

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-91490 Rev. *B Revised December 24, 2014

Features
 Bluetooth v4.1 compliant protocol stack

 Generic Access Profile (GAP) Features
□ Broadcaster, Observer, Peripheral and Central roles
□ Supports role reversal between Peripheral and Central
□ User-defined advertising data
□ Bonding support for up to four devices
□ Security modes 1 and 2

 Generic Attribute Profile (GATT) Features
□ GATT Client and Server
□ 32-bit UUIDs

 Special Interest Group (SIG) adopted GATT-based Profiles (15) and Services (20), and
quick prototype of new profile design through intuitive GUI Custom Profile development

 Security Manager features
□ Pairing methods: Just works, Passkey Entry, Out of Band
□ Authenticated man-in-the-middle (MITM) protection and data signing

 Logical Link Adaption Protocol (L2CAP) Connection Oriented Channel

 Link Layer (LL) Features
□ Master and Slave role
□ 128-bit AES encryption
□ Low Duty Cycle Advertising
□ LE Ping

Bluetooth Low Energy (BLE)
1.0

Bluetooth Low Energy (BLE)

Page 2 of 482 Document Number: 001-91490 Rev. *B

General Description
The Bluetooth Low Energy (BLE) Component provides a comprehensive GUI-based
configuration window to quickly design applications requiring BLE connectivity. The Component
incorporates a Bluetooth Core Specification v4.1 compliant protocol stack and provides API
functions to enable user applications to interface with the underlying hardware via the stack.

SIG adopted Profiles and Services
The BLE Component supports SIG-adopted GATT-based Profiles (15) and Services (20). Each
of these can be configured for either a GATT Client or GATT Server. The Component can
support several Profiles at a time by adding the required Services of a Profile to a base Profile.
For example, you can select HID as a base Profile. Then to add a Find Me Profile, and add the
Immediate Alert Service to the HID Profile.The Component generates all the necessary code for
a particular Profile/Service operation, as configured in the GUI.
The following table lists the supported Profiles and Services.

Acronym Profile Version

ANP Alert Notification Profile 1.0

ANS Alert Notification Service 1.0

BAS Battery Service 1.0

BLP Blood Pressure Profile 1.0

BLS Blood Pressure Service 1.0

CPP Cycling Power Profile 1.0

CPS Cycling Power Service 1.0

CSCP Cycling Speed and Cadence Profile 1.0

CSCS Cycling Speed and Cadence Service 1.0

CTS Current Time Service 1.0

DIS Device Information Service 1.1

FMP Find Me Profile 1.0

GLP Glucose Profile 1.0

GLS Glucose Service 1.0

HOGP HID over GATT Profile 1.0

HIDS Human Interface Device Service 1.0

HTP Health Thermometer Profile 1.0

HTS Health Thermometer Service 1.0

HRP Heart Rate Profile 1.0

HRS Heart Rate Service 1.0

IAS Immediate Alert Service 1.0

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 3 of 482

Acronym Profile Version

LLS Link Loss Service 1.0

LNP Location and Navigation Profile 1.0

LNS Location and Navigation Service 1.0

NDCS Next DST Change Service 1.0

PASP Phone Alert Status Profile 1.0

PASS Phone Alert Status Service 1.0

PXP Proximity Profile 1.0

RSCP Running Speed and Cadence Profile 1.0

RSCS Running Speed and Cadence Service 1.0

RTUS Reference Time Update Service 1.0

ScPP Scan Parameters Profile 1.0

ScPS Scan Parameters Service 1.0

TIP Time Profile 1.0

TPS Tx Power Service 1.0

Custom Profiles
You can create custom Profiles that use existing Services, and you can create custom Services
with custom Characteristics and Descriptors. There are no restrictions for GAP roles for a
custom Profile. Custom Services cannot be used in stand-alone mode; they need to be used in a
Profile. For example, the Device Information Service is used in the Heart Rate Profile. It can be
used in a custom Profile, or it can be added to any of existing Profiles.

Comprehensive APIs
The BLE Component provides application-level APIs to design solutions without requiring
manual stack level configuration. The BLE Component API documentation is also provided in a
separate HTML-based file that can be opened by right-clicking on the Component and selecting
Open API documentation.

Debug Support
For testing and debugging, the Component can be configured to HCI mode through a
Component embedded UART. For over-the-air verification, Cypress CySmart verification tool
can be used for generic Bluetooth host stack emulation. To launch this tool, right click on the
Component to bring up the context menu, and choose to deploy the CySmart tool.

Bluetooth Low Energy (BLE)

Page 4 of 482 Document Number: 001-91490 Rev. *B

When to use the BLE Component
BLE is used in very low power Wireless Personal Area Network (WPAN) and Internet of Things
(IoT) solutions aimed for low-cost mobile battery operated devices that can quickly connect and
form simple links. Target applications include HID, remote controls, sports and fitness monitors,
portable medical devices and smart phone accessories, among many others that are being
added to a long list of BLE supporting solutions.

BLE Component Architecture
The BLE Component consists of the BLE Stack, BLE Profile, BLE Component Hardware
Abstraction Layer (HAL), and the Link Layer. The following figure shows a high-level architecture
of the BLE Component, illustrating the relationship between each of the layers and the route in
which the application interacts with the Component. Note that the application is informed of the
BLE events through the use of callback functions. You may build your state machine using
these. Refer to the Callback Functions section for more details.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 5 of 482

The following sub-sections give an overview of each of these layers.

BLE Stack
The BLE stack implements the core BLE functionality as defined in the Bluetooth Core
Specification 4.1. The stack is included as a precompiled library and it is embedded inside the
BLE Component.
The BLE stack implements all the mandatory and optional features of Low Energy Single Mode
compliant to Bluetooth Core Specification 4.1. The BLE Stack implements a layered architecture
of the BLE protocol stack as shown in the following figure.

Generic Access Profile (GAP)

The Generic Access Profile defines the generic procedures related to discovery of Bluetooth
devices and link management aspects of connecting to Bluetooth devices. In addition, this profile
includes common format requirements for parameters accessible on the user interface level.
The Generic Access Profile defines the following roles when operating over the LE physical
channel:

 Broadcaster role: A device operating in the Broadcaster role can send advertising
events. It is referred to as a Broadcaster. It has a transmitter and may have a receiver.

 Observer role: A device operating in the Observer role is a device that receives
advertising events. It is referred to as an Observer. It has a receiver and may have a
transmitter.

 Peripheral role: A device that accepts the establishment of an LE physical link using any
of the connection establishment procedures is termed to be in a "Peripheral role." A
device operating in the Peripheral role will be in the "Slave role" in the Link Layer

Bluetooth Low Energy (BLE)

Page 6 of 482 Document Number: 001-91490 Rev. *B

Connection State. A device operating in the Peripheral role is referred to as a Peripheral.
A Peripheral has both a transmitter and a receiver.

 Central role: A device that supports the Central role initiates the establishment of a
physical connection. A device operating in the "Central role" will be in the "Master role" in
the Link Layer Connection. A device operating in the Central role is referred to as a
Central. A Central has a transmitter and a receiver.

Generic Attribute Profile (GATT)

The Generic Attribute Profile defines a generic service framework using the ATT protocol layer.
This framework defines the procedures and formats of services and their Characteristics. It
defines the procedures for Service, Characteristic, and Descriptor discovery, reading, writing,
notifying, and indicating Characteristics, as well as configuring the broadcast of Characteristics.

GATT Roles

 GATT Client: This is the device that wants data. It initiates commands and requests
towards the GATT Server. It can receive responses, indications, and notifications data
sent by the GATT Server.

 GATT Server: This is the device that has the data and accepts incoming commands and
requests from the GATT Client and sends responses, indications, and notifications to a
GATT Client.

The BLE Stack supports both roles simultaneously for a custom profile use case.

Attribute Protocol (ATT)

The Attribute Protocol layer defines a Client/Server architecture above the BLE logical transport
channel. The attribute protocol allows a device referred to as the GATT Server to expose a set of
attributes and their associated values to a peer device referred to as the GATT Client. These
attributes exposed by the GATT Server can be discovered, read, and written by a GATT Client,
and can be indicated and notified by the GATT Server. All the transactions on attributes are
atomic.

Security Manager Protocol (SMP)

Security Manager Protocol defines the procedures and behavior to manage pairing,
authentication, and encryption between the devices. These include:

 Encryption and Authentication

 Pairing and Bonding
□ Pass Key and Out of band bonding

 Key Generation for a device identity resolution, data signing and encryption

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 7 of 482

 Pairing method selection based on the IO capability of the GAP central and GAP
peripheral device

Logical Link Control Adaptation Protocol (L2CAP)

L2CAP provides a connectionless data channel. LE L2CAP provides the following features:

 Channel multiplexing, which manages three fixed channels. Two channels are dedicated
for higher protocol layers like ATT, SMP. One channel is used for the LE-L2CAP protocol
signaling channel for its own use.

 Segmentation and reassembly of packets whose size is up to the BLE Controller
managed maximum packet size.

 Connection-oriented channel over a specific application registered using the PSM
(protocol service multiplexer) channel. It implements credit-based flow control between
two LE L2CAP entities. This feature can be used for BLE applications that require
transferring large chunks of data.

Host Controller Interface (HCI)

The HCI layer implements a command, event, and data interface to allow link layer access from
upper layers such as GAP, L2CAP, and SMP.

Link Layer (LL)

The LL protocol manages the physical BLE connections between devices. It supports all LL
states such as Advertising, Scanning, Initiating, and Connecting (Master and Slave). It
implements all the key link control procedures such as LE Encryption, LE Connection Update, LE
Channel Update, and LE Ping. The Link Layer is a hardware-firmware co-implementation, where
the key time critical LL functions are implemented in the LL hardware. The LL firmware maintains
and controls the key LL procedure state machines. It supports all the BLE chip specific low
power modes.
The BLE Stack is a pre-compiled library in the BLE Component solution. The appropriate
configuration of the BLE Stack library is linked during a build process based on application. The
BLE Stack libraries are ARM Embedded Application Binary Interface (eabi) compliant and they
are compiled using ARM compiler version 5.03.
The following table shows the mapping between the BLE Stack library to the user-configured
Profile Role in Profile Mode or HCI Mode. Refer to the Generic Tab section for selection of stack
configuration.

BLE Component
Configuration GAP Role BLE Stack Library

BLE Profile Central + Peripheral CyBLEStack_BLE_SOC_CENTRAL_PERIPHERAL.a

BLE Profile Central CyBLEStack_BLE_SOC_CENTRAL.a

Bluetooth Low Energy (BLE)

Page 8 of 482 Document Number: 001-91490 Rev. *B

BLE Component
Configuration GAP Role BLE Stack Library

BLE Profile Peripheral CyBLEStack_BLE_SOC_PERIPHERAL.a

HCI Mode N/A CyBLEStack_HCI_MODE_CENTRAL_PERIPHERAL.a

Profile Layer
In BLE, data is organized into concepts called Profiles, Services, and Characteristics.

 A Profile describes how devices connect to each other to find and use Services. It is a
definition used by Bluetooth devices to describe the type of application and the general
expected behavior of that device. See the Profile parameter for how to configure to the
BLE Component.

 A Service is a collection of data entities called Characteristics. A Service is used to define
a certain function in a Profile. A Service may also define its relationship to other Services.
A Service is assigned a Universally Unique Identifier (UUID). This is 16 bits for SIG
adopted Services and 128 bits for custom Services. See the Toolbar section for
information about adding Services to a Profile.

 A Characteristic contains a Value and the Descriptor that describes a Characteristic
Value. It is an attribute type for a specific piece of information within a Service. Like a
Service, each Characteristic is designated with a UUID; 16 bits for SIG adopted
Characteristics and 128 bits for custom Characteristics. See the Toolbar section for
information about adding Characteristics and Descriptors.

The following diagram shows the relationship between Profiles, Services, and Characteristics in
a sample BLE heart rate monitor application using a Heart Rate Profile.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 9 of 482

The Heart Rate Profile contains a Heart Rate Service and a Device Information Service. Within
the Heart Rate Service, there are three Characteristics, each containing different information.
The device in the diagram is configured as a Sensor role, meaning that in the context of the
Heart Rate Profile, the device is a GAP Peripheral and a GATT Server. These concepts are
explained in the BLE Stack description.
The Profile layer is generated by PSoC Creator using the parameter configurations specified in
the GUI. The Profile implements the Profile specific attribute database and APIs required for the
application. You can choose to configure the standard SIG adopted Profile and generate a
design or define a Custom Profile required by an application. The GUI also allows import/export
of a Profile design in XML format for Profile design reuse.

Bluetooth Low Energy (BLE)

Page 10 of 482 Document Number: 001-91490 Rev. *B

Hardware Abstraction Layer (HAL)
The HAL implements the interface between the BLE stack and the underlying hardware. This
layer is meant for the stack only and is not advisable to modify it.

Input/Output Connections
This Component does not require hardware terminals. All the hardware connections are direct
and dedicated to specific pins in the underlying BLE hardware.

Component Parameters
Drag a BLE Component onto your design and double-click it to open the Configure dialog. This
dialog has the following tabs with different parameters.

General Tab
The General tab allows general configuration of the BLE Component. It is possible to import and
export the customizer configuration in xml format.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 11 of 482

Load Configuration/Save Configuration
Use the Load Configuration button to load the previously saved xml Component configuration;
use the Save Configuration button to save the current configuration for use in other designs.

Profile
The Profile mode allows you to choose the target Profile from a list of supported Profiles. See
Profile, Service, and Characteristic. When a mode is chosen, the Profile role and GAP role
parameters are enabled. The following Profiles are available for selection.

Alert Notification

This Profile enables a GATT Client device to receive different types of alerts and event
information, as well as information on the count of new alerts and unread items, which exist in
the GATT Server device.

 Alert Notification Server Profile role – Specified as a GATT Server. Requires the
following Service: Alert Notification Service.

□ Central GAP role
□ Peripheral and Central GAP role

 Alert Notification Client Profile role – Specified as a GATT Client.
□ Peripheral GAP role
□ Peripheral and Central GAP role

Blood Pressure

This Profile enables a device to connect and interact with a Blood Pressure Sensor device for
use in consumer and professional health care applications.

 Blood Pressure Sensor Profile role – Specified as a GATT Server. Requires the
following Services: Blood Pressure Service, Device Information Service.

□ Peripheral GAP role

 Blood Pressure Collector Profile role – Specified as a GATT Client. Requires support of
the following Services: Blood Pressure Service. Support of Device Information Service
is optional.

□ Central GAP role

Bluetooth Low Energy (BLE)

Page 12 of 482 Document Number: 001-91490 Rev. *B

Cycling Power

This Profile enables a Collector device to connect and interact with a Cycling Power Sensor for
use in sports and fitness applications.

 Cycling Power Sensor Profile role – Specified as a GATT Server. Requires the following
Service: Cycling Power Service. Optionally may include Device Information Service
and Battery Service.

□ Peripheral GAP role

 Cycling Power Broadcaster Profile role. Requires the following Service: Cycling Power
Service.

□ Broadcaster GAP role

 Cycling Power Observer Profile role. Can only talk to a device with the Cycling Power
Broadcaster role. Requires support of the following Service: Cycling Power Service.

□ Observer GAP role

 Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Cycling Power Service. Support of Device Information Service and Battery
Service is optional.

□ Central GAP role

Cycling Speed and Cadence

This Profile enables a Collector device to connect and interact with a Cycling Speed and
Cadence Sensor for use in sports and fitness applications.

 Cycling Speed and Cadence Sensor Profile role – Specified as a GATT Server.
Requires the following Service: Cycling Speed and Cadence Service. Optionally may
include Device Information Service.

□ Peripheral GAP role

 Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Cycling Speed and Cadence Service. Support of Device Information Service
is optional.

□ Central GAP role

Find Me

The Find Me Profile defines the behavior when a button is pressed on one device to cause an
alerting signal on a peer device.

 Find Me Target Profile role – Specified as a GATT Server. Requires the following
Service: Immediate Alert Service.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 13 of 482

□ Peripheral GAP role
□ Central GAP role
□ Peripheral and Central GAP roles

 Find Me Locator Profile role – Specified as a GATT Client. Requires support of the
following Service: Immediate Alert Service.

□ Peripheral GAP role
□ Central GAP role
□ Peripheral and Central GAP roles

Glucose

This Profile enables a device to connect and interact with a Glucose Sensor for use in consumer
healthcare applications.

 Glucose Sensor Profile role – Specified as a GATT Server. Requires the following
Services: Glucose Service, Device Information Service.

□ Peripheral GAP role

 Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Glucose Service. Support of Device Information Service is optional.

□ Central GAP role

Health Thermometer

This Profile enables a Collector device to connect and interact with a Thermometer sensor for
use in healthcare applications.

 Thermometer Profile role – Specified as a GATT Server. Requires the following Services:
Health Thermometer Service, Device Information Service.

□ Peripheral GAP role

 Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Health Thermometer Service. Support of Device Information Service is
optional.

□ Central GAP role

Heart Rate

This Profile enables a Collector device to connect and interact with a Heart Rate Sensor for use
in fitness applications.

Bluetooth Low Energy (BLE)

Page 14 of 482 Document Number: 001-91490 Rev. *B

 Heart Rate Sensor Profile role – Specified as a GATT Server. Requires the following
Services: Heart Rate Service, Device Information Service.

□ Peripheral GAP role

 Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Heart Rate Service. Support of Device Information Service is optional.

□ Central GAP role

HID over GATT

This Profile defines how a device with BLE wireless communications can support HID Services
over the BLE protocol stack using the Generic Attribute Profile.

 HID Device Profile role – Specified as a GATT Server. Requires the following Services:
HID Service, Battery Service, and Device Information Service. Optionally may include
Scan Parameters Service as part of the Scan Server role of the Scan Parameters
Profile. HID Device supports multiple instances of HID Service and Battery Service and
may include any other optional Services.

□ Peripheral GAP role

 Boot Host Profile role – Specified as a GATT Client. Requires support of the following
Service: HID Service. Support of Battery Service and Device Information Service is
optional.

□ Central GAP role

 Report Host Profile role – Specified as a GATT Client. Requires support of the following
Services: HID Service, Battery Service, Device Information Service. Support of Scan
Client role of the Scan Parameters is optional.

□ Central GAP role

 Report and Boot Host Profile role – Specified as a GATT Client. Requires support of the
following Services: HID Service, Battery Service, Device Information Service. Support
of Scan Client role of the Scan Parameters is optional.

□ Central GAP role

Location and Navigation

This Profile enables a Collector device to connect and interact with a Location and Navigation
Sensor for use in outdoor activity applications.

 Location and Navigation Sensor Profile role – Specified as a GATT Server. Requires
the following Service: Location and Navigation Service. Optionally may include Device
Information Service and Battery Service.

□ Peripheral GAP role

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 15 of 482

 Collector Profile role – Specified as a GATT Client. Requires support of the following
Services: Location and Navigation Service. Support of Device Information Service
and Battery Service is optional.

□ Central GAP role

Phone Alert Status

This Profile enables a device to alert its user about the alert status of a phone connected to the
device.

 Phone Alert Server Profile role – Specified as a GATT Server. Requires the following
Services: Phone Alert Status Service.

□ Central GAP role
□ Peripheral and Central GAP role

 Phone Alert Client Profile role – Specified as a GATT Client. Requires support of the
following Service: Phone Alert Service.

□ Peripheral GAP role
□ Peripheral and Central GAP role

Proximity

The Proximity Profile enables proximity monitoring between two devices.

 Proximity Reporter Profile role – Specified as a GATT Server. Requires the following
Service: Link Loss Service. Optionally may include Immediate Alert Service and Tx
Power Service if both are used. Using only one of the optional Services is not allowed.

□ Peripheral GAP role
□ Central GAP role

 Proximity Monitor Profile role – Specified as a GATT Client. Requires support of the
following Services: Link Loss Service. Support of Immediate Alert Service and Tx
Power Service is optional. Same restrictions apply as to Proximity Reporter.

□ Central GAP role
□ Peripheral GAP role
□ Peripheral and Central GAP role

Bluetooth Low Energy (BLE)

Page 16 of 482 Document Number: 001-91490 Rev. *B

Running Speed and Cadence

This Profile enables a Collector device to connect and interact with a Running Speed and
Cadence Sensor for use in sports and fitness applications.

 Running Speed and Cadence Sensor Profile role – Specified as a GATT Server.
Requires the following Service: Running Speed and Cadence Service. Optionally may
include Device Information Service.

□ Peripheral GAP role

 Collector Profile role – Specified as a GATT Client. Requires support of the following
Services: Running Speed and Cadence Service. Support of Device Information
Service is optional.

□ Central GAP role

Scan Parameters

This Profile defines how a Scan Client device with BLE wireless communications can write its
scanning behavior to a Scan Server, and how a Scan Server can request updates of the Scan
Client scanning behavior.

 Scan Server Profile role – Specified as a GATT Server. Requires the following Service:
Scan Parameters Service.

□ Peripheral GAP role

 Scan Client Profile role – Specified as a GATT Client. Required support of the following
Service: Scan Parameters Service.

□ Central GAP role

Time

The Time Profile enables the device to get the date, time, time zone, and DST information and
control the functions related to time.

 Time Server Profile role – Specified as a GATT Server. Requires the following Service:
Current Time Service. Optionally may include Next DST Change Service and
Reference Time Update Service.

□ Central GAP role
□ Peripheral and Central GAP role

 Time Client Profile role – Specified as a GATT Client. Requires support of the following
Service: Current Time Service. Support of Next DST Change Service and Reference
Time Update Service is optional.

□ Peripheral GAP role

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 17 of 482

□ Peripheral and Central GAP role

Custom

Used to create a custom Profile. This Profile mode allows you to add in a Custom Service and
gives control over the Service types.

 Server (GATT Server) Profile role
□ Peripheral GAP role
□ Central GAP role
□ Peripheral and Central GAP roles
□ Broadcaster GAP role
□ Observer GAP role

 Client (GATT Client) Profile role
□ Peripheral GAP role
□ Central GAP role
□ Peripheral and Central GAP roles
□ Broadcaster GAP role
□ Observer GAP role

 Client and Server (GATT Client and Server) Profile role
□ Peripheral GAP role
□ Central GAP role
□ Peripheral and Central GAP roles
□ Broadcaster GAP role
□ Observer GAP role

Profile Role
The Profile role parameter configuration depends on the chosen Profile, and the Profile role
selection affects the GAP role parameter. These parameters affect the options available on the
Profiles tab.

 GATT Server – Defines the role of the device that contains a specific data in a structured
form. The device in this role is usually a sensor that gets the data. The data is structured
in the GATT database. BLE Profiles can introduce their own names to identify GATT
Server device (e.g. Find Me Profile uses “Find Me Target”). GATT Server devices usually
utilize the GAP Peripheral role.

Bluetooth Low Energy (BLE)

Page 18 of 482 Document Number: 001-91490 Rev. *B

 GATT Client – Defines the role of the device that generates requests to the GATT Server
device to fetch data. BLE Profiles can introduce their own names to identify GATT Client
device (e.g. Find Me Profile uses “Find Me Locator”). GATT Client devices usually utilize
the GAP Peripheral role.

 Client and Server – Defines the role of the device that concurrently can perform
functionality of a GATT Client and Server Profile role. A device in this role should be
configured for Peripheral and Central GAP role. For example, a peripheral device can act
as a GATT Client and start discovering the iOS device's (acting as GATT Server) Services
(battery, time and Apple notification central Service).

Gap Role
The GAP role parameter can take the following values:

 Peripheral – Defines a device that advertises using connectable advertising packets and
so becomes a slave once connected. Peripheral devices need a Central device, as the
Central device initiates connections. Through the advertisement data, a Peripheral device
can broadcast the general information about a device.

 Central – Defines a device that initiates connections to peripherals and will therefore
become a master when connected. Peripheral devices need a Central device, as the
Central device initiates connections.

 Broadcaster – Similar to the Peripheral role, the device sends advertising data. However
Broadcaster does not support connections and can only send data but not receive them.

 Observer – When in this role, the device scans for Broadcasters and reports the received
information to an application. The Observer role does not allow transmissions.

 Peripheral and Central – In this role, the application can perform role reversal between
Peripheral and Central roles at run time. For example, Bluetooth Smart watch (Peripheral)
can connect to a smartphone (Central device). The same sports watch can then switch to
the Central device mode to obtain data from other Peripheral devices such as a heart rate
monitor and a blood pressure sensor.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 19 of 482

Host Controller Mode
Choosing this configuration places the Component in HCI mode, which enables use of the
device as a BLE controller. It also allows communication with a host stack using a Component
embedded UART. When choosing this mode, the Profile mode options, Profiles tab, and GAP
Settings tab become unavailable.

It also reveals the UART configuration information.

 UART Configuration – The UART is a full-duplex 8 data bit, 1 stop bit, no parity with Flow
control interface. These settings are fixed.

 Baud rate (bps) – Configures the UART baud rate.

Use Deep Sleep
This parameter identifies if Deep Sleep Mode support is required for the BLE Component.
Default: true.
When this parameter is set, WCO must be selected as the LFCLK source in the Design-Wide
Resources Clock Editor. This configuration is a requirement if you intend to use the Component
in Deep Sleep Mode.

Bluetooth Low Energy (BLE)

Page 20 of 482 Document Number: 001-91490 Rev. *B

Profiles Tab
The Profiles tab is used to configure Profile-specific parameters. It is directly affected by the
choice of Profile settings set in the General tab. The Profiles tab has 3 areas: toolbars, a
Profiles tree, and a parameters configuration section.

Toolbars
The toolbars contain navigation options and a means to add or delete Services, Characteristics,
and Descriptors.

 Add Service – This option is available when the Profile Role is highlighted in the Profile
tree. It allows loading of Services in the selected Profile Role. In GATT server
configuration, this option adds the selected service data to the server GATT database and
enables service specific APIs. In GATT client configuration, the data structures for auto
discovery of this service is created by the Component. If services that are not populated in
the GUI are discovered during auto discovery, the Component ignores those service and
the application is responsible for discovering the details of such services. Refer to the
Profile section for the available Services.

 Add Characteristic – This option is available when a Service is highlighted in the Profile
tree. The Characteristic options are unique to each Service and are all loaded
automatically when a Service is added to the design. The Add Characteristic button can

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 21 of 482

be used to manually add new Characteristics to the Service. All Characteristics for the
above mentioned Services plus Custom Characteristic are available for selection.

 Add Descriptor – This option is available when a Characteristic is highlighted in the
Profile tree. Similar to the Characteristic options, Descriptor options are unique to a
Characteristic and are all automatically loaded when a Characteristic is added to the
design. For more information about BLE Characteristic Descriptors, refer to
developer.bluetooth.org. (Note You should be a member of Bluetooth SIG to have full
access to this site.)

 Delete – Deletes the selected Service, Characteristic, or Descriptor.

 Load/Save – Imports/Exports Profiles, Services, Characteristics, and Descriptors as
shown in the tree. This functionality is independent of the Load Configuration/Save
Configuration buttons on the General tab. That is, this allows you to customize this tree
independent of the general settings. Each exported file type will have its own extension.

 Rename – Renames the selected item in the Profiles tree.

 Move Up/Down – Moves the selected item up or down in the Profiles tree.

 Copy/Paste – Copies/pastes items in the Profiles tree.

 Expand All – Expands all items in the Profiles tree.

 Collapse all Services – Collapses all Services in the Profiles tree.

Profiles Tree
The Profiles tree is used to view Services, Characteristics, and Descriptors in the selected
Profile. By navigating through the tree, you can quickly add, delete, or modify Services,
Characteristics, and Descriptors using the toolbar buttons or the context menu. You can
configure the parameters by clicking an item on the tree. These parameters will show in the
Parameters Configuration section.

Parameters Configuration
The Parameters Configuration section allows you to configure a Service or Characteristic by
selecting the type of Service or Characteristic in the tree.
Notes

 All Profiles must have a Generic Access Service and a Generic Attribute Service.

 The Service Characteristics are configurable only when the device is a GATT Server.

 The security settings located in the GAP Settings tab are applied globally. In addition to
this, you may manually configure the security of each Characteristic/Descriptor.

https://developer.bluetooth.org/

Bluetooth Low Energy (BLE)

Page 22 of 482 Document Number: 001-91490 Rev. *B

Generic Access Service

This Service is used to define the basic Bluetooth connection and discovery parameters. Click on
the Characteristic under the Generic Access Service to view that particular Characteristic
settings. You perform the actual Characteristics configuration in the General options located in
the GAP Settings tab.

