

AIROC[™] Bluetooth[®] Low Energy 5.4 MCU

General description

The Infineon AIROC[™] CYW20829 is a high-performance, ultra-low-power and "Secure" MCU + Bluetooth[®] LE platform, purpose-built for IoT applications. It combines a high-performance microcontroller with Bluetooth[®] LE (5.4) connectivity, high-performance analog-to-digital conversion audio input, I²S/PCM, CAN, LIN for automotive use cases and other standard communication and timing peripherals. CYW20829 employs high level of integration to minimize external components, reducing the device footprint and costs associated with implementing Bluetooth[®] Low Energy solutions. AIROC[™] CYW20829 is the optimal solution for wireless input devices, remotes, keyboards, joysticks, Bluetooth[®] Mesh, automotive, asset tracking, and Bluetooth[®] LE IoT applications that need 10 dBm RF output power such as lighting and home automation.

Features

32-bit application core subsystem

- 48/96-MHz Arm[®] Cortex[®]-M33 CPU with single-cycle multiply and memory protection unit (MPU)
- ARMv8-M architecture
- CMOS 40-nm process
- User-selectable core logic operation at either 1.1 V or 1.0 V
- Active CPU current slope with 1.1 V core operation
 - Cortex[®]-M33: 40 μA/MHz
- Active CPU current slope with 1.0 V core operation
 - Cortex[°]-M33: 22 μA/MHz
- Datawire (DMA) controller with 16 channels
- 32-KB cache for greater XIP performance with lower power
- Memory subsystem
 - 256-KB SRAM with power and data retention control
 - OTP eFuse array for security provisioning
- Bluetooth[®] Low Energy subsystem
 - 48-MHz Arm[°] Cortex[°]-M33 CPU with 2.4 GHz RF transceiver with 50 Ω antenna drive
 - Digital PHY
 - Link layer engine supporting master and slave modes
 - Programmable TX power: up to 10 dBm
 - RX sensitivity:
 - LE-1 Mbps: -98 dBm
 - LE-2 Mbps: -95 dBm
 - Coded PHY 500 kbps (LE-LR): -101 dBm
 - Coded PHY 125 kbps (LE-LR): –106 dBm
 - 5.2 mA TX (0 dBm), 17.2 mA TX (10 dBm), and 5.6 mA RX (LE 1 Mbps) current with 3.0 V supply and using internal buck converter
 - CYW20829 link layer engine can support up to 16 connections of any combinations between central and peripheral devices simultaneously. For example, 13 central devices and three peripheral devices, or three central devices and 13 peripheral devices
 - Angle of Arrival (AoA) and Angle of Departure (AoD)¹⁾

Features

• Low-power 1.7 V to 3.6 V operation

- Six power modes for fine-grained power management
- Deep Sleep mode current of 4.5 µA with 64 KB SRAM retention
- On-chip DC-DC buck converter

Flexible clocking options

- 8-MHz internal main oscillator (IMO) with ±2% accuracy
- Ultra-low-power 32 kHz internal low-speed oscillator (ILO)
- Two oscillators: High-frequency (24 MHz) for radio PLL and low-frequency (32 kHz watch crystal) for LPO
- 48-MHz low power IHO (internal oscillator)
- Frequency-locked loop (FLL) for multiplying IMO frequency
- Integer and fractional peripheral clock dividers

Quad SPI (QSPI)/serial memory interface (SMIF)

- eXecute-In-Place (XIP) from external quad SPI flash
- On-the-fly encryption and decryption
- Support for DDR
- Supports single, dual, and quad interfaces with throughput up to 384 Mbps
- Serial communication
 - Three run-time configurable Serial Communication Blocks (SCBs)
 - First SCB: Configurable as SPI or I²C
 - Second SCB: Configurable as SPI or UART
 - Third SCB: Configurable as I²C or UART
 - Only 2 instances of specific buses (SPI/I2C/UART) are possible among 3 SCBs

Audio subsystem

- Two pulse density modulation (PDM) channels and one I²S channel with time division multiplexed (TDM) mode
- Timing and pulse-width modulation
 - Seven 16-bit and two 32-bit Timer/Counter Pulse-Width Modulator (TCPWM) blocks, for MCU. Multiple PWMs needed for color LEDs
 - PWM supports center-aligned, edge, and pseudo-random modes
- ADC and MIC
 - 12b sigma-delta switched cap ADC for audio and DC measurements
- Up to 32 programmable GPIOs
 - One I/O port (8 I/Os) enables Boolean operations on GPIO pins; available during system Deep Sleep
 - Programmable drive modes, strengths, and slew rates
 - Two overvoltage-tolerant (OVT) pins
 - Up to six, used for SMIF
- Security built into platform architecture
 - ROM-based root of trust via uninterruptible "Secure Boot"
 - Step-wise authentication of execution images
 - Secure execution of code in execute-only mode for protected routines

¹ For the end user AoA/AoD solutions like RTLS, Direction Finding, and so on, customers and partners will be required to build or license various system components to realize the final solution.

Eclipse IDE for Modustoolbox[™] software

- All debug and test ingress paths can be disabled
- Up to four protection contexts (One available for customer code)
- Secure debug support via authenticated debug token
- Encrypted image support for external SMIF memory
- Cryptography hardware
 - Hardware Acceleration for symmetric cryptographic methods and hash functions
 - True Random Number Generation (TRNG) function
- Packages
 - 56-lead 6 mm x 6 mm

Eclipse IDE for Modustoolbox™ software

Modustoolbox[™] software is Infineon's comprehensive collection of multi-platform tools and software libraries that enable an immersive development experience for creating converged MCU and wireless systems. It is:

- Comprehensive it has the resources you need
- Flexible you can use the resources in your own workflow
- Atomic you can get just the resources you want

Infineon provides a large collection of code repositories on GitHub. This includes:

- Board support packages (BSPs) aligned with Infineon kits
- Low-level resources, including a hardware abstraction layer (HAL) and peripheral driver library (PDL)
- Middleware enabling industry-leading features such as Bluetooth[®] Low Energy, and mesh networks
- An extensive set of thoroughly tested code example applications

Note: The HAL provides a high-level, simplified interface to configure and use the hardware blocks on Infineon MCUs and SoCs. It is a generic interface that can be used across multiple product families. You can leverage the HAL's simpler and more generic interface for most of an application, even if one portion requires fine-grained control.

ModusToolbox[™] software is IDE-neutral and easily adaptable to your workflow and preferred development environment. It includes a Project Creator, a Library Manager, a BSP Assistant, peripheral and library configurators, as well as the optional Eclipse IDE for the ModusToolbox[™], as Figure 1 shows. For information on using Infineon tools, refer to the documentation delivered with ModusToolbox[™] software.

AIROC[™] Bluetooth[®] Low Energy 5.4 MCU

Eclipse IDE for Modustoolbox™ software

ModusToolbox[™] software tools

Table of contents

Table of contents

	General description						
	Features						
	Eclipse IDE for Modustoolbox [™] software3						
	Table of contents 5						
1	Block diagram						
2	Functional description						
2.1	CPU and memory subsystem						
2.1.1	CPU						
2.1.2	Interrupts						
2.1.3	Datawire						
2.1.4	Cryptography accelerator (Cryptolite)						
2.1.5	Protection units						
2.1.6	AES-128						
2.1.7	Vector unit (VU)						
2.1.8	Controller area network flexible data-rate (CAN FD)						
2.1.9	Local interconnect network (LIN)						
2.1.10	Real time clock (RTC)						
2.1.11	Memory						
2.1.12	Boot code						
2.1.13	Memory map						
3	System resources						
3.1	Power system						
3.1.1	Power modes						
3.1.2	CYW20829 clock system						
3.1.3	Internal main oscillator (IMO)15						
3.1.4	Internal low-speed oscillator (ILO) 15						
3.1.5	Precision internal low-speed oscillator (PILO)15						
3.1.6	Main crystal oscillator						
3.1.7	32 kHz crystal oscillator						
3.1.8	Watchdog timers (WDT, MCWDT) 18						
3.1.9	Clock dividers						
3.1.10	Trigger routing						
3.1.11	Reset						
3.2	Bluetooth [®] LE radio and subsystem 20						
3.3	Programmable analog-to-digital converter (ADC)						
3.3.1	Sigma delta ADC						
3.4	Programmable digital						
3.5	Fixed-function digital						

Table of contents

3.5.1	Timer/counter/pulse-width modulator (TCPWM) block
3.5.2	Serial communication blocks (SCB)
3.5.3	QSPI interface serial memory interface (SMIF)
3.6	GPIO
3.7	Special-function peripherals
3.7.1	Audio subsystem
4	Pinouts
5	Power supply considerations
6	Electrical specifications
6.1	Absolute maximum ratings
6.2	Operating conditions
6.2.1	XRES
6.2.2	GPIO
6.3	Analog peripherals
6.3.1	AUD ADC
6.4	Digital peripherals
6.5	Audio subsystem
6.6	System resources
6.6.1	Power-on reset
6.6.2	Voltage monitors
6.6.3	SWD and trace interface
6.6.4	Internal main oscillator
6.6.5	Internal low-speed oscillator 51
6.6.6	FLL
6.6.7	Crystal oscillator
6.6.8	Clock source switching time
6.6.9	QSPI
6.6.10	Smart I/O
6.6.11	JTAG boundary scan
6.7	Bluetooth LE
7	Ordering information
8	Packaging
9	Acronyms
10	Document conventions
10.1	Units of measure
	Revision history
	Trademarks
	Disclaimer

1 Block diagram

1 Block diagram

Figure 2 shows the major subsystems and a simplified view of their interconnections. The color coding shows the lowest power mode where a block is still functional. For example, the SRAM is functional down to DS-RAM mode. It should also be noted that six SMIF IOs are in addition to the 26 GPIOs listed in Figure 2.

Figure 2 Functional block diagram

AIROC[™] CYW20829 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. All device interfaces can be permanently disabled (device security) for applications concerned about attacks due to a maliciously reprogrammed device. All programming, debug, and test interfaces are disabled when maximum device security is enabled. The security level is settable by the user.

Complete debug-on-chip functionality enables full device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The Eclipse IDE for ModusToolbox[™] and Integrated Development Environment (IDE) provide fully integrated programming and debug support for these devices. The SWJ (SWD and JTAG) interface is fully compatible with industry-standard third party probes. With the ability to disable debug features, with very robust flash protection, and by allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, CYW20829 provides a very high level of security.

2 Functional description

The following sections provide an overview of the features, capabilities and operation of each functional block identified in the block diagram in Figure 2. For more detailed information, refer to the following documentation:

Board support package (BSP) documentation

BSPs are available on GitHub. They are aligned with Infineon kits and provide files for basic device functionality such as hardware configuration files, startup code, and linker files. The BSP also includes other libraries that are required to support a kit. Each BSP has its own documentation, but typically includes an API reference such as the example here. This search link finds all currently available BSPs on the Infineon GitHub site.

Hardware abstraction layer(HAL) API reference manual

The Infineon HAL provides a high-level interface to configure and use hardware blocks on Infineon MCUs. It is a generic interface that can be used across multiple product families. You can leverage the HAL's simpler and more generic interface for most of an application, even if one portion requires finer-grained control. The HAL API Reference provides complete details. Example applications that use the HAL download it automatically from the GitHub repository.

2.1 CPU and memory subsystem

AIROC[™] CYW20829 has multiple bus masters, as Figure 2 shows. They are: CPU, datawire, QSPI, and a Crypto block. Generally, all memory and peripherals can be accessed and shared by all bus masters through multi-layer Arm[®] AMBA high-performance bus (AHB) arbitration. An interprocessor communication block (IPC) provides communication between the CPU and the Bluetooth[®] LE sub-system.

2.1.1 CPU

The Cortex[®]-M33 has single-cycle multiply and a memory protection unit (MPU). It can run at up to 96 MHz in LP mode and 48 MHz in ULP mode. This is the main CPU, designed for a short interrupt response time, high code density, and high throughput.

Cortex[®]-M33 implements a version of the Thumb instruction set based on Thumb-2 technology (defined in the Armv8-M architecture reference manual).

The main MCU also implements device-level security, safety, and protection features. Cortex[®]-M33 provides a secure, interruptible boot function. This guarantees that post boot, system integrity is checked and memory and peripheral access privileges are enforced.

The CPU has the following power draw, at VDDD = 3.0 V and using the internal buck regulator.

Table 1Active current slope at VDDD = 3.0 V using the internal buck regulator

System power mode

CPU	ULP	LP
	22 μA/MHz	40 μA/MHz

The CPU can be selectively placed in Sleep and Deep Sleep power modes as defined by Arm[®]. The CPU also implements a Deep Sleep RAM (DS-RAM) mode in which almost all the circuits except RAM are powered OFF. Data in RAM is retained to maintain state. Upon exit, the CPU goes through a reset but can use the data in RAM to skip software initialization.

The CPU also has nested vectored interrupt controllers (NVIC) for rapid and deterministic interrupt response, and wake up interrupt controllers (WIC) for CPU wake up from Deep Sleep power mode.

CYW20829 has a debug access port (DAP) that acts as the interface for device programming and debug. An external programmer or debugger (the "host") communicates with the DAP through the device serial wire

debug (SWD) or Joint Test Action Group (JTAG) interface pins. Through the DAP (and subject to device security restrictions), the host can access the device memory and peripherals as well as the registers in the CPU.

CPU debug and trace features are as follows:

• Six hardware breakpoints and four watchpoints, serial wire viewer (SWV), and printf()-style debugging through the single wire output (SWO) pin

2.1.2 Interrupts

The CPU has interrupt request lines (IRQ), with the interrupt source 'n' directly connected to IRQn.

Each interrupt supports eight configurable priority levels. One system interrupt can be mapped to the CPU nonmaskable interrupts (NMI). Multiple interrupt sources are capable of waking the device from Deep Sleep power mode using the WIC.

2.1.3 Datawire

Datawire is a light weight DMA controller with 16 channels, which support CPU-independent accesses to memory and peripherals. The descriptors for the channels are in SRAM and the number of descriptors is limited only by the size of the memory. Each descriptor can transfer data in two nested loops with configurable address increments to the source and destination.

