes
Temperature Range Option	-40°C to +85°C -40°C to +105°C -40°C to +125°C	-40°C to +85°C

2.1 Hardware Package

The pinouts of S25FL116K and W25Q16DV are identical.

Figure 1 shows the SOIC packages and pinouts.

Figure 2 shows the TFBGA 8 x 6 mm packages and pinouts.

Refer to the data sheets for detailed package information.

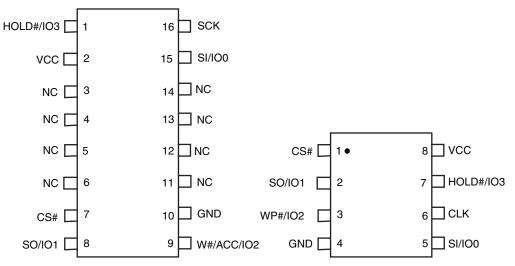


Figure 2. Ball Configuration TFBGA 8 x 6 mm Package and Pinout (Package Code TB or TC)

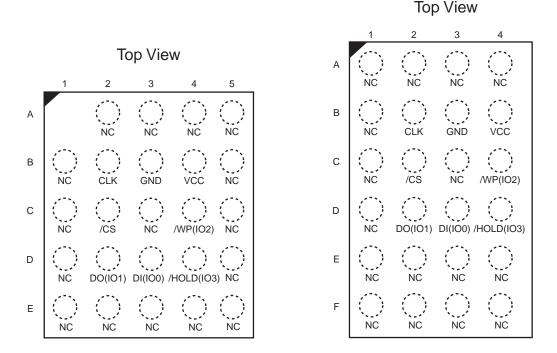


Table 2 summarize the available packages from Cypress and Winbond.

Table 2. Cypress and Winbond Available Packages

	S25FL116K	W25Q16DV
SOIC8 150 mil	1	\checkmark
SOIC8 208 mil	√	\checkmark
SOIC16 300 mil	—	\checkmark
PDIP 300 mil	—	\checkmark
WSON 5x6	√	\checkmark
24-ball BGA 6 x 8 mm (6 x 4 / 5 x 5 ball array)	\checkmark	1
KGD / KGW	√	\checkmark

2.2 Block Structure

Both Winbond W25Q16DV and Cypress S25FL116K support 4-kB sector erase in any sector.

Winbond W25Q16DV supports both 32-kB block erase and 64-kB block erase, while Cypress S25FL116K supports 64-kB block erase only.

2.3 **Program Method**

Both Winbond W25Q16DV and Cypress S25FL116K support page program with program length from 1 to 256 bytes.

W25Q16DV supports Quad Page-Program, while S25FL116K does not.

2.4 Multi-I/O Operation

W25Q16DV and S25F116K support dual output read, dual I/O read, quad output read, and quad I/O.

W25Q16DV supports Word Read Quad I/O and Octal Word Read Quad I/O, while S25FL116K does not.

2.5 Status Registers

Both W25Q16DV and W25Q16DV have two status registers: SR1 and SR2.

The S25FL116K has one additional status register (SR3), which can be used to provide status on additional device features and to configure the burst wrap feature. The Write Status Register instruction allows the three status registers to be written in one command sequence. Only non-volatile status register bits SRP0, SEC, TB, BP2, BP1, BP0 (bits 7 through 2 of Status Register-1), CMP, LB3, LB2, LB1, LB0, QE, SRP1 (bits 6 through 0 of Status Register-2), and W6, W5, W4, and LC (bits 6 through 0 of Status Register-3) can be written. All other status register bit locations are read-only and will not be affected by the Write Status Register instruction.

Table 3 illustrates the Status Register bit assignments for Winbond W25Q16DV and Cypress S25FL116K.

Bits	Cypress S	25FL116K	Winbond W25Q16DV		
Dits	Name	Function	Name	Function	
SR1[7]	SRP0	Status Register Protect0	SRP0	Status Register Protect0	
SR1[6]	SEC	Sector / Block Protect	SEC	Sector / Block Protect	
SR1[5]	ТВ	Top / Bottom Protect	TB	Top / Bottom Protect	
SR1[4]	BP2		BP2		
SR1[3]	BP1	Block Protect Bits	BP1	Block Protect Bits	
SR1[2]	BP0		BP0		
SR1[1]	WEL	Write Enable Latch	WEL	Write Enable Latch	
SR1[0]	BUSY	Embedded Operation Status	BUSY	Embedded Operation Status	
SR2[7]	SUS	Suspend Status	SUS	Suspend Status	
SR2[6]	CMP	Complement Protect	CMP	Complement Protect	
SR2[5]	LB3		LB3		
SR2[4]	LB2	Security Register Lock	LB2	Security Register Lock Bits	
SR2[3]	LB1	Bits	LB1		
SR2[2]	LB0		R	Reserved	
SR2[1]	QE	Quad Enable	QE	Quad Enable	
SR2[0]	SRP1	Status Register Protect1	SRP1	Status Register Protect1	
SR3[7]	RFU	Reserved	_	—	
SR3[6]	W6	Burst Wrap Length	_	—	
SR3[5]	W5	Buist wiap Length	_	—	
SR3[4]	W4	Burst Wrap Enable	_	—	
SR3[3]			_	—	
SR3[2]	Latency Control (LC)	Variable Read Latency Control	—	—	
SR3[1]			—	—	
SR3[0]					

