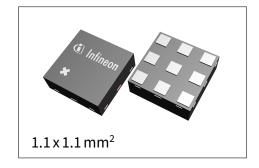


High-Band Low Noise Amplifier with Gain Steps and MIPI Control

Features

• Operating frequencies: 2.3 - 2.7 GHz

• Insertion power gain: 19.7 dB

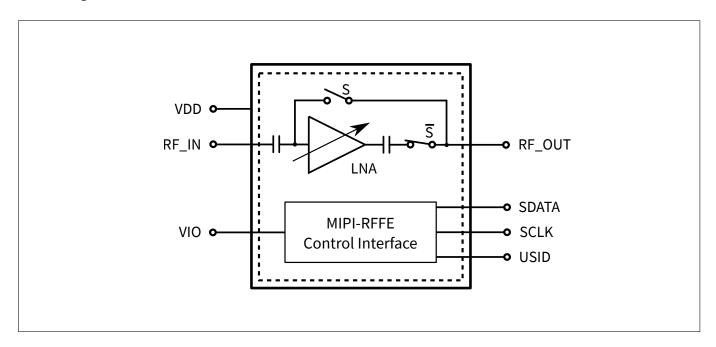

• Low noise figure: 0.8 dB

· Low current consumption: 6.0 mA

• Support of 1.2 V and 1.8 V V_{DD}/V_{IO}

• Integrated DC block capacitors at input and output

MIPI RFFE 3.0


Potential Applications

The BGA10H1MN9 is designed for 4G and 5G applications covering 3GPP Bands between 2.3 and 2.7 GHz (e.g. B7 and B41). As a result of high gain and an ultra-low Noise Figure performance of the LNA frontend losses can be compensated and the data rate can be significantly improved. The MIPI interface provides a comprehensive control over multiple gain modes and bias modes to increase the overall system dynamic range.

Product Validation

Fully qualified according to JEDEC for Industrial Applications.

Block Diagram

Table of Contents

Table of Contents

Та	ble of Contents	1
1	Features	2
2	Product Description	2
3	Absolute Maximum Ratings	3
4	DC Characteristics	4
5	RF Characteristics	4
6	MIPI RFFE Specification	7
7	Application Information	17
8	Package Information	19
Di	sclaimer	25

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

Product Description

1 Features

• Frequency range from 2.3 to 2.7 GHz

• Power gain: 19.7 dB

• Low noise figure: 0.8 dB

• Low current consumption: 6.0 mA

• Gain mode support for MediaTek, LSI and Qualcomm platforms

• MIPI RFFE 3.0

• RF output internally matched to 50 Ω

• Support of 1.2 V and 1.8 V $V_{\rm DD}/V_{\rm IO}$

• Software programmable MIPI RFFE USID

· 4 USIDs supported

• Small form factor 1.1 mm x 1.1 mm

RoHS and WEEE compliant package

2 Product Description

The BGA10H1MN9 is a low noise amplifier for LTE and 5G which covers a wide frequency range from 2.3 GHz to 2.7 GHz. The LNA provides up to 19.7 dB gain and 0.8 dB noise figure at a current consumption of 6.0 mA in the application configuration described in Chapter 7. Multiple gain modes allow adjustment of gain and linearity to increase the system dynamic range and to accommodate to changing interference scenarios. The BGA10H1MN9 supports ultra-low bypass current of 2 μ A and 1.2 V operating voltage to reduce power consumption. It operates from 1.1 V to 2.0 V supply voltage over temperature. The compact 9 pin TSNP-9 package with the dimension of 1.1 x 1.1 mm² helps to save space on the PCB.

Product Name	Marking	Package
BGA10H1MN9	D	TSNP-9-2 / TSNP-9-6

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

Absolute Maximum Ratings

3 Absolute Maximum Ratings

Table 1: Absolute Maximum Ratings

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min. Typ.		Max.			
Supply Voltage VDD	V_{DD}	-0.5	_	2.2	V	1	
Voltage at RF_IN	V_{RF_IN}	0	_	V_{DD}	V		
Voltage at RF_OUT	V _{RF_OUT}	0	_	0	V	-	
Current into pin VDD	I _{DD}	_	_	9.1	mA	-	
RF input power	P _{IN}	-	_	25	dBm	CW signal, VSWR 10:1, tested	
						at device level, V _{DD} typ., 25 °C,	
						for 30 s and all modes ²	
Total power dissipation	P _{tot}	-	_	20	mW		
Junction temperature	TJ	-	_	150	°C	-	
Ambient temperature range	T _A	-30	_	85	°C	-	
Storage temperature range	T_{STG}	-55	_	150	°C	-	
ESD robustness, HBM	V _{ESD_HBM}	-2000	_	2000	V	3	
ESD robustness, CDM	V _{ESD_CDM}	-1000	_	1000	V	4	
RFFE Supply Voltage	V _{IO}	-0.5	_	2.2	V	-	
DEEE Supply Voltage Levels	V _{SCLK} ,	-0.7	_	V ₁₀ + 0.7	V	-	
RFFE Supply Voltage Levels	$V_{\rm SDATA}$,			(max. 2.2)			
	$V_{\rm USID}$						

¹All voltages refer to GND-Nodes unless otherwise noted

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

²RF input power higher than +10 dBm exceeding operating range

³Human Body Model ANSI/ESDA/JEDEC JS-001 ($R = 1.5 \,\mathrm{k}\Omega$, $C = 100 \,\mathrm{pF}$).