2.1.4 Cryptography accelerator (Cryptolite)

A combination of HW and SW is able to support several cryptographic functions. Specifically it supports the following functions:

- Encryption/decryption
 - AES-128 hardware accelerator with following supported modes:
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Cipher Feedback (CFB)
 - Output Feedback (OFB)
 - Counter (CTR)
- Hashing
 - Secure Hash Algorithm (SHA-256) hardware accelerator
 - Message Authentication Functions (MAC)
 - Hashed Message Authentication Code (HMAC) acceleration using SHA-256 hardware
- True Random Number Generator (TRNG)
- Vector unit hardware accelerator
 - Digital Signature Verification using RSA
 - Digital Signature Verification using ECDSA

2.1.5 Protection units

CYW20829 has multiple types of protection to control erroneous or unauthorized access to memory and peripheral registers.

Protection units support memory and peripheral access attributes including address range, read/write, code/ data, privilege level, secure/non-secure, and protection context.

Protection units are configured at "Secure Boot" to control access privileges and rights for bus masters and peripherals. Up to eight protection contexts ("Secure Boot" is in protection context 0) allow access privileges for memory and system resources to be set by the "Secure Boot" process per protection context by bus master and code privilege level. Multiple protection contexts are available.

2.1.6 AES-128

AES-128 component to accelerate block cipher functionality. This functionality supports forward encryption of a single 128 bit block with a 128 bit key. SHA-256 component to accelerate hash functionality. This component supports message schedule calculation for a 512-bit message chunk and processing of a 512-bit message chunk.

2.1.7 Vector unit (VU)

VU component to accelerate asymmetric key cryptography (for example, RSA and ECC). This component supports large integer multiplication, addition, and so on. TRNG component based on a set of ring oscillators. The TRNG includes a HW health monitor.

2.1.8 Controller area network flexible data-rate (CAN FD)

CYW20829 supports the CAN FD controller that supports one CAN FD channel. All CAN FD controllers are compliant with the ISO 11898-1:2015 standard; an ISO 16845:2015 certificate is available. It also implements the time-triggered CAN (TTCAN) protocol specified in ISO 11898-4 (TTCAN protocol levels 1 and 2) completely in hardware. All functions concerning the handling of messages are implemented by the RX and TX handlers. The RX handler manages message acceptance filtering, transfer of received messages from the CAN core to a message RAM, and provides receive-message status. The TX handler is responsible for the transfer of transmit messages from the message RAM to the CAN core, and provides transmit-message status. CAN FD is only available in CYW20829B0010.

2.1.9 Local interconnect network (LIN)

CYW20829 contains a LIN channel. Each channel supports transmission/reception of data following the LIN protocol according to ISO standard 17987. Each LIN channel connects to an external transceiver through a 3-pin interface (including an enable function) and supports master and slave functionality. Each block also supports classic and enhanced checksum, along with break detection during message reception and wake-up signaling. Break detection, sync field, checksum calculations, and error interrupts are handled in hardware. LIN is only available in CYW20829B0010.

2.1.10 Real time clock (RTC)

- Year/Month/Date, Day-of-week, Hour: Minute: Second fields
- 12 and 24 hour formats
- Automatic leap-year correction

2.1.11 Memory

CYW20829 contains the SRAM, ROM, and eFuse memory blocks.

• **SRAM**: CYW20829 has 256-KB of SRAM. Power control and retention granularity is 64-KB blocks allowing the user to control the amount of memory retained in Deep Sleep. Memory is not retained in Hibernate mode.

- **ROM**: The 64-KB ROM, also referred to as the supervisory ROM (SROM), provides code (ROM Boot) for several system functions. The ROM contains, primarily device initialization and security. ROM code is executed, in protection context 0.
- **eFuse**: A one-time programmable (OTP) eFuse array consists of 1024 bits, which are reserved for system use such as Die ID, Device ID, initial trim settings, device life cycle, and security settings. Some of the bits are available for storing security key information and hash values and can be programmed by the user for device security. Each fuse is individually programmed; once programmed (or "blown"), its state cannot be changed. Blowing a fuse transitions it from the default state of '0' to '1'. To program an eFuse, VDDIO1 must be at 2.5 V ±5%. Because blowing an eFuse is an irreversible process, programming is recommended only in mass production under controlled factory conditions by Infineon provided provisioning tools.

2.1.12 Boot code

On a device reset, the boot code in ROM is the first code to execute. This code performs the following:

- Device trim setting (calibration)
- Setting the device protection units
- Setting device access restrictions for secure life cycle states
- Configures the Debug Access Port
- In secure life cycle supports secure debug via authenticated debug token
- Configures the SMIF for external flash access
- In secure life cycle validates first user code in external flash by checking its digital signature. Supports OTF decryption of encrypted images in external flash
- Copies the application bootstrap from the external flash to SRAM and jumps to the ROM. It cannot be changed and acts as the Root of Trust in a secure system

It should also be noted that the ROM code sets the system clock to 48 MHz IHO source.

2.1.13 Memory map

The 32-bit (4 GB) address space is divided into the regions shown in Table 3. Note that code can be executed from the Code, and Internal RAM or External flash.

	•	
Address range	Name	Use
0x0000 0000 – 0x1FFF FFFF	Code	Program code region. It includes the exception vector table, which starts at address 0
0x2000 0000 – 0x3FFF FFFF	SRAM	Data region
0x4000 0000 – 0x5FFF FFFF	Peripheral	All peripheral registers. Code cannot be executed from this region. Bit-band in this region is not supported
0x6000 0000 – 0x8FFF FFFF	External NVM	SMIF/Quad SPI, (see the QSPI interface serial memory interface (SMIF). Code can be executed from this region
0xA000 0000 – 0xDFFF FFFF	External Device	Not used
0xE000 0000 – 0xE00F FFFF	Private Peripheral Bus	Provides access to peripheral registers within the CPU core
0xE010 0000 – 0xFFFF FFFF	Device	Device-specific system registers

Table 2Address map

The device memory map is shown in Table 3.

Table 3Internal memory address map

Address range	Memory type	Size
0x0000 0000 – 0x0001 0000	ROM	64 KB
0x2000 0000 - 0x 2004 0000	SRAM	Up to 256 KB

3 System resources

3.1 Power system

The power system provides assurance that voltage levels are as required for each respective mode and will either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brownout detect (BOD)) when the power supply drops below specified levels. The design guarantees safe chip operation between power supply voltage dropping below specified levels (for example, below 1.7 V) and the reset occurring. There are no voltage sequencing requirements. CYW20829 does not support POR/BOD to guarantee EFUSE programming voltage.

The VDDD supply (1.7 V to 3.6 V) powers an on-chip buck regulator which offers a selectable (1.0 V or 1.1 V) core operating voltage (VCCD). The selection lets users choose between two system power modes:

- System Low Power (LP) operates VCCD at 1.1 V and offers high performance, with no restrictions on device configuration
- System Ultra Low Power (ULP) operates VCCD at 1.0 V for exceptional low power, but imposes limitations on clock speeds

The Bluetooth[®] radio requires 1.1 V for operation. Bluetooth[®] system may override user core voltage selection when the radio is turned on. System voltage will return to the user selected value automatically once Bluetooth[®] radio activity is completed. Refer to Power supply considerations for more details.

3.1.1 Power modes

CYW20829 can operate in four system and three CPU power modes. These modes are intended to minimize the average power consumption in an application. For more details on power modes and other power-saving configuration options, see the relevant application note,

Power modes supported by CYW20829, in the order of decreasing power consumption, are:

- System Low-power (LP) All peripherals and CPU power modes are available at maximum speed
- System Ultra Low-power (ULP) All peripherals and CPU power modes are available, but with limited speed
- CPU Active CPU is executing code in system LP or ULP mode
- CPU Sleep CPU code execution is halted in system LP or ULP mode
- CPU Deep Sleep CPU code execution is halted and system Deep Sleep is requested in system LP or ULP mode
- System Deep Sleep only low-frequency peripherals are available after both CPUs enter CPU Deep Sleep mode
- System Hibernate Device and I/O states are frozen and the device resets on wakeup. Multiple sources available to wake up from this mode, including RTC, P0.5 and P1.4
- Deep Sleep RAM only RAM and IO states are retained. All system activity except for select low power peripherals ceases until system exits from this state. The CPU resets upon exit but can skip software initialization since RAM is retained

CPU Active, Sleep, and Deep Sleep are standard Arm[®]-defined power modes supported by the Arm[®] CPU instruction set architecture (ISA). System LP, ULP, Deep Sleep, Deep Sleep RAM and Hibernate modes are additional low-power modes supported by the CYW20829.

3.1.2 CYW20829 clock system

CYW20829 clock system consists of a combination of oscillators, external clock, and frequency-locked loop. Specifically, the following:

- Internal main oscillator (IMO)
- Internal low-speed oscillator (ILO)
- Watch crystal oscillator (WCO)
- System 24 MHz crystal oscillator
- External clock input
- One frequency-locked loop (FLL)
- Internal high-speed oscillator (IHO)

Clocks may be buffered and brought out to a pin on a smart I/O port.

Table 4 shows the mapping of port and associated clock group mapped to peripherals.

Table 4	Mapping of clock groups to peripherals
---------	--

PCLK group	Root clock (clk_hf)	Peripherals	Frequency		Description	
		k_hf)	LP (1.1 V Typ)	ULP (1.0 V Typ)	_	
0	clk_hf0	CPU Trace	24 MHz	24 MHz	-	
1	clk_hf1	SCB	96 MHz	48 MHz	Async peripherals: Strobe signals are	
		ТСРѠМ			driven through dividers; Interface clock	
		LIN			the main group clock	
		CANFD				
		SMARTIO				
2	clk_hf0	SMIF	96 MHz	48 MHz	Direct connection pass through from	
		BTSS	SS YPTO		clk_hf. This clock is not used for	
		CRYPTO			for the MMIO clocks of SMIF, BTSS and CRYPTO. BTSS uses this clock for Master and Slave AHB/MMIO transactions, and SMIF also uses this clock for FAST/SLOW clocks	
3	clk_hf1	PDM	96 MHz	48 MHz	Uses PERI ACLK with default div by 2	
		TDM			option, required interface frequencies are obtained by further division inside the peripheral	
4	clk_hf2	BTSS	48 MHz 48 MHz		RPU clock for BTSS	
5	clk_hf3	ADCMIC	24 MHz	24 MHz	Direct connection for ADCMIC, main source of clk_hf3 is clk_althf which is the BTSS ECO clock	
6	clk_hf1	SMIF	96 MHz	48 MHz	Direct connection for SMIF and SMARTIO peripherals. This clock is an interface clocks for these peripherals	

3.1.3 Internal main oscillator (IMO)

The IMO is the primary source of internal clocking. It is trimmed during testing to achieve the specified accuracy.

The IMO default frequency is 8 MHz and tolerance is $\pm 2\%$.

3.1.4 Internal low-speed oscillator (ILO)

The ILO is a very low power oscillator, nominally 32 kHz, which operates in all power modes.

3.1.5 Precision internal low-speed oscillator (PILO)

The PILO is a precision low-power oscillator running at 32 kHz. It is factory calibrated to meet Bluetooth[®] Low Energy requirements. Like the ILO, it can operate in all power modes.

Figure 3

CYW20829 clocking diagram with corresponding oscillators

Note: Using PILO as the ILO clock source will result in longer boot time.

3.1.6 Main crystal oscillator

CYW20829 uses a 24 MHz crystal oscillator (XTAL).

The XTAL must have an accuracy as defined by the Bluetooth[®] specification. Two external load capacitors are required to work with the crystal oscillator. The selection of the load capacitors is XTAL-dependent (see Figure 4).

Figure 4 Recommended oscillator configuration

Table 5 Reference crystal electrical specifications

Parameter	Symbol	Electrical specification				Note
		Min	Тур	Мах	Unit	
Nominal frequency	FL	24.00		MHz	-	
Oscillation mode	-	Fundamental		-	-	
Load capacitance	CL	8			pF	-
Frequency tolerance	-	±10	±10		ppm	at 25°C ± 3°C
Frequency stability	-	± 20		ppm	Over operating temperature range (reference 25°C)	
Operating temperature	-	-40	-	85	°C	-
Aging	-	±3		ppm	1st year at 25°C ± 3°C	
Drive level	DL	-	100	200	uW	-
Series resonant resistance	Rr	-	-	60	Ω	-
Shunt capacitance	C0	-	-	3	pF	-
Insulation resistance	-	500	-	-	MΩ	at DC 100 V
Storage temperature range	-	-40	-	125	°C	-

3.1.7 32 kHz crystal oscillator

CYW20829 includes a 32 kHz oscillator to provide accurate timing during low power operations. Figure 5 shows the 32 kHz XTAL oscillator with external components and Table 6 lists the oscillator's characteristics. This oscillator can be operated with a 32 kHz or 32.768 kHz crystal oscillator or be driven with a clock input at similar frequency. The XTAL must have an accuracy of ±250 ppm or better per the Bluetooth[®] spec over temperature and including aging. The default component values are: C1 = C2 = ~6 pF. The values of C1 and C2 are used to fine-tune the oscillator.

Note: The 32.768-kHz crystal is optional and may be omitted. CYW20829 has an internal PILO (precision internal low-speed oscillator).

Figure 5 32 kHz oscillator block diagram

Table 6 XTAL oscillator characteristics

Parameter	Sym	Conditions	Min	Тур	Мах	Unit
Output frequency	Foscout	-	_	32.768	_	kHz
Frequency tolerance	_	Over temperature and aging	_	-	250	ppm
XATL driver level	Pdrv	For crystal selection	-	0.1	0.5	μW
XTAL series resistance	Rseries	For crystal selection	_	-	70	ΚΩ
XATL shunt capacitance	Cshunt	For crystal selection	-	-	2.2	pF

3.1.8 Watchdog timers (WDT, MCWDT)

CYW20829 has one WDT and two multi-counter WDTs (MCWDTs). The WDT has a 16-bit free-running counter. Each MCWDT has two 16-bit counters and one 32-bit counter, with multiple operating modes. All of the 16-bit counters can generate a watchdog device reset. All of the counters can generate an interrupt on a match event.

The WDT is clocked by the ILO. It can do interrupt/wakeup generation in system LP/ULP, Deep Sleep, and Hibernate power modes. The MCWDTs are clocked by LFCLK (ILO or WCO). It can do periodic interrupt/wakeup generation in system LP/ULP and Deep Sleep power modes.

3.1.9 Clock dividers

Integer and fractional clock dividers are provided for peripheral use and timing purposes. There are one or more:

- 8-bit clock dividers
- 16-bit integer clock dividers
- 16.5-bit fractional clock dividers
- 24.5-bit fractional clock divider

3.1.10 Trigger routing

CYW20829 contains a trigger multiplexer block. This is a collection of digital multiplexers and switches that are used for routing trigger signals between peripheral blocks and between GPIOs and peripheral blocks.