Table 3. Status Register Bit Assignments for W25Q16DV and S25FL116K

2.6 Block Protection Scheme

Both S25FL116K and W25Q16DV have the same Block Protection Scheme. They allow all, none, or a portion of the memory array to be protected from Program and Erase instructions by way of the status register.

The Block Protect Bits (BP2-0) provide Write Protection control and status. The factory default setting for the Block Protect Bits is 0 (none of the array is protected). The non-volatile Top/Bottom bit (TB) controls whether the Block Protect Bits (BP2-0) protect from the Top (TB=0) or the Bottom (TB=1) of the array. The non-volatile Sector/ Block Protect bit (SEC) selects whether the Block Protect Bits (BP2-0) protect 4-kB Sectors (SEC=1) or 64-kB Blocks (SEC=0) in the Top (TB=0) or the Bottom (TB=1) of the array.

The Complement Protect bit (CMP) is a non-volatile read/write bit in the status register. It is used in conjunction with SEC, TB, and BP2-0 bits to provide more flexibility for the array protection. Once CMP is set to 1, previous array protection set by SEC, TB, BP2, BP1, and BP0 will be reversed.

Refer to the data sheet for the valid combinations. Table 4 and Table 5 show Block Protection.

Status Register		Protected	Protected Addresses			
SEC	ТВ	BP2	BP1	BP0	Portion	Protected Addresses
х	х	0	0	0	None	None
0	0	0	0	1	Upper 1/32	1F0000h - 1FFFFFH
0	0	0	1	0	Upper 1/16	1E0000h - 1FFFFH
0	0	0	1	1	Upper 1/8	1C0000h - 1FFFFH
0	0	1	0	0	Upper 1/4	180000h - 1FFFFFH
0	0	1	0	1	Upper 1/2	100000h - 1FFFFH
0	1	0	0	1	Lower 1/32	000000h - 00FFFH
0	1	0	1	0	Lower 1/16	000000h - 01FFFFH
0	1	0	1	1	Lower 1/8	000000h - 03FFFFH
0	1	1	0	0	Lower 1/4	000000h - 07FFFH
0	1	1	0	1	Lower 1/2	000000h - 0FFFFH
х	х	1	1	х	All	000000h - 1FFFFH
1	0	0	0	1	Upper 1/512	1FF000h - 1FFFFFH
1	0	0	1	0	Upper 1/256	1FE000h - 1FFFFFH
1	0	0	1	1	Upper 1/128	1FC000h - 1FFFFFH
1	0	1	0	х	Upper 1/64	1F8000h - 1FFFFFH
1	1	0	0	1	Lower 1/512	000000h - 000FFFH
1	1	0	1	0	Lower 1/256	000000h - 001FFFH
1	1	0	1	1	Lower 1/128	000000h - 003FFFH
1	1	1	0	х	Lower 1/64	000000h - 007FFFH

Table 5. Block Protection (CMP = 1)

	Sta	tus Regis	ster		Protected	Protected Addresses
SEC	ТВ	BP2	BP1	BP0	Portion	Protected Addresses
х	х	0	0	0	All	000000h - 1FFFFFH
0	0	0	0	1	Lower 31/32	000000h - 1EFFFFH
0	0	0	1	0	Lower 15/16	000000h - 1DFFFH
0	0	0	1	1	Lower 7/8	000000h - 1BFFFFH
0	0	1	0	0	Lower 3/4	000000h - 17FFFFH
0	0	1	0	1	Lower 1/2	000000h - 0FFFFH
0	1	0	0	1	Upper 31/32	010000h - 1FFFFFH
0	1	0	1	0	Upper 15/16	020000h - 1FFFFFH
0	1	0	1	1	Upper 7/8	040000h - 1FFFFH
0	1	1	0	0	Upper 3/4	080000h - 1FFFFH
0	1	1	0	1	Lower 1/2	100000h - 1FFFFFH
х	х	1	1	х	None	None
1	0	0	0	1	Lower 511/512	000000h - 1FEFFH
1	0	0	1	0	Lower 255/156	000000h - 1FDFFFH
1	0	0	1	1	Lower 127/128	000000h - 1FBFFFH
1	0	1	0	х	Lower 63/64	000000h - 1F7FFH
1	1	0	0	1	Upper 511/512	001000h - 1FFFFH
1	1	0	1	0	Upper 255/256	002000h - 1FFFFFH

