
ImageCraft C Compiler Guide
Document # 001-44476 Rev *B

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com

Copyrights
Copyrights

© Cypress Semiconductor Corporation, 2005-2012. The information contained herein is subject to change without notice.
Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a
Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted
nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an
express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components
in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user.
The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such
use and in doing so indemnifies Cypress against all charges.

PSoC Designer™, and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress
Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corpora-
tions.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by
and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty
provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom soft-
ware and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as speci-
fied in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATE-
RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure
may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support sys-
tems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all
charges.

Use may be limited by and subject to the applicable Cypress software license agreement.
2 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Contents
Contents
Contents 3

1. Introduction 7
1.1 Grant of License ..7
1.2 Purpose ...7
1.3 Section Overviews ...8
1.4 Support ..8

1.4.1 Technical Support...8
1.4.2 Product Upgrades ..8

1.5 Documentation Conventions..9

2. Accessing the Compiler 11
2.1 Enabling the Compiler ..11
2.2 Accessing the Compiler ...11
2.3 Menu and Toolbar Options ..12

3. Compiler Files 13
3.1 Startup File ..13
3.2 Library Descriptions ...13

4. Compiler Basics 15
4.1 Data Types ..15
4.2 Operators...16
4.3 Expressions ...17
4.4 Statements...18
4.5 Pointers..18
4.6 Re-Entrancy...18
4.7 Processing Directives ..19

4.7.1 Preprocessor Directives ...19
4.7.2 Pragma Directives..19

5. Functions 23
5.1 Library Functions ...23

5.1.1 String Functions ...23
5.1.2 Mathematical Functions ...28
5.1.3 API Software Library Functions..29

6. Additional Considerations 31
6.1 Accessing M8C Features...31
6.2 Addressing Absolute Memory Locations ...31
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 3

Contents
6.3 Assembly Interface and Calling Conventions ..31
6.4 Bit Toggling..32
6.5 Inline Assembly ...32
6.6 Interrupts ...33
6.7 IO Registers...33
6.8 Long Jump/Call..33
6.9 Memory Areas ...34

6.9.1 Flash Memory Areas..34
6.9.2 Data Memory Areas ...34

6.10 Program and Data Memory Usage..34
6.10.1 Program Memory ...34
6.10.2 Data Memory ...34

6.11 Program Memory as Related to Constant Data...35
6.12 Stack Architecture and Frame Layout ..36
6.13 Strings ...36
6.14 Virtual Registers ..36
6.15 Convention for Restoring Internal Registers..36
6.16 Indirect Function Calls to fastcall/fastcall16 Functions ..37
6.17 Byte Order ...37
6.18 Interfacing C and Assembly...37

6.18.1 Interfacing C and Assembly Variables ...37
6.18.2 Interfacing C and Assembly Functions ..38

7. Linker 41
7.1 Linker Operations ..41
7.2 Linking Process ...41

7.2.1 Customized Linker Actions to Force Code or Data to a Specific ROM Location
41

7.2.2 Custom Linker Actions to Force Variables to a Specific RAM Address42

8. Librarian 45
8.1 Librarian...45

8.1.1 Compiling a File into a Library Module...45
8.1.2 Listing the Contents of a Library ..47
8.1.3 Adding or Replacing a Library Module...47
8.1.4 Deleting a Library Module..47

9. Command Line Overview 49
9.1 Compilation Process..49
9.2 Compiler Driver..49
9.3 ImageCraft Compiler Arguments ...50

9.3.1 Compiler Argument Prefixes ..50
9.3.2 Arguments Affecting the Driver ...50
9.3.3 Preprocessor Arguments ..50
9.3.4 Compiler Arguments ...51
9.3.5 Linker Arguments...51

9.4 ImageCraft Assembler Arguments ..51
9.4.1 Arguments ...51

10. Code Compression 53
10.1 Theory of Operation...53
10.2 Code Compressor Process ...53
4 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Contents
10.2.1 C and Assembly Code ...53
10.2.2 Program Execution Bytes...53
10.2.3 Impact to Debugger..54

10.3 Integration of the Code Compressor..54
10.3.1 boot.asm file...54
10.3.2 Text Area Requirement ..54

10.4 Code Compressor and the AREA Directive...54
10.5 Build Messages ...55
10.6 Considerations for Code Compression..56

Errors and Warnings Messages 57
Preprocessor... 57
Preprocessor Command Line ... 58
ImageCraft C Compiler .. 59
ImageCraft Assembler ... 62
Assembler Command Line.. 63
Linker ... 63

Index 65
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 5

Contents
6 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

1. Introduction
1.1 Grant of License
The ImageCraft Software License Agreement permits you to use the ImageCraft ICCV7 for M8C
compiler under an agreement between Cypress Semiconductor and ImageCraft. If the governing
agreement is terminated, you may continue to use the existing license, but no new licenses under
those terms will be granted.

Refer to the ImageCraft documentation for the full copy of the Software License Agreement.

1.2 Purpose
The ImageCraft C Compiler compiles each .c source file to a PSoC device assembly file. The
ImageCraft Assembler then translates each assembly file (either those produced by the compiler or
those that have been added) into a relocatable object file, .o. After all the files have been translated
into object files, the linker combines them together to form an executable file. This .hex file is then
downloaded to the emulator where it is debugged to perfect design functionality.

For comprehensive details on hardware, system use, and assembly language, refer to the following
documents. Together, these documents comprise the PSoC Designer documentation suite.
■ PSoC Designer PSoC Programmer User Guide
■ PSoC Designer C Language Compiler User Guide
■ PSoC Designer Assembly Language User Guide
■ PSoC Designer IPSoC Designer USB Adapter Installation Guide
■ ICE Connection and Troubleshooting Guide
■ Device-specific PSoC Technical Reference Manual
■ Device-specific PSoC Device Data Sheet

Additional recommended reading includes:

■ C Programming Language, Second Edition, Brian W. Kernighan and
Dennis Ritchie, Prentice Hall, March 1988.

■ C: A Reference Manual, Fifth Edition, Samuel P. Harbison and
Guy L. Steele, Prentice Hall, February 2002.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 7

Introduction
1.3 Section Overviews

1.4 Support
Free support for PSoC Designer is available online at http://www.cypress.com/. Resources include
Training Seminars, Discussion Forums, Application Notes, PSoC Consultants, TightLink Technical
Support Email/Knowledge Base, and Application Support Technicians.

Support for the ImageCraft C Compiler is available from ImageCraft. http://www.imagecraft.com/

Before using the Cypress support services, know the version of PSoC Designer installed on your
system. To quickly determine the version, build, or service pack of your current installation of PSoC
Designer, click Help > About PSoC Designer.

1.4.1 Technical Support
Enter a support request in the TightLink Technical Support System with a guaranteed response time
of four hours at http://www.cypress.com/support/login.cfm or www.cypress.com and click on Techni-
cal and Support KnowledgeBase at the bottom of the page. You can also view and participate in dis-
cussion threads about a wide variety of PSoC device topics on the Cypress support forums.

1.4.2 Product Upgrades
Cypress provides scheduled upgrades and version enhancements for PSoC Designer free of
charge. ImageCraft C Compiler upgrades, when available, are specified in your ImageCraft license
agreement. You can order PSoC Designer upgrades from your distributor on CD-ROM or download
them directly from http://www.cypress.com/. Also provided at the web sites are critical updates to
system documentation. To stay current with system functionality you can find documentation
updates under Design Resources.

Table 1-1. Overview of the C Language Compiler User Guide Sections
Section Description

Introduction
(on page 7)

Describes the purpose of this guide, presents an overview of each sec-
tion, supplies support information, and describes the documentation con-
ventions.

Accessing the Compiler
(on page 11)

Describes enabling and accessing the compiler, and supplies menu and
toolbar options.

Compiler Files
(on page 13) Discusses and lists startup and C library files within PSoC Designer.

Compiler Basics
(on page 15)

Supplies C Compiler data types, operators, expressions, statements,
pointers, re-entrancy, and processing directives.

Functions
(on page 23)

Lists C Compiler library functions and describes how to interface between
the C and assembly languages.

Additional Considerations
(on page 31)

Lists additional compiler options to leverage the functionality of your code
or program.

Linker
(on page 41) Discusses C Compiler linker options deployed within PSoC Designer.

Librarian
(on page 45) Discusses C Compiler library functions used within PSoC Designer.

Command Line Overview
(on page 49)

Overviews supported compiler command line options for users who want
to use the compiler outside PSoC Designer.

Code Compression
(on page 53)

Details the theory of operation, the process and integration of code com-
pression, and other features and guidelines of the code compressor.
8 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

http://www.cypress.com/?id=4
http://www.cypress.com
http://www.cypress.com/
http://www.imagecraft.com/
http://www.cypress.com/?id=4.
http://www.cypress.com/?id=4
http://www.cypress.com/?id=4
http://www.cypress.com/

Introduction
1.5 Documentation Conventions
The following are easily identifiable conventions used throughout this user guide.

The following are acronyms used throughout this user guide.

Table 1-2. Documentation Conventions
Convention Usage

Courier New
Size 12

Displays file locations and source code:
C:\ …cd\icc\, user entered text.

Italics Displays file names and reference documentation:
sourcefile.hex

[bracketed, bold] Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > New Project Represents menu paths:
File > New Project > Clone

Bold Displays commands, menu paths and selections, and icon names in procedures:
Click the Debugger icon, and then click Next.

Text in gray boxes Displays cautions or functionality unique to PSoC Designer or the PSoC device.

Table 1-3. Acronyms
Acronym Description

ADC analog-to-digital converter
API application programming interface
C (refers to C programming language)
DAC digital-to-analog converter
DRC design rule checker
EPP enhanced parallel port
FPMP Flash program memory protection
grep global regular expression print
ICE in-circuit emulator
IDE integrated development environment
IO input/output
ISR interrupt service routine
MCU microcontroller unit
MHz megahertz
OHCI open host controller interface
PWM pulse width modulator
RAM random access memory
ROM read only memory
SSC system supervisory call
UART universal asynchronous receiver transmitter
UHCI universal host controller interface
USB universal serial bus
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 9

Introduction
10 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

2. Accessing the Compiler
In this chapter you will learn how to enable and access the compiler, and its menu and toolbar
options.

2.1 Enabling the Compiler
Enabling the compiler is done within PSoC Designer. To accomplish this, execute the following pro-
cedure.

1. Access Tools > Options > Build > Compiler tab.
2. Enter your ImageCraft C compiler license number. You have this license number if you pur-

chased the C Language Compiler License from ImageCraft.
3. At the License Agreement screen, scroll or use [Page Down] to view the terms of the license

agreement. Click I accept to accept the agreement.
To view the version details for the ImageCraft C Compiler, click Version. When finished, click the
OK button
To remove an expired license and enter a new key code, uncheck the I Accept box. You will be
asked to confirm the removal. Click Yes, then enter the new code.
If, for some reason, you have not received a key code or are uncertain of how to proceed, contact
ImageCraft.

2.2 Accessing the Compiler
All features of the compiler are available and accessible in the Application Editor subsystem of PSoC
Designer.

Features of the compiler include adding and modifying .c project files. These are described in this
guide in brief and in the PSoC Designer Integrated Development Environment Guide in detail.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 11

Accessing the Compiler
2.3 Menu and Toolbar Options
Table 2-1 lists the menu and toolbar options that are available in PSoC Designer for writing and edit-
ing assembly language and C Compiler files.

Table 2-1. Menu Options for Modifying Source Files
Icon Option Menu Shortcut Feature

Compile/Assemble Build > Compile [Ctrl] [F7]
Compiles or assembles the
open, active file (.c or .asm)

Build Current Project Build > Build Project
Generate and Build All
Projects

Build > Generate/Build All
Projects [Shift] [F6]

Build Build > Generate/Build cur-
rent project [F6] Builds the entire project and

links applicable files

New File File > New [Ctrl] [N] Adds a new file to the project

Open File File > Open [Ctrl] [O] Opens an existing file in the
project

Indent Indents specified text

Outdent Outdents specified text

Comment [Ctrl][E]+[C] Comments selected text

Uncomment [Ctrl][E]+[U] Uncomments selected text

Toggle Bookmark Edit > Bookmarks > Toggle
Bookmark

[Ctrl] [B] +
[T]

Toggles the bookmark: Sets/
removes user-defined book-
marks used to navigate source
files

Clear Bookmarks Edit > Bookmarks > Clear
Bookmarks

[Ctrl] [B] +
[C]

Clears all user-defined book-
marks

Next Bookmark Edit > Bookmarks > Next
Bookmark

[Ctrl] [B] +
[N] Goes to next bookmark

Previous Bookmark Edit > Bookmarks >
Previous Bookmark

[Ctrl] [B] +
[P] Goes to previous bookmark

Find Text Edit > Find and Replace [Ctrl] [F] Find specified text

Undo Edit > Undo [Ctrl] [Z] Undo last action

Redo Edit > Redo [Ctrl] [Y] Redo last action
12 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

3. Compiler Files
In this chapter you will learn startup file procedures and how to reference supported library files.

3.1 Startup File
PSoC Designer creates a startup file called boot.asm. This file is generated from the boot.tpl file
whenever a Generate Source occurs. It loads the initial device configuration and initializes global C
variables. It also contains the interrupt table vector. At the end of boot.asm, there is a ljmp to
main.asm. The underscore (_main) allows boot.asm to call the C or assembly main routine.