There are two types of trigger routing. Trigger multiplexers have reconfigurability in the source and destination. There are also hardwired switches called "one-to-one triggers", which connect a specific source to a destination. The user can enable or disable the route.

3.1.11 Reset

CYW20829 can be reset from a variety of sources:

- Power-on reset (POR) to hold the device in reset while the power supply ramps up to the level required for the device to function properly. POR activates automatically at power-up
- Brown-out detect (BOD) reset to monitor the digital voltage supply VDDD and generate a reset if VDDD falls below the minimum required logic operating voltage
- External reset dedicated pin (XRES) to reset the device using an external source. The XRES pin is active LOW. It can be connected either to a pull-up resistor to VDDD, or to an active drive circuit, as Figure 6 shows. If a pull-up resistor is used, select its value to minimize current draw when the pin is pulled LOW; 10 kΩ is typical

Figure 6 XRES connection diagram

- Watchdog Timer (WDT or MCWDT) to reset the device if firmware fails to service it within a specified timeout period
- Software-initiated reset to reset the device on demand using firmware
- Logic-protection fault can trigger an interrupt or reset the device if unauthorized operating conditions occur; for example, reaching a debug breakpoint while executing privileged code
- Hibernate wakeup reset to bring the device out of the system Hibernate low-power mode

Reset events are asynchronous and guarantee reversion to a known state. Some of the reset sources are recorded in a register, which is retained through reset and allows software to determine the cause of the reset.

3.2 Bluetooth[®] LE radio and subsystem

CYW20829 incorporates a Bluetooth[®] 5.4 LE subsystem (BLESS) that contains the physical layer (PHY) and link layer (LL) engines with an embedded security engine. The Bluetooth[®] LE SS supports all Bluetooth[®] LE 5.4 features including LE 2 Mbps, LE Long Range, LE Advertising Extensions, LE Isochronous Channels, Periodic Advertising with Responses (PAwR), Encrypted Advertising Data, LE GATT Security Levels Characteristic and Advertising Coding Selection. Infineon also provides extensive driver library and middleware support for Bluetooth[®] LE; see Eclipse IDE for Modustoolbox[™] software.

The physical layer consists of the digital PHY and the RF transceiver that transmits and receives Gaussian frequency shift keying (GFSK) packets at 1 or 2 Mbps over a 2.4 GHz ISM band, The device also supports Bluetooth[®] LE long range, both 500 and 125 kbps speeds.

The baseband controller is a composite hardware and firmware implementation that supports both master and slave modes. Key protocol elements, such as HCI and link control, are implemented in firmware. Time-critical functional blocks, such as encryption, CRC, data whitening, and access code correlation, are implemented in hardware (in the LL engine).

The RF transceiver contains an integrated balun, which provides a single-ended RF port pin to drive a 50 Ω antenna via a matching/filtering network. In the receive direction, this block converts the RF signal from the antenna to a digital bit stream after performing GFSK demodulation. In the transmit direction, this block performs GFSK modulation and then converts a digital baseband signal to a radio frequency before transmitting it through the antenna.

3.3 Programmable analog-to-digital converter (ADC)

3.3.1 Sigma delta ADC

The ADC block is a single switched-cap Σ - Δ ADC core for audio and DC measurement. It operates at the 12-MHz clock rate and has eight GPIO inputs. The internal bandgap reference has ±5% accuracy without calibration. Different calibration and digital correction schemes can be applied to reduce ADC absolute error and improve measurement accuracy in DC.

One of three internal references may be used for the ADC reference voltage: VDDA, VDDA/2, and an analog reference (AREF). AREF is nominally 1.2 V, trimmed to $\pm 1\%$.

3.4 Programmable digital

- System Deep Sleep operation
- Asynchronous or synchronous (clocked) operation
- Can be synchronous or asynchronous

3.5 Fixed-function digital

3.5.1 Timer/counter/pulse-width modulator (TCPWM) block

- The TCPWM supports the following operational modes:
 - Timer-counter with compare

- Timer-counter with capture
- Quadrature decoding
- Pulse width modulation (PWM)
- Pseudo-random PWM
- PWM with dead time
- Up, down, and up/down counting modes
- Clock pre-scaling (division by 1, 2, 4,....64, 128)
- Double buffering of compare/capture and period values• Underflow, overflow, and capture/compare output signals
- Supports interrupt on:
 - Terminal count Depends on the mode; typically occurs on overflow or underflow
 - Capture/compare The count is captured to the capture register or the counter value equals the value in the compare register
- Complementary output for PWMs
- Selectable start, reload, stop, count, and capture event signals for each TCPWM; with rising edge, falling edge, both edges, and level trigger options. The TCPWM has a Kill input to force outputs to a predetermined state.

In this device there are:

- Two 32-bit TCPWMs
- Seven 16-bit TCPWMs

3.5.2 Serial communication blocks (SCB)

- This product line has three SCBs:
 - First SCB: Configurable as SPI or I²C
 - Second SCB: Configurable as SPI or UART
 - Third SCB: Configurable as I²C or UART
- One SCB (SCB #0) can operate in system Deep Sleep mode with an external clock; this SCB can be either SPI slave or I²C slave
- I²C mode: The SCB can implement a full multi-master and slave interface (it is capable of multimaster arbitration). This block can operate at speeds of up to 1 Mbps (Fast Mode Plus). It also supports EZI2C, which creates a mailbox address range and effectively reduces I²C communication to reading from and writing to an array in the memory. The SCB supports a 256-byte FIFO for receive and transmit. The I²C peripheral is compatible with I²C standard-mode, Fast Mode, and Fast Mode Plus devices. The I²C bus I/O is implemented with GPIO in open-drain modes.
- **UART mode:** This is a full-feature UART operating at up to 8 Mbps. It supports automotive single-wire interface (LIN) (only available for CYW20829B0010), infrared interface (IrDA), and SmartCard (ISO 7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common Rx and Tx lines. Common UART functions such as parity error, break detect, and frame error are supported. A 256-byte FIFO allows much greater CPU service latencies to be tolerated
- **SPI mode:** The SPI mode supports full SPI, Secure Simple Pairing (SSP) (essentially adds a start pulse that is used to synchronize SPI Codecs), and Microwire (half-duplex form of SPI). The SPI block supports an EZSPI mode in which the data interchange is reduced to reading and writing an array in memory. The SPI interface operates with a 24-MHz clock

3.5.3 QSPI interface serial memory interface (SMIF)

A serial memory interface is provided, running at up to 48 MHz. It supports single, dual and quad SPI configurations, and supports up to four external memory devices. It supports two modes of operation:

- Memory-mapped I/O (MMIO), a command mode interface that provides data access via the SMIF registers and FIFOs
- Execute-in-Place (XIP), in which AHB reads and writes are directly translated to SPI read and write transfers

In XIP mode, the external memory is mapped into the CYW20829 internal address space, enabling code execution directly from the external memory. To improve performance, a 32 KB cache is included. XIP mode also supports AES-128 based on-the-fly encryption and decryption, enabling secure storage and access of code and data in the external memory.

3.6 GPIO

CYW20829 has up to 32 GPIOs, which implement:

- • Eight drive strength modes:
 - Analog input mode (input and output buffers disabled) on some IOs
 - Input only
 - Weak pull-up with strong pull-down
 - Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
 - Hold mode for latching previous state (used for retaining the I/O state in system Hibernate and deep sleep mode)
 - Selectable slew rates for dV/dt-related noise control to improve EMI

The pins are organized in logical entities called ports, which are up to eight pins in width. Data output and pin state registers store, respectively, the values to be driven on the pins and the input states of the pins.

Every pin can generate an interrupt if enabled; each port has an interrupt request (IRQ) associated with it.

The port 4 pins are capable of overvoltage-tolerant (OVT) operation, where the input voltage may be higher than VDDD. OVT pins are commonly used with I²C, to allow powering the chip OFF while maintaining a physical connection to an operating I²C bus without affecting its functionality.

GPIO pins can be ganged to source or sink higher values of current. GPIO pins, including OVT pins, may not be pulled up higher than the absolute maximum; see Electrical specifications.

During power-on and reset, the pins are forced to the analog input drive mode, with input and output buffers disabled, so as not to crowbar any inputs and/or cause excess turn-on current.

A multiplexing network known as the high-speed I/O matrix (HSIOM) is used to multiplex between various peripheral and analog signals that may connect to an I/O pin.

In order to get the best performance, the following frequency and drive mode constraints may be applied. The values (refer to Table 7) represent drive strengths.

Table 7 DRIVE_SEL values

Ports	Maximum frequency	Drive strength for VDDD < 2.7 V	Drive strength for VDDD > 2.7 V
Ports 0, 1	8 MHz	Up to 4 mA	Up to 8 mA

(table continues...)

Table ((continued) DRIVE_SEL values					
Ports	Maximum frequency	Drive strength for VDDD < 2.7 V	Drive strength for VDDD > 2.7 V			
Ports 2 to 5	16 MHz; 24 MHz for SPI	Up to 4 mA	Up to 8 mA			

(continued) DBIVE SEL values Tabla 7

3.7 **Special-function peripherals**

3.7.1 Audio subsystem

The audio subsystem is only available in CYW20829B0010, it consists of the following hardware blocks:

- One inter-IC sound (I²S) interface
- Two pulse-density modulation (PDM) to pulse-code modulation (PCM) decoder channels

The I²S interface implements two independent hardware FIFO buffers - TX and RX, which can operate in master or slave mode. The following features are supported:

- Multiple data formats I²S, left-justified, Time Division Multiplexed (TDM) mode A, and TDM mode B •
- Programmable channel/word lengths 8/16/18/20/24/32 bits
- Internal/external clock operation. Up to 192 ksps •
- Interrupt mask events trigger, not empty, full, overflow, underflow, watchdog
- Configurable FIFO trigger level with datawire support •

The I²S interface is commonly used to connect with audio codecs, simple DACs, and digital microphones. The PDM-to-PCM decoder implements a single hardware Rx FIFO that decodes a stereo or mono 1-bit PDM input stream to PCM data output. The following features are supported:

- Programmable data output word length 16/18/20/24 bits •
- Configurable PDM clock generation. Range from 384 kHz to 3.072 MHz •
- Droop correction and configurable decimation rate for sampling; up to 48 ksps •
- Programmable high-pass filter gain
- Interrupt mask events not empty, overflow, trigger, underflow •
- Configurable FIFO trigger level with DMA support

The PDM-to-PCM decoder is commonly used to connect to digital PDM microphones. Up to two microphones can be connected to the same PDM data line.

4 Pinouts

Table 8 Packages and pin information				
Pin name	Pin number 56-lead	I/O	I/O Power domain	Description
Microphone				
MIC_P	54	I	VDDA	Microphone positive input
MIC_N	55			Microphone negative input
MIC_BIAS	53	0		Microphone bias supply
Onboard swit	ching regulator	and LD	Os	
VDDQ	15	I	-	External supply to PMU analog
VCC_BUCK	17		-	External supply to switching regulator
LX_BUCK	16	0	-	Switching regulator output
VCCD	18		-	Digital LDO output
VCCI	19	I	-	RF and digital LDO input
Baseband sup	oply			
VDDIO_0	42	I	VDDIO_0	Supply for GPIO ports
VDDIO_1	52		VDDIO_1	Supply for GPIO ports and eFuse programming.
				See Table 11 for eFuse programming requirements.
VDDIO_A	7		VDDIO_A	Supply for analog GPIO ports
VDDA	56		VDDA	Analog power supply voltage
RF power sup	ply			
VCCRF	20	0	-	RFLDO output
VDDD	22	I	-	PALDO and sub-system resources supply
VCCPA_0	21	0	-	PALDO output
BT_VCOVDD	28	I	BT_VCOVDD	VCO supply
BT_LNAVDD	26		BT_LNAVDD	LNA supply
BT_IFVDD	27		BT_IFVDD	IFPLL power supply
BT_PLLVDD	29		BT_PLLVDD	RFPLL and crystal oscillator supply
BT_PAVDD	24		BT_PAVDD	Internal PA supply
Radio I/O				
BT_RF	25	I/O	BT_RF	RF antenna port
Crystal				
BT_XTALI	30	1	BT_PLLVDD	Crystal oscillator input. Two external load capacitors are required to work with the crystal oscillator. The selection of the load capacitors is XTAL-dependent.

(table continues...)

Table 8	(continued	l) Packa	ges and pin inforn	nation
Pin name	Pin number	I/O	Power domain	Description
	56-lead			
BT_XTALO	31	0		Crystal oscillator output
GPIO				
P0.0	32	I/O	VDDIO_0	General input and output port. See Table 9 for
P0.1	33			alternate functions.
P0.2	34			hibernate mode
P0.3	35			
P0.4	36			
P0.5	37			
P1.0	38			
P1.1	39			
P1.2	40			
P1.3	41			
P1.4	43			
P1.5	44			
P1.6	45			
P2.0	46			
P2.1	47			
P2.2	48			
P2.3	49			
P2.4	50			
P2.5	51			
P3.0	1			
P3.1	2			
P3.2	3			
P3.3	4			
P3.4	5			
P3.5	6			
P3.6	8			
P3.7	9			
P4.0	13			
P4.1	14			
P5.0/WCO_OUT	10			

(table continues...)

Table 8	(continued) Packa	ges and pin inforn	nation
Pin name	Pin number	I/O	Power domain	Description
	56-lead			
P5.1/WCO_IN	11			
P5.2	12			
XRES	23	I		Active-low system reset without internal pull-up resistor

Figure 7 Device pinout for 56-lead package

Each port pin has multiple alternate functions. These are defined in Table 9.