⁴Field-Induced Charged-Device Model ANSI/ESDA/JEDEC JS-002. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

RF Characteristics

4 DC Characteristics

Table 3: DC Characteristics at $T_{\rm A}$ = 25 °C

Parameter ¹	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Voltage	V_{DD}	1.1	1.2	2.0	V	-	
		4.5	6.0	7.5	mA	Bias 5, for G10 and G9 mode	
Supply Current ²		3.3	4.3	5.3	mA	Bias 3, for G8 and G7 mode	
	,	2.5	3.5	4.5	mA	Bias 2, for G6 and G3A mode	
	I _{DD}	2.0	2.8	3.6	mA	Bias 1, for G5 mode	
		1.3	1.9	2.5	mA	Bias 0, for G4 mode	
		_	2	3	μΑ	Bypass mode (all bias)	
RFFE supply voltage range 1	V _{IO}	1.1	1.2	1.3	V	-	
RFFE supply voltage range 2	V _{IO}	1.65	1.8	1.95	V	-	
RFFE supply current	I _{VIO}	_	2	5	μΑ	Idle State	
RFFE input high voltage ³	V _{IH}	0.7 * V _{IO}	-	V _{IO}	V	Logical "1"	
RFFE input low voltage ³	V _{IL}	0	-	0.3 * V _{IO}	V	Logical "0"	
RFFE output high voltage ⁴	V _{OH}	0.8 * V _{IO}	-	V _{IO}	V	-	
RFFE output low voltage ⁴	V _{OL}	0	-	0.2 * V _{IO}	V	-	
RFFE control input capacitance	C _{SCLK_IN} ,	_	-	2	pF	-	
	C _{SDATA_IN}						
RFFE control load capacitance	C_{SDATA_L}	-	-	80	pF	-	
RFFE SCLK write frequency	f _{SCLK_W}	0.032	-	52	MHz	-	
RFFE SCLK read frequency	f _{SCLK_R}	0.032	-	26	MHz	-	

 $^{^{1}}$ Based on the application described in Chapter 7

5 RF Characteristics

Table 4: RF Characteristics in ON Mode at T_A = 25 °C, V_{DD} = 1.2 V, f = 2.3 - 2.7 GHz, bias settings according to Table 3

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
		18.2	19.7	21.2	dB	G10	
		15.5	17.0	18.5	dB	G9	
		12.0	13.5	15.0	dB	G8	
	$ S_{21} ^2$	9.3	10.8	12.3	dB	G7	
Incortion nower gain		6.3	7.8	9.3	dB	G6	
Insertion power gain f = 2600 MHz		4.0	5.5	7.0	dB	G5	
7 – 2000 MITZ		-1.9	-0.4	1.1	dB	G4	
		-4.7	-3.2	-1.7	dB	G3A (Active bypass)	
		-3.7	-2.7	-1.7	dB	G3 (Passive bypass)	
		-6.8	-5.8	-4.8	dB	G2	
		-12.9	-11.9	-10.9	dB	G1	

Continued on next page

 $^{^{2}}V_{DD} = 1.2 \text{ V}$ $^{3}\text{SCLK}$, SDATA and USID

⁴SDATA

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

RF Characteristics

Table 4: RF Characteristics - Continued from previous page

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
		_	0.8	1.4	dB	G10
		_	0.8	1.4	dB	G9
		-	1.0	1.6	dB	G8
		-	1.1	1.7	dB	G7
Naisa Figura		-	1.4	2.0	dB	G6
Noise Figure	NF	-	5.1	5.7	dB	G5
f = 2600 MHz		_	5.8	6.4	dB	G4
		_	10.3	10.9	dB	G3A (Active bypass)
		_	2.7	3.7	dB	G3 (Passive bypass)
		-	5.8	6.8	dB	G2
		-	11.9	12.9	dB	G1
		4	6	_	dB	G10
		4	6	_	dB	G9
		4	6	_	dB	G8
		4	6	_	dB	G7
		4	6	_	dB	G6
nput Return Loss ¹	RLin	5	7	_	dB	G5
= 2600 MHz		4	6	-	dB	G4
		5	7	_	dB	G3A (Active bypass)
		10	20	_	dB	G3 (Passive bypass)
		10	14	_	dB	G2
		8	12	_	dB	G1
		- 0.8 1.4 dB G10 - 0.8 1.4 dB G9 - 1.0 1.6 dB G8 - 1.1 1.7 dB G7 - 1.4 2.0 dB G6 - 5.1 5.7 dB G5 - 5.8 6.4 dB G4 - 10.3 10.9 dB G3A (Active bypass) - 2.7 3.7 dB G2 - 11.9 12.9 dB G1 4 6 - dB G9 4 6 - dB G9 4 6 - dB G9 4 6 - dB G7 4 6 - dB G6 5 7 - dB G5 6 G3A (Active bypass) 6 G3A G9 6 G3A G9 6 G3A G9 6 G3				
		10	22	_	dB	G9
		10	18	-	dB	G8
		10	21	-	dB	G7
Nukauk Dakuwa I		9	13	_	dB	G6
Output Return Loss	RLout	10	18	_	dB	G5
= 2600 MHz		9	13	-	dB	G4
		9	13	_	dB	G3A (Active bypass)
		10	15	_	dB	G3 (Passive bypass)
		10	14	-	dB	G2
		9	13	_	dB	G1