The boot.asm startup file also defines the reset vector. Normally, you do not need to modify the
startup file to use other interrupts because PSoC Designer manages all interrupt vectors. If you need
to add a ljmp to a custom interrupt handler, the boot.tpl file can be modified.

3.2 Library Descriptions
There are four primary code libraries used by PSoC Designer: libcm8c.a (SMM and LMM), libpsoc.a,
and cms.a. The compilers for the PSoC device are located in this folder: [Install path]\Com-
mon\CypressSemiBuildMgr\tools\.

libcm8c.a – This library resides in the PSoC Designer …\tools directory ([Install path]\Com-
mon\CypressSemiBuildMgr\tools\lib\lib\). This library contains many functions typically used in C
programming including SMM and LMM. SMM supports paging with the small memory model and
LMM supports paging with the large memory model.

libpsoc.a – This library resides in the project \lib directory and contains user module functions.
Device Editor automatically adds the source code for your user modules to the library during the
generate application process. However, other library objects can be manually added to this library.

To add existing object files, copy your source file to the project …\lib directory, then add it to the
project in PSoC Designer. For details on adding existing files to your project, see PSoC Designer
Integrated Development Environment Guide.

cms.a – This library resides in the [Install path]\Common\CypressSemiBuildMgr\tools\lib\ directory. It
contains convenient functions that do not involve user modules. For example, the functions to read
and write flash reside here (Flash Block Programming). C prototypes for using these functions are
given in the include file (flashblock.h) stored in the …\tools \include directory.

Many functions within PSoC Designer are built upon specifications in this file. Therefore, it
is highly recommended that you do not modify the startup file. If you have a need, first
consult your Cypress Technical Support Representative.

Avoid use of the following characters in path and file names (they are problematic):
\ / : * ? " < > | & + , ; = [] % $ ` '.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 13

Compiler Files
14 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

4. Compiler Basics
In this chapter you see ImageCraft C Compiler data types, operators, expressions, statements,
pointers, re-entrancy, and processing directives.

4.1 Data Types
Table 4-1 lists the supported ImageCraft C Compiler standard data types. All types support the
signed and unsigned type modifiers.

With one exception, the ImageCraft C Compiler is a “conforming freestanding implementation” of the
ANSI X3.159-1989 C Standard (C89), or the equivalent ISO/IEC 9899:1990 C Standard. The
nonstandard exception is that floating-point doubles are only 32 bits. Doing 64-bits doubles are pro-

hibitive on an 8-bit microcontroller.

Table 4-1. Supported Data Types

Type Bytes Description Range

char 1 A single byte of memory that
defines characters

a unsigned 0…255
signed -128…127

a. Default, if not explicitly specified as signed or unsigned.

int 2 Used to define integer numbers
unsigned 0…65535

1 signed -32768…32767

short 2 Standard type specifying 2-byte
integers

unsigned 0…65535
1 signed -32768…32767

long 4 Standard type specifying the
largest integer entity

unsigned 0…4294967295
1 signed -

2147483648…2147483647

float 4 Single precision floating point
number in IEEE format 1.175e-38…3.40e+38

double 4 Single precision floating point
number in IEEE format 1.175e-38…3.40e+38

enum 1 if enum < 256
2 if enum > 256

Used to define a list of aliases
that represent integers. 0…65535
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 15

Compiler Basics
These type definitions are included in the m8c.h file:

These floating-point operations are supported in the ImageCraft C Compiler:

Floats and doubles are in IEEE 754 standard 32-bit format with 8-bit exponent and 23-bit mantissa
with one sign bit.

4.2 Operators
Table 4-2 displays a list of the most common operators supported within the ImageCraft C Compiler.
Operators with a higher precedence are applied first. Operators of the same precedence are applied
right to left. Use parentheses where appropriate to prevent ambiguity.

typedef unsigned char BOOL;
typedef unsigned char BYTE;
typedef signed char CHAR;
typedef unsigned int WORD;
typedef signed int INT;
typedef unsigned long DWORD;
typedef signed long LONG;

compare (= =) add (+)
multiply (*) subtract (-)
divide(/) casting (long to float)

Table 4-2. Supported Operators

Pre. Op. Function Group Form Description
1 ++ Postincrement a ++

1 -- Postdecrement a --

1 [] Subscript a[b]

1 () Function Call a(b)

1 . Select Member a.b

1 -> Point at Member a->b

2 sizeof Sizeof sizeof a

2 ++ Preincrement ++ a

2 -- Predecrement -- a

2 & Address of &a

2 * Indirection *a

2 + Plus +a

2 - Minus -a

2 ~ Bitwise NOT Unary ~ a 1's complement of a

2 ! Logical NOT !a

2 (declara-
tion) Type Cast (declaration)a

3 * Multiplication Binary a * b a multiplied by b

3 / Division Binary a / b a divided by b

3 % Modulus Binary a % b Remainder of a divided by b
16 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Compiler Basics
4.3 Expressions
PSoC Designer supports standard C language expressions.

4 + Addition Binary a + b a plus b

4 - Subtraction Binary a - b a minus b

5 << Left Shift Binary a << b Value of a shifted b bits left

5 >> Right Shift Binary a >> b Value of a shifted b bits right

6 < Less a < b a less than b

6 <= Less or Equal a <= b a less than or equal to b

6 > Greater a > b a greater than b

6 >= Greater or Equal a >= b a greater than or equal to b

7 == Equals a == b

7 != Not Equals a != b

8 & Bitwise AND Bitwise a & b Bitwise AND of a and b

9 ^ Bitwise Exclusive OR Bitwise a ^ b Bitwise Exclusive OR of a and b

10 | Bitwise Inclusive OR Bitwise a | b Bitwise OR of a and b

11 && Logical AND a && b

12 || Logical OR a || b

13 ? : Conditional c?a:b

14 = Assignment a = b

14 *= Multiply Assign a *= b

14 /= Divide Assign a /= b

14 %= Remainder Assign a %= b

14 += Add Assign a += b

14 -= Subtract Assign a -= b

14 <<= Left Shift Assign a <<= b

14 >>= Right Shift Assign a >>= b

14 &= Bitwise AND Assign a &= b

14 ^= Bitwise Exclusive OR
Assign a ^= b

14 |= Bitwise Inclusive OR
Assign a |= b

15 , Comma a , b

Table 4-2. Supported Operators

Pre. Op. Function Group Form Description
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 17

Compiler Basics
4.4 Statements
The ImageCraft C Compiler supports the following standard statements:
■ if else – Decides on an action based on if being true.
■ switch – Compares a single variable to several possible constants. If the variable matches one of

the constants, a jump is made.
■ while – Repeats (iterative loop) a statement until the expression proves false.
■ do – Same as while, except the test runs after execution of a statement, not before.
■ for – Executes a controlled loop.
■ goto – Transfers execution to a label.
■ continue – Used in a loop to skip the rest of the statement.
■ break – Used with a switch or in a loop to terminate the switch or loop.
■ return– Terminates the current function.
■ struct – Used to group common variables together.
■ typedef – Declares a type.

4.5 Pointers
A pointer is a variable that contains an address that points to data. It can point to any data type (i.e.,
int, float, char, etc.). A generic (or unknown) pointer type is declared as void and can be freely cast
between other pointer types. Function pointers are also supported. Note that pointers require two
bytes of memory storage to account for the size of both the data and program memory.

Due to the nature of the Harvard architecture of the M8C microprocessor, a data pointer may point to
data located in either data or program memory. To discern which data is to be accessed, the const
qualifier is used to signify that a data item is located in program memory. See Program Memory as
Related to Constant Data on page 35.

4.6 Re-Entrancy
Currently, there are no pure re-entrant library functions. However, it is possible to create a re-entrant
condition that will compile and build successfully. Due to the constraints that a small stack presents,
re-entrant code is not recommended.
18 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Compiler Basics
4.7 Processing Directives
ImageCraft C Compiler supports these preprocessors and pragmas directives:

4.7.1 Preprocessor Directives

4.7.2 Pragma Directives

Table 4-3. Preprocessor Directives

Preprocessor Description
#define Define a preprocessor constant or macro.

#else Executed if #if, #ifdef, or #ifndef fails.

#endif Close #if, #ifdef, or #ifndef.

#if (include or exclude code) Based on an expression.

#ifdef (include or exclude code) A preprocessor constant has been defined.

#ifndef (include or exclude code) A preprocessor constant has not been defined.

#include Include a source file. < > are used to specify the PSoC Designer
Include folder. ““are used to specify the Project folder.

#line Specify the number of the next source line.

#undef Remove a preprocessor constant.

Table 4-4. Pragma Directives

#pragma Description
#pragma ioport LED:0x04; char LED; Defines a variable that occupies a region in IO space (register). This

variable can then be used in IO reads and writes. The #pragma ioport
must precede a variable declaration defining the variable type used in
the pragma.

#pragma fastcall GetChar Fastcall has been replaced by fastcall16 (see below).

#pragma fastcall16 GetChar Provides an optimized mechanism for argument passing. This pragma
is used only for assembly functions called from C.

#pragma abs_address:<address> Starting with ICC 7.0.5 (PSoC Designer 5.2), this pragma has been
replace by lit_abs_address, code_abs_address, and
ram_abs_address. abs_address now defaults to lit_abs_address to
maintain backward compatibility however it should not be used
moving forward.
Allows you to locate C code data at a specific address such as
#pragma abs_address:0x500. The #pragma end_abs_address
(described below) should be used to terminate the block of code data.

#pragma ram_abs_address Usually used for external SRAM data or memory mapped IO. #pragma
end_abs_address (described below) should be used to terminate the
block of code/data. For example, to locate a buffer in ram at address
0xF0:
#pragma ram_abs_address:0xF0
unsigned char buffer[15];
#pragma end_abs_address
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 19

Compiler Basics
#pragma lit_abs_address: Used for declaring flash based literal data at a specific address in
flash. #pragma end_abs_address (described below) should be used
to terminate the block of code/data. Items defined with this pragma
should have the __flash extended storage keyword and a initialized
value, for example to define ID at 0x3FFE in flash:
#pragma lit_abs_address:0x3FFE
__flash unsigned int ID = 0x1234;
#pragma end_abs_address

#pragma code_abs_address Used to define functions at a specific address in flash. #pragma
end_abs_address (described below) should be used to terminate the
block of code/data. Example:
#pragma code_abs_address:0x3000
void MyBootloader(void) {
.... // some code
}
#pragma end_abs_address

#pragma end_abs_address Terminates the previous #pragma abs_address: <address> pragma.

#pragma text:<name> Change the name of the text area. Make modifications to Custom.LKP
in the project directory to place the new area in the code space.

#pragma interrupt_handler
<func1> [,<func2>]*

For interrupt handlers written in C. Virtual registers are saved only if
they are used, unless the handler calls another function. In that case,
all Virtual registers are saved.

This interrupt handler changes the ret to reti at the end of the func-
tion. The function can be used as an interrupt handler by adding a
ljmp _name at the interrupt vector in boot.tpl. It cannot be used in
regular C code because the reti expects the flags to be pushed on
the stack.
In the large memory model, the Page Pointer registers (CUR_PP,
IDX_PP, MVW_PP, and MVR_PP) are saved and restored in addition
to the Virtual registers for a #pragma interrupt_handler.

#pragma nomac
#pragma usemac

These two pragmas override the command line nomac argument, or
Project > Settings > Compiler tab, Enable MAC option. Refer to the
compiler project settings in the PSoC Designer Integrated Develop-
ment Environment Guide. The pragmas should be specified outside of
a function definition.

Note that if compiler MAC is enabled (Project > Settings > Compiler
tab, Enable MAC is checked by default), the compiler will use the MAC
in ISRs, intermittently corrupting the foreground computations that use
the MAC. It is the programmer’s responsibility to use pragma nomac
at the beginning of each ISR function written in C.