 Device Name: This is the name of your device. It has a read (without
authentication/authorization) property associated with it by default. This parameter can be
up to 248 bytes. The value comes from the Device Name field on the GAP Settings tab,
under General.

 Appearance: The device's logo or appearance, which is a SIG defined 2-byte value. It
has a read (without authentication/authorization) property associated with it by default.
The value comes from the Appearance field on the GAP Settings tab, under General.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 23 of 482

 Peripheral Preferred Connection: A device in the peripheral role can convey its
preferred connection parameter to the peer device. This parameter is 8 bytes in total and
is composed of the following sub-parameters.
Note This parameter is read-only and is derived from the Advertisement settings
Connection Parameters. It will only be available when the device supports a Peripheral
role. Refer to the Connection Parameters section for more information.

□ Minimum Connection Interval: This is a 2-byte parameter that denotes the
minimum permissible connection time.

□ Maximum Connection Interval: This is a 2-byte parameter that denotes the
maximum permissible connection time.

□ Slave Latency: This is a 2-byte value and defines the latency between consecutive
connection events.

□ Connection Supervision Timeout Multiplier: This is a 2-byte value that denotes
the LE link supervision timeout interval. It defines the timeout duration for which an
LE link needs to be sustained in case of no response from the peer device over the
LE link.

Note The above parameters are used for connection parameters update procedure over
L2CAP if a GAP central device does not use the peripheral preferred connection
parameters. For example, iOS7 ignores peripheral preferred connection parameter
Characteristics and establishes a connection with a default 30 ms connection interval. The
peripheral device should request a connection parameter update by sending an L2CAP
connection parameter update request at an appropriate time.
A typical peripheral implementation should initiate L2CAP connection parameter update
procedure once any Characteristic is configured for periodic notification or indication.

Bluetooth Low Energy (BLE)

Page 24 of 482 Document Number: 001-91490 Rev. *B

Generic Attribute Service

Click on the Characteristic under the Generic Attribute Service to configure that particular
Characteristic.

 Service Changed - This Characteristic is used to indicate to the connected devices that a
Service has changed (i.e., added, removed, or modified). It is used to indicate to GATT
Clients that have a trusted relationship (i.e., bond) with the GATT Server when GATT
based Services have changed when they re-connect to the GATT Server. It is mandatory
for the device in the GATT Client role. For the device in the GATT Server role, the
Characteristic is mandatory if the GATT Server changes the supported Services in the
device.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 25 of 482

Custom Service Configuration

UUID

A universally unique identifier of the service. This field is editable for Custom Services.

Service type

 Primary – Represents the primary functionality of the device.

 Secondary – Represents an additional functionality of the device. The secondary service
must be included in another service.

Included services

 The list of the Services that can be included in the selected Service. Each Service may
have one or more included Services. The included Services provide the additional
functionality for the Service.

Bluetooth Low Energy (BLE)

Page 26 of 482 Document Number: 001-91490 Rev. *B

Custom Characteristic Configuration

UUID

A universally unique identifier of the Characteristic. This field is editable for Custom
Characteristics.

Fields

Fields represent a Characteristic value. The default value for each field can be set in the Value
column. In case of the Custom Characteristic, the fields are customizable.

Properties

The Characteristic properties define how the Characteristic value can be used. Some properties
(Broadcast, Notify, Indicate, Reliable Write, Writable Auxiliries) require the presence of a
corresponding Characteristic Descriptor.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 27 of 482

Permissions

Characteristic permissions define how the Characteristic Value attribute can be accessed and
the security level required for this access. Access permissions are set based on the
Characteristic properties. Security permissions are automatically updated for all Characteristics
when the Security Mode or Security Level parameters are changed on the GAP tab.

Custom Descriptor Configuration

UUID

A universally unique identifier of the Descriptor. This field is editable for Custom Descriptors.

Fields

Fields represent a Descriptor value. The default value for each field can be set in the Value
column. In case of the Custom Descriptor, the fields are customizable.

Permissions

Descriptor permissions define how the Descriptor attribute can be accessed and the security
level required for this access.

Bluetooth Low Energy (BLE)

Page 28 of 482 Document Number: 001-91490 Rev. *B

GAP Settings Tab
The GAP parameters define the general connection settings required when connecting Bluetooth
devices. It contains various sections of parameters based on the item you select in the tree.

The GAP Settings tab displays the settings possible based on the GAP role selected in the
General tab. This tab allows the default settings to be restored by using the Restore Defaults
button.
The following sections show the different categories of parameters based on what item you
select in the tree.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 29 of 482

GAP Settings Tab − General
This section contains general GAP parameters:

Public device address (Company ID – Company assigned)

This is a unique 48-bit Bluetooth public address that is used to identify the device. It is divided
into the following two parts:

 “Company ID” part is contained in the 24 most significant bits. It is a 24-bit Organization
Unique Identifier (OUI) address assigned by IEEE.

 “Company assigned” part is contained in the 24 least significant bits.
The address configured here is static and is designed to be used for development purposes only.
This address is programmed into the device via the SWD interface. Normally this address must
be programmed only once during mass production, and then never changed in-field. However,
user flash can be reprogrammed in-field many times. During prototyping (FW design), this
address can be programmed using MiniProg3. For that you can use the application installed in
the “./Example/Misc/PSoC4-BLE-SFLASH-Update” folder of PSoC Programmer. This application
is provided in source code, and can be used as a reference example for implementation in
production programmers.

Silicon generated “Company assigned” part of device address

When checked, the “Company assigned” part of the device address is generated using the wafer
ID and X-Y die location on the wafer.

Bluetooth Low Energy (BLE)

Page 30 of 482 Document Number: 001-91490 Rev. *B

Device Name

The device name to be displayed on the peer side. It has a read (without
authentication/authorization) property associated with it by default. This parameter can be up to
248 bytes.
Note This parameter configures the GAP Service Device name Characteristic located in the
Profile Tree. It is available for modification only when the device is a GATT Server.

Appearance

The device's logo or appearance, which is a SIG defined 2-byte value. It has a read (without
authentication/authorization) property associated with it by default.
Note This parameter configures the GAP Service Appearance Characteristic located in the
Profile Tree, It is available for modification only when the device is a GATT Server.

MTU Size

Maximum Transmission Unit size (Bytes) of an attribute to be used in the design. Valid range is
from 23 to 512 bytes. This value is used to respond to an Exchange MTU request from the GATT
Client.

TX Power level

The initial transmitter power level (dBm) upon startup. It is applicable for advertisement and
connection channels. Default: 0 dBm. Possible values: -18 dBm, -12 dBm, -6 dBm, -3 dBm, -2
dBm, -1 dBm, 0 dBm, 3 dBm.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 31 of 482

GAP Settings Tab − Advertisement Settings
These parameters are available when the device is configured as "Peripheral," "Broadcaster," or
"Peripheral and Central" GAP role.

Discovery mode

 Non-discoverable – In this mode, the device can't be discovered by a Central device.

 Limited Discoverable – This mode is used by devices that need to be discoverable only
for a limited period of time, during temporary conditions, or for a specific event. The
device which is advertising in Limited Discoverable mode are available for a connection to
Central device which performs Limited Discovery procedure. The timeout duration is
defined by the applicable advertising timeout parameter.

Bluetooth Low Energy (BLE)

Page 32 of 482 Document Number: 001-91490 Rev. *B

 General Discoverable Mode – In this mode, the device should be used by devices that
need to be discoverable continuously or for no specific condition. The device which is
advertising in General Discoverable mode are available for a connection to Central device
which performs General Discovery procedure.The timeout duration is defined by the
applicable advertising timeout parameter.

Advertising type

This parameter defines the advertising type to be used by the LL for an appropriate Discovery
mode.

 Connectable undirected advertising – This option is used for general advertising of the
advertising and scan response data. It allows any other device to connect to this device.

 Scannable undirected advertising – This option is used to broadcast advertising data
and scan response data to active scanners.

 Non-connectable undirected advertising – This option is used to just broadcast
advertising data.

Filter policy

This parameter defines how the scan and connection requests are filtered.

 Scan request: Any | Connect request: Any – Process scan and connect requests from
all devices.

 Scan request: White List | Connect request: Any – Process scan requests only from
devices in the White List and connect requests from all devices.

 Scan request: Any | Connect request: White List – Process scan requests from all
devices and connect requests only from devices in the White List.

 Scan request: White List | Connect request: White List – Process scan and connect
requests only from devices in the White List.

Advertising channel map

This parameter is used to enable a specific advertisement channel.

 Channel 37 – enables advertisement channel #37

 Channel 38 – enables advertisement channel #38

 Channel 39 – enables advertisement channel #39

 Channels 37 and 38 – enables advertisement channels #37 and #38

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 33 of 482

 Channel 37 and 39 – enables advertisement channels #37 and #39

 Channels 38 and 39 – enables advertisement channels #38 and #39

 All channels – enables all three advertisement channels

Advertising Interval

This parameter defines the interval between two advertising events. Set the permissible
minimum and maximum values of two Advertisement interval types: Fast advertising interval
and Slow advertising interval. Typically after the device initialization, a peripheral device uses
the Fast advertising interval. After the Fast advertising interval timeout value expires, and if a
connection with a Central device is not established, then the Profile switches to Slow advertising
interval to save the battery life. After the Slow advertising interval timeout value expires,
'CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP' event is generated.
Note: The Advertising interval needs to be aligned with the selected Profile specification.

 Fast advertising interval – This advertisement interval results in faster LE Connection.
The BLE Component uses this interval value when the connection time is between the
specified minimum and maximum values of the interval.

□ Minimum: The minimum interval for advertising the data and establishing the LE
Connection. The parameter is configured to increment in multiples of 0.625 ms.
Valid range is from 20 ms to 10240 ms.

□ Maximum: The maximum interval for advertising the data and establishing the LE
Connection. The parameter is configured to increment in multiples of 0.625 ms.
Valid range is from 20 ms to 10240 ms.

□ Timeout: The timeout value of advertising with fast advertising interval parameters.

 Slow advertising interval – Defines the advertising interval for slow advertising. This is
an optional parameter which, if enabled, allows to implement advertising with a lower duty
cycle to save battery life. The Slow advertising interval parameters are applied to the
device after the internal fast advertising interval timeout occurs.. The minimum and
maximum values defined using this parameter allow the BLE Stack to expect the
advertising to happen within these intervals.

□ Minimum: The minimum interval for advertising the data and establishing the LE
Connection. The parameter is configured to increment in multiples of 0.625 ms.
Valid range is from 1000 ms to 10240 ms.

□ Maximum: The maximum interval for advertising the data and establishing the LE
Connection. The parameter is configured to increment in multiples of 0.625 ms.
Valid range is from 1000 ms to 10240 ms.

□ Timeout: The timeout value of advertising with slow advertising interval
parameters.

Bluetooth Low Energy (BLE)

Page 34 of 482 Document Number: 001-91490 Rev. *B

Connection Parameters

These parameters define the connection event timing for a Central device communicating with
the Peripheral device. Consecutive connection events are separated by the defined Connection
interval.
Note The scaled values of these parameters used internally by the BLE stack are also shown in
the Peripheral Preferred Connection Parameters. These are the actual values sent over the
air.

 Connection interval – The Central device connecting to a Peripheral device needs to
define the time interval for a connection to happen.

□ Minimum (ms): This parameter is the minimum permissible connection time value
to be used during a connection event. It is configured in steps of 1.25 ms. The
range is from 7.5 ms to 4000 ms.

□ Maximum (ms): This parameter is the maximum permissible connection time value
to be used during a connection event. It is configured in steps of 1.25 ms. The
range is from 7.5 ms to 4000 ms.

 Slave Latency – Defines the latency of the slave in responding to a connection event in
consecutive connection events. This is expressed in terms of multiples of connection
intervals, where only one connection event is allowed per interval. The range is from 0 to
499 events.

 Connection Supervision Timeout – This parameter defines the LE link supervision
timeout interval. It defines the timeout duration for which an LE link needs to be sustained
in case of no response from peer device over the LE link. The time interval is configured
in multiples of 10 ms. The range is from 100 ms to 32000 ms.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 35 of 482

GAP Settings Tab − Advertisement packet
This section displays when the device is configured to contain "Peripheral," "Broadcaster," or
"Peripheral and Central" GAP role. It is used to configure the Advertisement data to be used in
device advertisements.

Bluetooth Low Energy (BLE)

Page 36 of 482 Document Number: 001-91490 Rev. *B

Advertisement / Scan response data settings

Advertisement (AD) or Scan response data packet is a 31 byte payload used to declare the
device's BLE capability and its connection parameters. The structure of this data is shown below
as specified in the Bluetooth specification.

Advertising or Scan Response Data (31 Octets)

Significant Part Non-significant Part

AD Structure 1 AD Structure 2 AD Structure N... 000… '000

Length Data

AD Type AD Type

1 Octet Length Octets

n Octets Length – n Octets

The data packet can contain a number of AD structures. Each of these structures is composed of
the following parameters.

 AD Length: Size of the AD Type and AD Data in bytes.

 AD Type: The type of advertisement within the AD structure.

 AD Data: Data associated with the AD Type.
The total length of a complete Advertising packet cannot exceed 31 bytes.
An example structure for Advertisement data or Scan response data is as follows.

 AD Structure Element Definition:
□ AD Length: Size of AD Type and associated AD Data = 5 bytes
□ AD Type (1 byte): 0x03 (Service UUID)
□ AD Data (4 bytes): 0x180D, 0x180A (Heart Rate Service, Device Information

Service)

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 37 of 482

The following table shows the AD Types.

AD Type Description

Flags Flags to broadcast underlying BLE transport capability such as
Discoverable mode, LE only, etc.

Local Name Device Name (complete of shortened). The device name value comes from
the Device name field on the GAP Settings tab, under General.

Tx Power Level Transmit Power Level. Taken from the TX power level field on the GAP
Settings tab, under General.

Slave Connection Interval Range Preferred connection interval range for the device.

Service UUID List of Service UUIDs to be broadcasted that the device has implemented.
There are different AD Type values to advertise 16-bit, 32-bit and 128-bit
Service UUIDs. 16-bit and 32-bit Service UUIDs are used if they are
assigned by the Bluetooth SIG.

Service Solicitation List of Service UUIDs from the central device that the peripheral device
would like to use. There are different AD Type values to advertise 16-bit,
32-bit and 128-bit Service UUIDs.

Service Data 2/4/16-byte Service UUID, followed by additional Service data.

Security Manager TK value Temporal key to be used at the time of pairing.

Appearance The external appearance of the device. The value comes from the
Appearance field on the GAP Settings tab, under General.

Public Target Address The public device address of intended recipients.

Random Target Address The random device address of intended recipients.

Advertising Interval The Advertising interval value that is calculated as an average of Fast
advertising interval minimum and maximum values configured on the GAP
Settings tab, under Advertisement Settings.

LE Bluetooth Device Address The device address of the local device. The value comes from the Public
device address field on the GAP Settings tab, under General.

LE Role Supported LE roles

Manufacturer Specific Data 2 bytes company identifier followed by manufacturer specific data.

Bluetooth Low Energy (BLE)

Page 38 of 482 Document Number: 001-91490 Rev. *B

GAP Settings Tab − Scan response packet
This section displays when the device is configured to contain a "Peripheral," "Broadcaster," or
"Peripheral and Central" GAP role. It is used to configure the Scan response data packet to be
used in response to device scanning performed by a GATT Client device.

The packet structure of a Scan response packet is the same as an Advertisement packet. See
Advertisement / Scan response data settings for information on configuring the Scan response
packet.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 39 of 482

GAP Settings Tab − Scan settings
These parameters are available when the device is configured as a "Central," "Observer," or
"Peripheral and Central" GAP role. Typically during a device discovery, the GATT Client device
initiates the scan procedure. It uses Fast scan parameters for a period of time, approximately
30 to 60 seconds, and then it reduces the scan frequency using the Slow scan parameters.

Note The scan interval needs to be aligned with the user-selected Profile specification.

Discovery procedure

 Limited – A device performing this procedure shall discover the device doing limited
discovery mode advertising only.

 General – A device performing this procedure shall discover the devices doing general
and limited discovery advertising.

Bluetooth Low Energy (BLE)

Page 40 of 482 Document Number: 001-91490 Rev. *B

Scanning state

 Passive – In this state a device can only listen to advertisement packets.

 Active – In this state a device may ask an advertiser for additional information.

Filter policy

This parameter defines how the advertisement packets are filtered.

 All – Process all advertisement packets.

 White List Only – Process advertisement packets only from devices in the White List.

Duplicate filtering

When enabled, this activates filtering of duplicated advertisement data. If disabled, the BLE stack
will not perform filtering of advertisement data.

Scan parameters

These parameters define the scanning time and interval between scanning events. Two different
sets of Scan parameters are used: Fast scan parameters and Slow scan parameters.
Typically after the device initialization, a central device uses the Fast scan parameters. After the
Fast scan timeout value expires, and if a connection with a Peripheral device is not established,
then the Profile switches to Slow scan parameters to save the battery life. After the Slow scan
timeout value expires, CYBLE_EVT_GAPC_SCAN_START_STOP event is generated. See API
documentation.

 Fast scan parameters – This connection type results in a faster connection between the
GATT Client and Server devices than it is possible using a normal connection.

□ Scan Window: This parameter defines the scan window when operating in Fast
connection. The parameter is configured to increment in multiples of 0.625 ms.
Valid range is from 2.5 ms to 10240 ms. Scan Window must be less than the
Scan Interval. Default: 30 ms.

□ Scan Interval: This parameter defines the scan interval when operating in Fast
connection. The parameter is configured to increment in multiples of 0.625 ms.
Valid range is from 2.5 ms to 10240 ms. Default: 30 ms.

□ Scan Timeout: The timeout value of scanning with fast scan parameters. Default:
30 s.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 41 of 482

 Slow scan parameters – This connection results in a slower connection between the
GATT Client and GATT Server devices than is possible using a normal connection.
However this method consumes less power.

□ Scan Window: This parameter defines the scan window when operating in Slow
Connection. The parameter is configured to increment in multiples of 0.625ms.
Valid range is from 2.5 ms to 10240 ms. Scan Window must be less than the
Scan Interval. Default: 11.25 ms.

□ Scan Interval: This parameter defines the scan interval when operating in Slow
Connection. The parameter is configured to increment in multiples of 0.625 ms.
Valid range is from 2.5 ms to 10240 ms. Default: 1280 ms.

□ Scan Timeout: The timeout value of scanning with slow scan parameters. Default:
150 s.

Connection Parameters

This section is the same as Connection Parameters for Advertisement Settings. The only
difference is that Scan connection parameters will not be shown on the Peripheral Preferred
Connection parameters on the Profile tab.

Bluetooth Low Energy (BLE)

Page 42 of 482 Document Number: 001-91490 Rev. *B

GAP Settings Tab − Security
This section contains several parameters to configure the global security options for the
Component. If the device is configured as a GATT Server, you can optionally set each
Characteristic using its own unique security setting in the Profile Tree.

Security mode

Defines GAP security modes for the Component. Both available modes may support
authentication.

 Mode 1 – Used in designs where data encryption is required.

 Mode 2 – Used in designs where data signing is required.

Security level

Enables different levels of security depending on the selected Security mode:

 If Mode1 is selected, then the following security levels are available.
□ No Security – With this level of security, the device will not use encryption or

authentication.
□ Unauthenticated pairing with encryption – With this level of security, the device will

send encrypted data after establishing a connection with the remote device.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 43 of 482

□ Authenticated pairing with encryption – With this level of security, the device will
send encrypted data after establishing a connection with the remote device. To
establish a connection, devices should perform the authenticated paring procedure.

 If Mode 2 is selected, then the following security levels are available.
□ Unauthenticated pairing with data signing – With this level of security, the device

will perform data signing prior to sending it to the remote device after they establish
a connection.

□ Authenticated pairing with data signing – With this level of security, the device will
perform data signing prior to sending it to the remote device after they establish a
connection. To establish a connection, the devices should perform the
authenticated paring procedure.

I/O capabilities

This parameter refers to the device's input and output capability that can enable or restrict a
particular pairing method or security level.

 No Input No Output – Used in devices that don't have any capability to enter and display
the authentication key data. Used in mouse-like devices. No GAP authentication is
required.

 Display Only – Used in devices with display capability and may display authentication key
data. GAP authentication is required.

 Keyboard Only – Used in devices with numeric keypad. GAP authentication is required.

 Display Yes/No – Used in devices with display and at least two input keys for Yes/No
action. GAP authentication is required.

 Keyboard and Display – Used in devices like PCs and tablets. GAP authentication is
required.

Pairing Method

This parameter is used to explicitly configure the pairing method for the Component.

 Just Works – The device will use the simple paring procedure without authentication. With
this method, the transferred data would be vulnerable to "man in the middle" attacks.

 Passkey Entry – This uses six numeric digits generated for a Short Term Key (STK)
passed by the user between the devices.

 OOB (Out of Band) pairing – Uses an external means of communication to exchange the
device pairing information. Pairing itself is performed using the BLE radio.

Bluetooth Low Energy (BLE)

Page 44 of 482 Document Number: 001-91490 Rev. *B

Bonding Requirement:

This parameter is used to configure the bonding requirements. The purpose of bonding is to
create a relation between two Bluetooth devices based on a common link key (a bond). The link
key is created and exchanged (pairing) during the bonding procedure and is expected to be
stored by both Bluetooth devices, to be used for future authentication.

 Bonding: The device will store the link key of a connection after paring with the remote
device and if a connection will be lost and re-established, the devices will use the
previously stored key for the connection.
Note Boding information is stored in RAM and should be written to Flash if it needs to be
retained during shutdown. Refer to the Functional Description section for details on
bonding and Flash write usage.

 No Bonding: The pairing process will be performed on each connection establishment.

Encryption Key Size

This parameter defines the encryption key size based on the Profile requirement. The valid
values of encryption key size are 7 to 16 bytes.

BLE Component APIs
The BLE Component contains a comprehensive API list to allow you to configure the BLE stack,
the underlying chip hardware and the BLE service specific configuration using software. You
may access the GAP, GATT and L2CAP layers of the stack using these.
The APIs are broadly categorized as follows:

 BLE Common APIs

 BLE Service-Specific APIs
Note: All BLE Component API names begin with CyBle_. This is a unique feature of the BLE
Component, and allows only one instance of the Component to be placed in your design.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 45 of 482

HTML-Based API Document
Because the BLE Component has numerous APIs, Cypress has also provided a separate HTML-
based API reference document (CHM file). To open this file, right-click on the BLE Component
on the design canvas, and select Open API Documentation…

Sample Firmware Source Code
PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are three types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator Components

 Component specific deviations – deviations that are applicable only for the common part
of this Component

 Profile specific deviations – deviations that are applicable only for a specific Profile of the
Component

Bluetooth Low Energy (BLE)

Page 46 of 482 Document Number: 001-91490 Rev. *B

This section provides information on Component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.
The BLE Component has the following specific deviations.

MISRA-
C:2004
Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

9.3 R In an enumerator list, the '=' construct
shall not be used to explicitly initialize
members other than the first, unless all
items are explicitly initialized.

Violated when a specific value needs to
be assigned to an enumerator item.

10.1 R The value of an expression of integer type
shall not be implicitly converted to a
different underlying type under some
circumstances.

An operand of essentially enum type is
being converted to unsigned type as a
result of an arithmetic or conditional
operation. The conversion does not have
any unintended effect.

11.4 A A cast should not be performed between a
pointer to object type and a different
pointer to object type.

A cast involving pointers is conducted
with caution that the pointers are correctly
aligned for the type of object being
pointed to.

13.7 R Boolean operations whose results are
invariant shall not be permitted.

A Boolean operator can yields a result
that can be proven to be always "true" or
always "false" in some specific
configurations because of generalized
implementation approach.

17.4 R Array indexing shall be the only allowed
form of pointer arithmetic.

An array subscript operator is being used
to subscript an expression which is not of
array type. This is perfectly legitimate in
the C language providing the pointer
addresses an array element.

18.4 R Unions shall not be used. Deviated for constructing an efficient
implementation.

19.7 A A function should be used in preference to
a function-like macro.

Deviated for more efficient code.

This Component has the following embedded Components: cy_isr, SCB. Refer to the
corresponding Component datasheets for information on their MISRA compliance and specific
deviations.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 47 of 482

API Memory Usage
The Component memory usage varies significantly, depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.
The measurements are done with the associated compiler configured in Release mode with
optimization set for Size. For a specific design, the map file generated by the compiler can be
analyzed to determine the memory usage.
The Component's BLE Stack is implemented in four libraries and therefore the Component
memory usage is directly dependent on the library used. The libraries are:

 HCI Library (used in HCI mode)

 Peripheral (used when the Component is configured for GAP Peripheral or GAP
Broadcaster role)

 Central (used when the Component is configured for GAP Central or GAP Observer role)

 Peripheral and Central (used when the Component is configured for GAP Peripheral and
Central roles)

HCI Mode

Configuration

PSoC 4200-BL (GCC)

Flash Bytes SRAM Bytes Stack Bytes

HCI Mode 36444 5805 2048

Peripheral and Central Profile Mode

Configuration

PSoC 4200-BL (GCC)

Flash Bytes SRAM Bytes Stack Bytes

Alert Notification Profile (Server) 79262 9256 2048

Find Me Profile (Find Me Target role) 78668 9241 2048

Phone Alert Status 79274 9249 2048

Time 79808 9279 2048

Bluetooth Low Energy (BLE)

Page 48 of 482 Document Number: 001-91490 Rev. *B

Central Profile Mode

Configuration

PSoC 4200-BL (GCC)

Flash Bytes SRAM Bytes Stack Bytes

Alert Notification Profile (Server) 72594 9151 2048

Find Me Profile (Find Me Target role) 72012 9130 2048

HID over GATT Profile (Host) 77754 9338 2048

Phone Alert Status 72474 9136 2048

Proximity Profile (Proximity Reporter) 72778 9140 2048

Time 73008 9166 2048

Peripheral Profile Mode

Configuration

PSoC 4200-BL (GCC)

Flash Bytes SRAM Bytes Stack Bytes

Blood Pressure 71254 9137 2048

Cycling Power 71620 9136 2048

Cycling Speed and Cadence 71356 9119 2048

Find Me Profile (Find Me Target role) 70022 9084 2048

Glucose Profile (Glucose Sensor) 71404 9130 2048

Health Thermometer Profile (Server) 71520 9126 2048

Heart Rate Profile (Heart Rate Sensor) 71038 9105 2048

HID Over GATT Profile (HID Device) 73012 9157 2048

Location and Navigation 71006 9115 2048

Proximity Profile (Proximity Reporter) 71060 9096 2048

Running Speed and Cadence 71358 9122 2048

Scan Parameters Profile (Scan Server) 70534 9090 2048

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 49 of 482

BLE Common APIs
The common APIs act as a general interface between the BLE application and the BLE Stack
module. The application may use these APIs to control the underlying hardware such as radio
power, data encryption and device bonding via the stack. It may also access the GAP, GATT
and L2CAP layers of the stack. These are divided into the following categories:

 BLE Common Core Functions

 GAP Functions

 GATT Functions

 L2CAP Functions
These APIs also use API specific definitions and data structures. Many of the APIs also rely on
BLE Stack events. These are classified in the following subsets:

 BLE Common Events

 BLE Common Definitions and Data Structures

BLE Common Core Functions
The common core APIs are used for general BLE Component configuration. These include
initialization, power management, and utilities.

Functions

Function Description

CyBle_Start This function initializes the BLE Stack. It takes care of initializing the... more

CyBle_Stop This function stops any ongoing operation in the BLE Stack and forces the BLE
Stack to shut down. The only function that can be called... more

CyBle_GetBleSsState This function gets the BLE Subsystem's current operational mode. This state can
be used to manage system level power modes based on return value.