Continued on next page

 $^{^{1}}$ Can be tuned by using additional external matching components

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

RF Characteristics

Table 4: RF Characteristics – Continued from previous page

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур. Мах.				
		35	40	-	dB	G10	
Reverse Isolation f = 2600 MHz		36	41	_	dB	G9	
		29	34	_	dB	G8	
		31	36	_	dB	G7	
		32	37	_	dB	G6	
	$ 1/ S_{12} ^2$	29	34	-	dB	G5	
		33	38	-	dB	G4	
		33	38	_	dB	G3A (Active bypass)	
		1.7	2.7	_	dB	G3 (Passive bypass)	
		4.8	5.8	_	dB	G2	
		10.9	11.9	_	dB	G1	
		-23	-19	_	dBm	G10	
		-22	-18	_	dBm	G9	
		-17	-13	-	dBm	G8	
		-16	-12	-	dBm	G7	
Inband input 1dB-compression		-16	-12	-	dBm	G6	
point	IP _{1dB}	-8	-4	-	dBm	G5	
f = 2600 MHz	105	-6	-2	-	dBm	G4	
f = 2600 MHz		-5	-1	_	dBm	G3A (Active bypass)	
		+1	+5	_	dBm	G3 (Passive bypass)	
		0	+4	_	dBm	G2	
		+2	+6	-	dBm	G1	
		-11	-6	-	dBm	$G10$, $P_{IN} = -40$ dBm for each tone	
		-10	-5	_	dBm	$G9$, P_{IN} = -40 dBm for each tone	
		-5	0	_	dBm	G8, P_{IN} = -32 dBm for each tone	
		-5	0	_	dBm	$G7$, $P_{IN} = -32$ dBm for each tone	
Inband input 3 rd -order intercept		-6	-1	_	dBm	G6, P_{IN} = -30 dBm for each tone	
point ¹	IIP3	+1	+6	_	dBm	G5, P_{IN} = -25 dBm for each tone	
		-3	+2	_	dBm	$G4$, P_{IN} = -25 dBm for each tone	
		+4	+9	-	dBm	G3A, P_{IN} = -14 dBm for each tone	
		+15	+20	-	dBm	$G3$, $P_{IN} = -20$ dBm for each tone	
		+13	+18	_	dBm	G2, P_{IN} = -9 dBm for each tone	
		+14	+19	_	dBm	$G1$, P_{IN} = -5 dBm for each tone	
Phase discontinuity between all		tbd.	_	tbd.	0	Part to part variation after com-	
Gain Mode combinations						pensation in Base Band with	
f = 2600 MHz						constant value	
Stability	k	>1	_	_	_	f = 1 MHz - 10 GHz	

 $^{^{1}}f_{1}$ = 2600 MHz, f_{2} = f_{1} + 2 MHz

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

6 MIPI RFFE Specification

The MIPI RFFE interface is working in systems following the 'MIPI Alliance Specification for RF Front-End Control Interface version 3.0 - 1 December 2019' as well as the 'Qualcomm RFFE Vendor specification 80-N7876-1 Rev. Y (December 3, 2018)'.

Table 5: MIPI features

Feature	Supported	Comment
	MIPI 3.0 Fea	tures
Extended Trigger support	Yes	Include EXT_TRIG_A set (register 0x2D + 0x2E necessary)
		and EXT_TRIG_B set (register 0x2F + 0x30 necessary).
Timed Triggers	Yes	Include counter registers (register 0x38 - 0x3F for
		EXT_TRIG_A set necessary and 0x31 - 0x37 for
		EXT_TRIG_B set necessary).
Mappable Triggers	Yes	Additional MTRIG_SET_x required in UDR register range.
Standard Reach RFFE Bus Length	Yes	RFFE Bus Length of up to 15 cm (standard)
Longer Reach RFFE Bus Length Feature	Yes	Longer Reach allows for longer RFFE bus lengths. This
		requires a limitation to the Standard Frequency Range of
		RFFE plus additional timing requirements for all devices
		on the bus
Programmable driver strength	Yes	Allows to program MIPI device Bus driver strength (rele-
		vant vor Read Back messages) up to 80pF via BUS_LD-
		Register (0x2B)
		Default value: 50 pF
Register 0 write command sequence	Yes	Shortened Write Sequence for Register 0 - Caution: only
		7 LSBs in Reg 0 can be addressed
Register read and write command sequence	Yes	Standard Register Read/Write procedure addressing
		standard register space of 0x00 - 0x1F
Extended register read and write command se-	Yes	Register Read/Write procedure addressing extended reg-
quence		ister space of 0x00 - 0xFF
Extended Register Write Long Command Se-	No	Register Read/Write procedure addressing extended reg-
quence		ister space of 0x0000 - 0xFFFF
Masked write command sequence	Yes	Allow only certain bits in a register to be updated during
		a write command. Relevant Registers marked "MW" in
		below register mapping tables
Support for standard frequency range operations	Yes	SCLK range 32 kHz - 26 MHz for read and write commands
for SCLK		
Support for extended frequency range operations	Yes	SCLK range 26 MHz - 52 MHz for write commands
for SCLK		
sRead (synchronous Read)	Yes	Relaxed Slave Setup Time requirements as Master sam-
Full Speed or half speed up to 26 MHz		ples Data on rising edge of SCLK signal
"Regular" Read	Yes	Stricter Slave Setup Time requirements as Master sam-
Full Speed or half speed up to 13 MHz		ples Data on falling edge of SCLK signal

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

Table 5: MIPI features (continued)