Note ram_abs_address, lit_abs_address, and code_abs_address are generally used for defining
data items, i.e. do not use it for declaring an external variable via the extern keyword. If used to
name an area that is accessed in your code, you may need to reserve the space if there is a
potential conflict. (Areas can be reserved by using the -roh or -rwh linker switches in a custom.lkp
file. See Table 9-5, "Linker Arguments", in "ImageCraft Assembler Arguments" section.)

Table 4-4. Pragma Directives

#pragma Description
20 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Compiler Basics
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 21

Compiler Basics
22 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

5. Functions
In this chapter you can reference compiler library functions supported within PSoC Designer and
learn how to interface between the C and assembly languages.

ImageCraft C Compiler functions use arguments and always return a value. All C programs must
have a function called main(). Each function must be self-contained in that you may not define a
function within another function or extend the definition or a function across more than one file.

It is important to note that the compiler generates inline code whenever possible. However, for some
C constructs, the compiler generates calls to low level routines. These routines are prefixed with two
underscores and should not be called directly by the user.

5.1 Library Functions
Use #include <associated-header.h> for each function described in this section.

5.1.1 String Functions
All strings are null terminated strings. The prototypes for the all the string functions can be found in
the two include files string.h and stdlib.h located in [Install path]\Common\CypressSemiBuild-
Mgr\tools\include\.

You can view the list of all library functions, including all the string functions, at a command prompt
window with working directory [Install path]\Common\CypressSemiBuildMgr\tools\include\ by issuing
the command “ilibw –t lib\SMM\libcm8c.a”.

In the include file const.h located in [Install path]\Common\CypressSemiBuildMgr\tools\include\,
CONST is defined to be the empty string. Therefore, it has no effect on the declarations in which it
appears, unlike lowercase const that specifies the data is allocated in Flash rather than RAM.
When a function prototype uses CONST to describe an argument, it means that the function will not
modify the argument. This is a promise by the programmer that implemented the function, not some-
thing that is enforced by the ImageCraft C Compiler.

Some of the normal prototypes in string.h have an additional version prefixed with ‘c’, e.g. cstrlen.
This prefix indicates that one of the parameters is located in Flash, as designated by the const
qualifier.

The following C programming language web sites were used in preparation of the material presented
in this section.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_vclibraries_home.asp

http://www.gnu.org/software/libc/libc.html
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 23

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_vclibraries_home.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_vclibraries_home.asp
http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html

Functions
Table 5-1. String Functions

Function Prototype and Description Header

abs int abs(int);
Returns the absolute value of number. stdlib.h

atof

double atof(CONST char *);
Converts a string to double. Returns the double value produced by interpreting
the input characters as a number. The return value is 0.0 if the input cannot be
converted to a value of that type. The return value is undefined in case of over-
flow.

stdlib.h

atoi

int atoi(CONST char *);
Converts a string to integer. Returns the int value produced by interpreting the
input characters as a number. The return value is 0 if the input cannot be con-
verted to a value of that type. The return value is undefined in case of overflow.

stdlib.h

atol

long atol(CONST char *);
Converts a string to long integer. Returns the long value produced by interpret-
ing the input characters as a number. The return value is 0L if the input cannot
be converted to a value of that type. The return value is undefined in case of
overflow.

stdlib.h

char *itoa

char *itoa (char *string, int value, int base);
Converts an integer to a string. This function converts the digits of the given
value argument to a null-terminated character string. The base must be in the
range 2 - 36. If the base equals 10 and the given value is negative, the string is
preceded by a '-'.
Returns a pointer to the string.

stdlib.h

char *ltoa

char *ltoa (char *string, long value, int base);
Converts a long integer to a string. This function converts the digits of the given
long value argument to a null-terminated character string. The base must be in
the range 2 - 36. If the base equals 10 and the given value is negative, the string
is preceded by a '-'. Returns a pointer to the string.

stdlib.h

char *utoa

char *utoa(char *string, unsigned int value, int base);
Converts an unsigned integer to a string. This function converts the digits of the
given value argument to a null-terminated character string. The base must be in
the range 2 - 36.
Returns a pointer to the string.

stdlib.h

char *ultoa

char *ultoa(char *string, unsigned long value, int base);
Converts an unsigned long integer to a string. This function converts the digits of
the given value argument to a null-terminated character string. The base must
be in the range 2 - 36.
Returns a pointer to the string.

stdlib.h

ftoa

char *ftoa(float f, int *status);
/* ftoa function */
#define _FTOA_TOO_LARGE -2 /* |input| > 2147483520 */
#define _FTOA_TOO_SMALL -1 /* |input| < 0.0000001 */
/* ftoa returns static buffer of ~15 chars. If the input is out of * range, *status is
set to either of the above #define, and 0 is * returned. Otherwise, *status is set to
0 and the char buffer is * returned.
* This version of the ftoa is fast but cannot handle values outside * of the range
listed. Please contact us if you need a (much) larger * version that handles
greater ranges.
* Note that the prototype differs from the earlier version of this * function.
*/

stdlib.h
24 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Functions
rand
int rand(void);
Generates a pseudorandom number. The rand function returns a pseudoran-
dom integer in the range 0 to RAND_MAX. Returns a pseudorandom number.

stdlib.h

srand

void srand(unsigned);
Sets a random starting point. The srand function sets the starting point for gen-
erating a series of pseudorandom integers. To reinitialize the generator, use 1 as
the seed argument. Any other value for seed sets the generator to a random
starting point. rand retrieves the pseudorandom numbers that are generated.
Calling rand before any call to srand generates the same sequence as calling
srand with seed passed as 1.

stdlib.h

strtol

long strtol(CONST char *, char **, int);
Converts strings to a long-integer value. The strtol function converts string1 to a
long. strtol stops reading the string string1 at the first character it cannot recog-
nize as part of a number. This may be the terminating null character, or it may be
the first numeric character greater than or equal to base. String 2 is the pointer
to the character that stops scan.

stdlib.h

strtoul

unsigned long strtoul(CONST char *, char **, int);
Convert strings to an unsigned long-integer value. The strtoul function converts
string1 to an unsigned long. strtol stops reading the string string1 at the first
character it cannot recognize as part of a number. This may be the terminating
null character, or it may be the first numeric character greater than or equal to
base. String 2 is the pointer to the character that stops scan.

stdlib.h

cstrcat

char *cstrcat(char *dest, const char *src);
The function appends a copy of the string pointed to by src (including the termi-
nating null character) to the end of the string pointed to by dest. The initial char-
acter of src overwrites the null character at the end of dest. The function returns
the value of dest.

string.h

cstrcmp

int cstrcmp(const char *s1, char *s2);
The function compares the string pointed to by s1 to the string pointed to by s2.
The function returns an integer greater than, equal to, or less than zero, accord-
ingly as the string pointed to by s1 is greater than, equal to, or less than the
string pointed to by s2.

string.h

cstrcpy

char *cstrcpy(char *dest, const char *src);
The function copies the string pointed to by src (including the terminating null
character) into the array pointed to by dest. The function returns the value of
dest.

string.h

cstrncpy

char *cstrncpy(char *dest, const char *src, size_t n);
The function copies not more than n characters (characters that follow a null
character are not copied) from the string pointed to by src to the string pointed to
by dest. The function returns the value of dest.

string.h

cstrlen
size_t cstrlen(const char *s);
The function returns the number of characters in s preceding the terminating null
character.

string.h

memchr

void *memchr(CONST void *ptr, int c, size_t n);
The function locates the first occurrence of c (converted to an unsigned char) in
the initial n characters (each interpreted as unsigned char) of the object pointed
to by ptr. The function returns a pointer to the located character, or a null pointer
if the character does not occur in the object.

string.h

Table 5-1. String Functions

Function Prototype and Description Header
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 25

Functions
memcmp

int memcmp(CONST void *ptr1, CONST void *ptr2, size_t n);
The function compares the first n characters of the object pointed to by ptr1 to
the first n characters of the object pointed to by ptr2. The function returns an
integer greater than, equal to, or less than zero, accordingly as the object
pointed to by ptr1 is greater than, equal to, or less than the object pointed to by
ptr2.

string.h

memcpy

void *memcpy(void *dest, CONST void *src, size_t n);
The function copies n characters from the object pointed to by src into the object
pointed to by dest. If copying takes place between objects that overlap, the
behavior is undefined. The function returns the value of dest.

string.h

memmove

void *memmove(void *dest, CONST void *src, size_t n);
The function copies n characters from the object pointed to by src into the object
pointed to by dest. The function works correctly for overlapping objects. The
function returns the value of dest.

string.h

memset

void *memset(void *ptr, int c, size_t n);
The function copies the value of c (converted to an unsigned char) into each of
the first n characters of the object pointed to by ptr. The function returns the
value of ptr.

string.h

strcat

char *strcat(char *dest, CONST char *src);
The function appends a copy of the string pointed to by src (including the termi-
nating null character) to the end of the string pointed to by dest. The initial char-
acter of src overwrites the null character at the end of dest. If copying takes
place between objects that overlap, the behavior is undefined. The function
returns the value of dest.

string.h

strchr

char *strchr(CONST char *s, int c);
The function locates the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the
string. The function returns a pointer to the located character, or a null pointer if
the character does not occur in the string.

string.h

strcmp

int strcmp(CONST char *s1, CONST char *s2);
The function compares the string pointed to by s1 to the string pointed to by s2.
The function returns an integer greater than, equal to, or less than zero, accord-
ingly as the string pointed to by s1 is greater than, equal to, or less than the
string pointed to by s2.

string.h

strcoll

int strcoll(CONST char *s1, CONST char *s2);
The function compares the string pointed to by s1 to the string pointed to by s2
using the collating convention of the current locale. The function returns an inte-
ger greater than, equal to, or less than zero, accordingly as the string pointed to
by s1 is greater than, equal to, or less than the string pointed to by s2.

strcpy

char *strcpy(char *dest, CONST char *src);
The function copies the string pointed to by src (including the terminating null
character) into the array pointed to by dest. The function returns the value of
dest.

string.h

strcspn

size_t strcspn(CONST char *s1, CONST char *s2);
The function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters not from the string pointed
to by s2. The function returns the length of the segment.

string.h

Table 5-1. String Functions

Function Prototype and Description Header
26 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Functions
strlen
size_t strlen(CONST char *s);
The function returns the number of characters in s preceding the terminating null
character.

string.h

strncat

char *strncat(char *dest, CONST char *src, size_t n);
The function appends not more than n characters (a null character and charac-
ters that follow it are not appended) from the string pointed to by src to the end
of the string pointed to by dest. The initial character of src overwrites the null
character at the end of dest. A terminating null character is always appended to
the result. The function returns the value of dest.

string.h

strncmp

int strncmp(CONST char *s1, CONST char *s2, size_t n);
The function compares not more than n characters (characters that follow a null
character are not compared) from the string pointed to by s1 to the string
pointed to by s2. The function returns an integer greater than, equal to, or less
than zero, accordingly as the string pointed to by s1 is greater than, equal to, or
less than the string pointed to by s2.

string.h

strncpy

char *strncpy(char *dest, CONST char *src, size_t n);
The function copies not more than n characters (characters that follow a null
character are not copied) from the string pointed to by src to the string pointed to
by dest. The function returns the value of dest.

string.h

strpbrk

char *strpbrk(CONST char *s1, CONST char *s2);
The function locates the first occurrence in the string pointed to by s1 of any
character from the string pointed to by s2. The function returns a pointer to the
character, or a null pointer if no character from s2 occurs in s1.

string.h

strrchr

char *strrchr(CONST char *s, int c);
The function locates the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the
string. The function returns a pointer to the located character, or a null pointer if
the character does not occur in the string.

string.h

strspn

size_t strspn(CONST char *s1, CONST char *s2);
The function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters from the string pointed to
by s2. The function returns the length of the segment.

string.h

strstr

char *strstr(CONST char *s1, CONST char *s2);
The function locates the first occurrence in the string pointed to by s1 of the
sequence of characters (excluding the terminating null character) in the string
pointed to by s2. The function returns a pointer to the located string, or a null
pointer if the string is not found. If s2 points to a string with zero length, the func-
tion returns s1.

string.h

Table 5-1. String Functions

Function Prototype and Description Header
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 27

Functions
5.1.2 Mathematical Functions
Prototypes for the mathematical functions can be found in the include file math.h located in
[Install path]\Common\CypressSemiBuildMgr\tools\include\.