CyBle_StoreAppData This function instructs the Stack to backup application specific data into flash. This
API must be called by application to backup application specific data. If... more

CyBle_StoreBondingData This function writes the new bonding data from RAM to the dedicated Flash
location as defined by the Component. It performs data comparing between
RAM... more

CyBle_StoreStackData This function instructs Stack to backup Stack internal RAM data into flash. This
API must be called by application to backup stack data. If this... more

CyBle_SoftReset This function resets the BLE Stack, including BLE sub-system hardware registers.
BLE Stack transitions to idle mode. This function can be used to reset the... more

CyBle_EnterLPM This function requests the underlying BLE modules to enter into one of the
supported... more

Bluetooth Low Energy (BLE)

Page 50 of 482 Document Number: 001-91490 Rev. *B

Function Description

CyBle_ExitLPM Application can asynchronously wake up the BLE Stack from low power using this
function. The wake up is not performed for the entire chip. This... more

CyBle_ProcessEvents This function checks the internal task queue in the BLE Stack, and pending
operation of the BLE Stack, if any. This needs to be called... more

CyBle_GetDeviceAddress This API reads the BD device address from BLE Controller's memory. This
address shall be used for BLE procedures unless explicitly indicated by BLE
Host... more

CyBle_SetDeviceAddress This function sets the Bluetooth device address into BLE Controller's memory.
This address shall be used for BLE procedures unless explicitly indicated by BLE
Host... more

CyBle_GetRssi This function reads the recorded Received Signal Strength Indicator (RSSI) value
for the last successfully received packet from the BLE radio sub-system. This is
a... more

CyBle_GetTxPowerLevel This function reads the transmit power of the BLE radio for the given BLE sub-
system channel group. This is a blocking function. No event is... more

CyBle_SetTxPowerLevel This function sets the transmit power of the BLE radio for given BLE sub-system
channel group. This is a blocking function. No event is generated... more

CyBle_GetBleClockCfgParam This function reads the clock configuration parameter of BLE sub-system. This is a
blocking function. No event is generated on calling this function. The following...
more

CyBle_SetBleClockCfgParam This function sets the clock configuration parameter of BLE sub-system. This is a
blocking function. No event is generated on calling this function. The following...
more

CyBle_GenerateRandomNumber This function generates 8-byte random number which complies with pseudo
random number generation in accordance with [FIPS PUB 140-2]. Random
number generation function is used... more

CyBle_AesEncrypt This function uses BLE sub-system AES engine to encrypt 128-bit of plain text
using the given AES key. The output of AES processing is copied... more

CyBle_SetCeLengthParam This function sets the connection event duration related parameters that can result
in extension or truncation of LE connection event based on more data (mdBit)...
more

CyBle_WriteAuthPayloadTimeout This function sets the Authentication Payload timeout in BLE Controller for
LE_PING feature. Refer Bluetooth 4.1 core specification, Volume 6, Part B,
section 4.6.5 for... more

CyBle_ReadAuthPayloadTimeout This function reads the Authentication Payload timeout set in BLE Controller for
LE_PING feature Refer Bluetooth 4.1 core specification, Volume 6, Part B, section
4.6.5... more

CyBle_GetStackLibraryVersion This function retrieves the version information of the BLE Stack library. This is a
blocking function. No event is generated on calling this function

CyBle_SetRxGainMode This function configures the Rx gain mode for BLESS radio for Rx operation.

CyBle_SetTxGainMode This function configures the Tx gain mode for BLESS radio for Tx operation.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 51 of 482

Macros

Macro Description

CyBle_GetState This function is used to determine the current state of the Event Handler state machine.

CyBle_SetState Used to set the Event Handler State Machine's state.

CyBle_Start

Prototype
CYBLE_API_RESULT_T CyBle_Start(CYBLE_CALLBACK_T callbackFunc);

Description

This function initializes the BLE Stack. It takes care of initializing the Profile layer, schedulers,
Timer and other platform related resources required for the BLE Component. It also registers the
callback function for BLE events that will be registered in the BLE stack.
Note that this function does not reset the BLE Stack.
For HCI-Mode of operation, this function will not initialize the BLE Host module.
Calling this function results in the generation of CYBLE_EVT_STACK_ON event on successful
initialization of the BLE Stack.

Parameters

Parameters Description

CYBLE_CALLBACK_T callbackFunc Event callback function to receive events from BLE stack.
CYBLE_CALLBACK_T is a function pointer type.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On passing a NULL pointer to the function when the BLE stack is
not built in HCI mode. CYBLE_ERROR_INVALID_PARAMETER is
never returned in HCI mode.

CYBLE_ERROR_REPEATED_ATTEMPTS On invoking this function more than once without calling
CyBle_Shutdown() function between calls to this function.

Bluetooth Low Energy (BLE)

Page 52 of 482 Document Number: 001-91490 Rev. *B

CyBle_Stop

Prototype
void CyBle_Stop(void);

Description

This function stops any ongoing operation in the BLE Stack and forces the BLE Stack to shut
down. The only function that can be called after calling this function is CyBle_Start().

Returns

None

CyBle_GetState

Prototype
#define CyBle_GetState (cyBle_state)

Description

This function is used to determine the current state of the Event Handler state machine.

Returns

CYBLE_STATE_T state - The current state.

CyBle_GetBleSsState

Prototype
CYBLE_BLESS_STATE_T CyBle_GetBleSsState(void);

Description

This function gets the BLE Subsystem's current operational mode. This state can be used to
manage system level power modes based on return value.

Returns

CYBLE_BLESS_STATE_T bleStackMode: CYBLE_BLESS_STATE_T has one of the following modes

BLE Stack Mode Description

CYBLE_BLESS_STATE_ACTIVE BLE Sub System is in active mode, CPU can be in active mode or
sleep mode.

CYBLE_BLESS_STATE_EVENT_CLOSE BLE Sub System radio and Link Layer hardware finishes Tx/Rx. After
this state application can try putting BLE to Deep Sleep State to save

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 53 of 482

power in rest of the BLE transmission event.

CYBLE_BLESS_STATE_SLEEP BLE Sub System is in sleep mode, CPU can be in sleep mode.

CYBLE_BLESS_STATE_ECO_ON BLE Sub System is in process of wakeup from Deep Sleep Mode and
ECO(XTAL) is turned on. CPU can be put in Deep Sleep Mode.

CYBLE_BLESS_STATE_ECO_STABLE BLE Sub System is in process of wakeup from Deep Sleep Mode and
ECO(XTAL) is stable. CPU can be put in sleep mode.

CYBLE_BLESS_STATE_DEEPSLEEP BLE Sub System is in Deep Sleep Mode. CPU can be put in Deep
Sleep Mode.

CYBLE_BLESS_STATE_HIBERNATE BLE Sub System is in Hibernate Mode. CPU can be put in Deep Sleep
Mode.

CyBle_SetState

Prototype
#define CyBle_SetState(state) (cyBle_state = (state))

Description

Used to set the Event Handler State Machine's state.

Parameters

Parameters Description

state The desired state that the event handler's state machine should be set to.

Returns

None

CyBle_StoreAppData

Prototype
CYBLE_API_RESULT_T CyBle_StoreAppData(uint8 * srcBuff, const uint8 destAddr[],
uint32 buffLen, uint8 isForceWrite);

Description

This function instructs the Stack to backup application specific data into flash. This API must be
called by application to backup application specific data. If this API is not called appropriately,
data will not be available on power cycle.

Bluetooth Low Energy (BLE)

Page 54 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

uint8 * srcBuff Source buffer

const uint8 destAddr[] Destination address

uint32 buffLen Length of srcData

uint8 isForceWrite If value is set to 0, then stack will check if flash write is permissible.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_FLASH_WRITE_NOT_PERMITED Flash Write is not permitted

CyBle_StoreBondingData

Prototype
CYBLE_API_RESULT_T CyBle_StoreBondingData(uint8 isForceWrite);

Description

This function writes the new bonding data from RAM to the dedicated Flash location as defined
by the Component. It performs data comparing between RAM and Flash before writing to Flash.
If there is no change between RAM and Flash data, then no write is performed. It writes only one
flash row in one call. Application should keep calling this function till API return
CYBLE_ERROR_OK. This function is available only when Bonding requirement is selected in
Security settings.

Parameters

Parameters Description

uint8 isForceWrite If value is set to 0, then stack will check if flash write is permissible.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - On successful operation

 CYBLE_ERROR_FLASH_WRITE_NOT_PERMITED - Flash Write is not complete

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 55 of 482

Side Effects

This API will automatically modify the clock settings for the device. Writing to flash requires
changes to be done to the IMO (set to 48 MHz) and HFCLK (source set to IMO) settings. The
configuration is restored before returning. This will impact the operation of most of the hardware
in the device.

CyBle_StoreStackData

Prototype
CYBLE_API_RESULT_T CyBle_StoreStackData(uint8 isForceWrite);

Description

This function instructs Stack to backup Stack internal RAM data into flash. This API must be
called by application to backup stack data. If this API is not called appropriately, stack internal
data structure will not be available on power cycle.

Parameters

Parameters Description

uint8 isForceWrite If value is set to 0, then stack will check if flash write is permissible.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_FLASH_WRITE_NOT_PERMITED Flash Write is not permitted or not completely written

CyBle_SoftReset

Prototype
CYBLE_API_RESULT_T CyBle_SoftReset(void);

Description

This function resets the BLE Stack, including BLE sub-system hardware registers. BLE Stack
transitions to idle mode. This function can be used to reset the BLE Stack if the BLE Stack turns
unresponsive due to incomplete transfers with the peer BLE device.
This is a blocking function. No event is generated on calling this function.

Bluetooth Low Energy (BLE)

Page 56 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_OPERATION This error occurs if this function is invoked before invoking
CyBle_StackInit function.

CyBle_EnterLPM

Prototype
CYBLE_LP_MODE_T CyBle_EnterLPM(CYBLE_LP_MODE_T pwrMode);

Description

This function requests the underlying BLE modules to enter into one of the supported low power
modes. Application should use this function to put Bluetooth Low Energy Sub-System (BLESS)
to Low Power Mode (LPM).
BLE Stack enters and exits low power modes based on its current state and hence the
application should consider the BLE Stack LPM state before putting the CPU or the overall
device into LPM. This function attempts to set the requested low power mode and if that is not
possible, it tries to set the next higher low-power-mode. This behavior is due to the requirement
that the application will always try to use the lowest power mode when there is nothing that it
needs to process. Note that the CPU will not be able to access the BLESS registers when
BLESS is in Deep Sleep Mode.
BLE Stack has the following power modes:

 Active

 Sleep (Low Power Mode)

 Deep Sleep with ECO Off (Low Power Mode)

 Hibernate (Low Power Mode)
Note that certain conditions may prevent BLE sub system from entering a particular low power
mode.

Active Mode

Bluetooth Low Energy Sub System (BLESS) has three sub-modes in Active mode:

 Idle

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 57 of 482

 Transmit Mode, and

 Receive Mode
These modes draw full current from the device and the CPU has full access to its registers.

Sleep Mode

The clock to the link layer engine and digital modem is gated and the (External Crystal Oscillator)
ECO continues to run to maintain the link layer timing. The application cannot enter sleep mode
if a Transmit or Receive is in progress.

Deep Sleep with ECO Off Mode

The ECO is stopped and Watch Crystal Oscillator (WCO) is used to maintain link layer timing. All
the regulators in the Radio Frequency (RF) transceiver are turned off to reduce leakage current
and BLESS logic is kept powered ON from the System Resources Sub System (SRSS) Deep
Sleep regulator for retention of current BLESS state information. This mode can be entered from
either Idle (Active) or Sleep mode. It should be entered when the next scheduled activity instant
in time domain is greater than the Deep Sleep total wakeup time (typically 2ms).

Hibernate mode

The application layer should invoke this function with the Hibernate Mode option to put the BLE
Stack in to hibernate mode. If this mode is set, the micro-controller can be put in to Hibernate
Mode by the application layer. This mode ensures that BLE Sub-system is completely idle and
no procedures such ADV, SCAN and CONNECTION are active.
The following table indicates the allowed sleep modes for the complete system (BLE Sub-system
and the micro-controller). Modes marked In 'X' are the allowed combinations. The application
layer should make sure that the invalid modes are not entered in to:

 |-----------|--|
 | BLE Stack |PSoC4A-BLE Micro-controller Low Power Modes |
 | LPM Modes |__|
 | | Active | Sleep | DeepSleep | Hibernate |
 |___________|___________|__________|_____________|___________|
 | Active | X | | | |
 |___________|___________|__________|_____________|___________|
 | Sleep | X | X | | |
 |___________|___________|__________|_____________|___________|
 | DeepSleep | | | | |
 | (ECO OFF) | X | X | X | |
 |___________|___________|__________|_____________|___________|
 | Hibernate | | | | X |
 |___________|___________|__________|_____________|___________|

The application layer is responsible for putting the BLE Sub-system and the micro-controller in to
the desired sleep modes. Upon entering the requested sleep mode combination, the BLE Sub-
system and the micro-controller are woken up by an interrupt every advertisement interval(in
case of a GAP Peripheral) or connection interval (in case of GAP Central). On wakeup, if the

Bluetooth Low Energy (BLE)

Page 58 of 482 Document Number: 001-91490 Rev. *B

application needs to transmit some data, appropriate function(s) including the Stack functions
need to be invoked. This needs to be followed by a call to the function CyBle_ProcessEvents,
which handles all pending transmit and receive operations. The application can now put the
complete system back in to one of the sleep modes. The application should ensure that the
above invalid states are never encountered.
This is a blocking function. No event is generated on calling this function. Based on the return
code from this function, the application layer should decide on the sleep mode for the complete
system. For example, if the return code is CYBLE_BLESS_DEEPSLEEP, the application can
choose to call system wide Deep Sleep Mode function.

Parameters

Parameters Description

CYBLE_LP_MODE_T
pwrMode

The power mode that the Component is intended to enter. The allowed values
are,
• CYBLE_BLESS_SLEEP
• CYBLE_BLESS_DEEPSLEEP

Returns

CYBLE_LP_MODE_T: The actual power mode that BLE stack is now set to.

CyBle_ExitLPM

Prototype
CYBLE_LP_MODE_T CyBle_ExitLPM(void);

Description

Application can asynchronously wake up the BLE Stack from low power using this function. The
wake up is not performed for the entire chip. This is a blocking call and returns when BLE Stack
has come out of LPM. No event is generated on calling this function. It has no effect if it is
invoked when the BLE Stack is already in active mode.

Returns

CYBLE_LP_MODE_T: The actual power mode that BLE stack is now set to. Expected return value is
CYBLE_BLESS_ACTIVE.

CyBle_ProcessEvents

Prototype
void CyBle_ProcessEvents(void);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 59 of 482

Description

This function checks the internal task queue in the BLE Stack, and pending operation of the BLE
Stack, if any. This needs to be called at least once every interval 't' where:

 't' is equal to connection interval or scan interval, whichever is smaller, if the device is in
GAP Central mode of operation, or

 't' is equal to connection interval or advertisement interval, whichever is smaller, if the
device is in GAP Peripheral mode of operation.

On calling every interval 't', all pending operations of the BLE Stack are processed. This is a
blocking function and returns only after processing all pending events of the BLE Stack Care
should be taken to prevent this call from any kind of starvation; on starvation, events may be
dropped by the stack. All the events generated will be propagated to higher layers of the BLE
Stack and to the Application layer only after making a call to this function.

Returns

None

CyBle_GetDeviceAddress

Prototype
CYBLE_API_RESULT_T CyBle_GetDeviceAddress(CYBLE_GAP_BD_ADDR_T* bdAddr);

Description

This API reads the BD device address from BLE Controller's memory. This address shall be
used for BLE procedures unless explicitly indicated by BLE Host through HCI commands. This is
a blocking function and it returns immediately with the required value.

Parameters

Parameters Description

CYBLE_GAP_BD_ADDR_T*
bdAddr

Pointer to the CYBLE_GAP_BD_ADDR_T structure variable. It has two fields
where,
• bdAddr.addr: Bluetooth Device address buffer that is populated with the

device address data from BLE stack.
• bdAddr.type: Caller function should fill the "address type" to retrieve

appropriate address.
Caller function should use bdAddr.type = 0x00 to get the "Public Device
Address" which is currently set.
Caller function use bdAddr.type = 0x01 to get the "Random Device Address"
which is currently set.

Bluetooth Low Energy (BLE)

Page 60 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter.

CyBle_SetDeviceAddress

Prototype
CYBLE_API_RESULT_T CyBle_SetDeviceAddress(CYBLE_GAP_BD_ADDR_T* bdAddr);

Description

This function sets the Bluetooth device address into BLE Controller's memory. This address shall
be used for BLE procedures unless explicitly indicated by BLE Host through HCI commands.
The application layer needs to call this function every time an address change is required.
Bluetooth 4.1 Core specification [3.12] specifies that the bluetooth device can change
its private address periodically, with the period being decided by the application; there are no
limits specified on this period. The application layer should maintain its own timers in order to do
this.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

CYBLE_GAP_BD_ADDR_T*
bdAddr

Bluetooth Device address retrieved from the BLE stack gets stored to a variable
pointed to by this pointer. The variable is of type CYBLE_GAP_BD_ADDR_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 61 of 482

CyBle_GetRssi

Prototype
int8 CyBle_GetRssi(void);

Description

This function reads the recorded Received Signal Strength Indicator (RSSI) value for the last
successfully received packet from the BLE radio sub-system. This is a blocking function. No
event is generated on calling this function.

Returns

int8: The RSSI value of the responding device.

Information Description

Range -85 <= N <= 5

Note The value is in dBm.

CyBle_GetTxPowerLevel

Prototype
CYBLE_API_RESULT_T CyBle_GetTxPowerLevel(CYBLE_BLESS_PWR_IN_DB_T * bleSsPwrLvl);

Description

This function reads the transmit power of the BLE radio for the given BLE sub-system channel
group. This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

CYBLE_BLESS_PWR_IN_DB_T *
bleSsPwrLvl

Pointer to a variable of type CYBLE_BLESS_PWR_IN_DB_T where,
• bleSsPwrLvl -> blePwrLevelInDbm indicates Output Power level in

dBm returned by the function.
• bleSsPwrLvl -> bleSsChId indicates Channel group for which power

level is to be read. This needs to be set before calling the function. The
value can be advertisement channels (CYBLE_LL_ADV_CH_TYPE) or
data channels (CYBLE_LL_CONN_CH_TYPE).

Returns

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Bluetooth Low Energy (BLE)

Page 62 of 482 Document Number: 001-91490 Rev. *B

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter

CyBle_SetTxPowerLevel

Prototype
CYBLE_API_RESULT_T CyBle_SetTxPowerLevel(CYBLE_BLESS_PWR_IN_DB_T * bleSsPwrLvl);

Description

This function sets the transmit power of the BLE radio for given BLE sub-system channel group.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

CYBLE_BLESS_PWR_IN_DB_T *
bleSsPwrLvl

Pointer to a variable of type 'CYBLE_BLESS_PWR_IN_DB_T' where,
• bleSsPwrLvl -> blePwrLevelInDbm indicates Output Power level in

dBm to be set by the function.
• bleSsPwrLvl -> bleSsChId indicates Channel group for which power

level is to be set. The value can be advertisement channels
(CYBLE_LL_ADV_CH_TYPE) or data channels
(CYBLE_LL_CONN_CH_TYPE).

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter.

CyBle_GetBleClockCfgParam

Prototype
CYBLE_API_RESULT_T CyBle_GetBleClockCfgParam(CYBLE_BLESS_CLK_CFG_PARAMS_T *
bleSsClockConfig);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 63 of 482

Description

This function reads the clock configuration parameter of BLE sub-system. This is a blocking
function. No event is generated on calling this function. The following parameters related to the
BLE sub-system clock are set by this function:

Sleep Clock accuracy

Sleep clock accuracy (SCA)in PPM. This parameter indicates the sleep clock accuracy in PPM
as described in the following table. It is set in the BLE Stack and is used for BLE Connection
operation while creating LE connection with the peer device.

Sleep Clock Accuracy Enum Field PPM Range Translation (PPM)

CYBLE_LL_SCA_251_TO_500_PPM 251 - 500

CYBLE_LL_SCA_151_TO_250_PPM 151 – 250

CYBLE_LL_SCA_101_TO_150_PPM 101 - 150

CYBLE_LL_SCA_076_TO_100_PPM 76 - 100

CYBLE_LL_SCA_051_TO_075_PPM 51 - 75

CYBLE_LL_SCA_031_TO_050_PPM 31 - 50

CYBLE_LL_SCA_021_TO_030_PPM 21 - 30

CYBLE_LL_SCA_000_TO_020_PPM 0 - 20

Refer to Bluetooth Core Specification 4.1 Volume 6, Chapter 4.5.7 for more details on how the
SCA is used.

Link Layer clock divider

This input decides the frequency of the clock to the link layer. A lower clock frequency results in
lower power consumption. Default clock frequency for the operation is 24MHz. BLESS supports
24MHz, 12MHz and 8MHz clock configurations. Based on the end application requirement (how
frequent the communication is expected to be), this parameter needs to be set.

Parameters

Parameters Description

CYBLE_BLESS_CLK_CFG_PARAMS_T *
bleSsClockConfig

Pointer to a variable of type
CYBLE_BLESS_CLK_CFG_PARAMS_T to which the existing clock
configuration is stored.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Bluetooth Low Energy (BLE)

Page 64 of 482 Document Number: 001-91490 Rev. *B

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter.

CyBle_SetBleClockCfgParam

Prototype
CYBLE_API_RESULT_T CyBle_SetBleClockCfgParam(CYBLE_BLESS_CLK_CFG_PARAMS_T *
bleSsClockConfig);

Description

This function sets the clock configuration parameter of BLE sub-system. This is a blocking
function. No event is generated on calling this function. The following parameters related to the
BLE sub-system clock are set by this function:

Sleep Clock accuracy

Sleep clock accuracy (SCA) in PPM. This parameter indicates the sleep clock accuracy in PPM
as described in the following table. It is set in the BLE Stack and is used for BLE Connection
operation while creating LE connection with the peer device.

Sleep Clock Accuracy Enum Field PPM Range Translation (PPM)

CYBLE_LL_SCA_251_TO_500_PPM 251 - 500

CYBLE_LL_SCA_151_TO_250_PPM 151 - 250

CYBLE_LL_SCA_101_TO_150_PPM 101 - 150

CYBLE_LL_SCA_076_TO_100_PPM 76 - 100

CYBLE_LL_SCA_051_TO_075_PPM 51 - 75

CYBLE_LL_SCA_031_TO_050_PPM 31 - 50

CYBLE_LL_SCA_021_TO_030_PPM 21 - 30

CYBLE_LL_SCA_000_TO_020_PPM 0 - 20

Refer to Bluetooth Core Specification 4.1 Volume 6, Chapter 4.5.7 for more details on how the
SCA is used.

Link Layer clock divider

This input decides the frequency of the clock to the link layer. A lower clock frequency results in
lower power consumption. Default clock frequency for the operation is 24MHz. BLESS supports
24MHz, 12MHz and 8MHz clock configurations. Based on the end application requirement (how
frequent the communication is expected to be), this parameter needs to be set.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 65 of 482

Parameters

Parameters Description

CYBLE_BLESS_CLK_CFG_PARAMS_T *
bleSsClockConfig

Pointer to a variable of type
CYBLE_BLESS_CLK_CFG_PARAMS_T from which the existing
clock configuration is taken.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter.

CyBle_GenerateRandomNumber

Prototype
CYBLE_API_RESULT_T CyBle_GenerateRandomNumber(uint8 * randomNumber);

Description

This function generates 8-byte random number which complies with pseudo random number
generation in accordance with [FIPS PUB 140-2]. Random number generation function is used
during security procedure documented in Bluetooth 4.1 core specification, Volume 3, Part H.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

uint8 * randomNumber Pointer to a buffer of size 8 bytes in which the generated random number gets stored.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter.

Bluetooth Low Energy (BLE)

Page 66 of 482 Document Number: 001-91490 Rev. *B

CyBle_AesEncrypt

Prototype
CYBLE_API_RESULT_T CyBle_AesEncrypt(uint8 * plainData, uint8 * aesKey, uint8 *
encryptedData);

Description

This function uses BLE sub-system AES engine to encrypt 128-bit of plain text using the given
AES key. The output of AES processing is copied to encryptedData buffer. Refer Bluetooth 4.1
core specification, Volume 3, Part H, section 2.2 for more details on usage of AES key.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

uint8 * plainData Pointer to the data containing plain text (128-bit) that is to be encrypted.

uint8 * aesKey Pointer to the AES Key (128-bit) that is to be used for AES encryption.

uint8 *
encryptedData

Pointer to the encrypted data (128-bit) that is output of AES module for given plainData and
aesKey.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter

CyBle_SetCeLengthParam

Prototype
CYBLE_API_RESULT_T CyBle_SetCeLengthParam(uint8 bdHandle, uint8 mdBit, uint16
ceLength);

Description

This function sets the connection event duration related parameters that can result in extension
or truncation of LE connection event based on more data (mdBit) bit status and 'ceLength'
duration. Refer Bluetooth 4.1 core specification, Volume 6, Part B, section 4.5 for more details on
connection states of BLE Link Layer.
This is a blocking function. No event is generated on calling this function.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 67 of 482

BLE Stack uses the BLESS hardware (AES module) to encrypt/decrypt the data. BLESS must
be initialized before using this function. This function can safely be used by the application in
"single thread/task system" which is the case with the current implementation of the BLE Stack.
For multitasking systems, this function must be used within the BLE task to ensure atomic
operation.

Parameters

Parameters Description

uint8
bdHandle

Peer device bdHandle.

uint8 mdBit 'More Data' bit to select more number of data packets in BLE Stack buffer. A value of 0x01
indicates extension and a value of 0x00 indicates truncation.

uint16
ceLength

CE length of connection event that can extend the connection event. Details on this parameter are
as given below,
• Value Range = 0x0000 to 0xFFFF
• Time Calculation = N x 0.625 ms
• Time Range = 0 ms to 40.959 ms

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER One of the input parameters is invalid

CYBLE_ERROR_NO_CONNECTION Connection does not exist

CyBle_WriteAuthPayloadTimeout

Prototype
CYBLE_API_RESULT_T CyBle_WriteAuthPayloadTimeout(uint8 bdHandle, uint16
authPayloadTimeout);

Description

This function sets the Authentication Payload timeout in BLE Controller for LE_PING feature.
Refer Bluetooth 4.1 core specification, Volume 6, Part B, section 4.6.5 for LE Ping operation.
This is a blocking function. No event is generated on calling this function.

Bluetooth Low Energy (BLE)

Page 68 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

uint8 bdHandle Peer device handle.

uint16
authPayloadTimeout

Variable containing authentication timeout value to be written to BLE Controller. Details
on this parameter are as given below,
• Value Range = 0x0001 to 0xFFFF
• Default Value (N) = 3000 (30 seconds)
• Time Calculation = N x 10 ms
• Time Range = 10 ms to 655,350 ms

Returns

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER One of the input parameters is invalid

CYBLE_ERROR_INVALID_OPERATION Operation is not permitted

CYBLE_ERROR_NO_CONNECTION Connection does not exist

CyBle_ReadAuthPayloadTimeout

Prototype
CYBLE_API_RESULT_T CyBle_ReadAuthPayloadTimeout(uint8 bdHandle, uint16 *
authPayloadTimeout);

Description

This function reads the Authentication Payload timeout set in BLE Controller for LE_PING
feature Refer Bluetooth 4.1 core specification, Volume 6, Part B, section 4.6.5 for LE Ping
operation.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

uint8 bdHandle Peer device handle

uint16 *
authPayloadTimeout

Pointer to a variable to which authentication timeout value, read from BLE Controller,
is written.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 69 of 482

Returns

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER One of the input parameters is invalid.

CYBLE_ERROR_INVALID_OPERATION Operation is not permitted.

CYBLE_ERROR_NO_CONNECTION Connection does not exist.

CyBle_SetRxGainMode

Prototype
void CyBle_SetRxGainMode(uint8 bleSsGainMode);

Description

This function configures the Rx gain mode for BLESS radio for Rx operation.

Parameters

Parameters Description

uint8 bleSsGainMode Gain mode setting for the output power

Returns

none

Notes

BLESS RD Gain Mode Description

CYBLE_BLESS_NORMAL_GAIN_MODE 0x00u - BLESS Normal Gain Mode
• Tx Pwr Range -18dBm to 0 dBm
• Normal Rx Sensitivity

CYBLE_BLESS_HIGH_GAIN_MODE 0x01u - BLESS High Gain Mode
• Tx Pwr Range -18dBm to 3 dBm
• 3 dBm Additional Rx Sensitivity

Bluetooth Low Energy (BLE)

Page 70 of 482 Document Number: 001-91490 Rev. *B

CyBle_SetTxGainMode

Prototype
void CyBle_SetTxGainMode(uint8 bleSsGainMode);

Description

This function configures the Tx gain mode for BLESS radio for Tx operation.