Table 9		ž	lultiple	altern	ate fun	lctions ¹	1)												
Port/ Pin	Anal og	ACT #0	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #11	ACT #12	ACT #13	ACT #15	DS #2	DS #3	DS #5	DS #6
P0.0		tcpw m[0]. line_ comp l[0]:3	tcpw m[0]. line_ comp l[262] :0								pdm. pdm _clk[1]:0		tdm.t dm_r x_mc k[0]:0			keysc an.ks col[3]			scb[0].spi_ selec t1:0
P0.1		tcpw m[0]. line[1]:3	tcpw m[0]. line[2 56]:1								pdm. pdm _dat a[1]:0		tdm.t dm_r x_sc k[0]:0			keysc an.ks _col[4]			scb[0].spi_ selec t2:0
P0.2		tcpw m[0]. line_ comp l[1]:3	tcpw m[0]. line_ comp l[256] :1										tdm.t dm_r x_fsy nc[0]: 0			keysc an.ks _col[11]	scb[0].i2c_ scl:0		scb[0].spi_ nosi: 0
P0.3		tcpw m[0]. line[0]:4	tcpw m[0]. line[2 57]:1							scb[1].spi_ selec t3:0			tdm.t dm_r x_sd[0]:0			keysc an.ks _col[12]	scb[0].i2c sda:0		scb[0].spi_ miso: 0
P0.4		tcpw m[0]. line_ comp l[0]:4	tcpw m[0]. line_ comp l[257] :1			srss.e xt_cl k:0	cpus s.trac e_da ta[3]: 1			scb[1].spi_ selec t2:0			tdm.t dm_t x_mc k[0]:0			keysc an.ks _ro w[0]			scb[0].spi_ clk:0
(table c	continu	Jes)																	

Table 9		5	ontinu	ed) Mu	ltiple a	lternat	e funct	tions ¹⁾											
Port/ Pin	Anal og	АСТ #0	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	АСТ #6	АСТ #7	ACT #8	АСТ #9	ACT #11	ACT #12	АСТ #13	АСТ #15	DS #2	DS #3	DS #5	DS #6
P0.5		tcpw m[0]. line[1]:4	tcpw m[0]. line[2 58]:1	btss. ante nna_ switc h_ctr l[0]			cpus s.trac e_da ta[2]: 1			scb[1].spi_ selec t1:0			tdm.t dm_t x_sc k[0]:0	btss. gci_g pio[0]	smif. spihb _sele ct1	keysc an.ks ro w[1]			
P1.0		tcpw m[0]. line_ comp l[1]:4	tcpw m[0]. line_ comp l[258] :1	btss. ante nna_ switc h_ctr [[1]	btss.r pu_t do		cpus s.trac e_da ta[1]: 1	scb[1].uart cts: 0		scb[1].spi_ selec t0:0	pdm. clk[1]:1		tdm.t dm_t x_fsy nc[0]: 0	btss. gci_g pio[1]		keysc an.ks ro w[5]		cpus s.swj _swo _tdo	
L.Iq		tcpw m[0]. line[0]:5	tcpw m[0]. line[2 59]:1	btss. ante nna_ switc h_ctr l[2]	btss.r pu_t di		cpus s.trac e_da ta[0]: 1	scb[1].uart].uart _rts:0		scb[1].spi_ clk:0	pdm. pdm _dat a[1]:1		tdm.t dm_t x_sd[0]:0	btss. gci_g pio[2]:0		keysc an.ks ro w[6]		cpus s.swj swd oe_t di	
P1.2		tcpw m[0]. line_ comp l[0]:5	tcpw m[0]. line_ comp l[259] :1		btss.r pu_s wd		cpus s.trac e_clo ck:1	scb[1].uart rx:0	scb[2].i2c_ scl:1	scb[1].spi_ 0				btss. gci_g pio[3]			keysc an.ks _col[17]:0	cpus s.swj swd io_t ms	
P1.3		tcpw m[0]. line[1]:5	tcpw m[0]. line[2 60]:1		btss.r pu_t ck	srss.e xt_cl k:1		scb[1].uart _tx:0	scb[2].i2c_ sda:1	scb[1].spi_ 0				btss. gci_g pio[4]			keysc an.ks _col[16]:0	cpus s.clk_ swj_s wclk tclk	
table (rontinu	(""Sel																	

28

4 Pinouts

Datasheet

Table 9	~	J	continu	ied) Mu	ıltiple â	alterna	te func	tions ¹⁾											
Port/ Pin	Anal og	ACT #0	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #11	ACT #12	ACT #13	ACT #15	DS #2	DS #3	DS #5	DS #6
P1.4		tcpw m[0]. line_ comp l[1]:5	tcpw m[0]. line_ comp l[260] :1									lin[0] .lin_e n[1]: 0		btss. gci_g pio[2]:1		keysc an.ks _col[15]	keysc an.ks _col[16]:1		
P1.5		tcpw m[0]. line[0]:6	tcpw m[0]. line[2 61]:1									lin[0] .lin_r x[1]:0				keysc an.ks _col[5]			
P1.6		tcpw m[0]. line_ comp l[0]:6	tcpw m[0]. line_ comp l[261] :1									lin[0] .lin_t x[1]:0				keysc an.ks _col[6]	srss.c al_w ave		
P2.0															smif. spihb _sele ct0				
P2.1															smif. spihb _dat a3				
P2.2															smif. spihb _dat a2				
(table (continu	Jes)																	

AIROC[™] Bluetooth[®] Low Energy 5.4 MCU

4 Pinouts

Table	6	J	continu	ied) Mu	iltiple ä	alterna	te func	tions ¹⁾											
Port/ Pin	Anal og	ACT #0	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #11	ACT #12	ACT #13	ACT #15	DS #2	DS #3	DS #5	DS #6
P2.3															smif. spihb _dat a1				
P2.4															smif. spihb _dat a0				
P2.5															smif. spihb _clk				
P3.0	adcm ic.gpi o_ad c_in[0]	tcpw m[0]. line[0]:0	tcpw m[0]. line[2 56]:0				cpus s.trac e_da ta[3]: 0	scb[2].uart cts: 0		scb[1].spi_ selec t0:1						keysc an.ks _ro w[7]			
P3.1	adcm ic.gpi o_ad c_in[1]	tcpw m[0]. line_ comp l[0]:0	tcpw m[0]. line_ comp l[256] :0				cpus s.trac e_da ta[2]: 0	scb[2].uart _rts:0		scb[1].spi_ clk:1		lin[0] .lin_e n[0]: 0				keysc an.ks ro w[4]		cpus s.rst_ swj_t rstn	
P3.2	adcm ic.gpi o_ad c_in[2]	tcpw m[0]. line[1]:0	tcpw m[0]. line[2 57]:0				cpus s.trac e_da ta[1]: 0	scb[2].uart _rx:0	scb[2].i2c scl:0	scb[1].spi_ mosi: 1	pdm. pdm _clk[0]:0	lin[0] .lin_r x[0]:0	canf d[0].t tcan_ rx[0]: 0	adcm ic.clk _pd m:0		keysc an.ks _col[13]			
(table	continu	Jes)																	

Datasheet

Table	6	J	continu	ied) Mu	Itiple a	Iternat	te func	tions ¹⁾											
Port/ Pin	Anal og	АСТ #0	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #11	ACT #12	ACT #13	ACT #15	DS #2	DS #3	DS #5	DS #6
P3.3	adcm ic.gpi o_ad c_in[3]	tcpw m[0]. line_ comp l[1]:0	tcpw m[0]. line_ comp l[257] :0				cpus s.trac e_da ta[0]: 0	scb[2].uart _tx:0	scb[2].i2c sda:0	scb[1].spi_ miso: 1	pdm. pdm _dat a[0]:0	lin[0] .lin_t x[0]:0	canf d[0].t tcan_ tx[0]: 0	adcm ic.pd m_d ata:0		keysc an.ks _col[14]	keysc an.ks _col[17]:1		
P3.4	adcm ic.gpi o_ad c_in[4]	tcpw m[0]. line[0]:1	tcpw m[0]. line[2 58]:0				cpus s.trac e_clo ck:0			scb[1].spi_ selec t3:1						keysc an.ks _col[7]			
P3.5	adcm ic.gpi o_ad c_in[5]	tcpw m[0]. line_ comp l[0]:1	tcpw m[0]. line_ comp l[258] :0							scb[1].spi_ selec t2:1						keysc an.ks _col[8]			
P3.6	adcm ic.gpi o_ad c_in[6]	tcpw m[0]. line[1]:1	tcpw m[0]. line[2 59]:0							scb[1].spi_ selec t1:1						keysc an.ks _col[9]			
P3.7	adcm ic.gpi o_ad c_in[7]	tcpw m[0]. line_ comp l[1]:1	tcpw m[0]. line_ comp l[[259] :0	btss. ante nna_ switc h_ctr [[3]												keysc an.ks _col[10]			
(table	continu	les)																	

AIROC[™] Bluetooth[®] Low Energy 5.4 MCU

4 Pinouts

Datasheet

31

Table 9	-	Ľ	continu	ied) Mu	ultiple ä	alterna	te func	:tions ¹⁾											
Port/ Pin	Anal og	ACT #0	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #11	ACT #12	ACT #13	ACT #15	DS #2	DS #3	DS #5	DS #6
P4.0		tcpw m[0]. line_ comp [[1]:2	tcpw m[0]. line_ comp l[261] :0					scb[2].uart cts: 2								keysc an.ks _ro w[2]	scb[0].i2c_ scl:1		scb[0].spi_ 1
P4.1		tcpw m[0]. line[0]:3	tcpw m[0]. line[2 62]:0													keysc an.ks _ro w[3]	scb[0].i2c sda:1		scb[0].spi_ miso: 1
P5.0		tcpw m[0]. line[0]:2	tcpw m[0]. line[2 60]:0					scb[2].uart _cts: 1	scb[2].i2c_ scl:2	scb[1].spi_ selec t0:2	pdm. pdm _clk[0]:1		canf d[0].t tcan_ rx[0]: 1	adcm ic.clk _pd m:1		keysc an.ks _col[0]			
P5.1		tcpw m[0]. line_ comp l[0]:2	tcpw m[0]. line_ comp l[260] :0						scb[2].i2c_ sda:2		pdm. pdm _dat a[0]:1		canf d[0].t tcan_ tx[0]: 1	adcm ic.pd m_d ata:1		keysc an.ks _col[1]			scb[0].spi_ selec t0:0
P5.2		tcpw m[0]. line[1]:2	tcpw m[0]. line[2 61]:0													keysc an.ks _col[2]			
<i>L)</i> Th IPI sig	e notatic Vame = N nals for	on for a s Vame of 1 a particu	ignal is of the block Ilar signal	f the forr (such as name, y	m IPNamı ; tcpwm), / = Design	e[x].sign; , x = Uniq 1ates cop	al_name[ue instari ies of the	[u]:y. nce of the e signal n	e IP, Sign. ame.	al_name	= Name c	of the sig	nal, u = S	ignal nur	mber whe	ere there	are more	e than on	Ð

AIROC[™] Bluetooth[®] Low Energy 5.4 MCU

Datasheet

002-31976 Rev. *J 2024-09-09

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources.

n	rinoon
	IIICUII

5 Power supply considerations

5 Power supply considerations

Figure 8 shows the typical connections for power pins for all supported packages. In the QFN packages, all internal grounds are routed to the metal pad (EPAD) in the package. This pad must be grounded on the PCB. Figure 8 shows 10 dBm PA configuration. For 0 dBm, connect BT_PAVDD to VCCRF.

CYW20829 power topology

6 Electrical specifications

Table 10

6 Electrical specifications

All specifications are valid for -40° C < T_A < 85°C and for 1.71 V to 3.6 V except where noted.

6.1 Absolute maximum ratings

Absolute maximum ratings¹⁾

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID1	VDD_ABS	Analog or digital supply relative to V _{SS} (V _{SSD} = V _{SSA})	-0.5	-	4	V	Absolute maximum
SID2	VCCD_ABS	Direct digital core voltage input relative to V _{SSD}	-0.5		1.2		
SID3	V _{GPIO_ABS}	GPIO voltage; VDDD or VDDA	-0.5		VDD + 0.5		
SID4	I _{GPIO_ABS}	Current per GPIO	-25		25	mA	
SID5	I _{GPIO_injection}	GPIO injection current per pin	-0.5		0.5		
SID3A	ESD_HBM	Electrostatic discharge human body model	2200		-	V	
SID4A	ESD_CDM	Electrostatic discharge charged device model	500				
SID5A	LU	Pin current for latchup- free operation	-100		100	mA	
SIDWA8	V _{undershoot}	Maximum undershoot voltage for I/O	-		-0.5	V	Duration not to exceed 25% of the
SIDWA9	V _{overshoot}	Maximum overshoot voltage for I/O			VDDIO + 0.5		SIDWA9 V duty cycle
SIDWA10	Tj	Maximum junction temperature			125	°C	-

Usage above the absolute maximum conditions listed in Table 10 may cause permanent damage to the device. Exposure to
absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is
150°C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum
conditions but above normal operating conditions, the device may not operate to specification.

6.2 Operating conditions

Table 11Power supply range, CPU current, and transition time specifications¹

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
DC specifi	cations						
SID6	VDDD	Internal regulator	1.7	-	3.6	V	-
(table con	tinues)	1	L				

•

6 Electrical specifications

Table 11	(contir	nued) Power supply range, C	PU cui	rrent, an	d transi	tion tim	e specifications ¹⁾
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID7	VDDA	Analog power supply voltage. Shorted to VDDIO_A on PCB	1.7	-	3.6	V	Internally unregulated supply
SID7M	MIC_BIAS	Microphone supply voltage	1.7	-	3.6	V	
SID7R	VCCI	RF LDO and Digital LDO	-	1.16	-	-	-
SID7C		input. Connect to output of internal buck					
SID7P	VDDD	PA LDO input	2.7	-	3.6	V	For TX10 mode only, BT_PAVDD connected to VCCPA_0. The minimum supply voltage for VDDD has to be 2.7 V
SID7B	VDDIO_0	GPIO supply for ports	1.7		3.6		-
SID7E	VDDIO_1	Supply when programming eFuse	2.38	2.5	2.62		eFuse programming voltage
SID7A	VDDIO_A	GPIO supply for analog ports. Short to VDDA on PCB	1.7	-	3.6		-
SID8	VCCD (LP)	Output voltage (for core logic bypass)	-	1.1	-	V	High speed mode
SID9	VCCD (ULP)	Output voltage (for core logic bypass)		1.0			ULP mode. Valid for –20 to 85°C
SID10	C _{EFC}	External regulator voltage (VCCD) bypass	3.8	4.7	5.6	μF	X5R ceramic or better. Value for 0.8 to 1.2 V
SID11	C _{EXC}	Power supply decoupling capacitor	-	10	-		X5R ceramic or better
SID12	VCCRF	Output voltage (for radio)		1.1		V	-
SID13	VCCPA	Output voltage (for PA)		2.5			-
SID523	VDDQ	External supply to PMU analog	1.7	-	3.6		-
SID524	VCC_BUCK	External supply to switching regulator					-
SID525	BT_PAVDD	Internal PA supply	1		2.75		-
SID526	BT_RF	RF power supply	1		1.2		-
SID527	BT_LNAVD D	LNA supply	1		1.2		-

(table continues...)