Table 5-2. Mathematical Functions

Function Description

float fabs(float x);
Calculates the absolute value (magnitude) of the argument x, by direct
manipulation of the bit representation of x. Return the absolute value of the
floating point number x.

float frexp(float x, int *eptr);

All non zero, normal numbers can be described as m * 2**p. frexp repre-
sents the double val as a mantissa m and a power of two p. The resulting
mantissa will always be greater than or equal to 0.5, and less than 1.0 (as
long as val is nonzero). The power of two will be stored in *eptr. Return the
mantissa and exponent of x as the pair (m, e). m is a float and e is an inte-
ger such that x == m * 2**e. If x is zero, returns (0.0, 0), otherwise 0.5 <=
abs(m) < 1.

float tanh(float x); Returns the hyperbolic tangent of x.

float sin(float x); Returns the sine of x.

float atan(float x); Returns the angle whose tangent is x, in the range [-pi/2, +pi/2] radians.

float atan2(float y, float x); Returns the angle whose tangent is y/x, in the full angular range [-pi, +pi]
radians.

float asin(float x); Returns the angle whose sine is x, in the range [-pi/2, +pi/2] radians.

float exp10(float x); Returns 10 raised to the specified real number.

float log10(float x); log10 returns the base 10 logarithm of x. It is implemented as log(x) /
log(10).

float fmod(float x, float y);
Computes the floating-point remainder of x/y (x modulo y). The fmod func-
tion returns the value for the largest integer i such that, if y is nonzero, the
result has the same sign as x and magnitude less than the magnitude of y.

float sqrt(float x); Returns the square root of x, x^(1/2).

float cos(float x); Returns the cosine of x for x in radians. If x is large the value returned might
not be meaningful, but the function reports no error.

float ldexp(float d, int n); Calculates the value that it takes and returns float rather than double val-
ues. ldexp returns the calculated value.

float modf(float y, float *i);
Splits the double val apart into an integer part and a fractional part, return-
ing the fractional part and storing the integer. The fractional part is returned.
Each result has the same sign as the supplied argument val.

float floor(float y); Finds the nearest integer less than or equal to x. floor returns the integer
result as a double.

float ceil(float y); Finds the nearest integer greater than or equal to x. ceil returns the integer
result as a double.

float fround(float d);

Produces a quotient that has been rounded to the nearest mathematical
integer; if the mathematical quotient is exactly halfway between two inte-
gers, (that is, it has the form integer+1/2), then the quotient has been
rounded to the even (divisible by two) integer.

float tan(float x); Returns the tangent of x for x in radians. If x is large the value returned
might not be meaningful, but the function reports no error.

float acos(float x);
Computes the inverse cosine (arc cosine) of the input value. Arguments to
acos must be in the range -1 to 1. The function returns the angle whose
cosine is x, in the range [0, pi] radians.
28 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Functions
5.1.3 API Software Library Functions
The header and include files can be found at: [Install path]\Common\CypressSemiBuild-
Mgr\tools\include\.

float exp(float x);
Calculates the exponential of x, that is, the base of the natural system of
logarithms, approximately 2.71828). The function returns the exponential of
x, e^x.

float log(float x);
Returns the natural logarithm of x, that is, its logarithm base e (where e is
the base of the natural system of logarithms, 2.71828...). The function
returns the natural logarithm of x.

float pow(float x,float y); Calculates x raised to the exp1.0nt y. On success, pow returns the value
calculated.

float sinh(float x); Computes the hyperbolic sine of the argument x. The function returns the
hyperbolic sine of x.

float cosh(float x); Computes the hyperbolic cosine of the argument x. The function returns the
hyperbolic cosine of x.

Table 5-3. API Software Library Functions

Function Prototype Description Header
bFlashWriteBlock BYTE bFlashWriteBlock

(FLASH_WRITE_STRUCT *)

See flashblock header file for
definition of structure.

Writes data to the Flash
Program Memory.

flashblock.h, flash-
block.inc (for assembly
language)

FlashReadBlock void FlashReadBlock
(FLASH_READ_STRUCT *)

See flashblock header file for
definition of structure.

Reads data from the Flash
Program Memory into RAM.

flashblock.h, flash-
block.inc (for assembly
language)

Table 5-2. Mathematical Functions

Function Description
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 29

Functions
30 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

6. Additional Considerations
In this chapter you will learn additional compiler options to leverage the functionality of your code or
program.

6.1 Accessing M8C Features
The strength of the compiler is that while it is a high-level language, it allows you to access low-level
features of the target device. Even in cases where the target features are not available in the
compiler, usually inline assembly and preprocessor macros can be used to access these features
transparently (refer to Inline Assembly on page 32).

6.2 Addressing Absolute Memory Locations
There are two options for addressing absolute memory locations:
1. Use the #pragma abs_address. For example, to address an array in Flash memory:

#pragma abs_address: 0x2000
const char abMyStringData [100]={0};
#pragma end_abs_address

2. Optionally, an absolute memory address in data memory can be declared using the #define direc-
tive:

#define MyData (*(char*) 0x200)

where MyData references memory location 0x200.

6.3 Assembly Interface and Calling Conventions
Standard to the ImageCraft C Compiler and Assembler is an underscore which is implicitly added to
C function and variable names. This should be applied when declaring and referencing functions
and variables between C and assembly source. For example, the C function defined with a prototype
such as “void foo();” would be referenced as _foo in assembly. However In C, the function
would still be referenced as foo(). The underscore is also applied to variable names. Refer to Call-
ing Assembly Functions From C on page 32 for #pragma fastcall16 routines.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 31

Additional Considerations
6.4 Bit Toggling
A common task in programming a microcontroller is to turn bits on and off in registers. Fortunately,
standard C is well suited to bit toggling without resorting to assembly instructions or other non-stan-
dard C constructs. PSoC Designer supports the following bitwise operators:

6.5 Inline Assembly
Besides writing assembly functions in assembly files, inline assembly allows you to write assembly
code within your C file. (Of course, you may use assembly source files as part of your project as
well.) The syntax for inline assembly is:

asm ("<string>");

For example:

asm ("mov A,5");

The \n denotes newline character. It separates multiple assembly statements. String
concatenations can be used to specify multiple statements without using additional assembly
keywords. For example:

asm(".LITERAL \n"
"S:: db 40h \n"
".ENDLITERAL \n");

C variables have an implicit underscore at the beginning that needs to be used when using C
variables from assembly. C variables can be referenced within the assembly string. For example:

asm (“mov A,_cCounter”);

Inline assembly may be used inside or outside a C function. The compiler indents each line of the
inline assembly for readability. The assembler allows labels to be placed anywhere (not just at the
first character of the lines in your file) so you may create assembly labels in your inline assembly
code. If you are referencing registers inline, be sure to include reference to the m8c.h file. You may
get a warning on assembly statements that are outside of a function. If so, you may ignore these
warnings.

a | b bitwise or The expression is denoted by "a" is bitwise or'ed with the expression
denoted by "b." This is used to turn on certain bits, especially when
used in the assignment form |=. For example:
PORTA |= 0x80; // turn on bit 7 (msb)

a & b bitwise and This operator is useful for checking if certain bits are set. For example:
if ((PORTA & 0x81) == 0)// check bit 7 and bit 0

Note that the parentheses are needed around the expression of an &
operator because it has lower precedence than the == operator. This is
a source of many programming bugs in C programs. See Compiler
Basics on page 15 for the table of supported operators and precedence.

a ^ b bitwise
exclusive or

This operator is useful for complementing a bit. For example, in the fol-
lowing case, bit 7 is flipped:
PORTA ^= 0x80;// flip bit 7

~a bitwise
complement

This operator performs a ones-complement on the expression. It is
especially useful when combined with the bitwise and operator to turn
off certain bits. For example:
PORTA &= ~0x80;// turn off bit 7
32 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Additional Considerations
6.6 Interrupts
Interrupt handlers can be written in C. In order to employ them, you must first inform the compiler
that the function is an interrupt handler. To do this, use the following pragma (in the file where you
define the function, before the function definition):

#pragma interrupt_handler <name> *

For an interrupt function, the compiler generates the reti instruction instead of the ret instruction,
then saves and restores all registers used in the function. For example:

#pragma interrupt_handler timer_handler
...
void timer_handler()
 {
 ...
 }

You may place multiple names in a single interrupt_handler pragma, separated by spaces. For
example:

#pragma interrupt_handler timer_ovf sci_ovf

To associate the interrupt handler with an interrupt, add ljmp _name at the interrupt vector in the
boot.tpl file.

Virtual registers are saved only if they are used by the routine. If your interrupt handler calls another
function, then the compiler saves and restores all virtual registers, since it does not know which vir-
tual register the called function uses. In the large memory model, the Page Pointer registers
(CUR_PP, IDX_PP, MVW_PP, and MVR_PP) are saved and restored in addition to Virtual registers.

6.7 IO Registers
IO registers are specified using the following #pragma:

6.8 Long Jump/Call
The assembler and linker will turn a JMP or CALL instruction into the long form LJMP and LCALL if
needed. This applies if the target is in a different linker area or if it is defined in another file.

The ImageCraft compiler does not account for inline assembly in its generated code.
Updating the paging registers, if required, should be handled inside the inline assembly.
Inline assembly may modify the behavior of generated Imagecraft C Compiler code.

If the compiler MAC is enabled (Project > Settings > Compiler tab, Enable MAC is
checked by default), the ImageCraft compiler will use the MAC in ISRs, intermittently cor-
rupting the foreground computations that use the MAC. It is the programmer’s responsibility
to use #pragma nomac at the beginning of each ISR function written in C.

#pragma ioport LED:0x04;
char LED;....
LED = 1;

// ioport is at IO space 0x04
LED must be declared in global scope
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 33

Additional Considerations
6.9 Memory Areas
The ImageCraft C compiler generates code and data into different areas. (See the complete list of
Assembler Directives in the PSoC Designer Assembly Language Guide). The areas used by the
compiler, ordered here by increasing memory address, are Flash memory areas and data memory
areas.

6.9.1 Flash Memory Areas
■ top – Contains the interrupt vectors and boot.asm code.
■ func_lit – Contains the address of a function entry for each word (function table area).
■ lit – Contains integer and floating-point constants.
■ idata – Stores the initial values for the global data.
■ text – Contains program code.
■ psoc_config – Contains configuration load and unload routines.
■ usermodules – Contains user module API routines.

6.9.2 Data Memory Areas
■ data – Contains the data area housing global and static variables, and strings. The initial values

of the global variables are stored in the "idata" area and copied to the data area at startup time.
■ bss – Contains the data area housing uninitialized C global variables. Per ANSI C definition,

these variables will get initialized to zero at startup time.
■ virtual registers – Contains temporary variables used by the ImageCraft C Compiler.
■ internal RAM – Contains page of RAM used by interrupts.

The linker will collect areas of the same types from all the input object files and combine them in the
output file. For further information, see Linker on page 41.

6.10 Program and Data Memory Usage

6.10.1 Program Memory
The program memory, which is non volatile, is used for storing program code, constant tables, initial
values, and strings for global variables. The compiler generates a memory image in the form of an
output file of hexadecimal values in ASCII text (a .rom file).

6.10.2 Data Memory
The data memory is used for storing variables and the stack frames. In general, they do not appear
in the output file but are used when the program is running. A program uses data memory as follows:

[high memory]
[stack frames]
[global variables]
[initialized globals]
[virtual registers]

[low memory]

It is up to the programmer to ensure that the stack does not exceed the high memory limit of 0xFF
(0x7FF in the large memory model), otherwise unexpected results can occur (such as the stack
wrapping around the lowest address).
34 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Additional Considerations
6.11 Program Memory as Related to Constant Data
The M8C microprocessor is a Harvard architecture machine, separating program memory from data
memory. There are several advantages to such a design. For example, the separate address space
allows the device to access more total memory than a conventional architecture.

Due to the nature of the Harvard architecture of the M8C, a data pointer may point to data located in
either data or program memory. To discern which data is to be accessed, the const qualifier is used
to signify that a data item is located in program memory. Note that for a pointer declaration, the
const qualifier may appear in different places, depending on whether it is qualifying the pointer vari-
able itself or the items that it points to. For example:

const int table[] = { 1, 2, 3 };
const char *ptr1;
char * const ptr2;
const char * const ptr3;

In the example above, table is a table allocated in the program memory. ptr1 is an item in the data
memory that points to data in the program memory. ptr2 is an item in the program memory that
points to data in the data memory. Finally, ptr3 is an item in the program memory that points to data
in the program memory. In most cases, items such as table and ptr1 are probably the most typi-
cal. The compiler generates the INDEX instruction to access the program memory for read-only
data.