Parameters

Parameters Description

uint8 bleSsGainMode Gain mode setting for the output power

Returns

none

Notes

BLESS RD Gain Mode Description

CYBLE_BLESS_NORMAL_GAIN_MODE 0x00u - BLESS Normal Gain Mode
• Tx Pwr Range -18dBm to 0 dBm
• Normal Rx Sensitivity

CYBLE_BLESS_HIGH_GAIN_MODE 0x01u - BLESS High Gain Mode
• Tx Pwr Range -18dBm to 3 dBm
• 3 dBm Additional Rx Sensitivity

CyBle_GetStackLibraryVersion

Prototype
CYBLE_API_RESULT_T CyBle_GetStackLibraryVersion(CYBLE_STACK_LIB_VERSION_T*
stackVersion);

Description

This function retrieves the version information of the BLE Stack library. This is a blocking
function. No event is generated on calling this function.

Parameters

Parameters Description

CYBLE_STACK_LIB_VERSION_T*
stackVersion

Pointer to a variable of type CYBLE_STACK_LIB_VERSION_T containing
the version information of the CYBLE Stack library.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 71 of 482

Returns

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER stackVersion is NULL.

GAP Functions
The GAP APIs allow access to the Generic Access Profile (GAP) layer of the BLE stack.
Depending on the chosen GAP role in the GUI, you may use a subset of the supported APIs.
The GAP API names begin with CyBle_Gap. In addition to this, the APIs also append the GAP
role initial letter in the API name.

GAP Central and Peripheral Functions
These are APIs common to both GAP Central role and GAP Peripheral role. You may use them
in either roles.
No letter is appended to the API name: CyBle_Gap

Functions

Function Description

CyBle_GapSetIoCap This function sets the input and output capability of the BLE Device
that is used during authentication procedure. This is a blocking
function. No event... more

CyBle_GapSetOobData This function sets OOB presence flag and data. This function
should be used by the application layer if it wants to enable OOB
bonding procedure... more

CyBle_GapGetPeerBdAddr This function reads the peer Bluetooth device address which has
already been fetched by the BLE Stack. 'peerBdAddr' stores the
peer's Bluetooth device address identified... more

CyBle_GapGetPeerBdHandle This function reads the device handle of the remote Bluetooth
device using 'peerBdAddr', which has already been fetched by the
BLE Stack. 'bdHandle' stores the... more

CyBle_GapGetPeerDevSecurity This API enables the application to get the device security of the
peer device identified by the bdHandle, when in the trusted list.

CyBle_GapDisconnect This function disconnects the peer device. It is to be used by the
device in GAP Central mode and may be used by a GAP... more

CyBle_GapGetPeerDevSecurityKeyInfo This function enables the application to know the keys shared by a
given peer device upon completion of the security sequence
(already fetched by the... more

Bluetooth Low Energy (BLE)

Page 72 of 482 Document Number: 001-91490 Rev. *B

Function Description

CyBle_GapGenerateDeviceAddress This function generates either public or random address based on
'type' field of CYBLE_GAP_BD_ADDR_T structure. It uses BLE
Controller's random number generator to generate the... more

CyBle_GapAuthReq This function starts authentication/pairing procedure with the peer
device. It is a non-blocking function. If the local device is a GAP
Central, the pairing request... more

CyBle_GapAuthPassKeyReply This function sends passkey for authentication. It is a non-blocking
function. It should be invoked in reply to the authentication request
event CYBLE_EVT_GAP_PASSKEY_ENTRY_REQUEST received
by... more

CyBle_GapRemoveDeviceFromWhiteList This function removes the bonding information of the device and
removes it from the white list. More details on 'bonding' and 'trusted
devices' is available... more

CyBle_GapRemoveOldestDeviceFromBondedList This function removes the oldest device from the bonded list.

CyBle_GapAddDeviceToWhiteList This function adds the device to the whitelist. Maximum number of
devices that can be added to the whitelist is eight. Refer to
Bluetooth 4.1... more

CyBle_GapGetBondedDevicesList This function returns the count and bluetooth device address of the
devices in the bonded device list. This is a blocking function. No
event is... more

CyBle_GapGenerateKeys This function generates the security keys that are to be exchanged
with peer device during key exchange stage and sets it in the BLE
Stack.... more

CyBle_GapSetSecurityKeys This function sets the security keys that are to be exchanged with
peer device during key exchange stage and sets it in the BLE
Stack.... more

CyBle_GapGetLocalName This API is used to read the local device name - a Characteristic of
the GAP Service.

CyBle_GapSetLocalName This API is used to set the local device name - a Characteristic of
the GAP Service. If the Characteristic length entered in the
Component... more

CyBle_GapUpdateAdvData This function allows changing the ADV data and SCAN response
data while advertising is going on. Application shall preserve
Bluetooth Spec 4.1 mandated AD flags... more

CyBle_GapGetDevSecurityKeyInfo This function gets the local device's Keys and key flags. The IRK
received from this function should be used as the input IRK for the...
more

CyBle_GapSetIoCap

Prototype
CYBLE_API_RESULT_T CyBle_GapSetIoCap(CYBLE_GAP_IOCAP_T ioCap);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 73 of 482

Description

This function sets the input and output capability of the BLE Device that is used during
authentication procedure. This is a blocking function. No event is generated on calling this
function. The input capabilities are described in the following table:

Capability Description

No input Device does not have the ability to indicate "yes" or "no"

Yes/No Device has at least two buttons that can be easily mapped to "yes" and "no" or the device has a
mechanism whereby the user can indicate either "yes" or "no".

Keyboard Device has a numeric keyboard that can input the numbers "0" through "9" and a confirmation. Device
also has at least two buttons that can be easily mapped to "yes" and "no" or the device has a
mechanism whereby the user can indicate either "yes" or "no".

The output capabilities are described in the following table:

Capability Description

No output Device does not have the ability to display or communicate a 6 digit decimal number.

Numeric output Device has the ability to display or communicate a 6 digit decimal number.

Combined capability is defined in the following table:

Input Capability No Output Numeric Output

No input NoInputNoOutput DisplayOnly

Yes/No NoInputNoOutput DisplayYesNo

Keyboard KeyboardOnly KeyboardDisplay

Refer Bluetooth 4.1 core specification, Volume 3, Part C, section 5.2.2.4 for more details on the
IO capabilities. IO capabilities of the BLE devices are used to determine the pairing method.
Please refer Bluetooth 4.1 core specification, Volume 3, Part H, section 2.3.5.1 for more details
on the impact of IO capabilities on the pairing method chosen.

Parameters

Parameters Description

io_cap IO Capability of type CYBLE_GAP_IOCAP_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

Bluetooth Low Energy (BLE)

Page 74 of 482 Document Number: 001-91490 Rev. *B

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter

CyBle_GapSetOobData

Prototype
CYBLE_API_RESULT_T CyBle_GapSetOobData(uint8 bdHandle, uint8 oobFlag, uint8 * key,
uint8 * oobData, uint8 * oobDataLen);

Description

This function sets OOB presence flag and data. This function should be used by the application
layer if it wants to enable OOB bonding procedure for any specific device identified by
"bdHandle". This function should be called before initiating authentication or before responding
to authentication request to set OOB flag and data. For more details on OOB, please refer
Bluetooth 4.1 core specification, Volume 1, Part A, section 5.2.4.3. This is a blocking function.
No event is generated on calling this function.

Parameters

Parameters Description

uint8 bdHandle Peer device for which the Out Of Band signalling (OOB) configuration is to
be used.

uint8 oobFlag OOB data presence flag. Allowed value are,
• CYBLE_GAP_OOB_DISABLE
• CYBLE_GAP_OOB_ENABLE

uint8 * key 16 Octet Temporary Key, to be used for OOB authentication.

uint8 * oobData Pointer to OOB data.

uint8 * oobDataLen Pointer to a variable to store OOB data length.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter

CYBLE_ERROR_NO_DEVICE_ENTITY 'bdHandle' does not represent known device entity

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 75 of 482

CyBle_GapGetPeerBdAddr

Prototype
CYBLE_API_RESULT_T CyBle_GapGetPeerBdAddr(uint8 bdHandle, CYBLE_GAP_BD_ADDR_T*
peerBdAddr);

Description

This function reads the peer Bluetooth device address which has already been fetched by the
BLE Stack. 'peerBdAddr' stores the peer's Bluetooth device address identified with 'bdHandle'.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

uint8 bdHandle Peer device handle.

CYBLE_GAP_BD_ADDR_T* peerBdAddr Empty buffer where the Bluetooth device address gets stored.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'peerBdAddr'.

CYBLE_ERROR_NO_DEVICE_ENTITY Specified device handle does not map to any device handle entry in
BLE stack.

CyBle_GapGetPeerBdHandle

Prototype
CYBLE_API_RESULT_T CyBle_GapGetPeerBdHandle(uint8* bdHandle, CYBLE_GAP_BD_ADDR_T*
peerBdAddr);

Description

This function reads the device handle of the remote Bluetooth device using 'peerBdAddr', which
has already been fetched by the BLE Stack. 'bdHandle' stores the peer device handle. This is a
blocking function. No event is generated on calling this function.

Bluetooth Low Energy (BLE)

Page 76 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

uint8* bdHandle Pointer to a variable to store peer device handle

CYBLE_GAP_BD_ADDR_T* peerBdAddr Pointer to Bluetooth device address of peer device of type
CYBLE_GAP_BD_ADDR_T, to be provided to this function as an input

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'peerBdAddr' or
'bdHandle'.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CYBLE_ERROR_NO_DEVICE_ENTITY Specified device handle does not map to any device handle
entry in BLE stack.

CyBle_GapGetPeerDevSecurity

Prototype
CYBLE_API_RESULT_T CyBle_GapGetPeerDevSecurity(uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T*
security);

Description

This API enables the application to get the device security of the peer device identified by the
bdHandle, when in the trusted list.

Security

The security requirement of a device is expressed in terms of a security mode and security level.
A physical connection between two devices shall operate in only one security mode.
There are two LE security modes. For details refer to section Part C, 10.2 of BLE Spec 4.0.

 LE security mode 1

 LE security mode 2
Security of the device is set as,

 Security = Le security Mode (X) | Security level (level(mode X))

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 77 of 482

 X = mode 1 or mode 2

 level(mode 1)) = Security level 1 or Security level 2 or Security level 3

 level(mode 2)) = Security level 1 or Security level 2

Bonding

Bonding will be set to 1 if bonding is required for the device. The purpose of bonding (Bonding =
1) is to create a relation between two Bluetooth devices based on a common link key (a bond).
The link key is created and exchanged (pairing) during the bonding procedure and is expected to
be stored by both Bluetooth devices, to be used for future authentication.

ekeySize

Each device shall have maximum and minimum encryption key length parameters which defines
the maximum and minimum size of the encryption key allowed in octets. The maximum and
minimum encryption key length parameters is between 7 octets (56 bits) and 16 octets (128 bits).
This is defined by the profile or device application.
The smaller value of the initiating and responding devices' maximum encryption key length
parameters is used as the encryption key size. Both the initiating and responding devices will
check that the resultant encryption key size is not smaller than the minimum key size parameter
for that device and if it is, the device will send the Pairing Failed event. i.e. Host stack IP will
send CYBLE_EVT_PAIRING_FAILED event to the profile.

Parameters

Parameters Description

uint8 bdHandle Peer device handle.

CYBLE_GAP_AUTH_INFO_T* security Buffer to where Security information will be written.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'bdAddr' or 'irk'.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CYBLE_ERROR_NO_DEVICE_ENTITY Specified device handle does not map to any device handle
entry in BLE stack.

Bluetooth Low Energy (BLE)

Page 78 of 482 Document Number: 001-91490 Rev. *B

CyBle_GapDisconnect

Prototype
CYBLE_API_RESULT_T CyBle_GapDisconnect(uint8 bdHandle);

Description

This function disconnects the peer device. It is to be used by the device in GAP Central mode
and may be used by a GAP Peripheral device to send a disconnect request. This is a non-
blocking function. On disconnection, the following events are generated, in order.

 CYBLE_EVT_GATT_DISCONNECT_IND

 CYBLE_EVT_GAP_DEVICE_DISCONNECTED

Parameters

Parameters Description

uint8 bdHandle Peer device handle

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER No device to be disconnected. The specified device handle
does not map to any device entry in the BLE Stack.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CyBle_GapGetPeerDevSecurityKeyInfo

Prototype
CYBLE_API_RESULT_T CyBle_GapGetPeerDevSecurityKeyInfo(uint8 bdHandle, uint8 *
keysFlag, CYBLE_GAP_SMP_KEY_DIST_T * keyInfo);

Description

This function enables the application to know the keys shared by a given peer device upon
completion of the security sequence (already fetched by the BLE Stack). The keys are shared by
the peer device on initiation of authentication which is performed using the CyBle_GapAuthReq() or
CyBle_GappAuthReqReply() function.
This is a blocking function. No event is generated on calling this function.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 79 of 482

Parameters

Parameters Description

uint8
bdHandle

Peer device handle.

uint8 *
keysFlag

Indicates the keys to be retrieved from peer device. The following bit fields
indicate the presence or absence of the keys distributed.
Negotiated Local/Peer Key distribution

• Bit 0. Encryption information (LTK and MID Information)
• Bit 1. Identity information
• Bit 2. Signature Key
• Bit 3-7. Reserved

Pointer to variable of type CYBLE_GAP_SMP_KEY_DIST_T to copy the stored keys of the peer
device identified by 'bdHandle'

key_info

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'keyInfo'.

CYBLE_ERROR_INVALID_OPERATION An error occurred in BLE stack.

CyBle_GapGenerateDeviceAddress

Prototype
CYBLE_API_RESULT_T CyBle_GapGenerateDeviceAddress(CYBLE_GAP_BD_ADDR_T* bdAddr,
CYBLE_GAP_ADDR_TYPE_T addrType, uint8 * irk);

Description

This function generates either public or random address based on 'type' field of
CYBLE_GAP_BD_ADDR_T structure. It uses BLE Controller's random number generator to generate
the random part of the Bluetooth device address.
The parameter 'addrType' specifies further sub-classification within the public and random
address types.
This is a blocking function. No event is generated on calling this function.

Bluetooth Low Energy (BLE)

Page 80 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_GAP_BD_ADDR_T*
bdAddr

Bluetooth device address is generated and populated in the structure pointed to
by this pointer. The structure is of type CYBLE_GAP_BD_ADDR_T.

CYBLE_GAP_ADDR_TYPE_T
addrType

Specifies the type of address. This can take one of the values from the
enumerated data type CYBLE_GAP_ADDR_TYPE_T.

uint8 * irk Pointer to buffer containing 128-bit 'IRK' data. This parameter is only used when
CYBLE_GAP_RANDOM_PRIV_RESOLVABLE_ADDR is the value set to
'addrType'. For other values of 'addrType', this parameter is not used.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter.

CyBle_GapAuthReq

Prototype
CYBLE_API_RESULT_T CyBle_GapAuthReq(uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T * authInfo);

Description

This function starts authentication/pairing procedure with the peer device. It is a non-blocking
function.
If the local device is a GAP Central, the pairing request is sent to the GAP Peripheral device. On
receiving CYBLE_EVT_GAP_AUTH_REQ event, the GAP Peripheral is expected to respond by
invoking the CyBle_GappAuthReqReply() function.
If the local device is GAP Peripheral, a Security Request is sent to GAP Central device. On
receiving CYBLE_EVT_GAP_AUTH_REQ event, the GAP Central device is expected to respond
by invoking 'CyBle_GapAuthReq ()' function.

Parameters

Parameters Description

uint8 bdHandle Peer device handle

CYBLE_GAP_AUTH_INFO_T *
authInfo

Pointer to security information of the device of type CYBLE_GAP_AUTH_INFO_T.
The 'authErr' parameter in CYBLE_GAP_AUTH_INFO_T should be ignored as it
is not used in this function.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 81 of 482

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'authInfo' or
assigning an invalid value to one of the elements of
'authInfo'.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CYBLE_ERROR_NO_DEVICE_ENTITY No device entry in the BLE stack to run this operation.

CYBLE_ERROR_INSUFFICIENT_RESOURCES On bonded device is full and application tries to initiate
pairing with bonding enable.

CyBle_GapAuthPassKeyReply

Prototype
CYBLE_API_RESULT_T CyBle_GapAuthPassKeyReply(uint8 bdHandle, uint32 passkey, uint8
accept);

Description

This function sends passkey for authentication. It is a non-blocking function.
It should be invoked in reply to the authentication request event
CYBLE_EVT_GAP_PASSKEY_ENTRY_REQUEST received by the BLE Stack. This function is
used to accept the passkey request and send the passkey or reject the passkey request.

 If the authentication operation succeeds, CYBLE_EVT_GAP_AUTH_COMPLETE is
generated. If the authentication process times out, CYBLE_EVT_TIMEOUT event is
generated.

 If the authentication fails, CYBLE_EVT_GAP_AUTH_FAILED event is generated.

Parameters

Parameters Description

uint8 bdHandle Peer device handle

uint32 passkey 6-digit decimal number (authentication passkey)

uint8 accept Accept or reject passkey entry request. Allowed values are,
CYBLE_GAP_REJECT_PASSKEY_REQ
CYBLE_GAP_ACCEPT_PASSKEY_REQ

Bluetooth Low Energy (BLE)

Page 82 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER Invalid parameter.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CYBLE_ERROR_NO_DEVICE_ENTITY Device identified using 'bdHandle' does not exist.

CyBle_GapRemoveDeviceFromWhiteList

Prototype
CYBLE_API_RESULT_T CyBle_GapRemoveDeviceFromWhiteList(CYBLE_GAP_BD_ADDR_T* bdAddr);

Description

This function marks the device specified by the handle as untrusted. It removes the bonding
information of the device and removes it from the white list. More details on 'bonding' and 'trusted
devices' is available in Bluetooth 4.1 core specification, Volume 3, Part C, section 9.4.4.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

CYBLE_GAP_BD_ADDR_T*
bdAddr

Pointer to peer device address, of type CYBLE_GAP_BD_ADDR_T. If device
address is set to 0, then all devices shall be removed from trusted list and white
list.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'bdAddr'.

CYBLE_ERROR_INVALID_OPERATION Whitelist is already in use.

CYBLE_ERROR_NO_DEVICE_ENTITY Device does not exist in the whitelist.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 83 of 482

CyBle_GapRemoveOldestDeviceFromBondedList

Prototype
CYBLE_API_RESULT_T CyBle_GapRemoveOldestDeviceFromBondedList(void);

Description

This function removes the oldest device from the bonded list.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded (0x0000) or failed.
Following are the possible error codes returned -

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_NO_DEVICE_ENTITY If no device is present bonded list

CyBle_GapAddDeviceToWhiteList

Prototype
CYBLE_API_RESULT_T CyBle_GapAddDeviceToWhiteList(CYBLE_GAP_BD_ADDR_T* bdAddr);

Description

This function adds the device to the whitelist. Maximum number of devices that can be added to
the whitelist is eight including CYBLE_GAP_MAX_BONDED_DEVICE. Refer to Bluetooth 4.1
core specification, Volume 3, Part C, section 9.3.5 for more details on whitelist.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

CYBLE_GAP_BD_ADDR_T* bdAddr Peer device address, of type CYBLE_GAP_BD_ADDR_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'bdAddr' or

Bluetooth Low Energy (BLE)

Page 84 of 482 Document Number: 001-91490 Rev. *B

'bdAddr->type' has an invalid value

CYBLE_ERROR_INVALID_OPERATION Whitelist is already in use

CYBLE_ERROR_INSUFFICIENT_RESOURCES WhitelistMemory is full

CYBLE_ERROR_DEVICE_ALREADY_EXISTS Matching device already exists in the whitelist

CyBle_GapGetBondedDevicesList

Prototype
CYBLE_API_RESULT_T CyBle_GapGetBondedDevicesList(CYBLE_GAP_BONDED_DEV_ADDR_LIST_T*
bondedDevList);

Description

This function returns the count and bluetooth device address of the devices in the bonded device
list. This is a blocking function. No event is generated on calling this function.
Application invoking this function should allocate sufficientMemory for the structure
CYBLE_GAP_BONDED_DEV_ADDR_LIST_T, where the complete list of bonded devices along with count
can be written. Maximum devices bonded are specified by
CYBLE_GAP_MAX_BONDED_DEVICE, which is a pre-processing parameter for the BLE Stack.
Hence, the bonded device count will be less than or equal to
CYBLE_GAP_MAX_BONDED_DEVICE.
Refer Bluetooth 4.1 core specification, Volume 3, Part C, section 9.4.4 for details on bonded
devices.

Parameters

Parameters Description

CYBLE_GAP_BONDED_DEV_ADDR_LIST_T*
bondedDevList

Buffer to which list of bonded device list will be stored of
type CYBLE_GAP_BONDED_DEV_ADDR_LIST_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 85 of 482

CyBle_GapGenerateKeys

Prototype
CYBLE_API_RESULT_T CyBle_GapGenerateKeys(uint8 keysFlag, CYBLE_GAP_SMP_KEY_DIST_T *
keyInfo);

Description

This function generates the security keys that are to be exchanged with peer device during key
exchange stage of authentication procedure and sets it in the BLE Stack. This is a blocking
function. No event is generated on calling this function.

Parameters

Parameters Description

uint8 keysFlag This parameter indicates which keys get exchanged with peer device.
The following is the bit field mapping for the keys.
First 4 bits. Initiator's Key distribution

• Bit 0. Encryption information (LTK and MID Information)
• Bit 1. Identity information
• Bit 2. Signature Key
• Bit 3. Reserved

Next 4 bits. Responder's Key distribution

• Bit 4. Encryption information (LTK and MID Information)
• Bit 5. Identity information
• Bit 6. Signature Key
• Bit 7. Reserved

CYBLE_GAP_SMP_KEY_DIST_T *
keyInfo

Pointer to a variable containing the returned keys, of type
'CYBLE_GAP_SMP_KEY_DIST_T'

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'keyInfo'

CyBle_GapGetLocalName

Prototype
CYBLE_API_RESULT_T CyBle_GapGetLocalName(char8 name[]);

Bluetooth Low Energy (BLE)

Page 86 of 482 Document Number: 001-91490 Rev. *B

Description

This API is used to read the local device name - a Characteristic of the GAP Service.

Parameters

Parameters Description

char8
name[]

The local device name string. Used to read the local name to the given string array. It represents a
UTF-8 encoded User Friendly Descriptive Name for the device. The length of the local device string
is entered into the Component customizer and it can be set to a value from 0 to 248 bytes. If the
name contained in the parameter is shorter than the length from the customizer, the end of the
name is indicated by a NULL octet (0x00).

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK Function completed successfully.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter

CyBle_GapSetLocalName

Prototype
CYBLE_API_RESULT_T CyBle_GapSetLocalName(const char8 name[]);

Description

This API is used to set the local device name - a Characteristic of the GAP Service. If the
Characteristic length entered in the Component customizer is shorter than the string specified by
the "name" parameter, the local device name will be cut to the length specified in the customizer.

Parameters

Parameters Description

const char8
name[]

The local device name string. The name string to be written as the local device name. It represents
a UTF-8 encoded User Friendly Descriptive Name for the device. The length of the local device
string is entered into the Component customizer and it can be set to a value from 0 to 248 bytes. If
the name contained in the parameter is shorter than the length from the customizer, the end of the
name is indicated by a NULL octet (0x00).

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 87 of 482

Error codes Description

CYBLE_ERROR_OK Function completed successfully.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter

CyBle_GapSetSecurityKeys

Prototype
CYBLE_API_RESULT_T CyBle_GapSetSecurityKeys(uint8 keysFlag, CYBLE_GAP_SMP_KEY_DIST_T *
keyInfo);

Description

This function sets the security keys that are to be exchanged with peer device during key
exchange stage of authentication procedure and sets it in the BLE Stack. This is a blocking
function. No event is generated on calling this function.

Parameters

Parameters Description

uint8 keysFlag This parameter indicates which keys get exchanged with peer device. The
following is the bit field mapping for the keys.
First 4 bits. Initiator's Key distribution

• Bit 0. Encryption information (LTK and MID Information)
• Bit 1. Identity information
• Bit 2. Signature Key
• Bit 3. Reserved

Next 4 bits. Responder's Key distribution

• Bit 4. Encryption information (LTK and MID Information)
• Bit 5. Identity information
• Bit 6. Signature Key
• Bit 7. Reserved

CYBLE_GAP_SMP_KEY_DIST_T *
keyInfo

Pointer to a variable containing the keys to be set, of type
'CYBLE_GAP_SMP_KEY_DIST_T'. idAddrInfo param of
'CYBLE_GAP_SMP_KEY_DIST_T' will be ignored. 'CyBle_SetDeviceAddress' api
needs to be used to set bd address.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

Bluetooth Low Energy (BLE)

Page 88 of 482 Document Number: 001-91490 Rev. *B

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'keyInfo'

CyBle_GapGetDevSecurityKeyInfo

Prototype
CYBLE_API_RESULT_T CyBle_GapGetDevSecurityKeyInfo(uint8 * keyFlags,
CYBLE_GAP_SMP_KEY_DIST_T * keys);

Description

This function gets the local device's Keys and key flags. The IRK received from this function
should be used as the input IRK for the function 'CyBle_GapGenerateDeviceAddress' to generate
Random Private Resolvable address. This is a blocking function. No event is generated on
calling this function.

Parameters

Parameters Description

uint8 * keyFlags Pointer to a byte where the key flags are stored. Based on the flag bits, the
calling application can determine if the returned value is valid (1) or not (0).
Key distribution flag

• Bit 0: Local Encryption information
• Bit 1: Local Identity information
• Bit 2: Local Signature Key
• Bit 3 - Bit 7: Reserved

CYBLE_GAP_SMP_KEY_DIST_T *
keys

Pointer to a structure of type CYBLE_GAP_SMP_KEY_DIST_T where the
keys get stored

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameters

CyBle_GapUpdateAdvData

Prototype
CYBLE_API_RESULT_T CyBle_GapUpdateAdvData(CYBLE_GAPP_DISC_DATA_T * advDiscData,
CYBLE_GAPP_SCAN_RSP_DATA_T * advScanRespData);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 89 of 482

Description

This function allows changing the ADV data and SCAN response data while advertising is going
on. Application shall preserve Bluetooth Spec 4.1 mandated AD flags fields corresponding to the
type of GAP discovery mode and only change the rest of the data. When the data is set, there is
possible race condition that the device might be in process of transmitting ADV data present in
FIFO and during that time firmware overwrites the data in FIFO. So in that particular ADV event
adv payload may not be correct. This API must be called after checking the state of BLE SS
using CyBle_GetBleSsState() API, It can safely be called when BLESS state is
CYBLE_BLESS_STATE_EVENT_CLOSE. If this API is called in ADV event where actual Tx or
Rx is going on then it may have catastrophic effect with respect to power on ADV timing.

Parameters

Parameters Description

advData Pointer to a structure of CYBLE_GAPP_DISC_DATA_T. It has two fields advData field representing
the data and advDataLen indicating the length of present data. Application can pass this
parameter as NULL for if the ADV data doesn't need to be changed.

scanRespData Pointer to a structure of type CYBLE_GAPP_SCAN_RSP_DATA_T. It has two fields scanRspData
field representing the data and scanRspDataLen indicating the the length of present data.
Application can pass this parameter as NULL if the SCAN RESP data doesn't need to be
changed.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER Data length in input parameter exceeds 31 bytes.