Feature	Supported	Comment
"Regular" Read Full Speed or half speed up to 26	No	Full-Speed "regular" (falling edge sampling) Read op-
MHz (MIPI RFFE 1.10 feature)		erations are no longer specified for use in the Standard
		Frequency Range in MIPI RFFE3.0, and are intended to be
		replaced by Full-Speed sRead operations in the Standard
		Frequency Range. Half-Speed Data Response accesses
		for Read operations in the Standard Frequency Range
		remain supported. Read operations are not supported
		for use in the Extended Frequency Range. In the Ext FR
		only Half-Speed Data Response (HSDR) accesses using
		sReads are valid for Slaves (or non-BOMs) driving SDATA
		on the bus.
Product ID + extended product ID register	Yes	PRODUCT_ID (address 0x1D) and EXT_PRODUCT_ID (ad-
		dress 0x20) Registers
Extended Manufacturer ID	Yes	According to MIPI2.1 specification
Revision ID register	Yes	This Register contains the Device Revision (address 0x21)
Programmable GSID (Group Slave Identifier)	Yes	GROUP_SID Register (at address 0x22). Only in case RFFE
		1.1 backwards compatibilty is supported: GROUP_SID0
		Bitfield access at address 0x1B (copy of GROUP_SID0)
Programmable USID (Unique Slave Identifier)	Yes	Device can be also explicitly addressed via combination
		of (old) USID, Manufacturer ID, and (extended) product
		ID to reprogram USID via (extended) Register Write se-
		quence (see MIPI RFFE Spec v3.0 Chapter 6.2.2)
Trigger functionality	Yes	3 "standard" Triggers via PM_TRIG[5:0] consisting of 3
		Mask- and 3 Trigger Bits
Trigger Handling in Secondary Mode: Ignore Trig-	Yes	When Device is and stays in Secondary Mode, Triggers
gers		are IGNORED (NOTE: Triggers in combination with a
		mode change are not ignored)
Extended Triggers and Trigger Masks	Yes	Additional eight Triggers and the associated Trigger
		Masks (registers at addresses 0x2D and 0x2E)
Broadcast/GSID write to PM TRIG register	Yes	The above mentioned Trigger Register (and extended
		trigger register) can be accessed via Broadcast/GSID
		writes to trigger several MIPI devices snychronously.
		NOTE: Trigger Mask bits are nor changed wih Broad-
		cast/GSID writes
Reset	Yes	Reset is possible via VIO, PM TRIG or register SW_RST
		(0x23). NOTE: SW_RST only resets User Defined Registers,
		it does not reset the values of any reserved registers

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

Table 5: MIPI features (continued)

Feature	Supported	Comment
Status/Error sum register	Yes	ERR_SUM Register (address 0x24). Only in case RFFE
		1.1 backwards compatibilty is supported: RFFE_STATUS
		Register access at address 0x1A (copy of ERR_SUM)
USID_Sel pin	Yes	External pin for changing USID (values: see programing
		section), 1 USID pin addressable by customer

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

Table 6: User Defined Register Mapping

Register Address	Register Name	Data Bits	Function	Description	Default	Broadcast_ID Support	Trigger Support	R/W
0x00	ENABLE_CTRL	0	ENABLE	0: LNA Disable 1: LNA Enable OR'ed with Enable bit (Bit7 in register 1)	0	No	mTrig set C	R/W MW
0x01	MODE_CTRL	7	ENABLE	0: LNA Disable 1: LNA Enable OR'ed with Enable bit (Bit0 in register 0)	nable		mTrig set A	R/W MW
		6:3	GAIN_CTRL	LNA Gain control				
		2:0	LNA_BIAS	LNA Bias control				
0x10	MTRIG_1	7:4	reserved		0001	No	N/A	R/W
		3:0	MTRIG_SET_A	Mappable Trigger Set A	0000			
0x11	MTRIG_2	7:4	reserved		0000	No	N/A	R/W
		3:0	MTRIG_SET_C	Mappable Trigger Set C	1111			

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

Table 7: Register mapping

Register address	Register name	Data bits	Function	Description	Default	Broadcast_ID support	Trigger support	R/W			
0x1C	PM_TRIG	7	PWR_MODE(1), Operation Mode	0: Normal operation mode	1	Yes	N/A	R/W MW			
				1: Secondary Mode (triggers are ig-	1						
				nored)							
		6	PWR_MODE(0), State Bit Vector	0: No action	0]					
				1: Powered Reset (STARTUP to active state)	-						
		5	TRIGGER MASK 2	0: Data masked (held in shadow REG)	0 No						
				1: Data not masked (ready for transfer to active REG)							
		4	TRIGGER_MASK_1	0: Data masked (held in shadow REG)	0						
		-	TRIGGER_MASK_1	1: Data not masked (ready for transfer to	-						
				active REG)							
		3	TRIGGER_MASK_0	0: Data masked (held in shadow REG)	0						
				1: Data not masked (ready for transfer to	1						
				active REG)							
		2	TRIGGER_2	0: No action (data held in shadow REG)	0	Yes					
				1: Data transferred to active REG	1						
		1	TRIGGER_1	0: No action (data held in shadow REG) 0	0						
				1: Data transferred to active REG							
		0	TRIGGER_0	0: No action (data held in shadow REG)	0						
				1: Data transferred to active REG							
0x1D	PRODUCT_ID	7:0	PRODUCT_ID	This is a read-only register. However,	01100011	No	N/A	R			
				during the programming of the USID a							
				write command sequence is performed							
				on this register, even though the write							
				does not change its value.							
0x1E	MANUFACTID	7:0	MANUFACTURER_ID	Manufacturer ID. This is a read-only reg-	00011010	No	N/A	R			
				ister. However, during the program-							
				ming of the USID, a write command se-							
				quence is performed on this register,							
				even though the write does not change							
				its value. See http://mid.mipi.org.							

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

Table 7: Register mapping (continued)