6 Electrical specifications

Table 11	(continued) Power supply range, CPU current, and transition time specifications $^{1\!j}$								
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions		
SID528	BT_IFVDD	IFPLL power supply	1		1.2		-		
SID529	BT_VCOVD D	VCO supply	1		1.2		-		

CPU currents and transition times Cortex[®] M33 Active mode

		Micu					
SIDC2	I _{DD4}	Execute from cache; CM33 Active 96 MHz. FLL. Dhrystone	- 4.	4.8	5.8	mA	VDDD = 3.0 V, Buck ON, Max at 60°C
				7.4	8.4		VDDD = 1.8 V, Buck ON, Max at 60°C
SIDC3	I _{DD5}	Execute from cache; CM33 Active 48 MHz. IHO. Dhrystone	-	2.4	3.4		VDDD = 3.0 V, Buck ON, Max at 60°C
				3.7	4.1		VDDD = 1.8 V, Buck ON, Max at 60°C
SIDC4	I _{DD6}	Execute from cache; CM33 Active 8 MHz. IHO. Dhrystone		0.9	1.5		VDDD = 3.0 V, Buck ON, Max at 60°C
				1.27	1.75		V _{DDD} = 1.8 V, Buck ON, Max at 60°C
SIDS1	I _{DD11}	CM33 Sleep 96 MHz with FLL	1.5	2.2		VDDD = 3.0 V, Buck ON, Max at 60°C	
				2.2 1.2	2.7	_	VDDD = 1.8 V, Buck ON, Max at 60°C
SIDS2	I _{DD12}	CM33 Sleep 48 MHz with IHO			1.9		VDDD = 3.0 V, Buck ON, Max at 60°C
				1.7	2.2		VDDD = 1.8 V, Buck ON, Max at 60°C
SIDS3	I _{DD13}	CM33 Sleep 8 MHz with IHO		0.7	1.3		VDDD = 3.0 V, Buck ON, Max at 60°C
				0.96	1.5		VDDD = 1.8 V, Buck ON, Max at 60°C
Deep Sleep	mode						
SIDDS1_B	I _{DD33A_B}	With internal Buck enabled and 64K SRAM retention	-	5.7		μA	At 25°C (with typical Silicon)

Execute with cache enabled

SIDDS1_B	I _{DD33A_B}	With internal Buck enabled and 64K SRAM retention	-	5.7	μA	At 25°C (with typical Silicon)
SIDDS2_B	I _{DD33B_B}	With internal Buck enabled and 128K SRAM retention		6.2		At 25°C (with typical Silicon)
SIDDS5_B	I _{DD33E_B}	With internal Buck enabled and 256K SRAM retention		7.5		At 25°C (with typical Silicon)
SIDDS3_B	I _{DD33C_B}	With internal Buck enabled and 64K SRAM retention DS-RAM		4.5		At 25°C (with typical Silicon)

(table continues...)

Table 11(continued) Power supply range, CPU current, and transition time specifications ¹⁾									
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions		
SIDDS4_B	I _{DD33D_B}	With internal Buck enabled and 128K SRAM retention DS-RAM		5			At 25°C (with typical Silicon)		
SIDDS6_B	I _{DD33F_B}	With internal Buck enabled and 256K SRAM retention DS-RAM		6	-		At 25°C (with typical Silicon)		
Hibernate r	node								
SIDHIB1	I _{DD34}	VDDD = 1.8 V	-	300	-	nA	No clocks running		
SIDHIB2	I _{DD34A}	VDDD = 3.0 V	-	500					
SIDHIB3	I _{DD35}	VDDD = 1.8 V	-	800			WCO is running		
SIDHIB4	I _{DD35A}	VDDD = 3.0 V	-	1000					
Power mod	e transition ti	mes			·				
SID13A	T _{DS_ACT}	Deep Sleep to Active transition time. Guaranteed by design	-	45	60	μs	DS to Active with 1.0 V operation, with upper inrush current limit		
SID13B	T _{DS_ACTLP}	Deep Sleep to Active LP transition time. Guaranteed by design		20	35		DS to Active LP with 0.9 V operation		
SID13C	T _{DSR_ACT}	Deep Sleep-RAM to Active transition time. Guaranteed by design		-	800		DS to Active with 1.0 V operation, with upper inrush current limit		
SID13D	T _{DSR_ACTLP}	Deep Sleep-RAM to Active LP transition time. Guaranteed by Design		-	800		DS-RAM to Active LP with 0.9 V operation		
SID14	T _{HIB_ACT}	Hibernate to Active transition time		2000	-		Hibernate to Active with 1.0 V operation, with upper inrush current limit		
SID14A	T _{HIB_ACTLP}	Hibernate to Active LP transition time		2000			Hibernate to Active with 0.9 V operation, with upper inrush current limit		

1) Usage above the absolute maximum conditions listed in Table 10 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150°C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

6.2.1 XRES

Table 12XRES DC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID17	T _{XRES_IDD}	IDD when XRES asserted	-	300	-	nA	VDDD = 1.8 V
SID17A	T _{XRES_IDD_1}			800			VDDD = 3.3 V
SID77	V _{IH}	Input voltage high threshold	0.7 × VDD	-		V	CMOS input
SID78	V _{IL}	Input voltage low threshold	-		0.3 × VDD		
SID80	C _{IN}	Input capacitance		3		pF	-
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100		mV	
SID82	I _{DIODE}	Current through protection diode to VDD/VSS		-	100	μA	

Table 13XRES AC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID15	T _{XRES_ACT}	POR or XRES release to Active transition time	-	1000	-	μs	Normal mode, 96 MHz M33, upper inrush current
SID16	T _{XRES_PW}	XRES pulse width	5	-			-

6.2.2 GPIO

Table 14GPIO DC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID57	V _{IH}	Input voltage HIGH threshold	0.7 × VDD	-	-	V	CMOS input
SID57A	I _{IHS}	Input current when Pad > VDDIO for O _{VT} inputs	-		10	μA	Per I ² C spec
SID58	V _{IL}	Input voltage LOW threshold			0.3 × VDD	V	CMOS input
SID241	V _{IH}	LVTTL input, VDD < 2.7 V	0.7 × VDD		-		-
SID242	V _{IL}		-		0.3 × VDD		
SID243	V _{IH}	LVTTL input, VDD > 2.7 V	2.0		-		
SID244	V _{IL}		-		0.8		
SID59	V _{OH}	Output voltage high level	VDD – 0.5		-		I _{OH} = 8 mA

Table 14	(contin	(continued) of to be specifications								
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions			
SID62A	V _{OL}	Output voltage low level	-		0.4		I _{OL} = 8 mA			
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	-			
SID64	R _{PULLDOWN}	Pull-down resistor								
SID65	I	Input leakage current (absolute value)	-	-	2	nA	25°C, VDD = 3.0 V			
SID66	C _{IN}	Input capacitance			5	pF	-			
SID67	V _{HYSTTL}	Input hysteresis LVTTL VDD > 2.7 V	100	0	-	mV				
SID68	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × VDD	-						
SID69	I _{DIODE}	Current through protection diode to VDD/VSS	-		100	μA				
SID69A	I _{TOT_GPIO}	Maximum total source or sink chip current			200	mA				

Table 14 (continued) GPIO DC specifications

Table 15

GPIO AC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID70	T _{RISEF}	Rise time in Fast Strong mode. 10% to 90% of VDD	-	3.5	-	ns	C _{LOAD} = 15 pF, 8 mA rive strength, VDDIO > 2.7 V
SID70A	T _{RISEF_1}			5.5			C _{LOAD} = 15pF, VDDIO < 2.7 V, maximum slew and drive strength
SID71	T _{FALLF}	Fall time in Fast Strong mode. 10% to 90% of VDD		3.5			C _{LOAD} = 15 pF, 8 mA drive strength, VDDIO > 2.7 V
SID71A	T _{FALLF_1}			5.5			C _{LOAD} = 15pF, VDDIO < 2.7 V, maximal slew and drive strength
SID72	T _{RISES_1}	Rise time in Slow Strong mode. 10% to 90% of VDD	52	-	142		$C_{LOAD} = 15 \text{ pF}, 8 \text{ mA}$ drive strength, VDD $\leq 2.7 \text{ V}$
SID72A	T _{RISES_2}		48		102		C _{LOAD} = 15 pF, 8 mA drive strength, 2.7 V < VDD ≤ 3.6
SID73	T _{FALLS_1}	Fall time in Slow Strong mode. 10% to 90% of VDD	44		211		$C_{LOAD} = 15 \text{ pF}, 8 \text{ mA}$ drive strength, VDD $\leq 2.7 \text{ V}$

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions			
SID74	F _{GPIOUT1}	GPIO Fout; Fast Strong mode	-		100	MHz	90/10%, 15 pF load, 60/40 duty cycle			
SID75	F _{GPIOUT2}	GPIO Fout; Slow Strong mode			1.5					
SID76	F _{GPIOUT3}	GPIO Fout; Fast Strong mode			100					
SID245	F _{GPIOUT4}	GPIO Fout; Slow Strong mode			1.3					
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V ≤ VDD ≤ 3.6 V			100		90/10% V _{IO} d			

Table 15 (continued) GPIO AC specifications

6.3 Analog peripherals

Table 16Internal reference specification

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID93R	V _{REFBG}	-	1.188	1.2	1.212	V	-

6.3.1 AUD ADC

Table 17MIC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
MIC specific	ations						
DM.4	-	Audio/Mic supply - VDDA	1.8	-	3.3	V	-
DM.5		Current consumption	-	1.5	-	mA	25°C, VDDA = 3 V, excludes MIC_BIAS loading current
DM.6		Power down current		0.1		μA	25°C, VDDA = 3 V
DM.21		MIC PGA gain range	0	-	42	dB	-
DM.22		MIC PGA gain step	-	1	-		
DM.23		MIC PGA gain error		±1			
DM.24	_	PGA input referred noise		-	4	μV	@ 42 dB PGA gain A-weighted
DM.25		Passband gain flatness			-	dB	PGA + ADC, 100-4 kHz

	(00110	(
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions					
DM.26		MIC_BIAS output voltage - VDDA * 0.75 * 1.12		2.52		V	VDDA = 3 V					
DM.27		MIC_BIAS loading current		-	3	mA	-					
DM.28		MIC_BIAS noise				μV	Referred to PGA input, 20-8 kHz, A- weighted					
DM.29		MIC_BIAS PSRR	40		-	dB	1 kHz					

Table 17 (continued) MIC specifications

Table 18ADC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
DM.2	-	Analog supply voltage - VDDA	1.7	-	3.6	V	-
DM.5		Active current consumption	-	2	-	mA	25°C
DM.6		Power down current		0.1		μA	25°C - ADC disabled with device in Active mode
DM.8		Absolute error - Includes gain error, offset and distortion		-	5	%	-
DM.10		ENOB - Audio application		12	-	Bit	1
DM.11		ENOB - Static application		11			
DM.12		ADC input full scale - Audio application		1.6		Vpp	
DM.13		ADC input full scale - Static application	0	-	VDDA		
DM.14		Conversion rate - Audio application	16	48	-	kHz	
DM.15		Conversion rate - Static application	50	100	-		
DM.16		Signal bandwidth - Audio application	20	-	8000	Hz	
DM.17		Signal bandwidth - Static application	-	DC	-		
DM.18		Startup time - Audio application	-	10		ms	

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions				
DM.19		Startup time - Static application		20		μs					
DM.30		ADC SNR	78	-		dB	0 dB PGA gain, A-weighted				
DM.31		ADC THD+N	74				–3 dB FS input, 0 dB PGA gain				
DM.33		GPIO source impedance	-		1k	Ohm	10 μs measurement time				

Table 18(continued) ADC specifications

6.4 Digital peripherals

Table 19 Timer/counter/PWM (TCPWM) specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.TCPWM.1	I _{TCPWM1}	Block current consumption at 8 MHz	-	-	70	μA	All modes (TCPWM)
SID.TCPWM.2	I _{TCPWM2}	Block current consumption at 24 MHz			180		
SID.TCPWM.2 A	I _{тсрwмз}	Block current consumption at 50 MHz			270		
SID.TCPWM.2 B	I _{TCPWM4}	Block current consumption at 100 MHz			540		
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency			100	MHz	Fc max = Fcpu Maximum = 100 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width for all trigger events	2/Fc		-	ns	Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions				
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	1.5/Fc				Minimum possible width of				
							Overflow, Underflow, and				
							CC (Counter equals				
							Compare value) trigger				
						outputs					
SID.TCPWM.5 A	TC _{RES}	Resolution of counter	1/Fc				Minimum time between				
							successive counts				
SID.TCPWM.5 B	PWM _{RES}	PWM resolution					Minimum pulse width of				
							PWM output				
SID.TCPWM.5 C	Q _{RES}	Quadrature inputs resolution	2/Fc				Minimum pulse width				
							between Quadrature phase				
							inputs. Delays from pins				
							should be similar				

Table 19 (continued) Timer/counter/PWM (TCPWM) specifications

Table 20	Та	bl	e	20
----------	----	----	---	----

Serial communication block (SCB) specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
I ² C DC spec	ifications			-1		1	
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	30	μA	-
SID150	I _{I2C2}	Block current consumption at 400 kHz			80	_	
SID151	I _{I2C3}	Block current consumption at 1 Mbps			180	-	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode			1.7		At 60°C
I ² C AC spec	ifications			-1	1	1	
SID153	F _{I2C1}	Bit rate	-	-	1	Mbps	-
UART DC s	pecifications						
SID160	I _{UART1}	Block current consumption	-	-	30	μA	-

(table continues...)