GAP Central Functions
APIs unique to designs configured as a GAP Central role.
A letter 'c' is appended to the API name: CyBle_Gapc

Functions

Function Description

CyBle_GapcStartScan This function is used for discovering GAP peripheral devices that
are available for connection. It performs the scanning routine
using the parameters entered in the... more

CyBle_GapcStopScan This function used to stop the discovery of devices. On stopping
discovery operation, CYBLE_EVT_GAPC_SCAN_START_STOP

Bluetooth Low Energy (BLE)

Page 90 of 482 Document Number: 001-91490 Rev. *B

event is generated. Application layer needs to keep track of the...
more

CyBle_GapcStartDiscovery This function starts the discovery of devices which are advertising.
This is a non-blocking function. As soon as the discovery
operation starts, CYBLE_EVT_GAPC_SCAN_START_STOP
event is... more

CyBle_GapcStopDiscovery This function stops the discovery of devices. This is a non-
blocking function. On stopping discovery operation,
CYBLE_EVT_GAPC_SCAN_START_STOP event is generated.
Application layer needs to keep... more

CyBle_GapcConnectDevice This function is used to send a connection request to the remote
device with the connection parameters set in the Component
customizer. This function needs... more

CyBle_GapcInitConnection This function sends a connection request to the remote device
with required connection parameters. On successful connection,
the following events are generated at the GAP... more

CyBle_GapcCancelConnection This function cancels a previously initiated connection with the
peer device. This is a blocking function. No event is generated on
calling this function. If... more

CyBle_GapcConnectionParamUpdateRequest This function sends 'connection parameter update' command to
BLE Controller. This function can only be used from a device
connected in GAP Central role. It... more

CyBle_GapcResolveDevice This function enables the application to start resolution procedure
for a device that is connected using resolvable private address.
This is a non-blocking function. The... more

CyBle_GapcSetHostChannelClassification This function sets channel classification for data channels. This
classification persists until it is overwritten by a subsequent call to
this function or the controller... more

CyBle_GapcSetRemoteAddr This function allows application to set the new address of remote
device identified by bdHandle. This API should be used when- If
peer device is... more

CyBle_GapcStartScan

Prototype
CYBLE_API_RESULT_T CyBle_GapcStartScan(uint8 scanningIntervalType);

Description

This function is used for discovering GAP peripheral devices that are available for connection. It
performs the scanning routine using the parameters entered in the Component's customizer.
As soon as the discovery operation starts, CYBLE_EVT_GAPC_SCAN_START_STOP event is
generated. The CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT event is generated when a

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 91 of 482

GAP peripheral device is located. There are three discovery procedures can be selected in the
customizer's GUI:

 Observation procedure: A device performing the observer role receives only
advertisement data from devices irrespective of their discoverable mode settings.
Advertisement data received is provided by the event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. This procedure requires the
scanType sub parameter to be passive scanning.

 Limited Discovery procedure: A device performing the limited discovery procedure
receives advertisement data and scan# response data from devices in the limited
discoverable mode only. Received data is provided by the event,

 CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. This procedure requires the
scanType sub-parameter to be active scanning.

 General Discovery procedure: A device performing the general discovery procedure
receives the advertisement data and scan response data from devices in both limited
discoverable mode and the general discoverable mode. Received data is provided by the
event, CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. This procedure requires the
scanType sub-parameter to be active scanning.

Every Advertisement / Scan response packet received results in a new event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. If 'scanTo' sub-parameter is a non-zero
value, then upon commencement of discovery procedure and elapsed time = 'scanTo',
CYBLE_EVT_TIMEOUT event is generated with the event parameter indicating
CYBLE_GAP_SCAN_TO. Possible generated events are:

 CYBLE_EVT_GAPC_SCAN_START_STOP: If a device started or stopped scanning. Use
CyBle_GetState() to determine the state. Sequential scanning could be started when
CYBLE_STATE_DISCONNECTED state is returned.

 CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT

 CYBLE_EVT_TIMEOUT (CYBLE_GAP_SCAN_TO)

Parameters

Parameters Description

uint8
scanningIntervalType

Fast or slow scanning interval with timings entered in Scan settings section of the
customiser.
• CYBLE_SCANNING_FAST 0x00u
• CYBLE_SCANNING_SLOW 0x01u
• CYBLE_SCANNING_CUSTOM 0x02u

Bluetooth Low Energy (BLE)

Page 92 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Values Description

CYBLE_ERROR_OK 0x0000 On successful operation.

CYBLE_ERROR_STACK_INTERNAL 0x0003 An error occurred in the BLE stack.

CyBle_GapcStopScan

Prototype
void CyBle_GapcStopScan(void);

Description

This function used to stop the discovery of devices. On stopping discovery operation,
CYBLE_EVT_GAPC_SCAN_START_STOP event is generated. Application layer needs to keep
track of the function call made before receiving this event to associate this event with either the
start or stop discovery function.
Possible events generated are:

 CYBLE_EVT_GAPC_SCAN_START_STOP

Returns

None

CyBle_GapcStartDiscovery

Prototype
CYBLE_API_RESULT_T CyBle_GapcStartDiscovery(CYBLE_GAPC_DISC_INFO_T* scanInfo);

Description

This function starts the discovery of devices which are advertising. This is a non-blocking
function. As soon as the discovery operation starts, CYBLE_EVT_GAPC_SCAN_START_STOP
event is generated.
Every Advertisement / Scan response packet received results in a new event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. If 'scanInfo->scanTo' is a non-zero value,
upon commencement of discovery procedure and elapsed time = 'scanInfo->scanTo',
CYBLE_EVT_TIMEOUT event is generated with the event parameter indicating
CYBLE_GAP_SCAN_TO.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 93 of 482

If 'scanInfo->scanTo' is equal to zero, the scanning operation is performed until the
CyBle_GapcStopDiscovery() function is invoked.
There are three discovery procedures that can be specified as a parameter to this function.

Observation procedure

A device performing the observer role receives only advertisement data from devices
irrespective of their discoverable mode settings. Advertisement data received is provided by the
event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT
'scanInfo->scanType' should be set as passive scanning (0x00).

Limited Discovery procedure

A device performing the limited discovery procedure receives advertisement data and scan
response data from devices in the limited discoverable mode only. Received data is provided by
the event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT
'scanInfo->scanType' should be set as active scanning (0x01).

General Discovery procedure

A device performing the general discovery procedure receives the advertisement data and scan
response data from devices in both limited discoverable mode and the general discoverable
mode. Received data is provided by the event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT
'scanInfo->scanType' should be set as active scanning (0x01).

Parameters

Parameters Description

CYBLE_GAPC_DISC_INFO_T* scanInfo Pointer to a variable of type CYBLE_GAPC_DISC_INFO_T

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'scanInfo' or if
any element within 'scanInfo' has an invalid value.

Bluetooth Low Energy (BLE)

Page 94 of 482 Document Number: 001-91490 Rev. *B

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CyBle_GapcStopDiscovery

Prototype
void CyBle_GapcStopDiscovery(void);

Description

This function stops the discovery of devices. This is a non-blocking function. On stopping
discovery operation, CYBLE_EVT_GAPC_SCAN_START_STOP event is generated.
Application layer needs to keep track of the function call made before receiving this event to
associate this event with either the start or stop discovery function.

Returns

None

CyBle_GapcConnectDevice

Prototype
CYBLE_API_RESULT_T CyBle_GapcConnectDevice(const CYBLE_GAP_BD_ADDR_T * address);

Description

This function is used to send a connection request to the remote device with the connection
parameters set in the Component customizer. This function needs to be called only once after
the target device is discovered by CyBle_GapcStartScan() and further scanning has stopped.
Scanning is successfully stopped on invoking CyBle_GapcStopScan() and then receiving the event
CYBLE_EVT_GAPC_SCAN_START_STOP with sub-parameter 'success' = 0x01u.
On successful connection, the following events are generated at the GAP Central device (as well
as the GAP Peripheral device), in the following order.

 CYBLE_EVT_GATT_CONNECT_IND

 CYBLE_EVT_GAP_DEVICE_CONNECTED
A procedure is considered to have timed out if a connection response packet is not received
within time set by cyBle_connectingTimeout global variable (30 seconds by default).
CYBLE_EVT_TIMEOUT event with CYBLE_GENERIC_TO parameter will indicate about
connection procedure timeout. Connection will automatically be cancelled and state will be
changed to CYBLE_STATE_DISCONNECTED.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 95 of 482

Parameters

Parameters Description

const CYBLE_GAP_BD_ADDR_T * address The device address of the remote device to connect to.

timeout Timeout for which timer to be started in seconds.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_STACK_INTERNAL On error occurred in the BLE stack.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'scanInfo' or if any element
with in 'scanInfo' has an invalid value.

CyBle_GapcInitConnection

Prototype
CYBLE_API_RESULT_T CyBle_GapcInitConnection(CYBLE_GAPC_CONN_PARAM_T* connParam);

Description

This function sends a connection request to the remote device with required connection
parameters. On successful connection, the following events are generated at the GAP Central
end (as well as the GAP Peripheral end), in order.

 CYBLE_EVT_GATT_CONNECT_IND

 CYBLE_EVT_GAP_DEVICE_CONNECTED
This is a non-blocking function. This function needs to be called after successfully stopping
scanning. Scanning is successfully stopped on invoking the CyBle_GapcStopDiscovery() function and
receiving the event CYBLE_EVT_GAPC_SCAN_START_STOP with the event data of '0x01',
indicating success.
For details related to connection modes and procedures, refer to Bluetooth 4.1 Core
Specification, Volume 3, Part C, Section 9.3.

Parameters

Parameters Description

CYBLE_GAPC_CONN_PARAM_T*
connParam

Structure of type 'CYBLE_GAPC_CONN_PARAM_T' which contains the
connection parameters.

Bluetooth Low Energy (BLE)

Page 96 of 482 Document Number: 001-91490 Rev. *B

Note Any parameter of structure type CYBLE_GAPC_CONN_PARAM_T, if
not required by a specific Bluetooth Low Energy profile, may be ignored.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'connParam'or if
any element within 'connParam' has an invalid value.

CYBLE_ERROR_INVALID_OPERATION Device already connected.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CyBle_GapcCancelConnection

Prototype
CYBLE_API_RESULT_T CyBle_GapcCancelConnection(void);

Description

This function cancels a previously initiated connection with the peer device. This is a blocking
function. No event is generated on calling this function.
If the devices are already connected, then this function should not be used. To disconnect from
an existing connection, use the function CyBle_GapDisconnect().

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_OPERATION Device already connected.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CyBle_GapcConnectionParamUpdateRequest

Prototype
CYBLE_API_RESULT_T CyBle_GapcConnectionParamUpdateRequest(uint8 bdHandle,
CYBLE_GAP_CONN_UPDATE_PARAM_T * connParam);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 97 of 482

Description

This function sends the connection parameter update command to the local Controller. This
function can only be used from device connected in GAP Central role.

Parameters

Parameters Description

uint8 bdHandle Peer device handle

CYBLE_GAP_CONN_UPDATE_PARAM_T *
connParam

Pointer to a structure of type
CYBLE_GAP_CONN_UPDATE_PARAM_T containing connection
parameter updates

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connParam' is NULL

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

Notes

Connection parameter update procedure, defined as part of Bluetooth spec 4.1, is not supported.
This function will allow GAP Central application to update connection parameter for local
controller and local controller will follow the procedure as defined in Bluetooth Core specification
4.0.

CyBle_GapcResolveDevice

Prototype
CYBLE_API_RESULT_T CyBle_GapcResolveDevice(const uint8 * bdAddr, const uint8 * irk);

Description

This function enables the application to start resolution procedure for a device that is connected
using resolvable private address. This is a blocking function. The application should use this
function when in GAP Central mode.
Refer to Bluetooth 4.1 Core specification, Volume 3, Part C, section 10.8.2.3 Resolvable Private
Address Resolution Procedure to understand the usage of Private addresses.

Bluetooth Low Energy (BLE)

Page 98 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

const uint8 * bdAddr Pointer to peer bluetooth device address of length 6 bytes, not NULL terminated.

const uint8 * irk Pointer to 128-bit IRK to be used for resolving the peer's private resolvable address.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'bdAddr' or 'irk'.

CYBLE_ERROR_INVALID_OPERATION No device to be resolved. The specified device handle does not map
to any device entry in the BLE Stack.

CyBle_GapcSetHostChannelClassification

Prototype
CYBLE_API_RESULT_T CyBle_GapcSetHostChannelClassification(uint8* channelMap);

Description

This function sets channel classification for data channels. This classification persists until it is
overwritten by a subsequent call to this function or the controller is reset. If this command is
used, updates should be sent within 10 seconds of the BLE Host knowing that the channel
classification has changed. The interval between two successive commands sent will be at least
one second. This command will only be used when the local device supports the Master role.
For details, refer to Bluetooth core specification 4.1, Volume 2, part E, section 7.8.19.
This is a blocking function. No event is generated on calling this function.

Parameters

Parameters Description

uint8*
channelMap

This parameter contains five octet byte stream (Least Significant Byte having the bit fields 0 to 7,
most significant byte having the bit fields 32 to 36). The nth such field (in the range 0 to 36)
contains the value for the link layer channel index n. Allowed values and their interpretation are,
• Channel 'n' is bad = 0x00u
• Channel 'n' is unknown = 0x01u

The most significant bits (37 to 39) are reserved and will be set to 0. At least one channel will be
marked as unknown.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 99 of 482

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying NULL as input parameter for 'channelMap'.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed.

CyBle_GapcSetRemoteAddr

Prototype
CYBLE_API_RESULT_T CyBle_GapcSetRemoteAddr(uint8 bdHandle, CYBLE_GAP_BD_ADDR_T
remoteAddr);

Description

This function allows application to set the new address of remote device identified by bdHandle.
This API should be used when-

 If peer device is previously bonded with public address and changes its bd address to

 resolvable private address. Application should resolve the device by calling
'CyBle_GapcResolveDevice()' api and set the new address if successfully resolved.

 If device is previously bonded with random, application should call this api to set the new
address(public/random).

Parameters

Parameters Description

uint8 bdHandle Peer device handle

CYBLE_GAP_BD_ADDR_T remoteAddr Peer device address, of type CYBLE_GAP_BD_ADDR_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On invalid bdHandle

Bluetooth Low Energy (BLE)

Page 100 of 482 Document Number: 001-91490 Rev. *B

GAP Peripheral Functions
APIs unique to designs configured as a GAP Peripheral role.
A letter 'p' is appended to the API name: CyBle_Gapp

Functions

Function Description

CyBle_GappStartAdvertisement This function is used to start the advertisement using the advertisement data set
in the Component customizer's GUI. After invoking this API, the device will... more

CyBle_GappStopAdvertisement This function can be used to exit from discovery mode. After the execution of this
function, there will no longer be any advertisements. On stopping... more

CyBle_GappEnterDiscoveryMode
This function sets the device into discoverable mode. In the discoverable mode,
based on the parameters passed to this function, the BLE Device starts
advertisement... more

CyBle_GappExitDiscoveryMode
This function is used to exit from discoverable mode. This is a non-blocking
function. After the execution of this function, the device stops advertising. On...
more

CyBle_GappAuthReqReply This function is used to pass security information for authentication in reply to an
authentication request from the master device. It should be invoked on... more

CyBle_GappStartAdvertisement

Prototype
CYBLE_API_RESULT_T CyBle_GappStartAdvertisement(uint8 advertisingIntervalType);

Description

This function is used to start the advertisement using the advertisement data set in the
Component customizer's GUI. After invoking this API, the device will be available for connection
by the devices configured for GAP central role. It is only included if the device is configured for
GAP Peripheral or GAP Peripheral + Central role.
On start of advertisement, GAP Peripheral receives the
CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP event. The following events are
possible on invoking this function:

 CYBLE_EVT_GAP_DEVICE_CONNECTED: If the device connects to remote GAP
Central device

 CYBLE_EVT_TIMEOUT: If no device in GAP Central mode connects to this device within
the specified timeout limit. Stack automatically initiate stop advertising when Slow
advertising was initiated, or starts Slow advertising after Fast advertising timeout occur.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 101 of 482

 CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP: If device started or stopped
advertising. Use CyBle_GetState() to determine the state. Sequential advertising could be
started when CYBLE_STATE_DISCONNECTED state is returned.

Parameters

Parameters Description

uint8 advertisingIntervalType Fast or slow advertising interval with timings entered in Advertising
settings section of the customizer.
• CYBLE_ADVERTISING_FAST 0x00u
• CYBLE_ADVERTISING_SLOW 0x01u
• CYBLE_ADVERTISING_CUSTOM 0x02u

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On passing an invalid parameter.

CyBle_GappStopAdvertisement

Prototype
void CyBle_GappStopAdvertisement(void);

Description

This function can be used to exit from discovery mode. After the execution of this function, there
will no longer be any advertisements. On stopping advertising, GAP Peripheral receives
CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP event. It is expected that the
application layer tracks the function call performed before occurrence of this event as this event
can occur on making a call to Cy_BleGappStartAdvertisement(), CyBle_GappEnterDiscoveryMode(), or
CyBle_GappStartAdvertisement() functions as well.
The following event occurs on invoking this function:

 CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP

Returns

None

Bluetooth Low Energy (BLE)

Page 102 of 482 Document Number: 001-91490 Rev. *B

CyBle_GappEnterDiscoveryMode

Prototype
CYBLE_API_RESULT_T CyBle_GappEnterDiscoveryMode(CYBLE_GAPP_DISC_MODE_INFO_T* advInfo);

Description

This function sets the device into discoverable mode. In the discoverable mode, based on the
parameters passed to this function, the BLE Device starts advertisement and can respond to
scan requests. This is a non-blocking function. It is to be used by the device in 'GAP Peripheral'
mode of operation to set parameters essential for starting advertisement procedure.
On start of advertisement, the GAP Peripheral receives
CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP event. The following two events can
occur on invoking this function.

 CYBLE_EVT_GAP_DEVICE_CONNECTED - If the device connects to a GAP Central.

 CYBLE_EVT_TIMEOUT - If no device in 'GAP Central' mode connects to this device
within the

 specified timeout limit. This event can occur if 'advInfo ->discMode' is equal to
CYBLE_GAPP_LTD_DISC_MODE or CYBLE_GAPP_GEN_DISC_MODE. 'advInfo->
advTo' specifies the timeout duration. Set the 'advInfo-> advTo' to 0 when 'advInfo ->
discMode' is set to CYBLE_GAPP_GEN_DISC_MODE so that the timeout event does not
occur and the advertisement continues until the CyBle_GappExitDiscoveryMode() function is
invoked.

Parameters

Parameters Description

CYBLE_GAPP_DISC_MODE_INFO_T*
advInfo

Structure of type CYBLE_GAPP_DISC_MODE_INFO_T, which contains
the advertisement parameters

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying null pointer for 'advInfo' or if any of the elements of this
structure have invalid values.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 103 of 482

CyBle_GappExitDiscoveryMode

Prototype
void CyBle_GappExitDiscoveryMode(void);

Description

This function is used to exit from discoverable mode. This is a non-blocking function. After the
execution of this function, the device stops advertising.
On stopping advertising, GAP Peripheral receives
CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP event. It is expected that the
application layer keeps track of the function call performed before occurrence of this event, as
this event can occur on making a call to the CyBle_GappEnterDiscoveryMode () function as well.

Returns

None

CyBle_GappAuthReqReply

Prototype
CYBLE_API_RESULT_T CyBle_GappAuthReqReply(uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T *
authInfo);

Description

This function is used to pass security information for authentication in reply to an authentication
request from the master device. It should be invoked on receiving
CYBLE_EVT_GAP_AUTH_REQ event. Events shown in the following table may be received by
the application based on the authentication result.

Event Parameter Description

CYBLE_EVT_TIMEOUT . With error code CYBLE_GAP_PAIRING_PROCESS_TO on
invoking CyBle_GappAuthReqReply() or CyBle_GapAuthReq() if
there is no response from the peer device

CYBLE_EVT_GAP_AUTH_COMPLETE Pointer to structure of type 'CYBLE_GAP_AUTH_INFO_T' is
returned as parameter to both the peer devices on successful
authentication.

CYBLE_EVT_GAP_AUTH_FAILED Received by both GAP Central and Peripheral devices (peers)
on authentication failure. Data is of type
CYBLE_GAP_AUTH_FAILED_REASON_T.

CYBLE_ERROR_INSUFFICIENT_RESOURCES On bonded device is full and application tries to initiate
pairing with bonding enable.

Bluetooth Low Energy (BLE)

Page 104 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

uint8 bdHandle Peer device handle.

CYBLE_GAP_AUTH_INFO_T *
authInfo

Pointer to a variable containing security information of the device of type
CYBLE_GAP_AUTH_INFO_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On specifying null pointer for 'advInfo' or if any of the
element of this structure has an invalid value.

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CYBLE_ERROR_NO_DEVICE_ENTITY Device identified using 'bdHandle' does not exist.

GAP Definitions and Data Structures
Contains the GAP specific definitions and data structures used in the GAP APIs.

Enumerations

Enumeration Description

CYBLE_GAP_SEC_LEVEL_T Security Levels

CYBLE_GAP_ADDR_TYPE_T GAP address type

CYBLE_GAP_ADV_ASSIGN_NUMBERS Advertisement SIG assigned numbers

CYBLE_GAP_AUTH_FAILED_REASON_T Authentication Failed Error Codes

CYBLE_GAP_IOCAP_T IO capability

CYBLE_GAPC_ADV_EVENT_T Advertisement event type

CYBLE_GAPP_ADV_T Advertisement type

Structures

Structure Description

CYBLE_GAP_SMP_KEY_DIST_T Security Manager Key Distribution data

CYBLE_GAP_AUTH_INFO_T Authentication Parameters Information

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 105 of 482

Structure Description

CYBLE_GAP_BD_ADDR_T Bluetooth Device Address

CYBLE_GAP_BONDED_DEV_ADDR_LIST_T Bluetooth Bonded Device Address list

CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T Current Connection Parameters used by
controller

CYBLE_GAP_CONN_UPDATE_PARAM_T GAP Connection Update parameters

CYBLE_GAP_PASSKEY_DISP_INFO_T Passkey display information

CYBLE_GAPC_ADV_REPORT_T Advertisement report received by GAP
Central

CYBLE_GAPC_CONN_PARAM_T Connection parameters at the GAP Central
end

CYBLE_GAPC_DISC_INFO_T Discovery information collected by Client

CYBLE_GAPC_T GAP Service Characteristics server's GATT
DB handles structure type

CYBLE_GAPP_DISC_DATA_T Advertising data

CYBLE_GAPP_DISC_MODE_INFO_T Advertising information

CYBLE_GAPP_DISC_PARAM_T Advertising parameters

CYBLE_GAPP_SCAN_RSP_DATA_T Scan response data

CYBLE_GAP_SEC_LEVEL_T

Prototype
typedef enum {
 CYBLE_GAP_SEC_LEVEL_1 = 0x00u,
 CYBLE_GAP_SEC_LEVEL_2,
 CYBLE_GAP_SEC_LEVEL_3,
 CYBLE_GAP_SEC_LEVEL_MASK = 0x0Fu
} CYBLE_GAP_SEC_LEVEL_T;

Description

Security Levels

Members

Members Description

CYBLE_GAP_SEC_LEVEL_1 = 0x00u Level 1
Mode 1 - No Security (No Authentication & No Encryption)
Mode 2 - N/A

CYBLE_GAP_SEC_LEVEL_2 Level 2

Bluetooth Low Energy (BLE)

Page 106 of 482 Document Number: 001-91490 Rev. *B

Mode 1 - Unauthenticated pairing with encryption (No MITM)
Mode 2 - Unauthenticated pairing with data signing (No MITM)

CYBLE_GAP_SEC_LEVEL_3 Level 3
Mode 1 - Authenticated pairing with encryption (With MITM)
Mode 2 - Authenticated pairing with data signing (With MITM)

CYBLE_GAP_SEC_LEVEL_MASK = 0x0Fu LE Security Level Mask

CYBLE_GAP_SMP_KEY_DIST_T

Prototype
typedef struct {
 uint8 ltkInfo[CYBLE_GAP_SMP_LTK_SIZE];
 uint8 midInfo[CYBLE_GAP_SMP_MID_INFO_SIZE];
 uint8 irkInfo[CYBLE_GAP_SMP_IRK_SIZE];
 uint8 idAddrInfo[CYBLE_GAP_SMP_IDADDR_DATA_SIZE];
 uint8 csrkInfo[CYBLE_GAP_SMP_CSRK_SIZE];
} CYBLE_GAP_SMP_KEY_DIST_T;

Description

Security Manager Key Distribution data

Members

Members Description

uint8 ltkInfo[CYBLE_GAP_SMP_LTK_SIZE]; Long Term Key

uint8 midInfo[CYBLE_GAP_SMP_MID_INFO_SIZE]; Encrypted Diversifier and Randdom Number

uint8 irkInfo[CYBLE_GAP_SMP_IRK_SIZE]; Identity Resolving Key

uint8 idAddrInfo[CYBLE_GAP_SMP_IDADDR_DATA_SIZE]; Public device/Static Random address type

uint8 csrkInfo[CYBLE_GAP_SMP_CSRK_SIZE]; Connection Signature Resolving Key

CYBLE_GAP_ADDR_TYPE_T

Prototype
typedef enum {
 CYBLE_GAP_RANDOM_PRIV_NON_RESOLVABLE_ADDR = 0x00u,
 CYBLE_GAP_RANDOM_PRIV_RESOLVABLE_ADDR = 0x01u,
 CYBLE_GAP_PUBLIC_ADDR = 0x02u,
 CYBLE_GAP_RANDOM_STATIC_ADDR = 0x03u
} CYBLE_GAP_ADDR_TYPE_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 107 of 482

Description

GAP address type

Members

Members Description

CYBLE_GAP_RANDOM_PRIV_NON_RESOLVABLE_ADDR = 0x00u Random private non-resolvable address

CYBLE_GAP_RANDOM_PRIV_RESOLVABLE_ADDR = 0x01u Random private resolvable address

CYBLE_GAP_PUBLIC_ADDR = 0x02u Public address

CYBLE_GAP_RANDOM_STATIC_ADDR = 0x03u Random static address

CYBLE_GAP_ADV_ASSIGN_NUMBERS

Prototype
typedef enum {
 CYBLE_GAP_ADV_FLAGS = 0x01u,
 CYBLE_GAP_ADV_INCOMPL_16UUID,
 CYBLE_GAP_ADV_COMPL_16UUID,
 CYBLE_GAP_ADV_INCOMPL_32_UUID,
 CYBLE_GAP_ADV_COMPL_32_UUID,
 CYBLE_GAP_ADV_INCOMPL_128_UUID,
 CYBLE_GAP_ADV_COMPL_128_UUID,
 CYBLE_GAP_ADV_SHORT_NAME,
 CYBLE_GAP_ADV_COMPL_NAME,
 CYBLE_GAP_ADV_TX_PWR_LVL,
 CYBLE_GAP_ADV_CLASS_OF_DEVICE = 0x0Du,
 CYBLE_GAP_ADV_SMPL_PAIR_HASH_C,
 CYBLE_GAP_ADV_SMPL_PAIR_RANDOM_R,
 CYBLE_GAP_ADV_DEVICE_ID,
 CYBLE_GAP_ADV_SCRT_MNGR_TK_VAL = 0x10u,
 CYBLE_GAP_ADV_SCRT_MNGR_OOB_FLAGS,
 CYBLE_GAP_ADV_SLAVE_CONN_INTRV_RANGE,
 CYBLE_GAP_ADV_SOLICIT_16UUID = 0x14u,
 CYBLE_GAP_ADV_SOLICIT_128UUID,
 CYBLE_GAP_ADV_SRVC_DATA_16UUID,
 CYBLE_GAP_ADV_PUBLIC_TARGET_ADDR,
 CYBLE_GAP_ADV_RANDOM_TARGET_ADDR,
 CYBLE_GAP_ADV_APPEARANCE,
 CYBLE_GAP_ADV_ADVERT_INTERVAL,
 CYBLE_GAP_ADV_LE_BT_DEVICE_ADDR,
 CYBLE_GAP_ADV_LE_ROLE,
 CYBLE_GAP_ADV_SMPL_PAIR_HASH_C256,
 CYBLE_GAP_ADV_SMPL_PAIR_RANDOM_R256,
 CYBLE_GAP_ADV_SOLICIT_32UUID,
 CYBLE_GAP_ADV_SRVC_DATA_32UUID,
 CYBLE_GAP_ADV_SRVC_DATA_128UUID,
 CYBLE_GAP_ADV_3D_INFO_DATA = 0x3D
} CYBLE_GAP_ADV_ASSIGN_NUMBERS;

Bluetooth Low Energy (BLE)