Register address	Register name	Data bits	Function	Description	Default	Broadcast_ID support	Trigger support	R/W
0x1F MAN_USID		7:6	MANUFACTURER_ID[11:10]	These bits are read-only. However, for reprogramming the USID, a write command sequence is performed on this register, even though the write does not change its value. See http://mid.mipi.org.	00	No	N/A	R
		5:4	MANUFACTURER_ID[9:8]	These bits are read-only. However, for reprogramming the USID, a write command sequence is performed on this register, even though the write does not change its value. See http://mid.mipi.org.	01			
		3:0	USID[3:0]	These bits store the USID of the device. Performing a write to this register using the described programming sequences will re-program the USID.	See Tab. 9	No	N/A	R/W
0x20	EXT_PRODUCT_ID	7:0	EXT_PRODUCT_ID	Extension to PRODUCT_ID in register 0x1D. This is a read-only register. However, during the programming of the USID a write command sequence is performed on this register, even though the write does not change its value.	00000000	00000000 No		R
0x21	REV_ID	7:4 3:0	MAIN_REVISION SUB_REVISION	Chip main revision. Chip sub revision.	0011 0000	No	N/A	R
0x22	GS_ID	7:4 3:0	GSID0[3:0] GSID1[3:0]	Primary Group Slave ID. Secondary Group Slave ID.	0000	No	N/A	R/W
0x23	UDR_RST	6:0	UDR_RST	Reset all configurable non-RFFE Reserved registers to default values. 0: Normal operation 1: Software reset Reserved for future use	0 Yes		N/A	R/W
0x24	ERR_SUM	7	reserved	Reserved for future use	0000000	No	N/A	R
		6	COMMAND_FRAME_PARITY_ERR	Command Sequence received with parity error — discard command.	0			
		5 4	COMMAND_LENGTH_ERR ADDRESS_FRAME_PARITY_ERR	Command length error. Address frame with parity error.	0	_		
		3	DATA_FRAME_PARITY_ERR	Data frame with parity error.	0	-		
		2	READ_UNUSED_REG	Read command to an invalid address.	0			
		1 0	WRITE_UNUSED_REG BID_GID_ERR	Write command to an invalid address. Read command with a BROADCAST_ID	0			

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

Table 7: Register mapping (continued)

Register address	Register name	Data bits	Function	Description	Default	Broadcast_ID support	Trigger support	R/W
0x2B	BUS_LD	7:3	reserved	Reserved for future use	00000	No	N/A	R/W
		2:0	BUS_LD[2:0]	Programs the drive strength of the SDATA driver in feedback modes. 0x0: 10pF 0x1: 20pF 0x2: 30pF	100			
				0x3: 40pF 0x4: 50pF 0x5: 60pF 0x6: 80pF 0x7: 80pF				
0x2C	TEST_PATT	7:0	TEST_PATT[7:0]	A read to this register will trigger the slave to transmit a fixed test pattern of 0xD2.	11010010	No	N/A	R
0x2D	EXT_TRIGGER _MASK_A	7	EXT_TRIGGER_MASK_10	0: Data writes to registers tied to EXT_TRIGGER_A are masked. Data	0	No	N/A	R/W MW
		6	EXT_TRIGGER_MASK_9	is held in shadow registers until the	0			
		5	EXT_TRIGGER_MASK_8	EXT_TRIGGER_A bit is set to 1.	0			
		4	EXT_TRIGGER_MASK_7	1: Data writes to registers tied to	0			
		3	EXT_TRIGGER_MASK_6	EXT_TRIGGER_A are not masked. Data	0			
		2	EXT_TRIGGER_MASK_5	writes go directly to the active registers.	0			
		0	EXT_TRIGGER_MASK_4	<u> </u>	0	-		
0x2E EXT_	EXT_TRIGGER_A	7	EXT_TRIGGER_MASK_3 EXT_TRIGGER_10	Extended Trigger A. This bit has no ef-	0	Yes	N/A	R/W MW
		6	EXT_TRIGGER_9	fect if EXTENDED_TRIGGER_MASK_A is 1. When the part is in secondary mode	0	-		14144
		5	EXT_TRIGGER_8	and a trigger request is sent in the same command sequence that still keeps the	0			
		4	EXT_TRIGGER_7	part in secondary mode, the trigger request is ignored. This applies to Triggers	0			
		3	EXT_TRIGGER_6	only, not to Trigger Masks. When the	0			
		2	EXT_TRIGGER_5	part is in normal mode and sent to sec- ondary mode, or when the part is in sec-	0			
		1	EXT_TRIGGER_4	ondary mode and sent to normal mode,	0	-		
		0	EXT_TRIGGER_3	trigger requests in the same command sequence are NOT ignored.	0			
0x2F	EXT_TRIGGER_B	7	reserved	Extended Trigger B. This bit has no effect if EXTENDED_TRIGGER_MASK_B is	0	Yes	N/A	R/W MW
		6	EXT_TRIGGER_17	1. When the part is in secondary mode	0	-		
		5	EXT_TRIGGER_16	and a trigger request is sent in the same command sequence that still keeps the	0			
		4	EXT_TRIGGER_15	part in secondary mode, the trigger request is ignored. This applies to Triggers	0			
		3	EXT_TRIGGER_14	only, not to Trigger Masks. When the	0			
		2	EXT_TRIGGER_13	part is in normal mode and sent to sec- ondary mode, or when the part is in sec-	0			
		1	EXT_TRIGGER_12	ondary mode and sent to normal mode, trigger requests in the same command	0			
		0	EXT_TRIGGER_11	sequence are NOT ignored.	0			

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

Table 7: Register mapping (continued)