at 100 kbps

Table 20	(contir	ontinued) Serial communication block (SCB) specifications							
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions		
SID161	I _{UART2}	Block current consumption at 1000 kbps			180				
UART AC sp	ecifications								
SID162A	F _{UART1}	Bit rate	-	-	3	Mbps	ULP mode		
SID162B	F _{UART2}				8		LP mode		
SPI DC spee	cifications			l	i				
SID163	I _{SPI1}	Block current consumption at 1 Mbps	-	-	220	μA	-		
SID164	I _{SPI2}	Block current consumption at 4 Mbps			340				
SID165	I _{SPI3}	Block current consumption at 8 Mbps			360				
SID165A	I _{SP14}	Block current consumption at 25 Mbps			800				
SPI AC spec	cifications for I	P mode (VCCD=1.1 V) unles	s noted	dotherw	vise	1			
SID166	F _{SPI}	SPI operating frequency Master and externally clocked Slave	-	-	24	MHz	-		
SID166B	F _{SPI_EXT}	SPI operating frequency Master (Fscb is SPI clock)			Fscb/4		Fscb max is 96 MHz in LP mode, 24 MHz in ULP mode		
SID166A	F _{SPI_IC}	SPI Slave internally clocked	_		24		-		
SPI AC spec	cifications for l	JLP mode (VCCD=1.0 V) unle	ss not	ed other	wise				
SID166C	F _{SPI}	SPI operating frequency Master and externally clocked Slave	-	-	12	MHz			
SID166D	F _{SPI_EXT}	SPI operating frequency Master (Fscb is SPI clock)			Fscb/4	-	Fscb max is 48 MHz in ULP mode		
SID166E	F _{SPI_IC}	SPI Slave internally clocked			12	-			
SPI Master	mode AC speci	ifications for LP mode (VCCD)=1.1 V) unless	noted ot	nerwise			
SID167	Т _{DMO}	MOSI valid after SClock driving edge	-	12	12	ns	20 ns max. for ULP (VCCD=1.0 V) mode		
SID168	T _{DSI}	MISO valid before SClock capturing edge	20	-	-		Full clock, late MISO sampling		
SID169	Т _{НМО}	MOSI data hold time	0		5		Referred to Slave capturing edge		
(table cont	inues)					•			

Table 20	(contir	nued) Serial communication	block	(SCB) sp	pecificatio	ons	
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID169C	T _{DHI}	SPI Master: MISO hold time after SCLK capturing edge	0	-	-		-
SID169A	T _{SSELMSCK1}	SSEL valid to first SCK valid edge	18	21	-		Referred to Master clock edge
SPI Master	mode AC speci	ifications for ULP mode (VCC	CD=1.0	V) unles	s noted o	therwi	se
SID167A	Т _{DMO}	MOSI valid after SClock driving edge	-	-	26	NS	
SID167B	T _{DSI}	MISO valid before SClock capturing edge	35	-	-		
SID167C	Т _{НМО}	MOSI data hold time	-	5	-		
SID167D	T _{DHI}	SPI Master: MISO hold time after SCLK capturing edge	0	-	-		
SID167E	T _{SSELMSCK1}	SSEL valid to first SCK valid edge	41	-	-		
SPI Slave m	node AC specifi	ications for LP mode (VCCD=	=1.1 V)	unless n	oted othe	erwise	
SID170	Т _{DMI}	MOSI valid before Sclock capturing edge	5	-	-	ns	-
SID170A	SPI_FREQ	For LP mode	48			MHz	
SID171A	T _{DSO_EXT}	MISO valid after Sclock driving edge in Ext. Clk. mode	-		20	ns	35 ns max. for ULP (VCCD=1.0V) mode
SID171	T _{DSO}	MISO valid after Sclock driving edge in Internally Clk. Mode	-		TDSO_ EXT + 3*Tscb	-	Tscb is Serial Communication Block clock period
SID171B	T _{DSO}	MISO valid after Sclock driving edge in Internally Clk. Mode with median filter enabled	-		TDSO_ EXT + 4*Tscb	_	Tscb is Serial Communication Block clock period
SID172	T _{HSO}	Previous MISO data hold time	5.5		-	_	-
SID172C	T _{HIS}	SPI MOSI hold from SCLK					
SPI Slave m	node AC specifi	ications for ULP mode (VCCI	D=1.0 V	/) unless	noted ot	herwise	5
SID173A	T _{DMI}	MOSI valid before Sclock capturing edge	12	-	-	ns	
SID174A	T _{DSO_EXT}	MISO valid after Sclock driving edge in Ext. Clk. mode	-		20		
/table cout		1	1		1	1	I

Table 20	(contir	nued) Serial communicatio	n block	(SCB) sp	ecificatio	ons	
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID174	T _{DSO}	MISO valid after Sclock driving edge in Internally Clk. Mode			TDSO_ EXT + 3*Tscb		
SID174B	T _{DSO}	MISO valid after Sclock driving edge in Internally Clk. Mode with median filter enabled			TDSO_ EXT + 4*Tscb		
SID175	T _{HSO}	Previous MISO data hold time	5.5		-		
SID175C	T _{HIS}	SPI MOSI hold from SCLK					

Table 20 d) Sorial hlack (SCB) , :::: - + :

Audio subsystem 6.5

Audio subsystem specifications¹⁾ Table 21

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
PDM specif	ications					i.	
SID400P	Fmax_clk_sy s	Clock frequency for clk_sys	-	96	-	MHz	PVT18 ss, 0.90 V, –40°C, scl40 library, minimum parameters
SID401	Fmax_clk_if_ srss	Clock frequency for audio clock reference clk_if_srss		48			PVT18 ss, 0.90 V, –40°C, scl40 library, minimum parameters
SID402	ldyn_act_typ	Typical dynamic current when cell is active. See the DC spec table for related static current spec, if applicable		-	110	µA/MH z	PVT16 tt, 1.1 V, 25°C, scl40 library, typical parameters clk_audio: 49.152 MHz clk_sys: 50 MHz
SID403	Idyn_act_ma x	Maximum dynamic active current. See the DC spec table for related static current spec, if applicable			132		PVT20 ff, 1.21 V, 150°C, scl40 library, maximum parameters clk_audio: 49.152 MHz clk_sys: 50 MHz

Table 21	(continu	ed) Audio subsystem spec	cificatio	ons ¹⁾			
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID403A	ldyn_slp_typ	Typical dynamic current when cell is idle. See the DC spec table for related static current spec, if applicable			80		PVT16 tt, 1.1 V, 25°C, scl40 library, typical parameters, clocks toggling clk_audio: 49.152 MHz clk_sys: 50 MHz
SID403B	T_SETUP	Receiver setup			10	ns	PVT18 ss, 0.90 V, –40°C, scl40 library, minimum parameters
SID403C	PDM_HOLD	Data input hold time to PDM_CLK edge	10		-		PVT18 ss, 0.90 V, –40°C, scl40 library, minimum parameters
SID404A	CPDM	Load	-	10	-	pF	-
SID404	PDM_OUT	Audio sample rate	8	-	48	ksps	
SID405	PDM_WL	Word length	16	-	24	bits	
SID412	PDM_ST	Startup time	-	48	-		WS (Word Select) cycles
I ² S specifica	tions. The same	e for LP and ULP modes u	nless st	tated oth	erwise.		
SID413	I2S_WORD	Length of I ² S word	8	-	32	bits	
SID414B	I2S_BCK_F	Bit Clock frequency in LP mode	-		12.288	MHz	
SID414BU	I2S_BCK_F_U	Bit Clock frequency in ULP mode			3.072	MHz	
SID414BP	I2S_BCK_P	Bit Clock period		1/ I2S_B CK_F			
SID414BP U	I2S_BCK_P_ U	Bit Clock period in ULP mode		1/ I2S_B			

Table 21(continued) Audio subsystem specifications1

SID414B	I2S_BCK_F	Bit Clock frequency in LP mode	-		12.288	MHz	
SID414BU	I2S_BCK_F_U	Bit Clock frequency in ULP mode			3.072	MHz	
SID414BP	I2S_BCK_P	Bit Clock period		1/ I2S_B CK_F			
SID414BP U	I2S_BCK_P_ U	Bit Clock period in ULP mode		1/ I2S_B CK_F_ U			
SID414	I2S_WS_FRE Q	Word clock frequency in LP mode		-	192	kHz	
SID414M	I2S_WS_FRE Q_U	Word clock frequency in ULP mode			48	kHz	
SID435L	I2S_BCK_TL	Bit clock low period in LP Mode	0.35*l2 S_BCK _ P				
(table contin	iues)	•					

Table 21	able 21 (continued) Audio subsystem specifications ¹⁾										
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions				
SID415IL	I2S_MCKI_TL	Master clock IN low period in LP (or) ULP mode	0.45*t M CLK								
SID415IH	I2S_MCKI_TH	Master clock IN high period in LP (or) ULP Mode									
SID415OL	I2S_MCKO_T L	Master clock Out low period in LP (or) ULP mode	0.35*t M CLK	0.45*t MCLK to 0.4*tM C LK							
SID4150H	I2S_MCKO_T H	Master clock Out high period in LP (or) ULP mode		0.45*t MCLK to 0.4*tM C LK							
SID416	TDM_OUTPU T_L OAD_MAX	Capacitive load	10	-							
I ² S Slave me	ode		-		-	-					
SID430	I2S_S_TS_WS	WS Setup time before the first edge following the driving edge of Bit Clock for LP Mode	0.2 * I2S_B C K_P	-		ns	-				
SID430U	I2S_S_TS_WS _U	WS Setup time before the first edge following the driving edge of bit clock for ULP mode	0.2 * I2S_B C K_P_U								
SID430A	I2S_S_TH_W S	WS Hold time after the first edge following the driving edge of bit clock, LP or ULP mode	0								
SID432	I2S_S_SDO	SDO Propagation delay from driving edge of bit clock for LP mode	0		0.3 * I2S_B CK_P	_					
SID432U	I2S_S_SDO_ U	SDO Propagation delay from driving edge of bit clock for ULP mode	0		0.3 * I2S_B CK_P						
I ² S Master n	node										

SID437 I2S_M_WS WS propagation delay from driving edge of bit clock for LP mode 0 0.2 * ns

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/condition
	I2S_M_WS_U	WS propagation delay from driving edge of bit clock for ULP mode			0.2 * I2S_B CK_P _U		
SID438	I2S_M_SDO	SDO Propagation delay from driving edge of bit clock for LP mode			0.2 * I2S_B CK_P		
SID438U	I2S_M_SDO_ U	SDO Propagation delay from driving edge of bit clock for ULP mode			0.2 * I2S_B CK_P _U		Associated clock edge depends on selected polarity

Table 21(continued) Audio subsystem specifications

1) TMCLK_SOC is the internal I2S master clock period.

6.6 System resources

6.6.1 Power-on reset

Table 22 Power-on reset (POR) with brownout detect (BOD) DC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions				
Precise POI	recise POR (PPOR)										
SID190	V _{FALLPPOR}	BOD trip voltage in Active and Sleep modes. VDDD	1.54	-	-	V	BOD Reset guaranteed for VDDD levels below 1.54 V				
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep. VDDD	1.54				-				
SID192A	V _{DDRAMP}	Maximum power supply ramp rate (any supply)	-		100	mV/µs	Active mode				

Table 23POR with BOD AC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID194A	V _{DDRAMP_DS}	Maximum power supply ramp rate (any supply) in system Deep Sleep mode	-	-	10	mV/µs	BOD operation guaranteed

6.6.2 Voltage monitors

Table 24Voltage monitors DC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID195	V _{HVDI1}	-	1.38	1.43	1.47	V	-
SID196	V _{HVDI2}		1.57	1.63	1.68		
SID197	V _{HVDI3}		1.76	1.83	1.89		
SID198	V _{HVDI4}		1.95	2.03	2.10		
SID199	V _{HVDI5}		2.05	2.13	2.2		
SID200	V _{HVDI6}		2.15	2.23	2.3		
SID201	V _{HVDI7}		2.24	2.33	2.41		
SID202	V _{HVDI8}		2.34	2.43	2.51		
SID203	V _{HVDI9}		2.44	2.53	2.61		
SID204	V _{HVDI10}		2.53	2.63	2.72		
SID205	V _{HVDI11}		2.63	2.73	2.82		
SID206	V _{HVDI12}		2.73	2.83	2.92		
SID207	V _{HVDI13}		2.82	2.93	3.03		
SID208	V _{HVDI14}		2.92	3.03	3.13		
SID209	V _{HVDI15}		3.02	3.13	3.23		
SID211	LVI_IDD	Block current	-	5	15	μA	

Table 25

Voltage monitors AC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	-	-	170	nS	-

6.6.3 SWD and trace interface

Table 26SWD and trace specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID214	F_SWDCLK2	1.7V ≤ VDDD ≤ 3.6V	-	-	25	MHz	LP mode; VCCD = 1.1 V
SID214L	F_SWDCLK2L				12		ULP mode; VCCD = 1.0 V.
SID215	T_SWDI_SETU P	T = 1/f SWDCLK	0.25 * T		-	ns	For both LP and ULP modes
SID216	T_SWDI_HOL D						
SID217	T_SWDO_VALI D		-		0.5 * T		-

Table 20	(continue	ed) SWD and trace specifi	SWD and trace specifications					
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions	
SID217A	T_SWDO_HOL D		1		-			
SID214T	F_TRCLK_LP1	With trace data setup/ hold times of 2/1 ns respectively	-		48	MHz	LP mode, VCCD = 1.1 V	
SID215T	F_TRCLK_LP2	With trace data setup/			48			
SID216T	F_TRCLK_ULP	hold times of 3/2 ns respectively			24		ULP mode, VCCD = 1.0 V	

Table 26(continued) SWD and trace specifications

6.6.4 Internal main oscillator

Table 27 IMO DC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID218	I _{IMO1}	IMO operating current at 8 MHz	-	9	15	μΑ	-

Table 28IMO AC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID223	FIMOTOL1	Frequency variation centered on 8 MHz	-	-	±2	%	-
SID227	T _{JITR}	Cycle-to-cycle and period jitter	-	±250	-	μs	

6.6.5 Internal low-speed oscillator

Table 29ILO DC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID231	I _{ILO2}	ILO operating current at 32 kHz	-	0.3	0.7	μA	-

Table 30ILO AC specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	7	μs	Startup time to 80% of final frequency
			-	-	35	μs	Startup time to 95% of final frequency
SID236	T _{LIODUTY}	ILO duty cycle	45	50	55	%	-
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	28.8	32	35.2	kHz	± 10% variations

6.6.6 FLL

Table 31 Frequency locked loop (FLL) specifications									
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions		
SID450	FLL_RANGE	Input frequency range	0.040	-	96.00	MHz	Upper limit is for External input		
SID451	FLL_OUT_DIV 2	Output frequency range. VCCD = 1.1 V	24.00				Output range of FLL divided-by-2 output		
SID451A	FLL_OUT_DIV 2	Output frequency range. VCCD = 0.9 V	-		48.00				
SID452	FLL_DUTY_DI V2	Divided-by-2 output; High or Low	47.00		53.00	%	-		
SID454	FLL_WAKEUP	Time from stable input clock to 1% of final value on deep sleep wakeup	-		11.00	μs	With IMO input, less than 10°C change in temperature while in Deep Sleep, and Fout ≥ 50 MHz.		
SID455	FLL_JITTER	Period jitter (1 sigma at 100 MHz)			18.00	ps	-		
SID456	FLL_CURREN	CCO + logic current			5.50	µA/MH z			

6.6.7 Crystal oscillator

Table 32ECO specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
MHz ECO D	C specification	S					
SID316	I _{DD_MHZ}	Block operating current with Cload up to 18 pF	-	1200	-	μA	Type 24 MHz
MHz ECO A	C specification	S	1				
SID317	F_MHz	Crystal frequency range	-	24	-	MHz	-
kHz ECO DO	C specification	5					
SID318	IDD_kHz	Block operating current with 32-kHz crystal	-	0.38	1	μA	-
SID321E	ESR32K	Equivalent series resistance		80	-	kΩ	
SID322E	PD32K	Drive level		-	0.5	μW	_
kHz ECO AC	: specifications	5					
SID319	F_kHz	32-kHz trimmed frequency	-	32.8	-	kHz	-
SID320	Ton_kHz	Startup time		-	1000	ms	
SID320E	F _{TOL32K}	Frequency tolerance		50	250	ppm	

6.6.8 Clock source switching time

Table 33 Clock source switching time specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID262	TCLK _{SWITCH}	Clock switching from one CLK_HF to another CLK_HF in clock periods ¹⁾	-	-	4 clk1 + 3 clk2	period s	-

1) As an example, if the clk_path[1] source is changed from the IMO to the FLL (see Figure 3) then clk1 is the IMO and clk2 is the FLL.