Note that the ImageCraft C Compiler does not require const data to be put in the read-only mem-
ory, and in a conventional architecture, this would not matter except for access rights. Therefore, the
use of the const qualifier is unconventional, but within the allowable parameters of the compiler.
However, this does introduce conflicts with some of the standard C function definitions.

For example, the standard prototype for cstrcpy is cstrcpy(char *, const char *cs); with
the const qualifier of the second argument signifying that the function does not modify the argu-
ment. However, under the M8C, the const qualifier would indicate that the second argument points
to the program memory. For example, variables defined outside of a function body or variables that
have the static storage class, have file storage class.

If you declare local variables with the const qualifier, they will not be put into Flash and your pro-
gram will not compile.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 35

Additional Considerations
6.12 Stack Architecture and Frame Layout
The stack must reside on the last page of data memory and grows towards high memory. Most local
variables (non-static) and function parameters are allocated on the stack. A typical function stack
frame would be:

[high address]
[returned values]

X: [local variables and other compiler generated temporaries]
[return address]
[incoming arguments]
[old X]

[low address]

Register X is used as the frame pointer and for accessing all stacked items. Because the M8C limits
the stack access to one page, no more than 256 bytes can be allocated on the stack, even if the
device supports more than 256 bytes of RAM. Less RAM is available to the stack if the total RAM
space is 256 bytes for the target device.

6.13 Strings
The compiler allocates all literal strings in program memory. Effectively, the type for declaring a literal
string is const char and the type for referencing it is const char*. You must ensure that func-
tion parameters take the appropriate argument type.

6.14 Virtual Registers
Virtual registers are used for temporary data storage when running the compiler. Locations _r0, _r1,
_r2, _r3, _r4, _r5, _r6, _r7, _r8, _r9, _r10, _r11, _rX, _rY, and _rZ are available. Only those that are
required by the project are actually used. This extra register space is necessary because the M8C
only has a single 8-bit accumulator. The Virtual registers are allocated on the low end of data mem-
ory.

If your PSoC Designer project is written exclusively in assembly language, the boot.tpl and boot.asm
files can be modified by setting the equate C_LANGUAGE_SUPPORT to zero (0). This will save time
and Flash space in the boot code.

6.15 Convention for Restoring Internal Registers
When calling PSoC user module APIs and library functions, it is the caller's responsibility to preserve
the A and X registers. This means that if the current context of the code has a value in the X and/or
A register that must be maintained after the API call, then the caller must save (push on the stack)
and then restore (pop off the stack) them after the call has returned.

Even though some of the APIs do preserve the X and A register, Cypress reserves the right to mod-
ify the API in future releases in such a manner as to modify the contents of the X and A registers.
Therefore, it is very important to observe the convention when calling from assembly. The Image-
Craft C Compiler observes this convention as well.

Some exceptionally long/complex algebraic equations may require more virtual registers than are
available and cause the build to fail. Splitting the equation so it is processed in parts will resolve
this issue.
36 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Additional Considerations
6.16 Indirect Function Calls to fastcall/fastcall16 Functions
Indirect function calls to fastcall/fastcall16 functions are not supported.

For example:
typedef void (* const PassData)(char i);
static PassData DataRedirect=&PWM8_WritePeriod;//WritePeriod is fastcall16
DataRedirect(128);

6.17 Byte Order
Bitfields are processed by the compiler from left to right (big endian).

6.18 Interfacing C and Assembly
PSoC 1 applications can be written in assembly or C programming languages. Depending on the
complexity and needs of the application, a programmer may choose to use both. This section
describes the details needed to interface C and assembly with one another using the ImageCraft C
compiler.

6.18.1 Interfacing C and Assembly Variables
To access C variables from assembly, or assembly variables from C, the variables must be global.
The detailed requirements for accessing assembly variables from C and accessing C variables from
assembly are as following:

Accessing an assembly variable from a C file:

To access an assembly variable from a C file, the following conditions must be met:
■ Assembly variable must be exported from the assembly file. For more information on the export

keyword in assembly, refer to the Assembly Language User Guide.
■ The number of bytes reserved for the assembly variable must match the number of bytes used by

the C variable declaration. The following table provides a few common examples.

■ The assembly label for the variable must be declared with an underscore ('_') preceding the
name. The compiler automatically adds an underscore to the beginning of all variables when it
generates the source code from C. A single blk declaration can have multiple associated labels,
so it is common to create two labels for each variable; one label with a preceding underscore (for
use by C code) and one label without the underscore for use by the other assembly code.

■ Lastly, the C code must create an extern declaration to the variable. As mentioned in step 2, it is
important that the size of the extern declaration matches the size of the assembly variable reser-
vation. The extern declaration should use the variable name without the preceding underscore.

Note that extern declarations without a type defaults to type int (2 byets).

Assembly Declaration C Type Alternative Types
blk 1 char BYTE

blk 2 short int, WORD

blk 4 long LONG, DWORD
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 37

Additional Considerations
Example accessing an assembly variable from C:

In .asm file:
export _myVar//Export variable for access by C

AREA bss(ram)
MyVar: //Local variable label

_MyVar:blk 2 //Variable declaration (2 bytes)

In .c file
extern int myVar;

myVar = 7321;:

This example declares a 2 byte variable in assembly, exports the variable (with an underscore in the
label name), and declares the extern integer in the C code. All code in the C file can access the vari-
able 'myVar' as if it was declared normally.

Accessing a C Variable from an Assembly File:

The process for accessing a variable declared in C from an assembly file is slightly simpler than
accessing an assembly variable from C. To access a C variable in an assembly file, only 2 condi-
tions must be met:
■ The C variable must be declared globally. There is no 'export' or 'global' keywords in C; variables

declared outside of functions are implicitly global in C.
■ When accessing the variable in assembly code, an underscore must be added to the beginning

of the variable name. There is no need to create an 'extern' declaration for the variable in the
assembly file. All the global C variables are automatically accessible by the assembly files
(assuming both the C and assembly files are included in the same PSoC Designer project).

Example accessing a C variable from assembly:
In .c file:

int myVarInC;//C declaration of variable (must be global)
In .asm file:

mov [_myVarInC], 0x05 //Access LSB of myVarInC

mov [_myVarInC + 1], 0x55//Access MSB of myVarInC

This example declares a 2 byte (int) variable in C, and then accesses that variable from assembly.
Note that because the PSoC 1 is an 8-bit processor, each byte of the variable must be accessed and
set separately. For more information on the assembly language in PSoC 1, refer to the Assembly
Language User Guide.

6.18.2 Interfacing C and Assembly Functions
Calling Assembly Functions from C:

When one C function calls another, the compiler uses a simple layout for passing arguments that the
caller and callee use to initialize and access the values. Although the same layout can be used when
a C function calls an assembly language routine, the use of the alternate fastcall16 calling
convention is strongly recommended. Fastcall16 is directly supported by the ImageCraft C Compiler
through use of a pragma directive and is often more efficient than the convention used by C. In fact,
fastcall16 is identical to the C calling convention except for simple cases when the parameters can
be passed and/or returned in the CPU A and X registers.
38 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

http://www.cypress.com/?docID=29030
http://www.cypress.com/?docID=29030
http://www.cypress.com/?docID=29030
http://www.cypress.com/?docID=29030

Additional Considerations
All user module API functions implement the fastcall16 interface for this reason. Please note that
indirect function calls to fastcall/fastcall16 functions are not supported. See Indirect Function Calls to
fastcall/fastcall16 Functions on page 37.

There are four conditions to meet when using the fastcall16 interface:
1. The function must be tagged with a C #pragma fastcall16 directive.
2. The function should have a C function prototype.
3. The assembly function name must be the C function name prefixed with an underscore

character (_).
4. The assembly function name must be exported.

Example 1 - An assembly function that is passed a single byte as a parameter and has no return
value:

C function declaration (typically in a .h header file):
#pragma fastcall16 send_byte

void send_byte(char val);

C function call (in a.c file):
send_byte(0x37);//Call to send_byte function

Assembly function definition (in an .asm file):
export _send_byte
; Fastcall16 inputs (single byte)
; A – data value
; Fastcall16 return value (none)
 send_byte:
 mov reg[PRT1DR],A

 ret

Example 2 - An assembly function that is passed two bytes and returns one:

C function declaration (typically in a .h header file):
#pragma fastcall16 read_indexed_reg

char read_indexed_reg(char bank, char index);

C function call (in a .c file):
val = read_indexed_reg(0x01, index);

Assembly function definition (in an .asm file):
export _read_indexed_reg

; Read byte from specified IO register
; Fastcall16 inputs (two single bytes)
; A – bank number (0 or non-zero)
; X – register number
; Fastcall16 return value (single byte)
; A – read data

_read_indexed_reg:
 cpl A
 jnz get_data:
 or F, FLAG_XIO_MASK; switch to bank 1
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 39

Additional Considerations
get_data:
 mov A, reg[X]

 and F, ~FLAG_XIO_MASK; make sure we’re in bank 0

Functions with more complex input parameters or return values can be written using the following
tables.

Table 6-1. Pragma Fastcall16 Conventions for Argument Passing

Argument Type Register Argument Register
Single Byte A The argument is passed in A

Two Single Byte A, X The first argument is passed in A, the second in X.

Double Byte X, A The MSB is passed in X, the LSB in A

Pointer A, X The MSB is passed in A, the LSB in X

All Others None Arguments are stored on the stack in standard byte
order and in reverse order or appearance. In other
words, the MSB of the last parameter is pushed first and
the LSB of the first parameter is pushed last.

Table 6-2. Pragma Fastcall16 Conventions for Return Values

Return Type Return Register Comment
Single Byte A The argument is returned in A.

Double Byte X, A The MSB is passed in X, the LSB in A.

Pointer A, X The MSB is passed in A, the LSB in X.

All Others None Use a pass-by-reference parameter or global variable
instead of returning arguments longer than 16 bits.
40 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

7. Linker
In this chapter you will learn how the ImageCraft linker operates within PSoC Designer.

7.1 Linker Operations
The main purpose of the ImageCraft linker is to combine multiple object files into a single output file
suitable to be downloaded to the In-Circuit Emulator (ICE) for debugging the code and programming
the device. Linking takes place in PSoC Designer when a project build is executed. The linker can
also take input from a library which is basically a file containing multiple object files. In producing the
output file, the linker resolves any references between the input files.

7.2 Linking Process
In some detail, the steps involved in the linking process as are follows. For additional information
about Linker and specifying Linker settings, refer to the PSoC Designer Integrated Development
Environment Guide (Project Settings).
1. Making the startup file (boot.asm) the first file to be linked. The startup file initializes the execution

environment for the C program to run.
2. Appending any libraries that you explicitly requested (or in most cases, as are requested by the

IDE) to the list of files to be linked. Library modules that are directly or indirectly referenced will be
linked. All user-specified object files (e.g., your program files) are linked. Note that the libpsoc.a
library contains the user module API and PSoCConfig.asm routines.

3. Scanning the object files to find unresolved references. The linker marks the object file (possibly
in the library) that satisfies the references and adds it to its list of unresolved references. It
repeats the process until there are no outstanding unresolved references.

4. Combining all marked object files into an output file and generating map and listing files as
needed.

7.2.1 Customized Linker Actions to Force Code or Data to a Specific ROM Location
It is possible to customize the actions of the Linker to force code or constant data to a specific ROM
location. There are two methods that allow you to specify this behavior.

Method 1: Absolute Address #pragma Directives (C only)

As described in Section 4.7.2 Pragma Directives, there are #pragma directives available to allow you
to place the code or constant data in a specific ROM location. The #pragmas to do this are #pragma
code_abs_address (for code) and #pragma lit_abs_address (for constant data).

To force code to a specific ROM location, the #pragma code_abs_address directive is used:

#pragma code_abs_address:0x3000
void MyFunction (void)
{

ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 41

Linker
 //Some Code
}

#pragma end_abs_address

To force constant data to a specific ROM location, the #pragma lit_abs_address directive is used.
Items defined with this pragma should have the __flash extended keyword and an initialized value.
For example, to define a variable name myVar at address 0x3FFE in flash:

#pragma lit_abs_address:0x3FFE

__flash unsigned int myVar = 0x1234;

#pragma end_abs_address

Method 2: Custom.lkp and #pragma AREA Directive (C & Assembly)

It is possible to customize the actions of the Linker when a PSoC Designer build does not provide
the user interface to support these actions.