Page 108 of 482 Document Number: 001-91490 Rev. *B

Description

Advertisement SIG assigned numbers

Members

Members Description

CYBLE_GAP_ADV_FLAGS = 0x01u Flags

CYBLE_GAP_ADV_INCOMPL_16UUID Incomplete List of 16-bit Service Class UUIDs

CYBLE_GAP_ADV_COMPL_16UUID Complete List of 16-bit Service Class UUIDs

CYBLE_GAP_ADV_INCOMPL_32_UUID Incomplete List of 32-bit Service Class UUIDs

CYBLE_GAP_ADV_COMPL_32_UUID Complete List of 32-bit Service Class UUIDs

CYBLE_GAP_ADV_INCOMPL_128_UUID Incomplete List of 128-bit Service Class UUIDs

CYBLE_GAP_ADV_COMPL_128_UUID Complete List of 128-bit Service Class UUIDs

CYBLE_GAP_ADV_SHORT_NAME Shortened Local Name

CYBLE_GAP_ADV_COMPL_NAME Complete Local Name

CYBLE_GAP_ADV_TX_PWR_LVL Tx Power Level

CYBLE_GAP_ADV_CLASS_OF_DEVICE = 0x0Du Class of Device

CYBLE_GAP_ADV_SMPL_PAIR_HASH_C Simple Pairing Hash C

CYBLE_GAP_ADV_SMPL_PAIR_RANDOM_R Simple Pairing Randomizer R

CYBLE_GAP_ADV_DEVICE_ID Device ID

CYBLE_GAP_ADV_SCRT_MNGR_TK_VAL = 0x10u Security Manager TK Value

CYBLE_GAP_ADV_SCRT_MNGR_OOB_FLAGS Security Manager Out of Band Flags

CYBLE_GAP_ADV_SLAVE_CONN_INTRV_RANGE Slave Connection Interval Range

CYBLE_GAP_ADV_SOLICIT_16UUID = 0x14u List of 16-bit Service Solicitation UUIDs

CYBLE_GAP_ADV_SOLICIT_128UUID List of 128-bit Service Solicitation UUIDs

CYBLE_GAP_ADV_SRVC_DATA_16UUID Service Data - 16-bit UUID

CYBLE_GAP_ADV_PUBLIC_TARGET_ADDR Public Target Address

CYBLE_GAP_ADV_RANDOM_TARGET_ADDR Random Target Address

CYBLE_GAP_ADV_APPEARANCE Appearance

CYBLE_GAP_ADV_ADVERT_INTERVAL Advertising Interval

CYBLE_GAP_ADV_LE_BT_DEVICE_ADDR LE Bluetooth Device Address

CYBLE_GAP_ADV_LE_ROLE LE Role

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 109 of 482

CYBLE_GAP_ADV_SMPL_PAIR_HASH_C256 Simple Pairing Hash C-256

CYBLE_GAP_ADV_SMPL_PAIR_RANDOM_R256 Simple Pairing Randomizer R-256

CYBLE_GAP_ADV_SOLICIT_32UUID List of 32-bit Service Solicitation UUIDs

CYBLE_GAP_ADV_SRVC_DATA_32UUID Service Data - 32-bit UUID

CYBLE_GAP_ADV_SRVC_DATA_128UUID Service Data - 128-bit UUID

CYBLE_GAP_ADV_3D_INFO_DATA = 0x3D 3D Information Data

CYBLE_GAP_AUTH_FAILED_REASON_T

Prototype
typedef enum {
 CYBLE_GAP_AUTH_ERROR_NONE = 0x00u,
 CYBLE_GAP_AUTH_ERROR_PASSKEY_ENTRY_FAILED,
 CYBLE_GAP_AUTH_ERROR_OOB_DATA_NOT_AVAILABLE,
 CYBLE_GAP_AUTH_ERROR_AUTHENTICATION_REQ_NOT_MET,
 CYBLE_GAP_AUTH_ERROR_CONFIRM_VALUE_NOT_MATCH,
 CYBLE_GAP_AUTH_ERROR_PAIRING_NOT_SUPPORTED,
 CYBLE_GAP_AUTH_ERROR_INSUFFICIENT_ENCRYPTION_KEY_SIZE,
 CYBLE_GAP_AUTH_ERROR_COMMAND_NOT_SUPPORTED,
 CYBLE_GAP_AUTH_ERROR_UNSPECIFIED_REASON,
 CYBLE_GAP_AUTH_ERROR_REPEATED_ATTEMPTS,
 CYBLE_GAP_AUTH_ERROR_INVALID_PARAMETERS = 0x0Au,
 CYBLE_GAP_AUTH_ERROR_AUTHENTICATION_TIMEOUT = 0x15u,
 CYBLE_GAP_AUTH_ERROR_LINK_DISCONNECTED = 0x18u
} CYBLE_GAP_AUTH_FAILED_REASON_T;

Description

Authentication Failed Error Codes

Members

Members Description

CYBLE_GAP_AUTH_ERROR_NONE = 0x00u No Error

CYBLE_GAP_AUTH_ERROR_PASSKEY_ENTRY_FAILED User input of passkey failed, for
example, the user cancelled the
operation

CYBLE_GAP_AUTH_ERROR_OOB_DATA_NOT_AVAILABLE Out Of Band data is not available,
applicable if NFC is supported

CYBLE_GAP_AUTH_ERROR_AUTHENTICATION_REQ_NOT_MET Pairing procedure cannot be
performed as authentication
requirements cannot be met due to
IO capabilities of one or both
devices.

Bluetooth Low Energy (BLE)

Page 110 of 482 Document Number: 001-91490 Rev. *B

CYBLE_GAP_AUTH_ERROR_CONFIRM_VALUE_NOT_MATCH Confirm value does not match the
calculated compare value

CYBLE_GAP_AUTH_ERROR_PAIRING_NOT_SUPPORTED Pairing is not supported by the
device

CYBLE_GAP_AUTH_ERROR_INSUFFICIENT_ENCRYPTION_KEY_SIZE Insufficient key size for the security
requirements of this device

CYBLE_GAP_AUTH_ERROR_COMMAND_NOT_SUPPORTED command received is not supported

CYBLE_GAP_AUTH_ERROR_UNSPECIFIED_REASON Pairing failed due to an unspecified
reason

CYBLE_GAP_AUTH_ERROR_REPEATED_ATTEMPTS Pairing or authentication procedure is
disallowed because too little time has
elapsed since last pairing request or
security request.

CYBLE_GAP_AUTH_ERROR_INVALID_PARAMETERS = 0x0Au Invalid Parameters in Request –
Invalid Command length and
Parameter value outside range

CYBLE_GAP_AUTH_ERROR_AUTHENTICATION_TIMEOUT = 0x15u Authentication process timeout, if
pairing timeout happens for first time,
application can choose to re-initiate
the pairing procedure. If timeout
occurs again, app may choose to
disconnect peer device.

CYBLE_GAP_AUTH_ERROR_LINK_DISCONNECTED = 0x18u Link disconnected

CYBLE_GAP_AUTH_INFO_T

Prototype
typedef struct {
 uint8 security;
 uint8 bonding;
 uint8 ekeySize;
 CYBLE_GAP_AUTH_FAILED_REASON_T authErr;
} CYBLE_GAP_AUTH_INFO_T;

Description

Authentication Parameters Information

Members

Members Description

uint8 security; Security Mode setting will be as follows:
(CYBLE_GAP_SEC_MODE_1 | CYBLE_GAP_SEC_LEVEL_1)

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 111 of 482

(CYBLE_GAP_SEC_MODE_1 | CYBLE_GAP_SEC_LEVEL_2)
(CYBLE_GAP_SEC_MODE_1 | CYBLE_GAP_SEC_LEVEL_3)
(CYBLE_GAP_SEC_MODE_2 | CYBLE_GAP_SEC_LEVEL_2)
(CYBLE_GAP_SEC_MODE_2 | CYBLE_GAP_SEC_LEVEL_3)

uint8 bonding; Bonding type setting:
CYBLE_GAP_BONDING_NONE
CYBLE_GAP_BONDING

uint8 ekeySize; Encryption Key Size (octets)
Minimum = 7
maximum = 16

CYBLE_GAP_AUTH_FAILED_REASON_T
authErr;

Parameter to say it authentication is accepted or rejected with
reason. accepted = CYBLE_GAP_AUTH_ERROR_NONE or error
code CYBLE_GAP_AUTH_FAILED_REASON_T.

CYBLE_GAP_BD_ADDR_T

Prototype
typedef struct {
 uint8 bdAddr[CYBLE_GAP_BD_ADDR_SIZE];
 uint8 type;
} CYBLE_GAP_BD_ADDR_T;

Description

Bluetooth Device Address

Members

Members Description

uint8 bdAddr[CYBLE_GAP_BD_ADDR_SIZE]; Bluetooth device address

uint8 type; public = 0, Random = 1

CYBLE_GAP_BONDED_DEV_ADDR_LIST_T

Prototype
typedef struct {
 uint8 count;
 CYBLE_GAP_BD_ADDR_T bdAddrList[CYBLE_GAP_MAX_BONDED_DEVICE]; }
CYBLE_GAP_BONDED_DEV_ADDR_LIST_T;

Description

Bluetooth Bonded Device Address list

Bluetooth Low Energy (BLE)

Page 112 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

uint8 count; Number of bonded devices

CYBLE_GAP_BD_ADDR_T
bdAddrList[CYBLE_GAP_MAX_BONDED_DEVICE];

Pointer to list of bluetooth device addresses of bonded
devices, of type 'CYBLE_GAP_BD_ADDR_T'.
'CYBLE_GAP_MAX_BONDED_DEVICE' is a '#define' to
be defined during build-time.

CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T

Prototype
typedef struct {
 uint8 status;
 uint16 connIntv;
 uint16 connLatency;
 uint16 supervisionTO;
} CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T;

Description

Current Connection Parameters used by controller

Members

Members Description

uint8 status; status corresponding to this event will be HCI error code as defined in BLE spec 4.1

uint16 connIntv; Connection interval used on this connection.
Range: 0x0006 to 0x0C80
Time Range: 7.5 ms to 4 sec

uint16 connLatency; Slave latency for the connection in number of connection events.
Range: 0x0000 to 0x01F4

uint16 supervisionTO; Supervision timeout for the LE Link. Supervision timeout will be supervisionTO * 10 ms
Time Range: 100 msec to 32 secs

CYBLE_GAP_CONN_UPDATE_PARAM_T

Prototype
typedef struct {
 uint16 connIntvMin;
 uint16 connIntvMax;
 uint16 connLatency;
 uint16 supervisionTO;
} CYBLE_GAP_CONN_UPDATE_PARAM_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 113 of 482

Description

GAP Connection Update parameters

Members

Members Description

uint16
connIntvMin;

Minimum value for the connection event interval. This shall be less than or equal to
conn_Interval_Max. Minimum connection interval will be
connIntvMin * 1.25 ms
Time Range: 7.5 ms to 4 sec

uint16
connIntvMax;

Maximum value for the connection event interval. This shall be greater than or equal to
conn_Interval_Min. Maximum connection interval will be
connIntvMax * 1.25 ms
Time Range: 7.5 ms to 4 sec

uint16
connLatency;

Slave latency for the connection in number of connection events.
Range: 0x0000 to 0x01F4

uint16
supervisionTO;

Supervision timeout for the LE Link. Supervision timeout will be
supervisionTO * 10 ms
Time Range: 100 msec to 32 secs

CYBLE_GAP_IOCAP_T

Prototype
typedef enum {
 CYBLE_GAP_IOCAP_DISPLAY_ONLY = 0x00u,
 CYBLE_GAP_IOCAP_DISPLAY_YESNO,
 CYBLE_GAP_IOCAP_KEYBOARD_ONLY,
 CYBLE_GAP_IOCAP_NOINPUT_NOOUTPUT,
 CYBLE_GAP_IOCAP_KEYBOARD_DISPLAY
} CYBLE_GAP_IOCAP_T;

Description

IO capability

Members

Members Description

CYBLE_GAP_IOCAP_DISPLAY_ONLY =
0x00u

Platform supports only a mechanism to display or convey only 6
digit number to user.

CYBLE_GAP_IOCAP_DISPLAY_YESNO The device has a mechanism whereby the user can indicate
'yes' or 'no'.

CYBLE_GAP_IOCAP_KEYBOARD_ONLY Platform supports a numeric keyboard that can input the

Bluetooth Low Energy (BLE)

Page 114 of 482 Document Number: 001-91490 Rev. *B

numbers '0' through '9' and a confirmation key(s) for 'yes' and
'no'.

CYBLE_GAP_IOCAP_NOINPUT_NOOUTPUT Platform does not have the ability to display or communicate a 6
digit decimal number.

CYBLE_GAP_IOCAP_KEYBOARD_DISPLAY Platform supports a mechanism through which 6 digit numeric
value can be displayed and numeric keyboard that can input the
numbers '0' through '9'.

CYBLE_GAP_PASSKEY_DISP_INFO_T

Prototype
typedef struct {
 uint8 bdHandle;
 uint32 passkey;
} CYBLE_GAP_PASSKEY_DISP_INFO_T;

Description

Passkey display information

Members

Members Description

uint8 bdHandle; bd handle of the remote device

uint32 passkey; size = 6, not null terminated

CYBLE_GAPC_ADV_EVENT_T

Prototype
typedef enum {
 CYBLE_GAPC_CONN_UNDIRECTED_ADV = 0x00u,
 CYBLE_GAPC_CONN_DIRECTED_ADV,
 CYBLE_GAPC_SCAN_UNDIRECTED_ADV,
 CYBLE_GAPC_NON_CONN_UNDIRECTED_ADV,
 CYBLE_GAPC_SCAN_RSP
} CYBLE_GAPC_ADV_EVENT_T;

Description

Advertisement event type

Members

Members Description

CYBLE_GAPC_CONN_UNDIRECTED_ADV = 0x00u Connectable undirected advertising

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 115 of 482

CYBLE_GAPC_CONN_DIRECTED_ADV Connectable directed advertising

CYBLE_GAPC_SCAN_UNDIRECTED_ADV Scannable undirected advertising

CYBLE_GAPC_NON_CONN_UNDIRECTED_ADV Non connectable undirected advertising

CYBLE_GAPC_SCAN_RSP Scan Response

CYBLE_GAPC_ADV_REPORT_T

Prototype
typedef struct {
 CYBLE_GAPC_ADV_EVENT_T eventType;
 uint8 peerAddrType;
 uint8* peerBdAddr;
 uint8 dataLen;
 uint8* data;
 int8 rssi;
} CYBLE_GAPC_ADV_REPORT_T;

Description

Advertisement report received by GAP Central

Members

Members Description

CYBLE_GAPC_ADV_EVENT_T
eventType;

Advertisement event type
Connectable undirected advertising = 0x00
Connectable directed advertising = 0x01
Scannable undirected advertising = 0x02
Non connectable undirected advertising = 0x03
Scan Response = 0x04

uint8 peerAddrType; bd address type of the device advertising.
CYBLE_GAP_ADDR_TYPE_PUBLIC (Public device address)
CYBLE_GAP_ADDR_TYPE_RANDOM (Random device address)

uint8* peerBdAddr; Public Device Address or Random Device Address for each device which
responded to scanning.

uint8 dataLen; length of the data for each device that responded to scanning

uint8* data; Pointer to advertising or scan response data

int8 rssi; Rssi of the responding device.
Range: -85 <= N <= 0
Units: dBm

Bluetooth Low Energy (BLE)

Page 116 of 482 Document Number: 001-91490 Rev. *B

CYBLE_GAPC_CONN_PARAM_T

Prototype
typedef struct {
 uint16 scanIntv;
 uint16 scanWindow;
 uint8 initiatorFilterPolicy;
 uint8 peerBdAddr[CYBLE_GAP_BD_ADDR_SIZE];
 uint8 peerAddrType;
 uint8 ownAddrType;
 uint16 connIntvMin;
 uint16 connIntvMax;
 uint16 connLatency;
 uint16 supervisionTO;
 uint16 minCeLength;
 uint16 maxCeLength;
} CYBLE_GAPC_CONN_PARAM_T;

Description

Connection parameters at the GAP Central end

Members

Members Description

uint16 scanIntv; The time interval from when last LE scan is started until next
subsequent LE scan.
Time Range: 2.5 ms to 10.24 sec.

uint16 scanWindow; The time duration of scanning to be performed
Time Range: 2.5 ms to 10.24 sec

uint8 initiatorFilterPolicy; Filter policies to be applied during connection procedure
CYBLE_GAPC_CONN_ALL (White list is not used to determine
which advertiser to connect. Peer address is used)
CYBLE_GAPC_CONN_WHITELIST (White list is used to
determine which advertiser to connect to. Peer address shall be
ignored)

uint8
peerBdAddr[CYBLE_GAP_BD_ADDR_SIZE];

Peer's bd address with whom connection to be established

uint8 peerAddrType; Peer's bd address type
CYBLE_GAP_ADDR_TYPE_PUBLIC (Public device address)
CYBLE_GAP_ADDR_TYPE_RANDOM (Random device
address)

uint8 ownAddrType; Own bd address type
CYBLE_GAP_ADDR_TYPE_PUBLIC (Public device address)
CYBLE_GAP_ADDR_TYPE_RANDOM (Random device address)

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 117 of 482

uint16 connIntvMin; Minimum value for the connection event interval. This shall be less
than or equal to conn_Interval_Max. Minimum connection interval
will be connIntvMin * 1.25 ms
Time Range: 7.5 ms to 4 sec

uint16 connIntvMax; Maximum value for the connection event interval. This shall be
greater than or equal to conn_Interval_Min. Maximum connection
interval will be connIntvMax * 1.25 ms
Time Range: 7.5 ms to 4 sec

uint16 connLatency; Slave latency for the connection in number of connection events.
Range: 0x0000 to 0x01F4

uint16 supervisionTO; Supervision timeout for the LE Link. Supervision timeout will be
supervisionTO * 10 ms
Time Range: 100 msec to 32 secs

uint16 minCeLength; Minimum length of connection needed for this LE connection.
Range: 0x0000 - 0xFFFF

uint16 maxCeLength; Maximum length of connection needed for this LE connection.
Range: 0x0000 - 0xFFFF

CYBLE_GAPC_DISC_INFO_T

Prototype
typedef struct {
 uint8 discProcedure;
 uint8 scanType;
 uint16 scanIntv;
 uint16 scanWindow;
 uint8 ownAddrType;
 uint8 scanFilterPolicy;
 uint16 scanTo;
 uint8 filterDuplicates;
} CYBLE_GAPC_DISC_INFO_T;

Description

Discovery information collected by Client

Members

Members Description

uint8
discProcedure;

Observation and discovery procedure.
CYBLE_GAPC_OBSER_PROCEDURE (Observation procedure)
CYBLE_GAPC_LTD_DISC_PROCEDURE (Limited discovery procedure)
CYBLE_GAPC_GEN_DISC_PROCEDURE (General discovery procedure)

Bluetooth Low Energy (BLE)

Page 118 of 482 Document Number: 001-91490 Rev. *B

uint8 scanType; Type of scan to perform
CYBLE_GAPC_PASSIVE_SCANNING (Passive Scanning)
CYBLE_GAPC_ACTIVE_SCANNING (Active scanning)

uint16 scanIntv; The time interval from when last LE scan is started until next subsequent LE scan.
Time Range: 2.5 ms to 10.24 sec.

uint16
scanWindow;

The time duration of scanning to be performed
Time Range: 2.5 ms to 10.24 sec

uint8
ownAddrType;

Own BD Address Type
CYBLE_GAP_ADDR_TYPE_PUBLIC (Public device address)
CYBLE_GAP_ADDR_TYPE_RANDOM (Random device address)

uint8
scanFilterPolicy;

Filter policies to be applied during scanning procedure
CYBLE_GAPC_ADV_ACCEPT_ALL_PKT (Accept all advertisement packets)
CYBLE_GAPC_ADV_ACCEPT_WHITELIST_PKT (Ignore advertisement packets from devices
not in the White List)

uint16 scanTo; Scan timeout. Timeout is in seconds and none zero. If timeout is set as 0, then there will not be
any timeout scanTo can be used for all GAP timeouts related to Central operation.

uint8
filterDuplicates;

Filter Duplicate Advertisement. The Filter Duplicates parameter controls whether the Link
Layer shall filter duplicate advertising reports to the Host, or if the Link Layer should generate
advertising reports for each packet received.
CYBLE_GAPC_FILTER_DUP_DISABLE (Duplicate filtering disabled)
CYBLE_GAPC_FILTER_DUP_ENABLE (Duplicate filtering enabled)
By default, duplicate filtering is enabled

CYBLE_GAPC_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T deviceNameCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T appearanceCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T periphPrivacyCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T reconnAddrCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T prefConnParamCharHandle;
} CYBLE_GAPC_T;

Description

GAP Service Characteristics server's GATT DB handles structure type

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T Handle of the GAPS Device Name Characteristic

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 119 of 482

deviceNameCharHandle;

CYBLE_GATT_DB_ATTR_HANDLE_T
appearanceCharHandle;

Handle of the GAPS Appearance Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
periphPrivacyCharHandle;

Handle of the GAPS Peripheral Privacy Flag Parameters Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
reconnAddrCharHandle;

Handle of the GAPS Reconnection Address Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
prefConnParamCharHandle;

Handle of the GAPS Peripheral Preferred Connection Parameters
Characteristic

CYBLE_GAPP_ADV_T

Prototype
typedef enum {
 CYBLE_GAPP_CONNECTABLE_UNDIRECTED_ADV = 0x00u,
 CYBLE_GAPP_CONNECTABLE_HIGH_DC_DIRECTED_ADV,
 CYBLE_GAPP_SCANNABLE_UNDIRECTED_ADV,
 CYBLE_GAPP_NON_CONNECTABLE_UNDIRECTED_ADV,
 CYBLE_GAPP_CONNECTABLE_LOW_DC_DIRECTED_ADV
} CYBLE_GAPP_ADV_T;

Description

Advertisement type

Members

Members Description

CYBLE_GAPP_CONNECTABLE_UNDIRECTED_ADV = 0x00u Connectable undirected advertising

CYBLE_GAPP_CONNECTABLE_HIGH_DC_DIRECTED_ADV Connectable high duty cycle directed advertising

CYBLE_GAPP_SCANNABLE_UNDIRECTED_ADV Scannable undirected advertising

CYBLE_GAPP_NON_CONNECTABLE_UNDIRECTED_ADV Non connectable undirected advertising

CYBLE_GAPP_CONNECTABLE_LOW_DC_DIRECTED_ADV Connectable low duty cycle directed advertising

CYBLE_GAPP_DISC_DATA_T

Prototype
typedef struct {
 uint8 advData[CYBLE_GAP_MAX_ADV_DATA_LEN];
 uint8 advDataLen;
} CYBLE_GAPP_DISC_DATA_T;

Bluetooth Low Energy (BLE)

Page 120 of 482 Document Number: 001-91490 Rev. *B

Description

Advertising data

Members

Members Description

uint8
advData[CYBLE_GAP_MAX_ADV_DATA_LEN];

GAP Advertisement Parameters which includes Flags,
Service UUIDs and short name

uint8 advDataLen; Length of the advertising data. This should be made zero if
there is no data

CYBLE_GAPP_DISC_MODE_INFO_T

Prototype
typedef struct {
 uint8 discMode;
 CYBLE_GAPP_DISC_PARAM_T* advParam;
 CYBLE_GAPP_DISC_DATA_T* advData;
 CYBLE_GAPP_SCAN_RSP_DATA_T* scanRspData;
 uint16 advTo;
} CYBLE_GAPP_DISC_MODE_INFO_T;

Description

Advertising information

Members

Members Description

uint8 discMode; Broadcaster and discoverable mode
CYBLE_GAPP_NONE_DISC_BROADCAST_MODE (Applicable for
Broadcaster or non-discoverable mode)
CYBLE_GAPP_LTD_DISC_MODE (Limited discovery mode)
CYBLE_GAPP_GEN_DISC_MODE (General discovery mode)

CYBLE_GAPP_DISC_PARAM_T*
advParam;

Advertisement parameters

CYBLE_GAPP_DISC_DATA_T*
advData;

Advertisement data

CYBLE_GAPP_SCAN_RSP_DATA_T*
scanRspData;

Scan Response data

uint16 advTo; Advertisement timeout is in seconds. If timeout is set to 0, then there will
not be any timeout. Parameter 'advTo' can be used for all GAP timeouts
related to peripheral operation. For General discoverable mode, this
timer will be ignored. Application is expected to exit from discoverable

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 121 of 482

mode explicitly by calling CyBle_GappExitDiscoveryMode() function. For
Limited discoverable mode, 'advTo' should not exceed 180 Sec.

CYBLE_GAPP_DISC_PARAM_T

Prototype
typedef struct {
 uint16 advIntvMin;
 uint16 advIntvMax;
 CYBLE_GAPP_ADV_T advType;
 uint8 ownAddrType;
 uint8 directAddrType;
 uint8 directAddr[CYBLE_GAP_BD_ADDR_SIZE];
 uint8 advChannelMap;
 uint8 advFilterPolicy;
} CYBLE_GAPP_DISC_PARAM_T;

Description

Advertising parameters

Members

Members Description

uint16 advIntvMin; Minimum advertising interval for undirected and low duty cycle
directed advertising.
Time Range: 20 ms to 10.24 sec

uint16 advIntvMax; Maximum advertising interval for undirected and low duty cycle
directed advertising.
Time Range: 20 ms to 10.24 sec

CYBLE_GAPP_ADV_T advType; Type of advertisement
Connectable undirected advertising (0x00)
Connectable high duty cycle directed advertising (0x01)
Scannable undirected advertising (0x02)
Non connectable undirected advertising (0x03)
Connectable low duty cycle directed advertising (0x04)

uint8 ownAddrType; Own BD Address Type
CYBLE_GAP_ADDR_TYPE_PUBLIC (Public device address)
CYBLE_GAP_ADDR_TYPE_RANDOM (Random device address)

uint8 directAddrType; Address type of the Bluetooth device address being used for
directed advertising, not applicable otherwise
CYBLE_GAP_ADDR_TYPE_PUBLIC (Public device address)
CYBLE_GAP_ADDR_TYPE_RANDOM (Random device address)

Bluetooth Low Energy (BLE)

Page 122 of 482 Document Number: 001-91490 Rev. *B

uint8
directAddr[CYBLE_GAP_BD_ADDR_SIZE];

This parameter specifies Bluetooth device address of the device to
be connected while using directed advertising. In case of none
direct advertising, parameter will be 0

uint8 advChannelMap; Advertising channels that shall be used when transmitting
advertising packets. Channel map selection:
Enable channel 37 = bitmask. xxxxxxx1b
Enable channel 38 = bitmask. xxxxxx1xb
Enable channel 39 = bitmask. xxxxx1xxb

uint8 advFilterPolicy; Advertising Filter Policy
CYBLE_SCAN_ANY_CONN_ANY (Allow Scan Request from Any,
Allow Connect Request from Any (Default))
CYBLE_SCAN_WHITELIST_CONN_ANY (Allow Scan Request
from White List Only, Allow Connect Request)
CYBLE_SCAN_ANY_CONN_WHITELIST (Allow Scan Request
from Any, Allow Connect Request from White List Only)
CYBLE_SCAN_WHITELIST_CONN_ANY (Allow Scan Request
from White List Only, Allow Connect Request from White List Only)

CYBLE_GAPP_SCAN_RSP_DATA_T

Prototype
typedef struct {
 uint8 scanRspData[CYBLE_GAP_MAX_SCAN_RSP_DATA_LEN];
 uint8 scanRspDataLen;
} CYBLE_GAPP_SCAN_RSP_DATA_T;

Description

Scan response data

Members

Members Description

uint8
scanRspData[CYBLE_GAP_MAX_SCAN_RSP_DATA_LEN];

Static user data transmitted in scan response.
This should be made NULL if there is no data.
Maximum length of the data is equal to 31 bytes

uint8 scanRspDataLen; Length of the scan response data. This should be
made zero if there is no data

GATT Functions
The GATT APIs allow access to the Generic Attribute Profile (GATT) layer of the BLE stack.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 123 of 482

The GATT API names begin with CyBle_Gatt. In addition to this, the APIs also append the GATT
role initial letter in the API name.

GATT Client and Server Functions
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Gatt

Functions

Function Description

CyBle_GattGetMtuSize This function provides the correct MTU used by BLE stack. If function is called after MTU
configuration procedure, it will provide the final negotiated MTU... more

CyBle_GattGetMtuSize

Prototype
CYBLE_API_RESULT_T CyBle_GattGetMtuSize(uint16* mtu);

Description

This function provides the correct MTU used by BLE stack. If function is called after MTU
configuration procedure, it will provide the final negotiated MTU else default MTU (23 Bytes).

Parameters

Parameters Description

uint16* mtu buffer where Size of MTU will be stored.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER If invalid parameter passed

GATT Server Functions
APIs unique to designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Gatts

Bluetooth Low Energy (BLE)

Page 124 of 482 Document Number: 001-91490 Rev. *B

Functions

Function Description

CyBle_GattsReInitGattDb Reinitializes the GATT database.