6.6.9 QSPI

Table 34QSPI specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SMIF QSPI s	pecifications. Al	l specs with 15-pF load				·	·
SID390Q	Fsmifclock	SMIF QSPI output clock frequency	-	-	48	MHz	LP mode (1.1 V)
SID390QU	Fsmifclocku	SMIF QSPI output clock frequency			24		ULP mode (1.0 V)
SID397Q	ldd_qspi	Block current in LP mode (1.0 V)			1900	μΑ	LP mode (1.1 V)
SID398Q	ldd_qspi_u	Block current in ULP mode (0.9 V)			590		ULP mode (1.0 V)
SID399A	SDR_TCSH0	CS# active hold to CK	4		-	ns	-
SID399B	SDR_TOUT_ SETUP_LF	Output setup time of DQ[3:0] to CK high	5.1				
SID399C	SDR_TOUT_ HOLD_LF	Output hold time of DQ[3:0] to CK high					
SID399D	SDR_TIN_V	CK low to DQ[3:0] input valid time	-		6.7		
SID399E	SDR_TIN_HO	CK low to DQ[3:0] input hold time	1		-		

6.6.10 Smart I/O

Table 35Smart I/O specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID420	SMIO_BYP	Smart I/O Bypass delay	-	-	2	ns	-
SID421	SMIO_LUT	Smart I/O LUT prop delay					

6.6.11 JTAG boundary scan

Table 36JTAG boundary scan

Spec ID#		Parameter	Min	Тур	Мах	Unit	Desctiption					
JTAG boui	JTAG boundary scan parameters											
SID460	TCKLOW	TCK LOW minimum	34	-	-	ns	-					
SID461	TCKHIGH	TCK HIGH	10									
SID462	TCK_TDO	TDO clock-to-out (max) from falling TCK	-		22							
SID463	TSU_TCK	TDI, TMS Setup time before rising TCK	12		-							
SID464	TCk_THD	TDI, TMS Hold time after rising TCK	10									
SID465	TCK_TDOV	TCK to TDO data valid (High-Z to active)	22									
SID466	TCK_TDOZ	TCK to TDO data valid (Active to High-Z)										

JTAG boundary scan parameters for 1.1 V (LP) mode operation

TCKLOW	TCK low	52	-		ns	-
TCKHIGH	TCK high	10				
TCKPERIOD	CLK_JTAG_PERIOD, 30 pF load	-	62			
TCK_TDO	TCK falling edge to output valid		-	40		
TSU_TCK	Input valid to TCK rising edge	12	-		-	
TCk_THD	Input hold time to TCK rising edge	10	-			
TCK_TDOV	TCK falling edge to output valid (High-Z to active)	40				
	TCKLOW TCKHIGH TCKPERIOD TCK_TDO TSU_TCK TCK_THD TCK_TDOV	TCKLOWTCK lowTCKHIGHTCK highTCKPERIODCLK_JTAG_PERIOD, 30 pF loadTCK_TDOTCK falling edge to output validTSU_TCKInput valid to TCK rising edgeTCK_THDInput hold time to TCK rising edgeTCK_TDOVTCK falling edge to output valid (High-Z to active)	TCKLOWTCK low52TCKHIGHTCK high10TCKPERIODCLK_JTAG_PERIOD, 30 pF load-TCK_TDOTCK falling edge to output valid-TSU_TCKInput valid to TCK rising edge12TCK_THDInput hold time to TCK rising edge10TCK_TDOVTCK falling edge to output valid (High-Z to active)40	TCKLOWTCK low52-TCKHIGHTCK high1010TCKPERIODCLK_JTAG_PERIOD, 30 pF load-62TCK_TDOTCK falling edge to output valid-62TSU_TCKInput valid to TCK rising edge12-TCK_THDInput hold time to TCK rising edge10-TCK_TDOVTCK falling edge to output valid (High-Z to active)40	TCKLOWTCK low52-TCKHIGHTCK high1010TCKPERIODCLK_JTAG_PERIOD, 30 pF load-62TCK_TDOTCK falling edge to output valid-40TSU_TCKInput valid to TCK rising edge12-TCK_THDInput hold time to TCK rising edge10-TCK_TDOVTCK falling edge to output valid (High-Z to active)40	TCKLOWTCK low52-nsTCKHIGHTCK high1010TCKPERIODCLK_JTAG_PERIOD, 30 pF load-62TCK_TDOTCK falling edge to output valid-40TSU_TCKInput valid to TCK rising edge12-TCK_THDInput hold time to TCK rising edge10-TCK_TDOVTCK falling edge to output valid (High-Z to active)40

JTAG boundary scan p for 1.0 V (ULP) mode operation

SID468A	TCKLOW	TCK low	102	-	-	ns	-
SID469A	TCKHIGH	TCK high	20				
SID470A	TCK_TDO	TCK falling edge to output valid	-		80		
SID471A	TSU_TCK	Input valid to TCK rising edge	22		-		
SID472A	TCk_THD	Input hold time to TCK rising edge	20	-	-	ns	-

Table 36	; (continued) JTAG boundary scan									
Spec ID#		Parameter	Min	Тур	Мах	Unit	Desctiption			
SID473A	TCK_TDOV	TCK falling edge to output valid (High-Z to active)	80							
SID474A	TCK_TDOZ	TCK fallingedgetooutput valid (Active to high-Z)								

6.7 Bluetooth LE

Table 37 Bluetooth[°] LE subsystem specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
RF receiver	specifications	(1 Mbps)					
SID317R ¹⁾	RXS, IDLE	RX sensitivity with ideal transmitter	-	-98	-	dBm	Across RF operating frequency range
SID318R ²⁾				-96.5			
SID319R	PRXMAX	Maximum received signal strength at < 30.8% PER		-5			RF-PHY specification (RCV-LE/CA/06/C)
SID320R	CI1	Co-channel interference, Wanted Signal at –67 dBm and Interferer at FRX		9	21	dB	RF-PHY specification (RCV-LE/CA/03/C)
SID321R	CI2	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at FRX ± 1 MHz		-3	15	_	
SID322R	CI3	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at FRX ± 2 MHz		-45	-17		
SID323R	CI4	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at ≥ FRX ± 3 MHz	-	-49	-27		
SID324R	CI5	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at image frequency (FIMAGE)		-31	-9		

Table 37 (continued) Bluetooth [®] LE subsystem specifications									
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions		
SID325R	CI6	Adjacent channel interference Wanted Signal at –67dBm and Interferer at image frequency (FIMAGE ± 1 MHz)		-35	-15				
RF receive	r specifications	(2 Mbps)							
SID326 ¹⁾	RXS, IDLE	RX sensitivity with ideal transmitter	-	-95	-	dBm	Across RF operating frequency range		
SID327 ²⁾				-93.5					
SID328R	PRXMAX	Maximum received signal strength at < 30.8% PER		-5			RF-PHY specification (RCV-LE/CA/06/C)		
SID329R	CI1	Co-channel interference, Wanted Signal at –67 dBm and Interferer at FRX	_	7	21	dB	RF-PHY specification (RCV-LE/CA/03/C)		
SID330	CI2	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at FRX ± 2 MHz		-2	15				
SID331	CI3	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at FRX ± 4 MHz	_	-42	-15				
SID332	CI4	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at ≥ FRX ± 6 MHz	_	-42	-27				
SID333	CI5	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at Image frequency (FIMAGE)	_	-29	-9				
SID334	CI6	Adjacent channel interference Wanted Signal at –67 dBm and Interferer at Image frequency (FIMAGE ± 2 MHz)		-40	-15				

RF receiver specification S2 (500 kbps) (table continues...)

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID501	RXS, IDLE	RX sensitivity with Ideal Transmitter, Standard Mod Index Rx	•	-101	-	dBm	Across RF operating frequency range
SID506	CI1	Co-channel interference, Wanted Signal at –72 dBm and Interferer at FRX	- 3	3	17	dB	RF-PHY specification (RCV- LE/CA/28/C)
SID507	CI2	Adjacent channel interference Wanted Signal at –72 dBm and Interferer at FRX ± 1 MHz		-11	11		
SID508	CI3	Adjacent channel interference Wanted Signal at –72 dBm and Interferer at FRX ± 2 MHz		-50	-21		
SID509	CI4	Adjacent channel interference Wanted Signal at –72 dBm and Interferer at FRX ± 3 MHz		-53	-31		
SID510	CI5	Adjacent channel interference Wanted Signal at –72 dBm and Interferer at image frequency (FIMAGE)		-37	-13		
SID511	CI6	Adjacent channel interference Wanted Signal at –72 dBm and Interferer at image frequency (FIMAGE ± 1 MHz)		-42	-19		
RF Receive	r specification S	58 (125 kbps)					
SID512	RXS, IDLE	RX sensitivity with Ideal Transmitter ²⁾	-	-106	-	dBm	Across RF operating frequency range
SID517	CI1	Co-channel interference, Wanted Signal at –79 dBm and Interferer at FRX		6	12	dB	RF-PHY specification (RCV- LE/CA/29/C)
SID518	CI2	Adjacent channel interference Wanted Signal at –79 dBm and Interferer at FRX ± 1 MHz		-18	6	-	

Table 37(continued) Bluetooth LE subsystem specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID519	CI3	Adjacent channel interference Wanted Signal at –79 dBm and Interferer at FRX ± 2 MHz		-52	-26		
SID520	CI4	Adjacent channel interference Wanted Signal at –79 dBm and Interferer at FRX ± 3 MHz		-51	36		
SID521	CI5	Adjacent channel interference Wanted Signal at –79 dBm and Interferer at Image frequency (FIMAGE)		-40	-18		
SID522	CI6	Adjacent channel interference Wanted Signal at –79 dBm and Interferer at Image frequency (FIMAGE ± 1 MHz)	_	-47	-24		
RF Receive	r specification (1 and 2 Mbps)					
SID338	OBB1	Out of Band Blocking Wanted Signal at –67 dBm and Interferer at F = 30 –2000 MHz	-30	-	-	dBm	RF-PHY specification (RCV- LE/CA/04/C)
SID339	OBB2	Out of Band Blocking Wanted Signal at –67 dBm and Interferer at F = 2003 - 2399 MHz	-35	-	-	dBm	RF-PHY specification (RCV- LE/CA/04/C)
SID340	OBB3	Out of Band Blocking, Wanted Signal at –67 dBm and Interferer at F = 2484 - 2997 MHz	-				
SID341	OBB4	Out of Band Blocking Wanted Signal at -67 dBm and Interferer at F = 3000 - 12750 MHz	-30				RF-PHY specification (RCV- LE/CA/04/C)
SID342	IMD	Intermodulation Performance Wanted Signal at –64 dBm and 1 Mbps Bluetooth [®] LE, 3rd, 4th and 5th offset channel	-50	-			RF-PHY specification (RCV- LE/CA/05/C)

Table 37 (continued) Bluetooth[®] LE subsystem specifications

Table 37	Fable 37 (continued) Bluetooth [®] LE subsystem specifications										
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions				
SID343	RXSE1	Receiver Spurious emission 30 MHz to 1.0 GHz	-		-57		100 kHz measurement bandwidth ETSI EN300 328 V2.1.1				
SID344	RXSE2	Receiver Spurious emission 1.0 GHz to 12.75 GHz			-53		1 MHz measurement bandwidth ETSI EN300 328 V2.1.1				
RF Transmi	tter specificatio	ns									
SID345	TXP, ACC	RF power accuracy	-2	-	2	dB	-				
SID346	ТХО	Power range	-	23	-		–24 dBm to 0 dBm				
	TX10			33			–24 dBm to 10 dBm				
SID347	TXP, 0 dBm	Output power, 0 dB power setting		0		dBm	For TX10 mode, BT_PAVDD				
SID348	TXP, 10 dBm	Output power, 10 dBm power setting		10			connected to VCCPA_0. The minimum supply				
SID349	TXP, MIN	Output power, minimum power setting		-20			voltage VDDD is 2.7 V				
SID350	F2Max	Average frequency deviation for 10101010 pattern	185	-		kHz	RF-PHY specification (TRM- LE/CA/05/C)				
SID350R	F2Max_2M	Average frequency deviation for 10101010 pattern for 2 Mbps	370								
SID350LR	F1Max_S8	Average frequency deviation for 10101010 pattern for 125 bps	185				RF-PHY specification (TRM- LE/CA/13/C)				
SID351	F1AVG	Average frequency deviation for 11110000 pattern	225	250	275		RF-PHY specification (TRM- LE/CA/05/C)				
SID351R	F1AVG_2M	Average frequency deviation for 11110000 pattern for 2 Mbps	450	500	550		RF-PHY specification (TRM- LE/CA/05/C)				
SID351R	F1AVG_S8	Average frequency deviation for 11110000 pattern for 125 kbps	225	250	275		RF-PHY specification (TRM- LE/CA/13/C)				
SID352	EO	Eye opening = ΔF2AVG/ ΔF1AVG	0.8	-	-	-	RF-PHY specification (TRM- LE/CA/05/C)				

Table 37 (continued) Bluetooth LE subsystem specifications							
Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID353	FTX,ACC	Frequency accuracy	-150		150	kHz	RF-PHY specification (TRM- LE/CA/06/C)
SID354	FTX,MAXDR	Maximum frequency drift	-50		50		RF-PHY specification (TRM- LE/CA/06/C)
SID355	FTX, INITDR	Initial frequency drift	-20		20		RF-PHY specification (TRM- LE/CA/06/C)
SID355LR	FTX, INITDR, S8		-19.2		19.2		RF-PHY specification (TRM- LE/CA/14/C)
SID356	FTX, DR	Maximum drift rate	-20		20	kHz/ 50 μs	RF-PHY specification (TRM- LE/CA/06/C)
	FTX, DR, S8		-19.2		19.2		RF-PHY specification (TRM- LE/CA/14/C)
SID357	IBSE1	In Band Spurious Emission at 2 MHz offset (1 Mbps) In Band Spurious Emission at 4 MHz offset (2 Mbps)	-		-20	dBm	RF-PHY specification (TRM- LE/CA/03/C)
SID358	IBSE2	In Band Spurious Emission at > 3 MHz offset (1 Mbps) In Band Spurious Emission at > 6 MHz offset (2 Mbps)			-30		
SID359	TXSE1	Transmitter Spurious Emissions (Averaging), < 1.0 GHz	-	-	-55.5		FCC-15.247
SID360	TXSE2	Transmitter Spurious Emissions (Averaging), > 1.0 GHz			-41.5		
RF Current	specifications						
SID361	IRX1_wb	Receive current (LE 1 Mbps)	-	5.6	-	mA	Measured with VCC_BUCK = 3.0
SID362	ITX1_0dBm	TX current at 0 dBm setting (LE 1 Mbps)		5.2			V. In all cases, VCCI = 1.16 V and VCCRF = 1.1 V.