A file called custom.lkp can be created in the root folder of the project, which can contain Linker
commands (see Compilation Process on page 49). Note that the file name must be custom.lkp. Be
aware that in some cases, creating a text file and renaming it still preserves the.txt file extension
(example custom.lkp.txt). If this occurs, your custom commands are not used. The make file process
reads the contents of custom.lkp and amends those commands to the Linker action.

Forcing Code and Const Data into ROM/Flash:

A typical use for employing the custom.lkp capability is to define a custom relocatable code AREA.
This allows you to set a specific starting address for this AREA and then place a specific code or
variables in that AREA.

For example, to create code in a separate code AREA called "Bootloader" that should be located in
the upper 2k of the Flash, you can use this feature. If you were developing code in C for the Boot-
Loader AREA, you can use the following pragma in your C source file:

#pragma text:BootLoader // switch the code below from
// AREA text to BootLoader
// ... Add your Code ...

#pragma text:text // switch back to the text AREA

If you were developing code in assembly, you would use the AREA directive as follows:
AREA BootLoader(rom,rel);Change active AREA to BootLoader
; ... Add your Code ...

AREA text ; reset the code AREA

Now that you have code that should be located in the BootLoader AREA, you can add your custom
linker commands to custom.lkp. For this example, you can enter the following line in the custom.lkp
file:

-bBootLoader:0x3800.0x3FFF

You can verify that your custom Linker settings are used by checking the 'Use verbose build
messages' field in the Builder tab under the Tools > Options menu. You can build the project, then
view the Linker settings in the Build tab of the Output Status window (or check the location of the
BootLoader AREA in the.mp file).

7.2.2 Custom Linker Actions to Force Variables to a Specific RAM Address
It is possible to customize the actions of the Linker to force variables to a specific RAM address, or
page of RAM. This technique is useful when programming with the large memory model, when it
may be beneficial to control the placement of RAM variables to minimize page switching.
42 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Linker
There are two methods that allow you to specify this behavior:

Method 1: Absolute RAM Address #pragma (C only)

As described in Pragma Directives on page 19, there are #pragma directives available to allow you
to place RAM to a specified location. The #pragma to do this is the #pragma ram_abs_address. This
#pragma directive is only available for C programming.

For example, to force a RAM buffer to address 0x1C0 in RAM (address 0xC0 in RAM page 1), the
following code can be used:

#pragma ram_abs_address:0x1C0
char MyBuffer[10] = {0};

#pragma end_abs_address

The first #pragma informs the linker to place any variables declared after the #pragma starting at
RAM address 0x1C0. Multiple variables can be declared after this #pragma and they are declared
sequentially starting at the address specified. The second #pragma ends the address area and
allows any future variables to automatically be placed by the linker.

Method 2: Custom.lkp and #pragma AREA Directive (C & Assembly)

The second method for placing RAM in a specific RAM location is compatible with both C and
assembly. Note this method allows you to specify which page a RAM variable should reside on, but
does not allow explicit control over the exact RAM address. There are two steps required to place a
variable into a specific RAM page:

1.Place a RAM area into a specific RAM page by modifying the custom.lkp file.
2.When declaring RAM variables, place them in the area specified by step 1.

Step 1 - Placing a RAM area into a specific RAM page by modifying the custom.lkp file:
If not already created, create a custom.lkp file. Custom.lkp can be created in the root folder of the
project, which can contain Linker commands (see Compilation Process on page 49). Note that the
file name must be custom.lkp. Be aware that in some cases, creating a text file and renaming it l still
preserves the.txt file extension (example custom.lkp.txt). If this occurs, your custom commands are
not used. The make file process reads the contents of custom.lkp and amends those commands to
the Linker action.
The custom.lkp command to put a RAM area in a particular page is:

-B<AreaName>:<page>
For example, to place an area named "MyRAMArea" into RAM page 0:

-BMyRAMArea:0
RAM can be allocated to reside in any of the available pages on a device, each page having 256
bytes of RAM.
Step 2 - Add RAM variables to the areas specified in Step 1:
After the custom areas have been defined and placed, variables can be added to the areas of
choice during variable declaration. The process for doing this in both C and assembly is described
as following:
To add a variable to a specific area in C, a #pragma statement is used to inform the linker which
area to place variables in.
For example, to place a 128-byte buffer in the area MyRAMArea:

#pragma data:MyRAMArea
char MyBuffer[128] = {0};
#pragma data:data

The first #pragma command changed the active area to the custom area named 'MyRAMArea'.
When the array 'MyBuffer' is declared, it is placed in the custom area. The second #pragma
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 43

Linker
command changes the active area back to the default area. This prevents future declared variables
from being added to the custom area.

Assembly

To add a variable to a specific area in assembly, an AREA statement is used to inform the linker
which area to place variables in.

For example, to place a 10 byte buffer in the area MyRAMArea:
AREA MyRAMArea(RAM)
MyArray:: blk 10

AREA data

The first AREA statement changes the active to the custom area named 'MyRAMArea'. When the
array 'MyArray' is declared, it is placed in the custom area. The second AREA statement changes
the active area back to the default area. This prevents future declared variables from being added to
the custom area.
44 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

8. Librarian
In this chapter you will learn the librarian functions of PSoC Designer.

8.1 Librarian
A library is a collection of object files in a special form that the linker understands. When your pro-
gram references a library’s component object file directly or indirectly, the linker pulls out the library
code and links it to your program. The library that contains supported C functions is usually located
in the PSoC Designer installation directory at “[Install
path]\Common\CypressSemiBuildMgr\tools\lib\LMM”, “[Install
path]\Common\CypressSemiBuildMgr\tools\lib\lib\SMM", and
“[Install path]\Common\CypressSemiBuildMgr\tools\lib\SMM".
(SMM or LMM for small memory odel or large memory model paging support.)

There are times when you need to modify or create libraries. A command line tool called ilibw.exe is
provided for this purpose. Note that a library file must have the .a extension. For more information,
refer to the Linker on page 41.

8.1.1 Compiling a File into a Library Module
Each library module is simply an object file. To create a library module, create a new project. Add all
the necessary source files that you want added to your custom library to this project. You then add a
project-specific MAKE file action to create the custom library.

As an example, create a blank project for any type of part, since interest is in using C and/or assem-
bly, the Application Editor, and the Debugger for this example. The goal for creating a custom library
is to centralize a set of common functions that can be shared between projects. These common
functions, or primitives, have deterministic inputs and outputs. Another goal for creating this custom
library is to be able to debug the primitives using a sequence of test instructions (such as, a regres-
sion test) in a source file that should not be included in the library. No user modules are involved in
this example.

PSoC Designer automatically generates a certain amount of code for each new project. In this
example, use the generated _main source file to hold regression tests but do not add this file to the
custom library. Also, do not add the generated boot.asm source file to the library. Essentially, all the
files under the Source Files branch of the project view source tree go into a custom library, except
main.asm (or main.c) and boot.asm.

Create a file called local.dep in the root folder of the project. The local.dep file is included by the
master Makefile (found in the [Install path\Common\CypressSemiBuildMgr\tools folder). The follow-
ing shows how the Makefile includes local.dep (found at the bottom of Makefile):

#this include is the dependencies
-include project.dep

#if you don't like project.dep use your own!!!
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 45

Librarian
-include local.dep

The nice thing about having local.dep included at the end of the master Makefile is that the rules
used in the Makefile can be redefined (see the Help > Documentation \Supporting Docu-
ments\make.pdf for detailed information). In this example, it is used as an advantage. The follow-
ing code shows information from example local.dep:

----- Cut/Paste to your local.dep File -----
define Add_To_MyCustomLib
$(CRLF)

$(LIBCMD) -a PSoCToolsLib.a $(library_file)
endef

obj/%.o : %.asm project.mk
ifeq ($(ECHO_COMMANDS),novice)

echo $(call correct_path,$<)
endif

$(ASMCMD) $(INCLUDEFLAGS) $(DEFAULTASMFLAGS)
$(ASMFLAGS) -o $@ $(call correct_path,$<)
$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))

obj/%.o : %.c project.mk
ifeq ($(ECHO_COMMANDS),novice)

echo $(call correct_path,$<)
endif

$(CCMD) $(CFLAGS) $(CDEFINES) $(INCLUDEFLAGS)
$(DEFAULTCFLAGS) -o $@ $(call correct_path,$<)
$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))

------ End Cut -----

The rules (e.g., obj/%.o : %.asm project.mk and obj/%.o : %.c project.mk) in the
local.dep file shown above are the same rules found in the master Makefile with one addition each.
The addition in the redefined rules is to add each object (target) to a library called PSoCToolsLib.a:
$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))

The MAKE keyword foreach causes one piece of text (the first argument) to be used repeatedly,
each time with a different substitution performed on it. The substitution list comes from the second
foreach argument.

In this second argument, there is another MAKE keyword/function called filter-out. The fil-
ter-out function removes obj/main.o from the list of all targets being built (e.g., obj/%.o). This
was one of the goals for this example.

You can filter out additional files by adding those files to the first argument of filter-out such as
$(filter-out obj/main.o obj/excludeme.o, $@). The MAKE symbol combination $@ is a
shortcut syntax that refers to the list of all the targets (e.g., obj/%.o).

The third argument in the foreach function is expanded into a sequence of commands, for each
substitution, to update or add the object file to the library. This local.dep example is prepared to han-
dle both C and assembly source files and put them in the library, PSoCToolsLib.a. The library is cre-
46 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Librarian
ated and updated in the project root folder in this example. However, you can provide a full path to
another folder (e.g., $(LIBCMD) -a c:\temp\PSoCToolsLib.a $(library_file)).

Another goal for this example was to not include the boot.asm file in the library. This is easy given
that the master Makefile contains a separate rule for the boot.asm source file, which will not be rede-
fined in local.dep.

You can cut and paste this example and place it in a local.dep file in the root folder of any project. To
view messages in the Build tab of the Output Status window regarding the behavior of your custom
process, go to Tools > Options > Builder tab and click a check at “Use verbose build messages.“

Use the Project > Settings > Linker tab fields to add the library modules/library path if you want other
PSoC Designer projects to link in your custom library.

8.1.2 Listing the Contents of a Library
On a command prompt window, change the directory to where the library is and give the command
ilibw -t <library>. For example:

ilibw -t libcm8c.a

8.1.3 Adding or Replacing a Library Module
To add or replace a library module, execute the following procedure.
1. Compile the source file into an object module.
2. Copy the library into the working directory.
3. Use the command ilibw -a <library> <module> to add or replace a module.

ilibw creates the library file if it does not exist. To create a new library, just give ilibw a new
library file name.

4. Use the command ilibw -x <archive>.a [<file1>.o < file2>.o ...] to extract
the module from the archive.

8.1.4 Deleting a Library Module
The command switch -d deletes a module from the library. For example, the following deletes
crtm8c.o from the libcm8c.a library:

ilibw -d libcm8c.a crtm8c.o;
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 47

Librarian
48 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

9. Command Line Overview
In this chapter you will learn supported compiler command line options for users who want to use the
ImageCraft C compiler outside PSoC Designer. PSoC Designer normally sets all options for you.
Use the information presented in this chapter to alter certain aspects of compiler behavior inside
PSoC Designer using the local.mk file.

9.1 Compilation Process
Underneath the integrated development environment (IDE) is a set of command line compiler pro-
grams. While you do not need to understand this section to use the compiler, it is good for those who
want supplemental information.

Given a list of files in a project, the compiler's job is to transform the source files into an executable
file in some output format. Normally, the compilation process is hidden within the IDE. However, it
can be important to have an understanding of what happens:
1. The compiler compiles each C source file to an assembly file.
2. The assembler translates each assembly file (either from the compiler or assembly files) into a

relocatable object file.
3. Once all files have been translated into object files, the linker combines them to form an execut-

able file. In addition, a map file, a listing file, and debug information files are also output.

9.2 Compiler Driver
The compiler driver handles all the details previously mentioned. It takes the list of files and compiles
them into an executable file (which is the default) or to some intermediate stage (e.g., into object
files). It is the compiler driver that invokes the compiler, assembler, and linker as needed.

The compiler driver examines each input file and acts on it based on its extension and the command
line arguments given.