Register address	Register name	Data bits	Function	Description	Default	Broadcast_ID support	Trigger support	R/W
0x30	EXT_TRIGGER _MASK_B	7	reserved	0: Data writes to registers tied to	0	No	N/A	R/W MW
		6	EXT_TRIGGER_MASK_17	EXT_TRIGGER_B are masked. Data is held in shadow registers until the	0			
		5	EXT_TRIGGER_MASK_16	EXT_TRIGGER_B bit is set to 1. 1: Data writes to registers tied to	0			
		4	EXT_TRIGGER_MASK_15	EXT_TRIGGER_B are not masked. Data	0			
		3	EXT_TRIGGER_MASK_14	writes go directly to the active registers.	0			
		2	EXT_TRIGGER_MASK_13		0			
		1	EXT_TRIGGER_MASK_12		0			
		0	EXT_TRIGGER_MASK_11		0			
0x31	EXT_TRIG_B_CNT _11	7:0	EXT_TRIG_B_CNT_11		00000000	Yes	N/A	R/W
0x32	EXT_TRIG_B_CNT	7:0	EXT_TRIG_B_CNT_12		00000000	Yes	N/A	R/W
0x33	EXT_TRIG_B_CNT	7:0	EXT_TRIG_B_CNT_13		00000000	Yes	N/A	R/W
0x34	EXT_TRIG_B_CNT	7:0	EXT_TRIG_B_CNT_14		00000000	Yes	N/A	R/W
0x35	EXT_TRIG_B_CNT	7:0	EXT_TRIG_B_CNT_15		00000000	Yes	N/A	R/W
0x36	EXT_TRIG_B_CNT	7:0	EXT_TRIG_B_CNT_16		00000000	Yes	N/A	R/W
0x37	EXT_TRIG_B_CNT	7:0	EXT_TRIG_B_CNT_17	Counter register most signifi- cant byte is R/W accessible via	00000000	Yes	N/A	R/W
0x38	EXT_TRIG_A_CNT	7:0	EXT_TRIG_A_CNT_3	EXT_TRIG_A/B_CNT_X [7:0]. The actual programmable counting range	00000000	Yes	N/A	R/W
0x39	EXT_TRIG_A_CNT	7:0	EXT_TRIG_A_CNT_4	of the counter is then 2, 4, 510 SCLK cycles.	00000000	Yes	N/A	R/W
0x3A	EXT_TRIG_A_CNT	7:0	EXT_TRIG_A_CNT_5		00000000	Yes	N/A	R/W
0x3B	EXT_TRIG_A_CNT	7:0	EXT_TRIG_A_CNT_6		00000000	Yes	N/A	R/W
0x3C	EXT_TRIG_A_CNT	7:0	EXT_TRIG_A_CNT_7		00000000	Yes	N/A	R/W
0x3D	EXT_TRIG_A_CNT	7:0	EXT_TRIG_A_CNT_8		00000000	Yes	N/A	R/W
0x3E	EXT_TRIG_A_CNT	7:0	EXT_TRIG_A_CNT_9		00000000	Yes	N/A	R/W
0x3F	_9 EXT_TRIG_A_CNT _10	7:0	EXT_TRIG_A_CNT_10		00000000	Yes	N/A	R/W

MIPI RFFE Specification

Table 8: Timing specification

Parameter	Symbol	Symbol Values		Uni		Note / Test Condition
		Min.	Тур.	Max.		
VIO Rise Time	T _{VIOrise}	50 ¹	-	450	μs	
VIO Supply Reset Timing	T _{VIO-RST}	10	_	_	μs	
Reset Delay Time	T _{SIGOL}	0.12	_	_	μs	
LNA turn on time ²	t_{PUP}	_	_	1	μs	
LNA turn off time ³	t_{POFF}	_	-	1	μs	
LNA gain settling time ⁴	t_{GST}	_	_	1	μs	

 $^{^1\}text{VIO}$ rise time down to 10 μs is supported as long as first programming starts 50 μs after VIO rise $^250\%$ last SCLK falling edge to within 0.5 dB gain error of steady state gain

³50% last SCLK falling edge to less than -20 dB S21

⁴Gain switching between any of 2 gains gears to be with 0.5 dB gain error of steady state gain (start 50% last SCLK falling edge)

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

MIPI RFFE Specification

Table 9: USID States

USID pin	SDATA/SCLK	USID
0	Nominal	0b1000
1	Nominal	0b1001
0	Swap	0b1010
1	Swap	0b1011

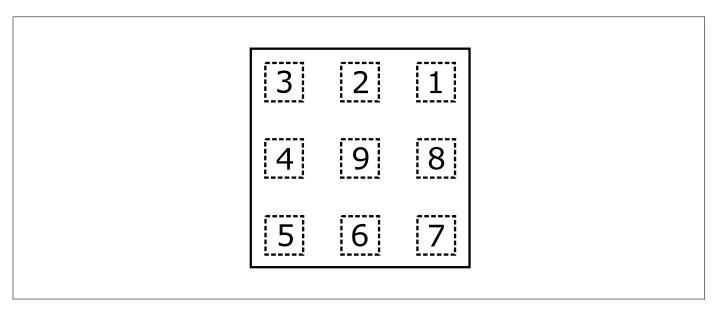
Table 10: Gain Modes of Operation

	Register	ENABLE_CTRL (0x00)			M	ODE_CTR	RL (0x01)					
	Bitfield	ENABLE	ENABLE		GAIN	_CTRL		В	IAS_CTR	L^1		
State	Mode	D0	D7	D6	D5	D4	D3	D2	D1	D0	Comment	
1	OFF	0	0	х	х	х	х	х	х	0		
2	Cain C10 (21 dD)	Х	1	1	0	1	0	,	0	1	Bias 5	
3	Gain G10 (21 dB)	1	х	1		1	"	1	0	1	Blass	
4	Gain G9 (18 dB)	Х	1	1	0	0	1	1	0	1	Bias 5	
5	Gain G9 (18 dB)	1	х	1		0	1	1	0	1	Blas 5	
6	Gain G8 (15 dB)	Х	1	1	0	0	0	0	1	1	Bias 3	
7	Gaiii Go (15 UB)	1	х	1		0	"		1	1	DId5 3	
8	Gain G7 (12 dB)	Х	1	0	1	1	1	0	1	1	Bias 3	
9	Gaill G7 (12 UB)	1	х		1	1	1	"	1	1	Did5 3	
10	Gain G6 (9 dB)	Х	1	0	1	1	0	0	1	0	Bias 2	
11	Gain Go (9 db)	1	х		1	1	"	0	1		Dias 2	
12	Gain G5 (6 dB)	Х	1	0	1	0	1	0	0	1	Bias 1	
13	Gaill G5 (6 GB)	1	х	U	_		_	0	0	1	DIG2 T	
14	Gain G4 (0 dB)	X	1	0	1	0	0	0	0	0	Bias 0	
15	Gaill G4 (U GB)	1	х	U	1	U	"		U	0	Dias 0	
16	Gain G3A (-3 dB)	X	1	1	0	1	1	0	1	0	Bias 2	
17	Gaill GSA (-5 GB)	1	х	1	0	1	1	0	1		Dias 2	
18	Gain G3 (-3 dB)	X	1	0	0	1	1	0	0	0	Bias settings don't	
19	Gaiii G3 (-3 UB)	1	х	0	"	1	1	"		"	care, use Bias 0	
20	Gain G2 (-6 dB)	Х	1	0	0	1	0	0	0	0	Bias settings don't	
21	Gaill G2 (-6 UB)	1	х				0	0	U	0	care, use Bias 0	
22	Gain G1 (-12 dB)	Х	1	0	0	0	1	0	0	0	Bias settings don't	
23	Gaill G1 (-12 UD)	1	х	U					U		care, use Bias 0	