CyBle_GattsWriteAttributeValue This function is used to write to the value field of the specified attribute in the
GATT database of a GATT Server. This is a... more

CyBle_GattsReadAttributeValue This function is used to read the value field of the specified attribute from the
GATT database in a GATT Server. This is a blocking... more

CyBle_GattsEnableAttribute This function enables the attribute entry for service or Characteristic logical group
in the GATT database registered in BLE Stack. This is a blocking function.... more

CyBle_GattsDisableAttribute
This function disables the attribute entry for service or Characteristic logical
group in the GATT database registered in the BLE Stack. This is a blocking...
more

CyBle_GattsNotification This function sends a notification to the peer device when the GATT Server is
configured to notify a Characteristic Value to the GATT Client without... more

CyBle_GattsIndication This function sends an indication to the peer device when the GATT Server is
configured to indicate a Characteristic Value to the GATT Client and... more

CyBle_GattsErrorRsp This function sends an error response to the peer device. The Error Response is
used to state that a given request cannot be performed, and... more

CyBle_GattsExchangeMtuRsp This function sends the GATT Server's MTU size to the GATT Client. This
function has to be invoked in response to an Exchange MTU Request... more

CyBle_GattsWriteRsp This function sends a Write Response from a GATT Server to the GATT Client.
This is a non-blocking function. This function has to be invoked... more

CyBle_GattsPrepWriteReqSupport This function needs to be called after getting
CYBLE_EVT_GATTS_PREP_WRITE_REQ event from the BLE Stack to perform
necessary initialization in the BLE stack to support prepare... more

CyBle_GattsReInitGattDb

Prototype
CYBLE_API_RESULT_T CyBle_GattsReInitGattDb(void);

Description

Reinitializes the GATT database.

Returns

CYBLE_API_RESULT_T: An API result states if the API succeeded or failed with error codes:

 CYBLE_ERROR_OK: GATT database was reinitialized successfully

 CYBLE_ERROR_INVALID_STATE: If the function is called in any state except

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 125 of 482

 CYBLE_STATE_DISCONNECTED.

 Any of the CyBle_GattsDbRegister() stack API function return values.

CyBle_GattsWriteAttributeValue

Prototype
CYBLE_GATT_ERR_CODE_T CyBle_GattsWriteAttributeValue(CYBLE_GATT_HANDLE_VALUE_PAIR_T *
handleValuePair, uint16 offset, CYBLE_CONN_HANDLE_T * connHandle, uint8 flags);

Description

This function is used to write to the value field of the specified attribute in the GATT database of
a GATT Server. This is a blocking function. No event is generated on calling this function.
If a peer device connected to the GATT Server initiates a write operation, this function is
executed on the GATT Server. During such a call, the function checks for the attribute
permissions (flags) before executing the write operation.

Parameters

Parameters Description

CYBLE_GATT_HANDLE_VALUE_PAIR_T *
handleValuePair

Pointer to handle value pair of type
CYBLE_GATT_HANDLE_VALUE_PAIR_T.
• 'handleValuePair.attrHandle' is an input for which value

has to be written.
• 'handleValuePair.value.len' is an input parameter for the

length to be written.
• 'handleValuePair.value.val' is an input parameter for data

buffer.
• 'handleValuePair.actualLen' has to be ignored as it is

unused in this function.

uint16 offset Offset at which the data (length in number of bytes) is written.

CYBLE_CONN_HANDLE_T * connHandle Pointer to the attribute instance handle, of type
CYBLE_CONN_HANDLE_T.

uint8 flags Attribute permissions. Allowed values are,
• CYBLE_GATT_DB_LOCALLY_INITIATED
• CYBLE_GATT_DB_PEER_INITIATED

Returns

CYBLE_GATT_ERR_CODE_T : Return value indicates if the function succeeded or failed. Following are
the possible error codes.

Bluetooth Low Energy (BLE)

Page 126 of 482 Document Number: 001-91490 Rev. *B

Error codes Description

CYBLE_GATT_ERR_NONE On successful operation

CYBLE_GATT_ERR_INVALID_HANDLE 'handleValuePair.attrHandle' is not valid

CYBLE_GATT_ERR_WRITE_NOT_PERMITTED Write operation is not permitted on this attribute

CYBLE_GATT_ERR_INVALID_OFFSET Offset value is invalid

CYBLE_GATT_ERR_UNLIKELY_ERROR Some other error occurred

CyBle_GattsReadAttributeValue

Prototype
CYBLE_GATT_ERR_CODE_T CyBle_GattsReadAttributeValue(CYBLE_GATT_HANDLE_VALUE_PAIR_T*
handleValuePair, CYBLE_CONN_HANDLE_T* connHandle, uint8 flags);

Description

This function is used to read the value field of the specified attribute from the GATT database in
a GATT Server. This is a blocking function. No event is generated on calling this function.
Peer initiated call to this function results in the function checking for attribute permissions before
performing this operation.

Parameters

Parameters Description

CYBLE_GATT_HANDLE_VALUE_PAIR_T*
handleValuePair

Pointer to handle value pair of type
CYBLE_GATT_HANDLE_VALUE_PAIR_T.
• 'handleValuePair.attrHandle' is an input for which value

has to be read.
• 'handleValuePair.value.len' is an input parameter for the

length to be read.
• 'handleValuePair.value.val' is an output parameter for

data buffer.
• 'handleValuePair.actualLen' has to be ignored as it is

unused in this function.

CYBLE_CONN_HANDLE_T* connHandle Pointer to the attribute instance handle, of type
CYBLE_CONN_HANDLE_T.

uint8 flags Attribute permissions. Allowed values are,
• CYBLE_GATT_DB_LOCALLY_INITIATED
• CYBLE_GATT_DB_PEER_INITIATED

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 127 of 482

Returns

CYBLE_GATT_ERR_CODE_T : Return value indicates if the function succeeded or failed. Following are
the possible error codes.

Error codes Description

CYBLE_GATT_ERR_NONE On successful operation

CYBLE_GATT_ERR_INVALID_HANDLE 'handleValuePair.attrHandle' is not valid

CYBLE_GATT_ERR_READ_NOT_PERMITTED Read operation is not permitted on this attribute

CYBLE_GATT_ERR_INVALID_OFFSET Offset value is invalid

CYBLE_GATT_ERR_UNLIKELY_ERROR Some other error occurred

CyBle_GattsEnableAttribute

Prototype
CYBLE_GATT_ERR_CODE_T CyBle_GattsEnableAttribute(CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle);

Description

This function enables the attribute entry for service or Characteristic logical group in the GATT
database registered in BLE Stack. This is a blocking function. No event is generated on calling
this function.
This function returns an error if the attribute does not belong to any service or Characteristic
logical group. If the attribute entry is already enabled, then this function returns status
CYBLE_GATT_ERR_NONE.

Parameters

Parameters Description

CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle

Attribute handle of the registered GATT Database to enable
particular attribute entry, of type CYBLE_GATT_DB_ATTR_HANDLE_T.

Returns

CYBLE_GATT_ERR_CODE_T : Return value indicates if the function succeeded or failed. Following are
the possible error codes.

Error codes Description

CYBLE_GATT_ERR_NONE On successful operation

CYBLE_GATT_ERR_INVALID_HANDLE 'attrHandle' is not valid

Bluetooth Low Energy (BLE)

Page 128 of 482 Document Number: 001-91490 Rev. *B

CyBle_GattsDisableAttribute

Prototype
CYBLE_GATT_ERR_CODE_T CyBle_GattsDisableAttribute(CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle);

Description

This function disables the attribute entry for service or Characteristic logical group in the GATT
database registered in the BLE Stack. This is a blocking function. No event is generated on
calling this function.
This function returns error if the attribute does not belong to a service or a Characteristic logical
group. If attribute entry is already disabled then it returns CYBLE_GATT_ERR_NONE as status.
All the attribute entries are enabled in GATT database during stack initialization.

Parameters

Parameters Description

CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle

Attribute handle of the registered GATT Database to disable
particular attribute entry, of type 'CYBLE_GATT_DB_ATTR_HANDLE_T'

Returns

CYBLE_GATT_ERR_CODE_T : Return value indicates if the function succeeded or failed. Following are
the possible error codes.

Error codes Description

CYBLE_GATT_ERR_NONE On successful operation

CYBLE_GATT_ERR_INVALID_HANDLE 'attrHandle' is not valid

CyBle_GattsNotification

Prototype
CYBLE_API_RESULT_T CyBle_GattsNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_HANDLE_VALUE_NTF_T * ntfParam);

Description

This function sends a notification to the peer device when the GATT Server is configured to
notify a Characteristic Value to the GATT Client without expecting any Attribute Protocol layer
acknowledgement that the notification was successfully received. This is a non-blocking function.
On enabling notification successfully for a specific attribute, if the GATT server has an updated
value to be notified to the GATT Client, it sends out a 'Handle Value Notification' which results in
CYBLE_EVT_GATTC_HANDLE_VALUE_NTF event at the GATT Client's end.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 129 of 482

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.10 for more details on
notifications.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTS_HANDLE_VALUE_NTF_T *
ntfParam

Pointer to structure of type
CYBLE_GATTS_HANDLE_VALUE_NTF_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattsIndication

Prototype
CYBLE_API_RESULT_T CyBle_GattsIndication(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_HANDLE_VALUE_IND_T * indParam);

Description

This function sends an indication to the peer device when the GATT Server is configured to
indicate a Characteristic Value to the GATT Client and expects an Attribute Protocol layer
acknowledgement that the indication was successfully received. This is a non-blocking function.
On enabling indication successfully, if the GATT server has an updated value to be indicated to
the GATT Client, it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_GATTC_HANDLE_VALUE_IND event at the GATT Client's end.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.11 for more details on
Indications.

Bluetooth Low Energy (BLE)

Page 130 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTS_HANDLE_VALUE_IND_T *
indParam

Pointer to structure of type
CYBLE_GATTS_HANDLE_VALUE_IND_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattsErrorRsp

Prototype
CYBLE_API_RESULT_T CyBle_GattsErrorRsp(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_ERR_PARAM_T * errRspParam);

Description

This function sends an error response to the peer device. The Error Response is used to state
that a given request cannot be performed, and to provide the reason as defined in
'CYBLE_GATT_ERR_CODE_T'. This is a non-blocking function.
Note that the 'Write Command' initiated by GATT Client does not generate an 'Error Response'
from the GATT Server's end. The GATT Client gets CYBLE_EVT_GATTC_ERROR_RSP event
on receiving error response.
Refer Bluetooth 4.1 core specification, Volume 3, Part F, section 3.4.1.1 for more details on Error
Response operation.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 131 of 482

CYBLE_GATTS_ERR_PARAM_T *
errRspParam Pointer to structure of type CYBLE_GATTS_ERR_PARAM_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattsExchangeMtuRsp

Prototype
CYBLE_API_RESULT_T CyBle_GattsExchangeMtuRsp(CYBLE_CONN_HANDLE_T connHandle, uint16
mtu);

Description

This function sends the GATT Server's MTU size to the GATT Client. This function has to be
invoked in response to an Exchange MTU Request received from the GATT Client. The GATT
Server's MTU size should be greater than or equal to the default MTU size (23 bytes). This is a
non-blocking function.
The peer GATT Client receives CYBLE_EVT_GATTC_XCHNG_MTU_RSP event on executing
this function on the GATT Server.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.3.1 for more details on
exchange of MTU.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

uint16 mtu Size of MTU, of type uint16

Bluetooth Low Energy (BLE)

Page 132 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack or, 'mtu' has a value which is greater than that set
on calling CyBle_StackInit function

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattsWriteRsp

Prototype
CYBLE_API_RESULT_T CyBle_GattsWriteRsp(CYBLE_CONN_HANDLE_T connHandle);

Description

This function sends a Write Response from a GATT Server to the GATT Client. This is a non-
blocking function. This function has to be invoked in response to a valid Write Request event
from the GATT Client (CYBLE_EVT_GATTS_WRITE_REQ) to acknowledge that the attribute
has been successfully written.
The Write Response has to be sent after the attribute value is written or saved by the GATT
Server. Write Response results in CYBLE_EVT_GATTC_WRITE_RSP event at the GATT
Client's end.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 133 of 482

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattsPrepWriteReqSupport

Prototype
void CyBle_GattsPrepWriteReqSupport(uint8 prepWriteSupport);

Description

This function needs to be called after getting CYBLE_EVT_GATTS_PREP_WRITE_REQ event
from the BLE Stack to perform necessary initialization in the BLE stack to support prepare write
request operation. This needs to be called from the same event call back context. This is a non-
blocking function.
On receiving CYBLE_EVT_GATTS_PREP_WRITE_REQ, returning from the event handler
without calling this function will result in prepare write response being sent to the peer device
rejecting the prepare write operation. CYBLE_GATT_ERR_REQUEST_NOT_SUPPORTED
error code will be sent to client.

Parameters

Parameters Description

uint8
prepWriteSupport

If prepare write operation is supported by the application then the application layer should set
this variable to CYBLE_GATTS_PREP_WRITE_SUPPORT. Any other value will result in the
device rejecting the prepare write operation. Allowed values for this parameter
CYBLE_GATTS_PREP_WRITE_SUPPORT
CYBLE_GATTS_PREP_WRITE_NOT_SUPPORT

Returns

None

GATT Client Functions
APIs unique to designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Gattc

Functions

Function Description

CyBle_GattcStopCmd
This function is used by the GATT Client to stop any of the following
ongoing GATT procedures:
CyBle_GattcDiscoverAllPrimaryServices

Bluetooth Low Energy (BLE)

Page 134 of 482 Document Number: 001-91490 Rev. *B

CyBle_GattcDiscoverPrimaryServiceByUuid
CyBle_GattcFindIncludedServices
CyBle_GattcDiscoverAllCharacteristics
CyBle_GattcDiscoverCharacteristicByUuid
CyBle_GattcDiscoverAllCharacteristicDescriptors
CyBle_GattcReadLongCharacteristicValues
CyBle_GattcWriteLongCharacteristicValues... more

CyBle_GattcExchangeMtuReq
This function is used by the GATT Client to send Maximum
Transmitted Unit (MTU) supported by the GATT Client. This is a
non-blocking function. Default... more

CyBle_GattcDiscoverAllPrimaryServices This function is used by the GATT Client to discover all the primary
services on a GATT Server to which it is connected. This is... more

CyBle_GattcDiscoverPrimaryServiceByUuid
This function is used by the GATT Client to discover a specific
primary service on a GATT Server, to which it is connected, when
only... more

CyBle_GattcFindIncludedServices This function is used by the GATT Client to find Included Service
declarations within a GATT Service to which it is connected. This is
a... more

CyBle_GattcDiscoverAllCharacteristics This function is used by the GATT Client to find all Characteristic
declarations within a service definition on a GATT Server connect to
it when... more

CyBle_GattcDiscoverCharacteristicByUuid This function is used by the GATT Client to discover service
Characteristics on a GATT Server when only the service handle
ranges are known and... more

CyBle_GattcDiscoverAllCharacteristicDescriptors This function is used by the GATT Client to find all the Characteristic
Descriptors. This is a non-blocking function. Internally, multiple Find
Information Requests are... more

CyBle_GattcReadCharacteristicValue This function reads a Characteristic Value from a GATT Server
when the GATT Client knows the Characteristic Value Handle. This
is a non-blocking function. Internally,... more

CyBle_GattcReadUsingCharacteristicUuid This function reads a Characteristic Value from the GATT Server
when the GATT Client only knows the Characteristic UUID and does
not know the handle... more

CyBle_GattcReadLongCharacteristicValues This function reads a Characteristic Value from the GATT Server
when the GATT Client knows the Characteristic Value Handle and
the length of the Characteristic... more

CyBle_GattcReadMultipleCharacteristicValues This function reads multiple Characteristic Values from a GATT
Server when the GATT Client knows the Characteristic Value
Handles. This is a non-blocking function. Internally,... more

CyBle_GattcWriteWithoutResponse This function writes a Characteristic Value to a GATT Server when
the GATT Client knows the Characteristic Value Handle and the
client does not need... more

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 135 of 482

CyBle_GattcSignedWriteWithoutRsp This function writes a Characteristic Value to a server when the
client knows the Characteristic Value Handle and the ATT Bearer is
not encrypted. This... more

CyBle_GattcWriteCharacteristicValue This function writes a Characteristic Value to a GATT Server when
the GATT Client knows the Characteristic Value Handle. This is a
non-blocking function. Internally,... more

CyBle_GattcWriteLongCharacteristicValues This function writes a Characteristic Value to a GATT Server when
the GATT Client knows the Characteristic Value Handle but the
length of the Characteristic... more

CyBle_GattcReliableWrites This function writes a Characteristic Value to a GATT Server when
the GATT Client knows the Characteristic Value Handle, and
assurance is required that the... more

CyBle_GattcConfirmation This function sends confirmation to the GATT Server on receiving
Handle Value Indication event
CYBLE_EVT_GATTC_HANDLE_VALUE_IND at the GATT Client's
end. This is a non-blocking function.... more

CyBle_GattcReadCharacteristicDescriptors This function reads a Characteristic Descriptor from a GATT Server
when the GATT Client knows the Attribute handle from the
Characteristic Descriptor declaration. This is... more

CyBle_GattcReadLongCharacteristicDescriptors This function reads a Characteristic Descriptor from a GATT Server
when the GATT Client knows the Attribute handle from the
Characteristic Descriptor declaration and the... more

CyBle_GattcWriteCharacteristicDescriptors This function writes a Characteristic Descriptor value to a GATT
Server when the GATT Client knows the Characteristic Descriptor
handle. This is a non-blocking function.... more

CyBle_GattcWriteLongCharacteristicDescriptors This function writes a Characteristic Descriptor value to a GATT
Server when the GATT Client knows the Characteristic Descriptor
handle but the length of the... more

CyBle_GattcStartDiscovery Starts the automatic server discovery process. Two events may be
generated after calling this function -
CYBLE_EVT_GATTC_DISCOVERY_COMPLETE or
CYBLE_EVT_GATTC_ERROR_RSP. The
CYBLE_EVT_GATTC_DISCOVERY_COMPLETE event is
generated when... more

CyBle_GattcStopCmd

Prototype
void CyBle_GattcStopCmd(void);

Description

This function is used by the GATT Client to stop any of the following ongoing GATT procedures:

Bluetooth Low Energy (BLE)

Page 136 of 482 Document Number: 001-91490 Rev. *B

 CyBle_GattcDiscoverAllPrimaryServices

 CyBle_GattcDiscoverPrimaryServiceByUuid

 CyBle_GattcFindIncludedServices

 CyBle_GattcDiscoverAllCharacteristics

 CyBle_GattcDiscoverCharacteristicByUuid

 CyBle_GattcDiscoverAllCharacteristicDescriptors

 CyBle_GattcReadLongCharacteristicValues

 CyBle_GattcWriteLongCharacteristicValues

 CyBle_GattcReliableWrites

 CyBle_GattcReadLongCharacteristicDescriptors

 CyBle_GattcWriteLongCharacteristicDescriptors
If none of the above procedures is ongoing, then this command will be ignored. This function has
no effect on ATT procedures other than those listed above.
If the user intends to start a new GATT procedure including those listed above and there is an
ongoing GATT procedure (any one from the above list), the user needs to call this function to
stop the ongoing GATT procedure and then invoke the desired GATT procedure. This is a
blocking function. No event is generated on calling this function.

Returns

None

CyBle_GattcExchangeMtuReq

Prototype
CYBLE_API_RESULT_T CyBle_GattcExchangeMtuReq(CYBLE_CONN_HANDLE_T connHandle, uint16
mtu);

Description

This function is used by the GATT Client to send Maximum Transmitted Unit (MTU) supported by
the GATT Client. This is a non-blocking function.
Default MTU size as per Bluetooth 4.1 core specification is 23 bytes. If the GATT Client supports
a size greater than the default, it has to invoke this function with the desired MTU size. This
function should only be initiated once during a connection.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 137 of 482

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.3.1 for more details on
MTU exchange operation.
This function call results in CYBLE_EVT_GATTS_XCNHG_MTU_REQ event at the GATT
Server's end in response to which the GATT Server is expected to send its MTU size.
The CYBLE_EVT_GATTC_XCHNG_MTU_RSP event is generated at the GATT Client's end on
receiving MTU response from the GATT Server.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

uint16 mtu Size of MTU. Max MTU supported by BLE stack is 256 Bytes.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack or, 'mtu' has a value which is greater than that set
on calling CyBle_StackInit function

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcDiscoverAllPrimaryServices

Prototype
CYBLE_API_RESULT_T CyBle_GattcDiscoverAllPrimaryServices(CYBLE_CONN_HANDLE_T
connHandle);

Description

This function is used by the GATT Client to discover all the primary services on a GATT Server
to which it is connected. This is a non-blocking function.
Internally, this function initiates multiple Read By Group Type Requests to the peer device in
response to which it receives Read By Group Type Responses. Each Read By Group Type
Response results in CYBLE_EVT_GATTC_READ_BY_GROUP_TYPE_RSP event, which is
propagated to the application layer for handling.

Bluetooth Low Energy (BLE)

Page 138 of 482 Document Number: 001-91490 Rev. *B

Primary service discovery is complete when Error Response
(CYBLE_EVT_GATTC_ERROR_RSP) is received and the Error Code is set to Attribute Not
Found or when the End Group Handle in the Read by Group Type Response is 0xFFFF.
Completion of this operation is notified to the upper layer(s) using
CYBLE_EVT_GATTC_ERROR_RSP with error code updated appropriately.
It is permitted to end the above stated sequence of operations early if the desired primary
service is found prior to discovering all the primary services on the GATT Server. This can be
achieved by calling the CyBle_GattcStopCmd() function.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.4.1 for more details on this
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcDiscoverPrimaryServiceByUuid

Prototype
CYBLE_API_RESULT_T CyBle_GattcDiscoverPrimaryServiceByUuid(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATT_VALUE_T value);

Description

This function is used by the GATT Client to discover a specific primary service on a GATT
Server, to which it is connected, when only the Service UUID is known. This is a non-blocking
function.
Internally, this function initiates multiple Find By Type Value Requests with the Attribute Type
parameter set to the UUID for Primary Service and the Attribute Value set to the 16-bit Bluetooth

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 139 of 482

UUID or 128-bit UUID for the specific primary service. Each Find By Type Value Response
received from the peer device is passed to the application as
CYBLE_EVT_GATTC_FIND_BY_TYPE_VALUE_RSP event.
The sequence of operations is complete when the Error Response is received and the Error
Code is set to Attribute Not Found or when the End Group Handle in the Find By Type Value
Response is 0xFFFF. Completion of this function is notified to upper layer using
CYBLE_EVT_GATTC_ERROR_RSP event with the error code updated appropriately.
It is permitted to end the function early by calling the CyBle_GattcStopCmd() function if a desired
primary service is found prior to discovery of all the primary services of the specified service
UUID supported on the GATT Server.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.4.2 for more details on this
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATT_VALUE_T value Parameter is of type 'CYBLE_GATT_VALUE_T', where,
• 'value.val' should point to uint8 array containing the UUID to look for.

UUID can be 16 or 128 bit.
• 'value.len' should be set to 2 if the 16 bit UUID is to be found. The length

should be set to 16 if 128 bit UUID is to be found.
• 'value.actualLen' is an unused parameter and should be ignored as it is

unused.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

Bluetooth Low Energy (BLE)

Page 140 of 482 Document Number: 001-91490 Rev. *B

CyBle_GattcFindIncludedServices

Prototype
CYBLE_API_RESULT_T CyBle_GattcFindIncludedServices(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_ATTR_HANDLE_RANGE_T * range);

Description

This function is used by the GATT Client to find Included Service declarations within a GATT
Service to which it is connected. This is a non-blocking function.
Internally, multiple Read By Type Requests are sent to the peer device in response to which
Read By Type Responses are received (CYBLE_EVT_GATTC_READ_BY_TYPE_RSP) and
passed to the application layer.
When Read By Type Response data does not contain the service UUID, indicating the service
UUID is a 128-bit UUID, the application layer can choose to get the service UUID by performing
the following steps:

 Stop ongoing GATT operation by invoking CyBle_GattcStopCmd()

 Send Read Request by invoking the function CyBle_GattcReadCharacteristicValue() with the read
request handle set to the attribute handle of the included service. Handle associated
events.

 Re-initiate CyBle_GattcFindIncludedServices function, setting the start handle to the
attribute handle which is placed next to the one used in the above step.

It is permitted to end the function early if a desired included service is found prior to discovering
all the included services of the specified service supported on the server by calling the
CyBle_GattcStopCmd() function. If the CyBle_GattcStopCmd() function is not invoked, completion of this
function is notified to the upper layer using CYBLE_EVT_GATTC_ERROR_RSP.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.5.1 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATT_ATTR_HANDLE_RANGE_T *
range

Pointer to the handle range of type
CYBLE_GATT_ATTR_HANDLE_RANGE_T for which relationship
discovery has to be performed

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 141 of 482

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcDiscoverAllCharacteristics

Prototype
CYBLE_API_RESULT_T CyBle_GattcDiscoverAllCharacteristics(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATT_ATTR_HANDLE_RANGE_T range);

Description

This function is used by the GATT Client to find all Characteristic declarations within a service
definition on a GATT Server connect to it when only the service handle range is known. This is a
non-blocking function.
Internally, multiple Read By Type Requests are sent to the GATT Server in response to which
Read By Type Responses are received. Each response results in the event
CYBLE_EVT_GATTC_READ_BY_TYPE_RSP, which is passed to the application layer for
handling.
It is permitted to end the function early by calling the CyBle_GattcStopCmd() function if a desired
Characteristic is found prior to discovering all the Characteristics of the specified service
supported on the GATT Server. Completion of this function is notified to upper layer using
CYBLE_EVT_GATTC_ERROR_RSP event.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.6.1 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATT_ATTR_HANDLE_RANGE_T
range

Parameter is of type CYBLE_GATT_ATTR_HANDLE_RANGE_T
where,
• 'range.startHandle' can be set to the start handle of the

desired primary service.
• 'range.endHandle' can be set to the end handle of the

desired primary service.

Bluetooth Low Energy (BLE)

Page 142 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcDiscoverCharacteristicByUuid

Prototype
CYBLE_API_RESULT_T CyBle_GattcDiscoverCharacteristicByUuid(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BY_TYPE_REQ_T * readByTypeReqParam);

Description

This function is used by the GATT Client to discover service Characteristics on a GATT Server
when only the service handle ranges are known and the Characteristic UUID is known. This is a
non-blocking function.
Internally, multiple Read By Type Requests are sent to the peer device in response to which
Read By Type Responses are received. Each of these responses results in the event
CYBLE_EVT_GATTC_READ_BY_TYPE_RSP, which is passed to the application layer for
further processing.
It is permitted to end the function early by calling the CyBle_GattcStopCmd() function if a desired
Characteristic is found prior to discovering all the Characteristics for the specified service
supported on the GATT Server. Completion of this function is notified to upper layer using
CYBLE_EVT_GATTC_ERROR_RSP event.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.6.2 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_READ_BY_TYPE_REQ_T *
readByTypeReqParam

Pointer to a variable of type
CYBLE_GATTC_READ_BY_TYPE_REQ_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 143 of 482

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcDiscoverAllCharacteristicDescriptors

Prototype
CYBLE_API_RESULT_T
CyBle_GattcDiscoverAllCharacteristicDescriptors(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_FIND_INFO_REQ_T * findInfoReqParam);

Description

This function is used by the GATT Client to find all the Characteristic Descriptors. This is a non-
blocking function.
Internally, multiple Find Information Requests are sent to the peer device in response to which
Find Information Responses are received by the GATT Client. Each of these responses generate
CYBLE_EVT_GATTC_FIND_INFO_RSP event at the GATT Client end which is propagated to
the application layer for further processing.
It is permitted to end the function early by calling the CyBle_GattcStopCmd() function if desired
Characteristic Descriptor is found prior to discovering all the Characteristic Descriptors of the
specified Characteristic. Completion of this function is notified to upper layer using
CYBLE_EVT_GATTC_ERROR_RSP event.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.7.1 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_FIND_INFO_REQ_T *
findInfoReqParam

Pointer to a variable of type
CYBLE_GATTC_FIND_INFO_REQ_T.