The .c files are ImageCraft C Compiler source files and the .asm files are assembly source files. The
design philosophy for the IDE is to make it as easy to use as possible. The command line compiler is
extremely flexible. You control its behavior by passing command line arguments to it. If you want to
interface the compiler with PSoC Designer, note the following:
■ Error messages referring to the source files begin with "!E file(line):.."
■ To bypass any command line length limit imposed by the operating system, you may put com-

mand line arguments in a file, and pass it to the compiler as @file or @-file. If you pass it as
@-file, the compiler will delete file after it is run.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 49

Command Line Overview
9.3 ImageCraft Compiler Arguments
This section documents the options that are used by the IDE in case you want to drive the Image-
Craft C compiler using your own editor/IDE such as Codewright. All arguments are passed to the
driver and the driver in turn applies the appropriate arguments to different compilation passes. The
general format of a command is:

iccm8c [command line arguments] <file1> <file2> ... [
<lib1> ...]

where iccm8c is the name of the compiler driver. You can invoke the driver with multiple files and
the driver will perform the operations on all of the files. By default, the driver then links all the object
files together to create the output file.

9.3.1 Compiler Argument Prefixes
For most of the common options, the driver knows which arguments are destined for which compiler
pass. You can also specify which pass an argument applies to by using a -W<c> prefix. Table 9-1
presents examples of compiler argument prefixes.

9.3.2 Arguments Affecting the Driver

9.3.3 Preprocessor Arguments

Table 9-1. Compiler Argument Prefixes

Prefix Description
-Wp Preprocessor (e.g., -Wp-e)

-Wf Compiler proper (e.g., -Wf-atmega)

-Wa Assembler

-Wl (Letter el.) Linker

Table 9-2. Arguments Affecting the Driver

Argument Action
-c Compile the file to the object file level only (does not invoke the linker).

-o <name> Name the output file. By default, the output file name is the same as the input file
name, or the same as the first input file if you supply a list of files.

-v Verbose mode. Print out each compiler pass as it is being executed.

-I Include the specified path.

Table 9-3. Preprocessor Arguments

Argument Action
-D<name>[=value] Define a macro.

-U<name> Undefine a macro.

-e Accept C++ comments.

-I<dir> (Capital i.) Specify the location(s) to look for header files. Multiple -I flags can be supplied.
50 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Command Line Overview
9.3.4 Compiler Arguments

9.3.5 Linker Arguments
The general format of a command is:
ilinkm8c.exe [options] file [file ...] [-l<f>] @<linkfile>

 @<linkfile> Obtain options from file

9.4 ImageCraft Assembler Arguments
The general format of a command is:
iasm8c [-v] [-c] [-g] [-n] [-Idir] [-Dname:value] [-o ofile] [@file] file

9.4.1 Arguments

Note : For library arguments please refer section 8.1.

Table 9-4. Compiler Arguments

Argument Action
-l (Letter el.) Generate a listing file.

-A -A (Two A’s.) Turn on strict ANSI checking. Single -A turns on some ANSI checking.

-g Generate debug information.

-Osize Optimize for size.

Argument Action
c Enable alphabetic case-insensitivity.

D Text define.

g Generate line debug info.

I Search <path> for include file.

n Do not insert dummy .text area at the beginning.

v Show version info.

o Name of output file <ofile>.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 51

Command Line Overview
Table 9-5. Linker Arguments

Argument Action

-L<dir> Specify the library directory. Only one library directory (the last specified)
will be used.

-O Invoke code compressor.

-m Generate a map file.

-g Generate debug information.

-u<crt> Use <crt> instead of the default startup file. If the file is just a name with-
out path information, then it must be located in the library directory.

-W Turn on relocation wrapping. Note that you need to use the -Wl prefix
because the driver does not know of this option directly (i.e., -Wl-W).

-fihx_coff Output format is both COFF and Intel® HEX.

-fcoff Output format is COFF.

-fintelhex Output format is Intel HEX.

-fmots19 Output format is Motorola S19.

-bfunc_lit:<address ranges>

Assign the address ranges for the area named func_lit. The format is
<start address>[.<end address>] where addresses are word addresses.
Memory that is not used by this area will be consumed by the areas to fol-
low.

-bdata:<address ranges> Assign the address ranges for the area or section named data, which is
the data memory.

-dram_end:<address> Define the end of the data area. The startup file uses this argument to ini-
tialize the value of the hardware stack.

-l<lib name>

Link in the specific library files in addition to the default libcm8c.a. This
can be used to change the behavior of a function in libcm8c.a since
libcm8c.a is always linked in last. The "libname" is the library file name
without the "lib" prefix and without the ".a" suffix.

-B<name>:<page> Put the area <name> on page <page>.

 -F<pat>:(M8C) Fill unused memory with <pat>.

 -nv:<#>:<V> Build Number and Version string, emitted to top of the map file.

-roh:[<area>:]<address range> Create a hole in the read only memory space.

-rwh:[<area>:]<address range> Create a hole in the read/write memory space.

-o<file> Name output file.

 -R Do not link in startup or library file.

 -elim[:<area>] Perform Dead Code Elimination on area (default: "text").
52 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

10. Code Compression
In this chapter you will learn how, why, and when to enable the ImageCraft Code Compressor.

The Code Compressor will take into account that it may have to start with code that is larger than the
available memory. It assumes that the ROM is 20-25% larger and then attempts to pack the code
into the proper ROM maximum size.

10.1 Theory of Operation
The ImageCraft Code Compressor replaces duplicate code blocks with a call to a single instance of
the code. It also optimizes long calls or jumps (LCALL or LJMP) to relative offset calls or jumps (CALL
or JMP).

Code compression occurs (if enabled) after linking the entire code image. The Code Compressor
uses the binary image of the program as its input for finding duplicate code blocks. Therefore, it
works on source code written in C or assembly or both. The Code Compressor utilizes other compo-
nents produced during linking and the program map is used to take into account the various code
and data areas.

To enable the PSoC Designer Code Compressor, click Project > Settings > Compiler tab. Code
Compressor options are enabled or disabled for the open project by checking one, none, or both
Compression Technologies: Condensation (duplicate code) or Sublimation (unused user module API
elimination).

10.2 Code Compressor Process
The Code Compressor process is invoked as a linker switch. The compression theory involves con-
solidating similar program execution bytes into one copy and using a call where they are needed.
Since this process deals with program execution bytes, some assumptions must be made clear.

10.2.1 C and Assembly Code
The Code Compressor cannot differentiate between code created from assembly or C source files.
The process comes from the linker which only sees source objects in relocatable assembly form
(i.e., it only sees images of bytes in the memory map and dis-assembles the program bytes to dis-
cover the instructions).

10.2.2 Program Execution Bytes
The Code Compressor process, created from the linker, makes an assumption that program execu-
tion bytes are tagged by the “AREA” they reside in. This assumption adds an abundance of usability
issues. There is a rigid set of AREAs that the Code Compressor process expects program execution
bytes to be in. PSoC project developers are free to create data tables in areas that the Code Com-
pressor now expects only code. This is a project-compatibility issue discussed later in Section 10.4
on page 54.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 53

Code Compression
Because the Code Compressor only sees bytes, it needs to know which portion of the memory
image has valid instructions. It does this easily if the compiler and you adopt the simple convention
that only instructions go into the default text area. The Code Compressor can handle other instruc-
tion areas, but it needs to know about them.

Since the Code Compressor expects a certain correlation between areas and code it can compress,
any user-defined code areas will not be compressed.

10.2.3 Impact to Debugger
The Code Compressor will adjust the debug information file as swaps of code sequences with calls
are made. It is expected that there should be very little impact on the debugger. The swaps of code
sequences with calls are analogous to C math, which inserts math library calls.

10.3 Integration of the Code Compressor

10.3.1 boot.asm file
The boot.asm file is held within an area called “TOP.” This contains the interrupt vector table (IVT) as
well as C initialization, the sleep interrupt handler, and other initial setup functions. To effectively use
the Code Compressor and reduce the special handling required by it to coordinate a special case
area (TOP), it is required that you delineate the TOP and text areas within boot.asm.

It is not a requirement for the boot.asm file to be split into multiple files. boot.asm just needs to use
different AREAs for the different things (i.e., TOP for IVT). The startup code and the sleep timer may
reside in boot.asm, as long as you use an “AREA text” before them to switch the area.

10.3.2 Text Area Requirement
The text area should be the last (e.g., highest memory addresses) re-locatable code area if your
expectation is to reduce the entire program image. You cannot shrink the whole program image if an
absolute-code area is defined above the text area. However, you can still use the Code Compressor
to shrink the “text” Area.

10.4 Code Compressor and the AREA Directive
With previous revisions of the ImageCraft compiler, calls to a text area from a non-text area were not
allowed due to compatibility with the optimizer. Beginning with the ImageCraft Standard 7.0.5 and
ImageCraft Professional 8.0.5 compiler releases these calls are supported. Please verify which
compiler you are using before implementing these directives.
54 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Code Compression
10.5 Build Messages
When the Code Compressor is enabled, text messages will be displayed in the Build tab of the Out-
put Status Window that describes the results of employing code compression. Messages for code
compression appear following the Linker step of compilation/build. These messages are listed and
described below.
1. 4054 bytes before Code Compression, 3774 after. 6% reduction

This is an example of code compression taking place. The values shown reflect the ‘text’ area
bytes before and after code compression. This should not be confused with the entire program
image.

2. Program too small for worthwhile code compression
This message is shown when the Code Compressor has determined that no code savings could
be accomplished; it is as though the Code Compressor option was turned off.

3. !X Cannot recover from assertion: new_target at internal source file
..\optm8c.c(180)
Please report to "Cypress MicroSystems" support@cypressmicro.com
This message informs the user that there was a fundamental mis-use of the Code Compressor.
This is typically a result of placing a data table in the ‘text’ area.

4. No worthwhile duplicate found
This message is possible with condensation code compression.

5. No dead symbol found
This message is possible with sublimation code compression.
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 55

Code Compression
10.6 Considerations for Code Compression
1. Timing loops based on instruction cycles may change if those timing instructions are optimized.
2. Jump tables can change size. If the JACC instruction is used to access fixed offset boundaries in

a table and the table includes entries with LJMP and/or LCALL, these can be optimized to relative
jumps and/or calls.

3. ROM tables, in general, should be placed in the “lit” area. The Code Compressor expects code
only to be in the ”text” area.

4. The Code Compression is turned off when an “effective suspend Code Compression” NOP
instruction is seen. This instruction is OR F,0 (or Suspend_CodeCompressor). Code compres-
sion resumes when a RET or RETI is encountered or another “effective resume Code Compres-
sion” NOP instruction (or Resume_CodeCompressor) is seen – ADD SP,0. This is useful when
you wish to guard an instruction based cycle-delay routine.

5. Two new assembly directives are added to version 7.0.3 or later. These directives do not take up
the code space as the predecessor.

■ The code compression is turned off when this assembly directive is used:
❐ .nocc_start

■ The code compression resumes when a RET or RETI is encountered or this assembly direc
tive is used:

❐ .nocc_end
56 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Appendix A. Errors and Warnings
Messages
This appendix supplies a complete list of preprocessor, preprocessor command line, compiler,
assembler, assembler command line, and linker errors and warnings displayed in the PSoC
Designer Status window.