Table 37 ntinued) Bluetooth[®] I E subsystem specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID365R	ITX1_10dBm	TX current at 10 dBm setting (LE 1 Mbps)		17.2			For TX0, BT_PAVDD = VCCRF. For TX10, BT_PAVDD = VCCPA_0 = 2.5 V
General RF	specifications						
SID373	FREQ	RF operating frequency	2402	-	2480	MHz	-
SID374	CHBW	Channel spacing	-	2	-		
SID375	DR1	On-air data rate (1 Mbps)	-	1000		kbps	_
SID376	DR2	On-air data rate (2 Mbps)	-	2000			
RSSI specifi	cations		1	- 1	-1	-	1
SID379	RSSI, ACC	RSSI accuracy	-4	-	4	dB	–95 dBm to –20 dBm measurement range
SID380	RSSI, RES	RSSI resolution	-	1	-	dB	
SID381	RSSI, PER	RSSI sample period	-	6	-	μs	-
System-lev	el Bluetooth [®] LE s	specifications	1			_	1
SID433R ³⁾	Adv_Pwr	Advertising power, 1.28 s advertising interval, 31 bytes, TX 0 dBm	-	44.5	-	μW	Connectible advertising, VBAT = 3.0 V
SID434R ³⁾	Conn_Pwr_30 0	Connection power, 300 ms connection interval, 0 bytes, TX 0 dBm		64.6			VBAT = 3.0 V
SID435R ³⁾	Conn_Pwr_1S	Connection power, 1000 ms connection interval, 0 bytes, TX 0 dBm		29.5			

Coherent demodulator enabled with standard modulation index.

2) 3) Power consumption numbers are measured with WCO.

7 Ordering information

7 Ordering information

Table 38 lists the CYW20829 part numbers and features.

Table 38	Ordering part numbers						
Product	Description	Package	Ambient operating temperature				
CYW20829B0000	¹⁾ Entry level consumer focus product	6 × 6 × 0.9 mm 56-lead	-40°C to 85°C				
CYW20829B0010	¹⁾ Full featured consumer focus product with LE Audio and Automotive peripherals	6 × 6 × 0.9 mm 56-lead	–40°C to 85°C				

8 Packaging

8 Packaging

This product line is offered in 56-lead package.

Package	dimensions							
Package	Description	Description			Package drawing number			
56-lead	56-lead 56-lead, $6 \times 6 \times 0$			vith (0.35-mm	002-317	57	
Package	characteristics							
Description		Conc	litions	Miı	n	Тур	Мах	Unit
Operating am	pient	-		-40)	25	85	°C
Operating junctionPackage θ JA (56-lead)Package θ JC (56-lead)		-			_	100		
			-		13.8	-	°C/watt	
								4.8
Solder r	eflow peak tempera	ature						
Maxim	um peak temperatu	ure		1	Maximun	n time a	t peak tem	perature
56-lead 260°C				,	30 s			
Package	moisture sensitivi	ty level	(MSL),	IPC/	JEDEC J-	STD-2		
Package			MSL					
56-lead			MSL-3					
	Package Package 56-lead Package Description Operating aml Operating junct Package ∂ JA (Package ∂ JA (Package ∂ JC (Solder regard 260°C Package	Package dimensionsPackageDescription56-lead, $6 \times 6 \times 0$ 56-lead, $6 \times 6 \times 0$ Package characteristicsDescriptionOperating ambientOperating junctionPackage θ JA (56-lead)Package θ JC (56-lead)Package θ JC (56-lead)Package θ JC (56-lead)Package θ JC (56-lead)Package moisture sensitivi	Package dimensionsPackageDescription56-lead56-lead, $6 \times 6 \times 0.9 \text{ mm}$ 56-lead $6 \times 6 \times 0.9 \text{ mm}$ Package characteristicsOperating ambientOperating junctionPackage θ JA (56-lead)Package θ JC (56-lead)Package θ JC (56-lead)Package θ G (56-lead)Package θ JC (56-lead)Package moisture sensitivity levelPackage moisture sensitivity level	Package dimensions Package Description 56-lead, 6 × 6 × 0.9 mm height v Package characteristics Description Conditions Operating ambient - Operating junction - Package θ JA (56-lead) - Package θ JC (56-lead) - Package θ JC (56-lead) Maximum peak temperature Package moisture sensitivity level (MSL),	Package dimensions Package Description 56-lead 56-lead, 6 × 6 × 0.9 mm height with 0 Package characteristics Operating ambient Conditions Min Operating ambient - -40 Operating junction - -40 Package θ JA (56-lead) - -40 Package θ JC (56-lead) - - - Solder reflow peak temperature - - - Verticating provide temperature 260°C 3 - Maximum peak temperature MSL MSL MSL MSL	Package dimensionsPackageDescription56-lead56-lead, $6 \times 6 \times 0.9$ mm height with 0.35 -mmPackage characteristicsOperating ambientConditionsMinOperating ambient-Operating junction-40Package θ JA (56-lead)-40Package θ JC (56-lead)Solder reflow peak temperatureMaximumSolder reflow peak temperatureMaximum260°CMaximumMaximumSolder reflow peak temperatureMaximumPackage moisture sensitivity level (MSL), IPC/JEDEC Jend)Maximum <th< td=""><td>Package dimensionsPackageDescription$56 - lead$$56 - lead$$6 \times 6 \times 0.9$ mm height with 0.35-mm pitchPackage characteristicsDescriptionConditionsMinTyp<math>Operating ambient$-40$$25$<math>Operating junction$-40$$25$<math>Package ∂ JA (56-lead)$-40$$25$Package ∂ JA (56-lead)Package ∂ JC (56-lead)$-40$$13.8$<math>Package ∂ JC (56-lead)$-1$$13.8$Verter reflow peak temperatureMaximum peak temperatureMaximum time a260°C30 sVerter sensitivity level $VJEDEC J-STD-2$MSLMSLMSL</math></math></math></math></td><td>Package dimensionsPackageDescriptionPackage number56-lead, $6 \times 6 \times 0.9$ mm height with 0.35-mm pitch002-317Package characteristicsDescriptionConditionsMinTypMaxOperating ambient402585Operating junction402585Package θ JA (56-lead)-13.8-Package θ JA (56-lead)-13.8-Package θ JC (56-lead)-13.8-Solder reflow peak temperatureMaximum peak temperatureMaximum time at peak tem260°C30 sPackage moisture sensitivity level (MSL), IPC/JEDEC J-STD-2MSLMSL-3</td></th<>	Package dimensionsPackageDescription $56 - lead$ $56 - lead$ $6 \times 6 \times 0.9$ mm height with 0.35 -mm pitchPackage characteristicsDescriptionConditionsMinTyp $Operating ambient-4025Operating junction-4025Package \partial JA (56-lead)-4025Package \partial JA (56-lead)Package \partial JC (56-lead)-4013.8Package \partial JC (56-lead)-113.8Verter reflow peak temperatureMaximum peak temperatureMaximum time a260^{\circ}C30 sVerter sensitivity level VJEDEC J-STD-2MSLMSLMSL$	Package dimensionsPackageDescriptionPackage number56-lead, $6 \times 6 \times 0.9$ mm height with 0.35 -mm pitch002-317Package characteristicsDescriptionConditionsMinTypMaxOperating ambient402585Operating junction402585Package θ JA (56-lead)-13.8-Package θ JA (56-lead)-13.8-Package θ JC (56-lead)-13.8-Solder reflow peak temperatureMaximum peak temperatureMaximum time at peak tem260°C30 sPackage moisture sensitivity level (MSL), IPC/JEDEC J-STD-2MSLMSL-3

8 Packaging

Figure 9

56-lead QFN 6.0 x 6.0 x 0.9 mm LT56F 4.60 x 4.60 mm E-Pad (SAWN), Package outline (PG-VQFN-56)

9 Acronyms

Table 43	Acronyms used in this document
Acronym	Description
3DES	triple DES (data encryption standard)
ADC	analog-to-digital converter
AES	advanced encryption standard
AHB	AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm [®] data transfer bus
API	application programming interface
Arm®	advanced RISC machine, a CPU architecture
BOD	brown-out detect
BTSS	Bluetooth [®] sub system
CAD	computer aided design
CBC	cipher block chaining
CFB	cipher feedback
ССО	current controlled oscillator
CM0+	Cortex [®] -M0+, an Arm [®] CPU
CM4	Cortex [®] -M4, an Arm [®] CPU
CMOS	complementary metal-oxide-semiconductor, a process technology for IC fabrication
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CSD	CAPSENSE [™] sigma-delta
CTR	Counter
DAC	digital-to-analog converter, see also IDAC, VDAC
DAP	debug access port
DES	data encryption standard
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DSI	digital system interconnect
ECB	electronic code book
ECC	elliptic curve cryptography
ECDSA	elliptic curve digital signature algorithm
ECO	external crystal oscillator
EMI	electromagnetic interference
ESD	electrostatic discharge
/table cout!	

Table 43	(continued) Acronyms used in this document		
Acronym	Description		
FIFO	first-in, first-out		
FLL	frequency locked loop		
FS	full-speed		
GND	Ground		
GPIO	general-purpose input/output		
НМАС	hash-based message authentication code		
HSIOM	high-speed I/O matrix		
I/O	input/output, see also GPIO, DIO, SIO, USBIO		
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol		
l ² S	inter-IC sound		
IC	integrated circuit		
IDAC	current DAC, see also DAC, VDAC		
IDE	integrated development environment		
ILO	internal low-speed oscillator, see also IMO		
IMO	internal main oscillator, see also ILO		
INL	integral nonlinearity, see also DNL		
loT	internet of things		
IPC	inter-processor communication		
IRQ	interrupt request		
JTAG	Joint Test Action Group		
LIN	Local Interconnect Network, a communications protocol		
LP	low power		
LS	low-speed		
LUT	lookup table		
LVD	low-voltage detect, see also LVI		
LVTTL	low-voltage transistor-transistor logic		
MAC	multiply-accumulate		
MCU	microcontroller unit		
MCWDT	multi-counter watchdog timer		
MISO	master-in slave-out		
MMIO	memory-mapped input output		
MOSI	master-out slave-in		
MPU	memory protection unit		
/table contin			

Table 43	(continued) Acronyms used in this document
Acronym	Description
MSL	moisture sensitivity level
NMI	nonmaskable interrupt
NVIC	nested vectored interrupt controller
OFB	output feedback
OTP	one-time programmable
OVT	overvoltage tolerant
РСВ	printed circuit board
РСМ	pulse code modulation
PDM	pulse density modulation
РНҮ	physical layer
PLL	phase-locked loop
POR	power-on reset
PRNG	pseudo random number generator
PSRR	power supply rejection ratio
PWM	pulse-width modulator
QD	quadrature decoder
QSPI	quad serial peripheral interface
RAM	random-access memory
RISC	reduced-instruction-set computing
ROM	read-only memory
RTC	real-time clock
RX	receive
SAR	successive approximation register
SARMUX	SAR ADC multiplexer bus
SCB	serial communication block
SHA	secure hash algorithm
SMIF	serial media interface
SNR	signal-to-noise ration
SPI	Serial Peripheral Interface, a communications protocol
SRAM	static random access memory
SROM	supervisory read-only memory
SWD	serial wire debug, a test protocol
SWJ	serial wire JTAG

Table 43	(continued) Acronyms used in this document
Acronym	Description
SWO	single wire output
SWV	serial-wire viewer
ТСРѠМ	timer, counter, pulse-width modulator
TDM	time division multiplexed
TRNG	true random number generator
ТХ	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
ULP	ultra-low power
WCO	watch crystal oscillator
WDT	watchdog timer
WIC	wakeup interrupt controller
XIP	execute-in-place
XRES	external reset input pin

10 Document conventions

10 Document conventions

10.1 Units of measure

Table 44	Units of measure
Symbol	Unit of measure
°C	degrees celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSb	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
W	ohm
pF	picofarad
ppm	parts per million
(table conti	nues)

Datasheet

10 Document conventions

Table 44	(continued) Units of measure
Symbol	Unit of measure
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Revision history

Revision history

Document version	Date of release	Description of changes
*H	2024-04-09	Updated the doc status to Final. Updated Bluetooth [®] Low Energy subsystem and added a footnote. Updated the part number: CYW20829B0LKMLTXUMA1/ CYW20829B0LKMLXQLA1 to "CYW20829B0LKML" in the Table 38. Added IFX code Packaging information in Figure 9.
*	2024-04-19	Updated template; no content update.
*J	2024-09-09	Updated Features Updated Table 9 Updated Figure 8

Trademarks

Trademarks

The Bluetooth[®] word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-09-09 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-bxp1710507451473

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.