¹Recommended bias setting, bias can be changed according to table 11

Table 11: Bias control table

		BIAS_CTRL bits					
State	Mode	D2	D1	D0			
1	Bias 0 (1.9 mA)	0	0	0			
2	Bias 1 (2.8 mA)	0	0	1			
3	Bias 2 (3.5 mA)	0	1	0			
4	Bias 3 (4.3 mA)	0	1	1			
5	Bias 4 (5.1 mA)	1	0	0			
6	Bias 5 (6.0 mA)	1	0	1			
7	Bias 6 (6.8 mA)	1	1	0			
8	Bias 7 (7.6 mA)	1	1	1			


High-Band Low Noise Amplifier with Gain Steps and MIPI Control

Application Information

7 Application Information

Pin Configuration and Function

Figure 1: BGA10H1MN9 Pin Configuration (top view)

Table 12: Pin Definition and Function

Pin No.	Name	Function
1	RF_OUT	LNA output
2	GND	Ground
3	RF_IN	LNA input
4	USID	USID select pin
5	VIO	MIPI RFFE supply
6	SCLK	MIPI RFFE clock
7	SDATA	MIPI RFFE data
8	VDD	Power supply
9	GND	Ground

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

Application Information

Application Board Configuration

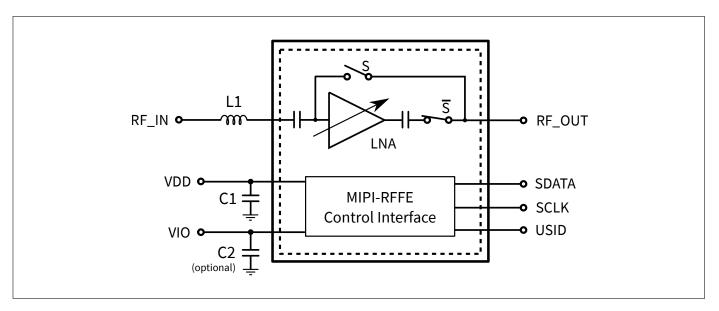


Figure 2: BGA10H1MN9 Application Schematic

Table 13: Bill of Materials Table

Name	Value	Package	Manufacturer	Function
C1	10 nF	0201	Various	RF bypass ¹
C2 (optional)	10 nF	0201	Various	RF bypass ¹
L1	4.3 nH	0201	muRata LQP HQ type	Input matching
N1	BGA10H1MN9	TSNP-9-2 /	Infineon	Multi gain mode LNA
		TSNP-9-6		

Package Information

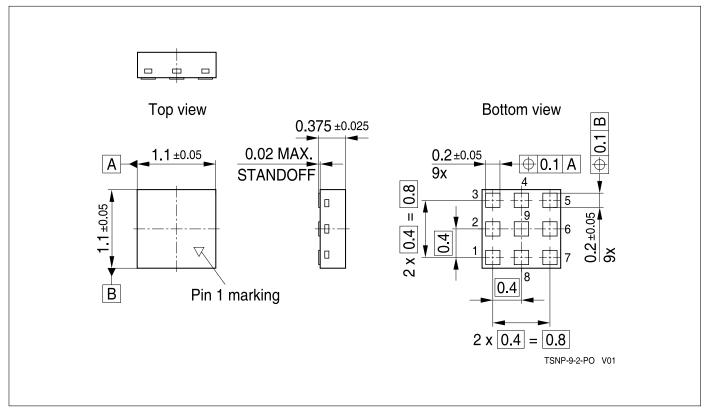
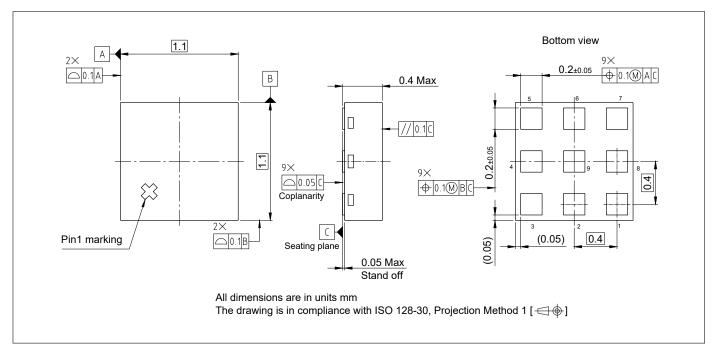



Figure 3: TSNP-9-2 Package Outline (top, side and bottom views)

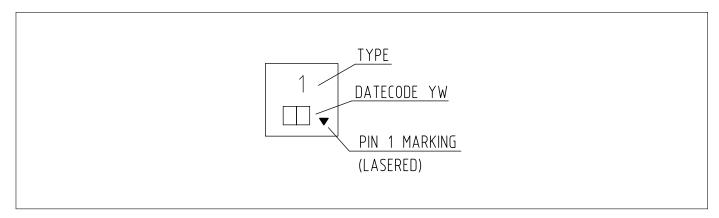
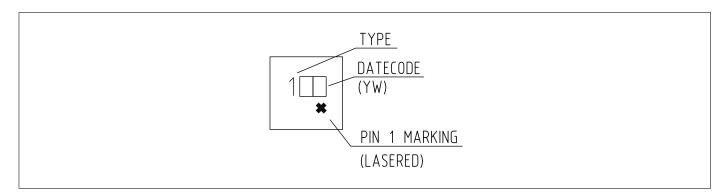