A.1 Preprocessor
Table A-1. Preprocessor Errors and Warnings

Errors or Warnings
not followed by macro parameter

occurs at border of replacement

#defined token can't be redefined

#defined token is not a name

#elif after #else

#elif with no #if

#else after #else

#else with no #if

#endif with no #if

#if too deeply nested

#line specifies number out of range

Bad ?: in #if/endif

Bad syntax for control line

Bad token r produced by ## operator

Character constant taken as not signed

Could not find include file

Disagreement in number of macro arguments

Duplicate macro argument

EOF in macro arglist

EOF in string or char constant

EOF inside comment

Empty character constant

Illegal operator * or & in #if/#elsif

Incorrect syntax for `defined'

Macro redefinition

Multibyte character constant undefined

Sorry, too many macro arguments
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 57

A.2 Preprocessor Command Line

String in #if/#elsif

Stringified macro arg is too long

Syntax error in #else

Syntax error in #endif

Syntax error in #if/#elsif

Syntax error in #if/#endif

Syntax error in #ifdef/#ifndef

Syntax error in #include

Syntax error in #line

Syntax error in #undef

Syntax error in macro parameters

Undefined expression value

Unknown preprocessor control line

Unterminated #if/#ifdef/#ifndef

Unterminated string or char const

Table A-2. Preprocessor Command Line Errors

Errors
Can't open input file

Can't open output file

Illegal -D or -U argument

Too many -I directives

Table A-1. Preprocessor Errors and Warnings

Errors or Warnings
58 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

A.3 ImageCraft C Compiler
Table A-3. ImageCraft C Compiler Errors and Warnings

Errors or Warnings
Expecting <character>

Literal too long

IO port <name> cannot be redeclared as local variable

IO port <name> cannot be redeclared as parameter

IO port variable <name> cannot have initializer

<n> is a preprocessing number but an invalid %s constant

<n> is an illegal array size

<n> is an illegal bit-field size

<type> is an illegal bit-field type

<type> is an illegal field type

`sizeof' applied to a bit field

Addressable object required

asm string too long

Assignment to const identifier

Assignment to const location

Cannot initialize undefined

Case label must be a constant integer expression

Cast from <type> to <type> is illegal in constant expressions

Cast from <type> to <type> is illegal

Conflicting argument declarations for function <name>

Declared parameter <name> is missing

Duplicate case label <n>

Duplicate declaration for <name> previously declared at <line>

Duplicate field name <name> in <structure>

Empty declaration

Expecting an enumerator identifier

Expecting an identifier

Extra default label

Extraneous identifier <id>

Extraneous old-style parameter list

Extraneous return value

Field name expected

Field name missing

Found <id> expected a function

Ill-formed hexadecimal escape sequence

Illegal break statement

Illegal case label

Illegal character <c>

Illegal continue statement
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 59

Illegal default label

Illegal expression

Illegal formal parameter types

Illegal initialization for <id>

Illegal initialization for parameter <id>

Illegal initialization of `extern <name>'

Illegal return type <type>

Illegal statement termination

Illegal type <type> in switch expression

Illegal type `array of <name>'

Illegal use of incomplete type

Illegal use of type name <name>

Initializer must be constant

Insufficient number of arguments to <function>

Integer expression must be constant

Interrupt handler <name> cannot have arguments

Invalid field declarations

Invalid floating constant

Invalid hexadecimal constant

Invalid initialization type; found <type> expected <type>

Invalid octal constant

Invalid operand of unary &; <id> is declared register

Invalid storage class <storage class> for <id>

Invalid type argument <type> to `sizeof'

Invalid type specification

Invalid use of `typedef'

Left operand of -> has incompatible type

Left operand of . has incompatible type

Lvalue required

Missing <c>

Missing tag

Missing array size

Missing identifier

Missing label in goto

Missing name for parameter to function <name>

Missing parameter type

Missing string constant in asm

Missing { in initialization of <name>

Operand of unary <operator> has illegal type

Operands of <operator> have illegal types <type> and <type>

Table A-3. ImageCraft C Compiler Errors and Warnings

Errors or Warnings
60 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Overflow in value for enumeration constant

Redeclaration of <name> previously declared at <line>

Redeclaration of <name>

Redefinition of <name> previously defined at <line>

Redefinition of label <name> previously defined at <line>

Size of <type> exceeds <n> bytes

Size of `array of <type>' exceeds <n> bytes

Syntax error; found

Too many arguments to <function>

Too many errors

Too many initializers

Too many variable references in asm string

Type error in argument <name> to <function>; <type> is illegal

Type error in argument <name> to <function>; found <type> expected <type>

Type error

Unclosed comment

Undeclared identifier <name>

Undefined label

Undefined size for <name>

Undefined size for field <name>

Undefined size for parameter <name>

Undefined static <name>

Unknown #pragma

Unknown size for type <type>

Unrecognized declaration

Unrecognized statement

Table A-3. ImageCraft C Compiler Errors and Warnings

Errors or Warnings
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 61

A.4 ImageCraft Assembler
Table A-4. ImageCraft Assembler Errors and Warnings

Errors or Warnings
'[' addressing mode must end with ']'

) expected

.if/.else/.endif mismatched

<character> expected

EOF encountered before end of macro definition

No preceding global symbol

Absolute expression expected

Badly formed argument, (without a matching)

Branch out of range

Cannot add two relocatable items

Cannot perform subtract relocation

Cannot subtract two relocatable items

Cannot use .org in relocatable area

Character expected

Comma expected

equ statement must have a label

Identifier expected, but got character <c>

Illegal addressing mode

Illegal operand

Input expected

Label must start with an alphabet, '.' or '_'

Letter expected but got <c>

Macro <name> already entered

Macro definition cannot be nested

Maximum <#> macro arguments exceeded

Missing macro argument number

Multiple definitions <name>

No such mnemonic <name>

Relocation error

Target too far for instruction

Too many include files

Too many nested .if

Undefined mnemonic <word>

Undefined symbol

Unknown operator

Unmatched .else

Unmatched .endif
62 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

A.5 Assembler Command Line

A.6 Linker

Table A-5. Assembler Command Line Errors

Errors
Cannot create output file %s\n

Too many include paths

Table A-6. Linker Errors and Warnings

Errors or Warnings
Address <address> already contains a value

Can't find address for symbol <symbol>

Can't open file <file>

Can't open temporary file <file>

Cannot open library file <file>

Cannot write to <file>

Definition of builtin symbol <symbol> ignored

Ill-formed line <%s> in the listing file

Multiple define <name>

No space left in section <area>

Redefinition of symbol <symbol>

Undefined symbol <name>

Unknown output format <format>
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 63

64 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Index
A
absolute memory locations 33
accessing

M8C features 33
the compiler 13

acronyms 11
API software library functions 29
AREA directive 50
arguments, compiler 46
assembler

command line errors 59
errors and warnings 58

assembly interface and calling conventions 33

B
bit toggling 34
boot.asm file 15, 50
boot.tpl file 15
build messages for code compression 51

C
C compiler errors and warnings 55
calling assembly functions from C (fastcall16) 30
calling conventions and assembly interface 33
character type functions 23
cms.a file 15
code compression

AREA directive 50
build messages 51
considerations 52
integration of code compressor 50
process 49
text area requirement 50
theory of operation 49

compilation process 45
compiler

accessing 13
basics 17
driver 45
enabling 13
files 15
interrupts 35
linker operations 39
processing directives 21
startup 15

compiler arguments

compiler 47
driver 46
linker 47
prefixes 46
preprocessor 46

constant data 37
custom.lkp file 39

D
data memory

areas 36
usage 36

data types supported 17
documentation

acronyms 11
conventions 11
overview 10
purpose 9
reference materials 9
suite 9

driver 45

E
enabling the compiler 13
error messages 53
expressions, supported 19

F
fastcall16 function 30–31
files

library descriptions 15
name conventions 15

files for startup 15
Flash memory areas 36
frame layout 38
functions

API software library 29
interfacing C and assembly 30
library 23
mathematical 28
string 23
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 65

Index
H
help 10

I
icons

options for modifying files 14
inline assembly 34
integration of code compressor 50
interrupts 35
IO registers 35

L
libcm8c.a file 15
libpsoc.a file 15
librarian

adding or replacing a library module 43
compiling a file into a library module 41
deleting a library module 43
listing the contents of a library 43

library
descriptions 15
functions 23

linker
customized actions 39
errors and warnings 59
process 39

long jump/call 35

M
M8C features, accessing 33
mathematical functions 28
memory areas

data 36
Flash 36

memory locations, absolute 33
memory usage, program and data 36
menu options 14

N
name conventions for files 15

O
operators, supported 18
options

additional considerations 33
command line 46

options for modifying source files 14
overview of document 10

P
page pointer registers 22
pointers 20
pragma directives 21

#pragma abs_address 21
#pragma end_abs_address 21
#pragma fastcall GetChar 21
#pragma fastcall16 argument passing 31
#pragma fastcall16 GetChar 21
#pragma fastcall16 return value 31
#pragma interrupt_handler 22
#pragma ioport 21
#pragma nomac 22
#pragma text 21
#pragma usemac 22

preprocessor
command line errors 54
directives 21
errors and warnings 53

process of code compression 49
processing directives

pragma directives 21
preprocessor directives 21

program memory usage 36
as related to constant data 37

purpose of document 9

R
re-entrancy 20
reference materials 9
restoring internal registers 38

S
stack architecture 38
startup files 15
statements, supported 20
string functions 23
strings 38
suite of documentation 9
support 10

T
technical support systems 10
toolbar options 14

U
upgrades 10

V
virtual registers 38
66 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

Revision History
Document Revision History

Document Title: PSoC Designer™ ImageCraft C Compiler Guide
Document Number: 001-44476

Revision ECN # Issue Date Origin of Change Description of Change

** 2506393 05/20/2008 FSU Put the ImageCraft C Compiler Guide in a new template and assigned a Spec
Number.

*A 2891938 06/20/2009 FSU Fixed several defects and added ImageCraft license agreement.

*B 3728879 08/30/2012 JUK/ECI

Changes to adding/replace library module, linker arguments, Imagecraft
Assembler arguments.
Added Byte Order section added; updated Section 6.5 Inline Assembly.
Content added under section 6.14, Virtual Registers.
Added and updated new #Pragma directives in Table 4.4:
#pragma abs_address - Modified
Added the following directives in Table 4-4:
#pragma ram_abs_address
#pragma lit_abs_address
#pragma code_abs_address
New Note text added below the Table 4.4.
Updated section 10.4, Code Compressor and the AREA Directive.
Updated section 7.2.1 and added section 7.2.2.
Updated documentation paths to generic names.

Distribution: External/Public
Posting: None
ImageCraft C Compiler Guide, Document # 001-44476 Rev *B 67

68 ImageCraft C Compiler Guide, Document # 001-44476 Rev *B

	ImageCraft C Compiler Guide
	Contents
	1. Introduction
	1.1 Grant of License
	1.2 Purpose
	1.3 Section Overviews
	1.4 Support
	1.4.1 Technical Support
	1.4.2 Product Upgrades

	1.5 Documentation Conventions

	2. Accessing the Compiler
	2.1 Enabling the Compiler
	2.2 Accessing the Compiler
	2.3 Menu and Toolbar Options

	3. Compiler Files
	3.1 Startup File
	3.2 Library Descriptions

	4. Compiler Basics
	4.1 Data Types
	4.2 Operators
	4.3 Expressions
	4.4 Statements
	4.5 Pointers
	4.6 Re-Entrancy
	4.7 Processing Directives
	4.7.1 Preprocessor Directives
	4.7.2 Pragma Directives

	5. Functions
	5.1 Library Functions
	5.1.1 String Functions
	5.1.2 Mathematical Functions
	5.1.3 API Software Library Functions

	6. Additional Considerations
	6.1 Accessing M8C Features
	6.2 Addressing Absolute Memory Locations
	6.3 Assembly Interface and Calling Conventions
	6.4 Bit Toggling
	6.5 Inline Assembly
	6.6 Interrupts
	6.7 IO Registers
	6.8 Long Jump/Call
	6.9 Memory Areas
	6.9.1 Flash Memory Areas
	6.9.2 Data Memory Areas

	6.10 Program and Data Memory Usage
	6.10.1 Program Memory
	6.10.2 Data Memory

	6.11 Program Memory as Related to Constant Data
	6.12 Stack Architecture and Frame Layout
	6.13 Strings
	6.14 Virtual Registers
	6.15 Convention for Restoring Internal Registers
	6.16 Indirect Function Calls to fastcall/fastcall16 Functions
	6.17 Byte Order
	6.18 Interfacing C and Assembly
	6.18.1 Interfacing C and Assembly Variables
	6.18.2 Interfacing C and Assembly Functions

	7. Linker
	7.1 Linker Operations
	7.2 Linking Process
	7.2.1 Customized Linker Actions to Force Code or Data to a Specific ROM Location
	7.2.2 Custom Linker Actions to Force Variables to a Specific RAM Address

	8. Librarian
	8.1 Librarian
	8.1.1 Compiling a File into a Library Module
	8.1.2 Listing the Contents of a Library
	8.1.3 Adding or Replacing a Library Module
	8.1.4 Deleting a Library Module

	9. Command Line Overview
	9.1 Compilation Process
	9.2 Compiler Driver
	9.3 ImageCraft Compiler Arguments
	9.3.1 Compiler Argument Prefixes
	9.3.2 Arguments Affecting the Driver
	9.3.3 Preprocessor Arguments
	9.3.4 Compiler Arguments
	9.3.5 Linker Arguments

	9.4 ImageCraft Assembler Arguments
	9.4.1 Arguments

	10. Code Compression
	10.1 Theory of Operation
	10.2 Code Compressor Process
	10.2.1 C and Assembly Code
	10.2.2 Program Execution Bytes
	10.2.3 Impact to Debugger

	10.3 Integration of the Code Compressor
	10.3.1 boot.asm file
	10.3.2 Text Area Requirement

	10.4 Code Compressor and the AREA Directive
	10.5 Build Messages
	10.6 Considerations for Code Compression

	Appendix A. Errors and Warnings Messages
	A.1 Preprocessor
	A.2 Preprocessor Command Line
	A.3 ImageCraft C Compiler
	A.4 ImageCraft Assembler
	A.5 Assembler Command Line
	A.6 Linker

	Index
	Revision History