Table 5. Block Protection	(CMP = 1)	(Continued)
---------------------------	-----------	-------------

	Sta	tus Regis	ter		Protected	Protected Addresses	
SEC	ТВ	BP2	BP1	BP0	Portion		
1	1	0	1	1	Upper 127/128	004000h - 1FFFFH	
1	1	1	0	х	Upper 63/64	008000h - 1FFFFH	

2.7 Variable Latency

Cypress S25FL116K adds support for variable latency read timing. You can use the default latency code value when migrating from Winbond products to S25FL116K without any change in read timing. Or you can set latency code (SR3[3-0]) and change read timing to enable faster initial access time or higher clock rate read commands. See full feature details in the S25FL116K data sheet.

2.8 Burst Read Mode

Both W25Q16DV and S25FL116K support Set Burst with Wrap command (77H) preceding the Fast Read Quad I/ O command. See full feature details in data sheet.

Cypress S25FL116K supports Fast Read Quad I/O (EBh) in Burst with Wrap mode. Status Register-3 provides a bit (SR3[4]) to enable a read with wrap option for the Read Quad I/O command. To set burst length, Status Register-3 provides bits (SR3[6:5]) to select the alignment boundary. Burst wrap length can be aligned on 8-, 16-, 32-, or 64-byte boundaries.

2.9 OTP (One-Time Program) Area

Both S25FL116K and W25Q16DV provide three 256-byte Security Registers. Each security register can be read (opcode 48h), programmed (opcode 42h), erased (opcode 44h), and permanently locked by setting Status Register bits LB1, LB2, and LB3 to 1.

2.10 Reset Operations

Both S25FL116K and W25Q16DV support software reset operation. It is used to put the device in normal operating ready mode. This operation consists of two commands: Enable Reset (66h) and Reset (99h).

S25FL116K does not have a hardware Reset pin. If the host system memory controller resets without a complete power down and power up sequence, while S25FL116K is set to Continuous Mode Read, S25FL116K will not recognize any initial standard SPI commands from the controller. To address this possibility, it is recommended to issue a Continuous Read Mode Reset (FFFFh) command as the first command after a system Reset. Doing so will release the device from the Continuous Read Mode and allow Standard SPI commands to be recognized.

If Burst Wrap Mode is used, it is also recommended to issue a Set Burst with Wrap (77h) command that sets the W4 bit to one as the second command after a system Reset. Doing so will release the device from the Burst Wrap Mode and allow standard sequential read SPI command operation.

Issuing these commands immediately after a non-power-cycle (warm) system reset ensures the device operation is consistent with the power-on default device operation.

2.11 Unique ID

Both S25FL116K and W25Q16DV provide 8-byte unique ID. This is a factory-set read-only number that is unique to each device. The S25FL116K uses command 5Ah to access Read Unique ID Number, and access flow is: opcode 5A -> offset F8h to FFh -> 1 dummy byte -> 64bit unique ID.

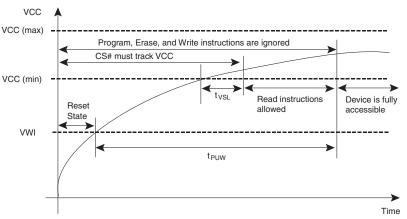
W25Q16DV uses command 4Bh to access Unique ID Number, and access flow is: opcode 4B -> 4 dummy bytes -> 64-bit unique ID.

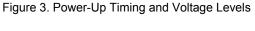
3 Command Set Comparison

W25Q16DV and S25FL116K share similar instructions (op-codes) in their command-set, which determine a compatible set of internal algorithms. Nevertheless, not all commands are supported when comparing one product family with the other.

Table 6 shows a comparison summary of the command set of a Cypress S25FL116K and Winbond W25Q16DV.