Figure 4: TSNP-9-6 Package Outline (top, side and bottom views)


High-Band Low Noise Amplifier with Gain Steps and MIPI Control

Package Information

Figure 5: TSNP-9-2 Marking Specification (top view)

20

Figure 6: TSNP-9-6 Marking Specification (top view)

Table 14: Year date code marking - digit "Y"

			_	_	
Year	"Y"	Year	"Y"	Year	"Y"
2010	0	2020	0	2030	0
2011	1	2021	1	2031	1
2012	2	2022	2	2032	2
2013	3	2023	3	2033	3
2014	4	2024	4	2034	4
2015	5	2025	5	2035	5
2016	6	2026	6	2036	6
2017	7	2027	7	2037	7
2018	8	2028	8	2038	8
2019	9	2029	9	2039	9

Table 15: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	Α	12	N	23	4	34	h	45	V
2	В	13	Р	24	5	35	j	46	x
3	С	14	Q	25	6	36	k	47	у
4	D	15	R	26	7	37	l	48	z
5	E	16	S	27	a	38	n	49	8
6	F	17	Т	28	b	39	р	50	9
7	G	18	U	29	с	40	q	51	2
8	Н	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	s	53	М
10	K	21	Υ	32	f	43	t		
11	L	22	Z	33	g	44	u		

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

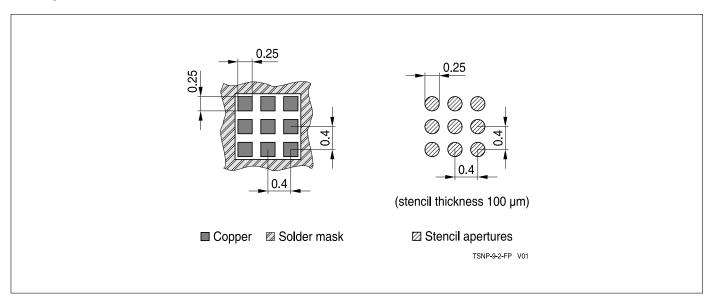


Figure 7: TSNP-9-2 Footprint Recommendation

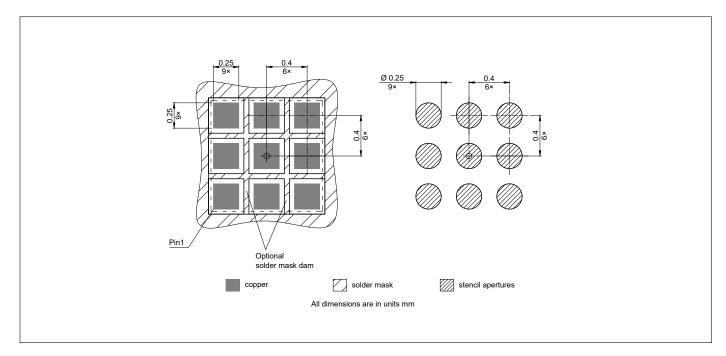


Figure 8: TSNP-9-6 Footprint Recommendation

High-Band Low Noise Amplifier with Gain Steps and MIPI Control

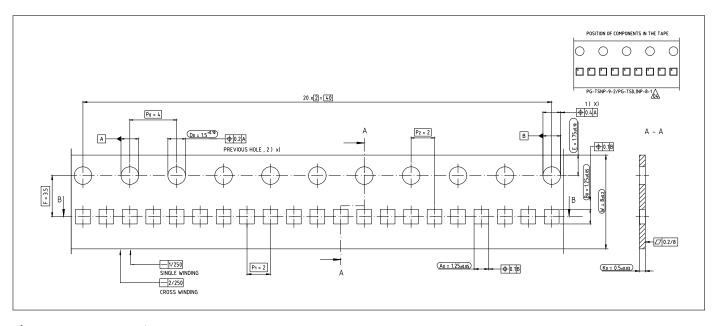


Figure 9: TSNP-9-2 Carrier Tape

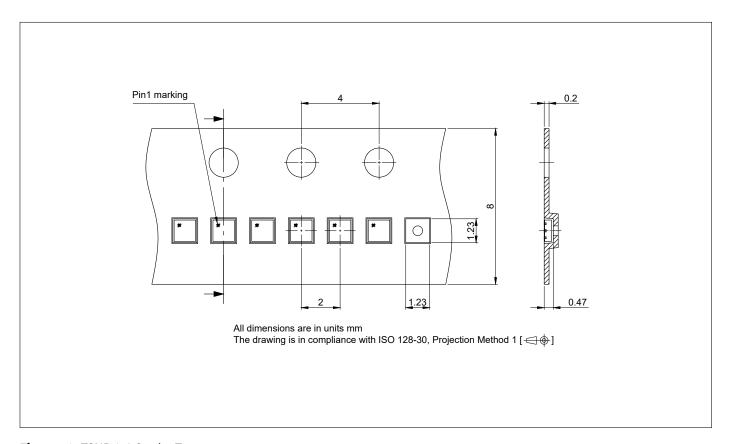


Figure 10: TSNP-9-6 Carrier Tape

Revision History	Revision History					
Preliminary, v1.0, 2022-10-06						
Page or Item Subjects (major changes since previous revision)						
Revision 2.0, 2023-07-31						
Title page	Block diagram updated					
3	Values for max. RF input power and total power dissipation added					
4-6	RF parameters updated, min/max-values added					
16	Bias control table updated					
18	Application circuit updated					

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-07-31 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.