Command Description	S25FL116 Opcode	W25Q16DV Opcode
Configuration, Status, Erase, and P	rogram Commands	
Read Status Register-1	05h	05h
Read Status Register-2	35h	35h
Read Status Register-3	33h	—
Write Enable	06h	06h
Write Enable for Volatile Status Register	50h	50h
Write Disable	04h	04h
Write Status Registers	01h	01h
Set Burst with Wrap	77h	77h
Page Program	02h	02h
Quad Page Program	_	32h
Sector Erase (4 kB)	20h	20h
Block Erase (32 kB)	_	52h
Block Erase (64 kB)	D8h	D8h
Chip Erase	C7h / 60h	C7h / 60h
Suspends Program / Erase	75h	75h
Resumes Program / Erase	7Ah	7Ah
Read Data	03h	03h
Fast Read	0Bh	0Bh
Fast Read Dual Output	3Bh	3Bh
Fast Read Quad Output	6Bh	6Bh
Fast Read Dual I/O	BBh	BBh
Fast Read Quad I/O	EBh	EBh
Continuous Read Mode Reset	FFh	FFh
Word Read Quad I/O	_	E7h
Octal Word Read Quad I/O	_	E3h
ID, Security, and Other Co	ommands	
Deep Power-Down	B9h	B9h
Release Power-Down / Device ID	ABh	ABh
Manufacturer / Device ID	90h	90h
JEDEC ID Read	9Fh	9Fh
Dual I/O JEDEC ID Read	_	92h
Quad I/O JEDEC ID Read	_	94h
Read SFDP Register	5Ah	5Ah
Read Security Registers	48h	48h
Erase Security Registers	44h	44h
Program Security Registers	42h	42h
Read Unique ID	5Ah	4Bh
Enable Reset	66h	66h
Reset	99h	99h


4 Timing Considerations


4.1 Power-Up Timing

One of the most sensitive electrical specifications is the power-up timing needed to correctly initialize the device. Table 7 and Figure 3 show the power-up characteristics of S25FL116K and W25Q16DV. Figure 4 show the power-down characteristics of S25FL116K.

Parameter	Symbol	S25FL116K		W25Q16DV		Unit
Farameter		Min	Max	Min	Max	Unit
V _{CC(min)} to CS# Low	t _{VSL}	10		20		μs
Time Delay Before Write Command	t _{PUW}		10	5		ms
Write Inhibit Threshold Voltage	V _{WI}	2.4		1.0	2.0	V
Power-Down Time	t _{PD}	10		х	х	μs
V _{CC} Power-Down Reset Threshold Voltage	V _{CC} Low	1.0		х	х	V

Table 7. Power-Up Timing Requirement

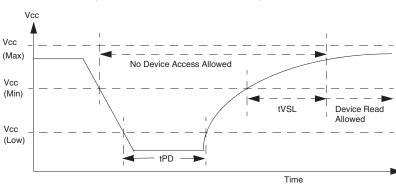


Figure 4. Power-Down and Voltage Drop

4.2 Data In Setup/Hold Time

Two AC timing parameters that are critical in SPI designs are Data-In Setup Time and Data-In Hold Time. They specify how long data needs to be valid before and after the rising edge of the clock signal, respectively. The minor different requirement should not be an issue in the design but may just need to be verified. Table 8 shows the Data-In Setup / Hold timing characteristics for both S25FL116K and Winbond devices.

Table 8. Data-In Setup / Hold Timing Characteristics Comparison

Parameter	S25FL116K	W25Q16DV	Unit	
Farameter	М	Unit		
Data-In Setup Time	2	2	ns	
Data-In Hold Time	5	3	ns	

4.3 Further Timing Comparison

In general, the timing characteristics of both Winbond and Cypress flash families are almost identical with just a little deviation.

One difference is that the S25FL116K family has a faster CS# deselect time than W25Q16DV. There is no need to do any changes but it's important to note that read performance of the application can be increased easily here.

When SPI clock frequency is 80 MHz, CS# deselect time for read after writes of W25Q16DV is 12.5 ns minimum. The minor different requirement should not be an issue in the design but may just need to be verified when migrating from W25Q16DV to S25FL116K.

Table 9 shows a comparison between S25FL116K and W25Q16DV with regards to the various CS# deselect times.

Parameter	S25FL116K W25Q16DV		Unit	
Farameter	м			
CS# deselect time between Reads	7	10	ns	
CS# deselect time for Read after Writes	40	50	ns	

Table 9. CS# Deselect Timing Characteristics Comparison

5

Conclusion

Migrating from Winbond W25Q16DV to the Cypress S25FL116K is straightforward and requires minimal accommodation in regards to either system software or hardware.

Additionally, once accommodations are made, if required, S25FL116K flash will enable access to a wider range of SPI flash features and superior read throughput up to 54 Mbytes/s using Quad bit data path.

Document History Page

Document Title: AN98475 - Migration from Winbond W25Q16DV to S25FL116K SPI Flash Family Document Number: 001-98475				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	-	-	06/09/2014	New Cypress version.
*A	4929437	YOQI	09/24/2015	Updated in Cypress template
*B	5843086	AESATMP8	08/03/2017	Updated logo and Copyright.

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or system (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.