Bluetooth Low Energy (BLE)

Page 144 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcReadCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_GattcReadCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_REQ_T readReqParam);

Description

This function reads a Characteristic Value from a GATT Server when the GATT Client knows the
Characteristic Value Handle. This is a non-blocking function.
Internally, Read Request is sent to the peer device in response to which Read Response is
received. This response results in CYBLE_EVT_GATTC_READ_RSP event which is propagated
to the application for handling the event data. An Error Response
(CYBLE_EVT_GATTC_ERROR_RSP event at the GATT Client's end) is sent by the GATT
Server in response to the Read Request on insufficient authentication or insufficient
authorization or insufficient encryption key size is caused by the GATT Client, or if a read
operation is not permitted on the Characteristic Value. The Error Code parameter is set as
specified in the Attribute Protocol.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.1 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_READ_REQ_T
readReqParam Pointer to a variable of type CYBLE_GATTC_READ_REQ_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 145 of 482

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcReadUsingCharacteristicUuid

Prototype
CYBLE_API_RESULT_T CyBle_GattcReadUsingCharacteristicUuid(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BY_TYPE_REQ_T * readByTypeReqParam);

Description

This function reads a Characteristic Value from the GATT Server when the GATT Client only
knows the Characteristic UUID and does not know the handle of the Characteristic. This is a
non-blocking function.
Internally, Read By Type Request is sent to the peer device in response to which Read By Type
Response is received by the GATT Client. This results in
CYBLE_EVT_GATTC_READ_BY_TYPE_RSP event, which is propagated to the application
layer for further handling.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.2 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity of
type CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_READ_BY_TYPE_REQ_T *
readByTypeReqParam

Parameter is of type
CYBLE_GATTC_READ_BY_TYPE_REQ_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Bluetooth Low Energy (BLE)

Page 146 of 482 Document Number: 001-91490 Rev. *B

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcReadLongCharacteristicValues

Prototype
CYBLE_API_RESULT_T CyBle_GattcReadLongCharacteristicValues(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BLOB_REQ_T * readBlobReqParam);

Description

This function reads a Characteristic Value from the GATT Server when the GATT Client knows
the Characteristic Value Handle and the length of the Characteristic Value is longer than can be
sent in a single Read Response Attribute Protocol message. This is a non-blocking function.
Internally multiple Read Blob Requests are sent to the peer device in response to which Read
Blob Responses are received. For each Read Blob Request, a Read Blob Response event is
received (CYBLE_EVT_GATTC_READ_BLOB_RSP) with a portion of the Characteristic Value
contained in the Part Attribute Value parameter. These events are propagated to the application
layer for further processing. Each read blob response will return up to (MTU-1) bytes of data. If
the size of Characteristic value field is an integral multiple of (MTU-1) then the operation
terminates with an error response event, where the error code is
CYBLE_GATT_ERR_INVALID_OFFSET. If the size of the Characteristic value field is not an
integral multiple of (MTU-1), the last read blob response will return data bytes which are less
than (MTU-1). The application needs to monitor these two conditions before proceeding with the
initiation of any other GATT operation.
An Error Response event (CYBLE_EVT_GATTC_ERROR_RSP) is sent by the GATT Server in
response to the Read Blob Request if insufficient authentication, insufficient authorization,
insufficient encryption key size is used by the client, or if a read operation is not permitted on the
Characteristic Value. The Error Code parameter is set as specified in the Attribute Protocol.
If the Characteristic Value is not longer than (MTU - 1), an Error Response with the Error Code
set to Attribute Not Long is received by the GATT Client on the first Read Blob Request.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.3 for more details on the
sequence of operations.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 147 of 482

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

readblobReqParam Pointer to a variable of type CYBLE_GATTC_READ_BLOB_REQ_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcReadMultipleCharacteristicValues

Prototype
CYBLE_API_RESULT_T CyBle_GattcReadMultipleCharacteristicValues(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_MULT_REQ_T * readMultiReqParam);

Description

This function reads multiple Characteristic Values from a GATT Server when the GATT Client
knows the Characteristic Value Handles. This is a non-blocking function.
Internally, Read Multiple Request is sent to the peer device in response to which Read Multiple
Response is received. This results in C YBLE_EVT_GATTC_READ_MULTI_RSP event, which
is propagated to the application layer.
An Error Response event is sent by the server (CYBLE_EVT_GATTC_ERROR_RSP) in
response to the Read Multiple Request if insufficient authentication, insufficient authorization,
insufficient encryption key size is used by the client, or if a read operation is not permitted on any
of the Characteristic Values. The Error Code parameter is set as specified in the Attribute
Protocol.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.4 for more details on the
sequence of operations.

Bluetooth Low Energy (BLE)

Page 148 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_READ_MULT_REQ_T *
readMultiReqParam

Pointer to a variable of type
CYBLE_GATTC_READ_MULT_REQ_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcWriteWithoutResponse

Prototype
CYBLE_API_RESULT_T CyBle_GattcWriteWithoutResponse(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_WRITE_CMD_REQ_T * writeCmdReqParam);

Description

This function writes a Characteristic Value to a GATT Server when the GATT Client knows the
Characteristic Value Handle and the client does not need an acknowledgement that the write
was successfully performed. This is a blocking function. No event is generated on calling this
function.
Internally, Write Command is sent to the GATT Server and nothing is received in response from
the GATT Server.
Refer Bluetooth 4.1 core specification, Volume 3, Part G, section 4.9.1 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 149 of 482

CYBLE_GATTC_WRITE_CMD_REQ_T *
writeCmdReqParam

Pointer to a variable of type
CYBLE_GATTC_WRITE_CMD_REQ_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcSignedWriteWithoutRsp

Prototype
CYBLE_API_RESULT_T CyBle_GattcSignedWriteWithoutRsp(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T * signedWriteWithoutRspParam);

Description

This function writes a Characteristic Value to a server when the client knows the Characteristic
Value Handle and the ATT Bearer is not encrypted. This sub-procedure shall only be used if the
Characteristic Properties authenticated bit is enabled and the client and server device share a
bond as defined in Bluetooth Spec4.1 [Vol. 3] Part C, Generic Access Profile.
This function only writes the first (ATT_MTU 15) octets of an Attribute Value. This function
cannot be used to write a long Attribute.
Internally, Signed Write Command is used. Refer to Bluetooth Spec4.1 Security Manager [Vol. 3]
Part H, Section 2.4.5.
If the authenticated Characteristic Value that is written is the wrong size, has an invalid value as
defined by the profile, or the signed value does not authenticate the client, then the write shall
not succeed and no error shall be generated by the server.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of
type CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T *
signedWriteWithoutRspParam

Pointer to a variable of type
CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T

Bluetooth Low Energy (BLE)

Page 150 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in the
Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_INSUFFICIENT_RESOURCES BLE stack out of resource

CyBle_GattcWriteCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_GattcWriteCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_WRITE_REQ_T * writeReqParam);

Description

This function writes a Characteristic Value to a GATT Server when the GATT Client knows the
Characteristic Value Handle. This is a non-blocking function.
Internally, Write Request is sent to the GATT Server in response to which Write Response is
received. This results in the event CYBLE_EVT_GATTC_WRITE_RSP, which indicates that the
write operation succeeded.
An Error Response event (CYBLE_EVT_GATTC_ERROR_RSP) is sent by the server in
response to the Write Request if insufficient authentication, insufficient authorization, insufficient
encryption key size is used by the client, or if a write operation is not permitted on the
Characteristic Value. The Error Code parameter is set as specified in the Attribute Protocol.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.9.3 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_WRITE_REQ_T *
writeReqParam Pointer to a variable of type CYBLE_GATTC_WRITE_REQ_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 151 of 482

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcWriteLongCharacteristicValues

Prototype
CYBLE_API_RESULT_T CyBle_GattcWriteLongCharacteristicValues(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T * writePrepReqParam);

Description

This function writes a Characteristic Value to a GATT Server when the GATT Client knows the
Characteristic Value Handle but the length of the Characteristic Value is longer than MTU size
and cannot be sent in a single Write Request Attribute Protocol message. This is a non-blocking
function.
Internally, multiple Prepare Write Requests are sent to the GATT Server in response to which
Prepare Write Responses are received. No events are generated by the BLE Stack during these
operations.
Prepare Write Requests are repeated until the complete Characteristic Value has been
transferred to the GATT Server, after which an Execute Write Request is sent to the GATT
Server to write the initially transferred value at the GATT Server's end. This generates
CYBLE_EVT_GATTS_EXEC_WRITE_REQ at the GATT Server's end.
Once the GATT Server responds, CYBLE_EVT_GATTC_EXEC_WRITE_RSP event is
generated at the GATT Client's end. The value associated with this event has to be checked by
the application layer to confirm that the long write operation succeeded.
An Error Response event CYBLE_EVT_GATTC_ERROR_RSP is received by the GATT Client
in response to the Prepare Write Request if insufficient authentication, insufficient authorization,
insufficient encryption key size is used by the client, or if a write operation is not permitted on the
Characteristic Value. The Error Code parameter is set as specified in the Attribute Protocol.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.9.4 for more details on the
sequence of operations.

Bluetooth Low Energy (BLE)

Page 152 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_PREP_WRITE_REQ_T *
writePrepReqParam Pointer to a variable of type CYBLE_GATTC_PREP_WRITE_REQ_T,

val points to the actual data to be written. 'writePrepReqParam' and all
associated variables need to be retained inMemory by the calling
application until the GATT Write Long Characteristic Value
operation is completed successfully.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcReliableWrites

Prototype
CYBLE_API_RESULT_T CyBle_GattcReliableWrites(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_PREP_WRITE_REQ_T * writePrepReqParam, uint8 numOfRequests);

Description

This function writes a Characteristic Value to a GATT Server when the GATT Client knows the
Characteristic Value Handle, and assurance is required that the correct Characteristic Value is
going to be written by transferring the Characteristic Value to be written in both directions before
the write is performed. This is a non-blocking function.
Internally, multiple Prepare Write Requests are sent to the GATT Server in response to which
Prepare Write Responses are received. No events are generated by the BLE Stack during these
operations.
Prepare Write Requests are repeated until the complete Characteristic Value has been
transferred to the GATT Server, after which an Execute Write Request is sent to the GATT
Server to write the initially transferred value at the GATT Server's end. This generates
CYBLE_EVT_GATTS_EXEC_WRITE_REQ at the GATT Server's end.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 153 of 482

Once the GATT Server responds, a CYBLE_EVT_GATTC_EXEC_WRITE_RSP event is
generated at the GATT Client's end. The value associated with this event has to be checked by
the application layer to confirm that the long write operation succeeded. An Error Response
event CYBLE_EVT_GATTC_ERROR_RSP is received by the GATT Client in response to the
Prepare Write Request if insufficient authentication, insufficient authorization, insufficient
encryption key size is used by the client, or if a write operation is not permitted on the
Characteristic Value. The Error Code parameter is set as specified in the Attribute Protocol.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.9.5 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_PREP_WRITE_REQ_T *
writePrepReqParam

Pointer to a variable of type CYBLE_GATTC_PREP_WRITE_REQ_T.
Since more than one writes are performed as part of this function, the
first array element of the array of type
CYBLE_GATTC_PREP_WRITE_REQ_T, which contains the values to
be written, has to be specified. 'writePrepReqParam' and all
associated variables need to be retained inMemory by the calling
application until the GATT Reliable Write operation is completed
successfully.

uint8 numOfRequests Number of requests. That is, the count of array of structures of type
CYBLE_GATTC_PREP_WRITE_REQ_T. Each array element represents
a value and the attribute to which the value has to be written.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcConfirmation

Prototype
CYBLE_API_RESULT_T CyBle_GattcConfirmation(CYBLE_CONN_HANDLE_T connHandle);

Bluetooth Low Energy (BLE)

Page 154 of 482 Document Number: 001-91490 Rev. *B

Description

This function sends confirmation to the GATT Server on receiving Handle Value Indication event
CYBLE_EVT_GATTC_HANDLE_VALUE_IND at the GATT Client's end. This is a non-blocking
function.
This function call results in CYBLE_EVT_GATTS_HANDLE_VALUE_CNF event at the GATT
Server's end.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.11.1 for more details on
the sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

 Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcReadCharacteristicDescriptors

Prototype
CYBLE_API_RESULT_T CyBle_GattcReadCharacteristicDescriptors(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_REQ_T readReqParam);

Description

This function reads a Characteristic Descriptor from a GATT Server when the GATT Client
knows the Attribute handle from the Characteristic Descriptor declaration. This is a non-blocking
function.
Internally, Read Request is sent to the peer device in response to which Read Response is
received. This response results in CYBLE_EVT_GATTC_READ_RSP event, which is
propagated to the application for handling the event data.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 155 of 482

An Error Response (CYBLE_EVT_GATTC_ERROR_RSP event at the GATT Client's end) is
sent by the GATT Server in response to the Read Request on insufficient authentication or
insufficient authorization or insufficient encryption key size is caused by the GATT Client, or if a
read operation is not permitted on the Characteristic Value. The Error Code parameter is set as
specified in the Attribute Protocol.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.12.1 for more details on
the sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_READ_REQ_T
readReqParam Pointer to a variable of type CYBLE_GATTC_READ_REQ_T.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcReadLongCharacteristicDescriptors

Prototype
CYBLE_API_RESULT_T CyBle_GattcReadLongCharacteristicDescriptors(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BLOB_REQ_T * readBlobReqParam);

Description

This function reads a Characteristic Descriptor from a GATT Server when the GATT Client
knows the Attribute handle from the Characteristic Descriptor declaration and the length of the
Characteristic Descriptor declaration is longer than what can be sent in a single Read Response
Attribute Protocol message. This is a non-blocking function.
Internally multiple Read Blob Requests are sent to the peer device in response to which Read
Blob Responses are received. For each Read Blob Request, a Read Blob Response event is

Bluetooth Low Energy (BLE)

Page 156 of 482 Document Number: 001-91490 Rev. *B

received (CYBLE_EVT_GATTC_READ_BLOB_RSP) with a portion of the Characteristic Value
contained in the Part Attribute Value parameter. These events are propagated to the application
layer for further processing. Each read blob response will return up to (MTU-1) bytes of data. If
the size of Characteristic Descriptor field is an integral multiple of (MTU-1) then the operation
terminates with an error response event, where the error code is
CYBLE_GATT_ERR_INVALID_OFFSET. If the size of the Characteristic Descriptor field is not
an integral multiple of (MTU-1), the last read blob response will return data bytes which are less
than (MTU-1). The application needs to monitor these two conditions before proceeding with the
initiation of any other GATT operation.
An Error Response event (CYBLE_EVT_GATTC_ERROR_RSP) is sent by the GATT Server in
response to the Read Blob Request if insufficient authentication, insufficient authorization,
insufficient encryption key size is used by the client, or if a read operation is not permitted on the
Characteristic Value. The Error Code parameter is set as specified in the Attribute Protocol. If the
Characteristic Value is not longer than (MTU - 1) an Error Response with the Error Code set to
Attribute Not Long is received by the GATT Client on the first Read Blob Request.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.12.2 for more details on
the sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

readBlonReqParam Pointer to a variable of type CYBLE_GATTC_READ_BLOB_REQ_T

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcWriteCharacteristicDescriptors

Prototype
CYBLE_API_RESULT_T CyBle_GattcWriteCharacteristicDescriptors(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_WRITE_REQ_T * writeReqParam);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 157 of 482

Description

This function writes a Characteristic Descriptor value to a GATT Server when the GATT Client
knows the Characteristic Descriptor handle. This is a non-blocking function.
Internally, Write Request is sent to the GATT Server in response to which Write Response is
received. This results in the event CYBLE_EVT_GATTC_WRITE_RSP, which indicates that the
write operation succeeded.
An Error Response event (CYBLE_EVT_GATTC_ERROR_RSP) is sent by the server in
response to the Write Request if insufficient authentication, insufficient authorization, insufficient
encryption key size is used by the client, or if a write operation is not permitted on the
Characteristic Value. The Error Code parameter is set as specified in the Attribute Protocol.
Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.12.3 for more details on
the sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_WRITE_REQ_T *
writeReqParam Pointer to a variable of type CYBLE_GATTC_WRITE_REQ_T

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in
the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcWriteLongCharacteristicDescriptors

Prototype
CYBLE_API_RESULT_T CyBle_GattcWriteLongCharacteristicDescriptors(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T * writePrepReqParam);

Bluetooth Low Energy (BLE)

Page 158 of 482 Document Number: 001-91490 Rev. *B

Description

This function writes a Characteristic Descriptor value to a GATT Server when the GATT Client
knows the Characteristic Descriptor handle but the length of the Characteristic Descriptor value
is longer than what can be sent in a single Write Request Attribute Protocol message. This is a
non-blocking function.
Internally, multiple Prepare Write Requests are sent to the GATT Server in response to which
Prepare Write Responses are received. No events are generated by the BLE Stack during these
operations.
Prepare Write Requests are repeated until the complete Characteristic Descriptor Value has
been transferred to the GATT Server, after which an Execute Write Request is sent to the GATT
Server to write the initially transferred value at the GATT Server's end. This generates
CYBLE_EVT_GATTS_EXEC_WRITE_REQ at the GATT Server's end.
Once the GATT Server responds, CYBLE_EVT_GATTC_EXEC_WRITE_RSP' event is
generated at the GATT Client's end. The value associated with this event has to be checked by
the application layer to confirm that the long write operation succeeded.
An Error Response event CYBLE_EVT_GATTC_ERROR_RSP is received by the GATT Client
in response to the Prepare Write Request if insufficient authentication, insufficient authorization,
insufficient encryption key size is used by the client, or if a write operation is not permitted on the
Characteristic Value. The Error Code parameter is set as specified in the Attribute Protocol.
Refer Bluetooth 4.1 core specification, Volume 3, Part G, section 4.12.4 for more details on the
sequence of operations.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

CYBLE_GATTC_PREP_WRITE_REQ_T *
writePrepReqParam Pointer to a variable of type CYBLE_GATTC_PREP_WRITE_REQ_T,

val points to the actual data to be written. 'writePrepReqParam' and all
associated variables need to be retained inMemory by the calling
application until the GATT Write Long Characteristic Descriptor
operation is completed successfully.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER 'connHandle' value does not represent any existing entry in

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 159 of 482

the Stack

CYBLE_ERROR_INVALID_OPERATION This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CyBle_GattcStartDiscovery

Prototype
CYBLE_API_RESULT_T CyBle_GattcStartDiscovery(CYBLE_CONN_HANDLE_T connHandle);

Description

Starts the automatic server discovery process. Two events may be generated after calling this
function - CYBLE_EVT_GATTC_DISCOVERY_COMPLETE or
CYBLE_EVT_GATTC_ERROR_RSP. The CYBLE_EVT_GATTC_DISCOVERY_COMPLETE
event is generated when the remote device was successfully discovered. The
CYBLE_EVT_GATTC_ERROR_RSP is generated if the device discovery is failed.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The handle which consists of the device ID and ATT connection ID.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes. CYBLE_ERROR_OK - On successful operation
CYBLE_ERROR_INVALID_PARAMETER - 'connHandle' value does not represent any existing
entry. in the Stack CYBLE_ERROR_INVALID_OPERATION - The operation is not permitted.
CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

GATT Definitions and Data Structures
Contains the GATT specific definitions and data structures used in the GATT APIs.

Enumerations

Enumeration Description

CYBLE_GATT_ERR_CODE_T GATT profile error codes

CYBLE_GATT_PDU_T Opcode which has resulted in error

Bluetooth Low Energy (BLE)

Page 160 of 482 Document Number: 001-91490 Rev. *B

Structures

Structure Description

CYBLE_GATT_ATTR_HANDLE_RANGE_T GATT Attribute Handle Range type

CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T GATT Handle Value Pair along with offset type

CYBLE_GATT_HANDLE_VALUE_PAIR_T GATT handle - value pair type

CYBLE_GATT_VALUE_T Abstracts Variable Length Values for GATT. Apart
from data, and length, 'actual length' is needed so that
GATT can indicate to the application actual length...
more

CYBLE_GATT_XCHG_MTU_PARAM_T MTU exchange parameter type

CYBLE_GATTC_ERR_RSP_PARAM_T Error Response parameter type received from Server
For error codes that are received during gatt discovery
procedure, Client may choose to disconnect the link.
i.e.... more

CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T GATT find by type value response received from
server

CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T GATT find by type value request to be sent to Server

CYBLE_GATTC_FIND_INFO_RSP_PARAM_T GATT find info response received from Server

CYBLE_GATTC_GRP_ATTR_DATA_LIST_T Data Element for Group Response

CYBLE_GATTC_HANDLE_LIST_T GATT handle list type

CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T GATT list of Handle UUID pair parameter type

CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T Handle value notification data received from server

CYBLE_GATTC_READ_BLOB_REQ_T Read blob request to be sent to Server

CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T Read By Group Response received from Server

CYBLE_GATTC_READ_BY_TYPE_REQ_T GATT read by type request to be sent to Server

CYBLE_GATTC_READ_RSP_PARAM_T Read response parameter type received from server

CYBLE_GATTC_T Structure with discovered attributes information of
Generic Attribute Service (GATTS)

CYBLE_GATTC_EXEC_WRITE_RSP_T Execute Write result

CYBLE_GATTS_EXEC_WRITE_REQ_T Execute Write result

CYBLE_GATTS_ATT_GENERIC_VAL_T Attribute value type used in GATT database

CYBLE_GATTS_DB_T GATT database structure used in the GAP Server

CYBLE_GATTS_ERR_PARAM_T GATT Server Error Response parameter type

CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T Prepare write request parameter received from Client

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 161 of 482

CYBLE_GATTS_WRITE_REQ_PARAM_T Write request parameter received from Client

CYBLE_GATTS_T Structure with Generic Attribute Service (GATTS)
attribute handles

CYBLE_DISC_CHAR_INFO_T Characteristic data received with read by type
response during discovery process

CYBLE_DISC_DESCR_INFO_T Characteristic Descriptor data received with find info
response during discovery process

CYBLE_DISC_INCL_INFO_T Included service data received with read by type
response during discovery process

CYBLE_DISC_SRVC_INFO_T CYBLE_GATT_ROLE_SERVER

Types

Type Description

CYBLE_GATT_DB_ATTR_HANDLE_T GATT BD Attribute Handle Type

CYBLE_GATTC_FIND_INFO_REQ_T GATT find info request to be sent to Server

CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T GATT handle value indication parameter
received from server type

CYBLE_GATTC_PREP_WRITE_REQ_T Prepare write request to be sent to Server

CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T GATT read by type response received from
server

CYBLE_GATTC_READ_MULT_REQ_T Read multiple request to be sent to Server

CYBLE_GATTC_READ_REQ_T Read request to be sent to Server

CYBLE_GATTC_WRITE_CMD_REQ_T Write command request to be sent to Server

CYBLE_GATTC_WRITE_REQ_T Write request to be sent to Server

CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T Signed Write command request to be sent to
Server

CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T Signed Write command request parameter
received from Client

CYBLE_GATTS_HANDLE_VALUE_IND_T GATT handle value indication parameter type

CYBLE_GATTS_HANDLE_VALUE_NTF_T Handle value notification data to be sent to
Client

CYBLE_GATTS_PREP_WRITE_RSP_PARAM_T Prepare write response parameter to be sent
to Client

CYBLE_GATTS_READ_RSP_PARAM_T Read response parameter to be sent to Client

CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T Write command request parameter received

Bluetooth Low Energy (BLE)

Page 162 of 482 Document Number: 001-91490 Rev. *B

from Client

Unions

Union Description

CYBLE_GATTS_ATT_VALUE_T Attribute value type used in GATT database

CYBLE_GATT_ATTR_HANDLE_RANGE_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T startHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
} CYBLE_GATT_ATTR_HANDLE_RANGE_T;

Description

GATT Attribute Handle Range type

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T startHandle; Start Handle

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; End Handle

CYBLE_GATT_DB_ATTR_HANDLE_T

Prototype
typedef uint16 CYBLE_GATT_DB_ATTR_HANDLE_T;

Description

GATT BD Attribute Handle Type

CYBLE_GATT_ERR_CODE_T

Prototype
typedef enum {
 CYBLE_GATT_ERR_NONE = 0x00u,
 CYBLE_GATT_ERR_INVALID_HANDLE,
 CYBLE_GATT_ERR_READ_NOT_PERMITTED,
 CYBLE_GATT_ERR_WRITE_NOT_PERMITTED,
 CYBLE_GATT_ERR_INVALID_PDU,
 CYBLE_GATT_ERR_INSUFFICIENT_AUTHENTICATION,
 CYBLE_GATT_ERR_REQUEST_NOT_SUPPORTED,

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 163 of 482

 CYBLE_GATT_ERR_INVALID_OFFSET,
 CYBLE_GATT_ERR_INSUFFICIENT_AUTHORIZATION,
 CYBLE_GATT_ERR_PREPARE_WRITE_QUEUE_FULL,
 CYBLE_GATT_ERR_ATTRIBUTE_NOT_FOUND,
 CYBLE_GATT_ERR_ATTRIBUTE_NOT_LONG,
 CYBLE_GATT_ERR_INSUFFICIENT_ENC_KEY_SIZE,
 CYBLE_GATT_ERR_INVALID_ATTRIBUTE_LEN,
 CYBLE_GATT_ERR_UNLIKELY_ERROR,
 CYBLE_GATT_ERR_INSUFFICIENT_ENCRYPTION,
 CYBLE_GATT_ERR_UNSUPPORTED_GROUP_TYPE,
 CYBLE_GATT_ERR_INSUFFICIENT_RESOURCE = 0x11,
 CYBLE_GATT_ERR_HEART_RATE_CONTROL_POINT_NOT_SUPPORTED = 0x80u,
 CYBLE_GATT_ERR_CPS_INAPPROPRIATE_CONNECTION_PARAMETERS = 0x80u,
 CYBLE_GATTS_ERR_PROCEDURE_ALREADY_IN_PROGRESS = 0x80u,
 CYBLE_GATTS_ERR_CCCD_IMPROPERLY_CONFIGURED = 0x81u,
 CYBLE_GATT_ERR_ANS_COMMAND_NOT_SUPPORTED = 0xA0u,
 CYBLE_GATT_ERR_CCCD_IMPROPERLY_CONFIGURED = 0xFDu,
 CYBLE_GATT_ERR_PROCEDURE_ALREADY_IN_PROGRESS = 0xFEu,
 CYBLE_GATT_ERR_OUT_OF_RANGE = 0xFFu
} CYBLE_GATT_ERR_CODE_T;

Description

GATT profile error codes

Members

Members Description

CYBLE_GATT_ERR_NONE = 0x00u No Error

CYBLE_GATT_ERR_INVALID_HANDLE Invalid Handle error code is
used in the case when the ATT
handle in the ATT request PDU
is invalid.

CYBLE_GATT_ERR_READ_NOT_PERMITTED Read Not Permitted error code
is used in the case when the
permission to read the value of
an ATT handle is not permitted
on the ATT server.

CYBLE_GATT_ERR_WRITE_NOT_PERMITTED Write Not Permitted error code
is used in the case when the
permission to write the value of
an ATT handle is not permitted
on the ATT server.

CYBLE_GATT_ERR_INVALID_PDU Invalid PDU error code is used
in the case when the format of
the PDU sent from the ATT
Client is incorrect.

CYBLE_GATT_ERR_INSUFFICIENT_AUTHENTICATION Insufficient Authentication error
code is used in the case when

Bluetooth Low Energy (BLE)

Page 164 of 482 Document Number: 001-91490 Rev. *B

an access to a handle is
attempted on a un-authenticated
link but the attribute requires
that the link be authenticated
before any client can access it.

CYBLE_GATT_ERR_REQUEST_NOT_SUPPORTED Request not supported error
code is used in the case when
the server does not support the
processing of an ATT request
sent from the client.

CYBLE_GATT_ERR_INVALID_OFFSET Invalid Offset error code is used
in the case when the offset sent
by the client in the Read
blob/Prepare Write Request is
invalid with respect to the length
of the value in the server.

CYBLE_GATT_ERR_INSUFFICIENT_AUTHORIZATION Insufficient Authorization error
code is used in the case when
the ATT server does not
Authorize the client and hence
prohibiting the client from
reading the handle value.

CYBLE_GATT_ERR_PREPARE_WRITE_QUEUE_FULL Write queue full error code is
used when there is no more
space left in the prepare write
queue on the server to entertain
any more prepare writes from a
client.

CYBLE_GATT_ERR_ATTRIBUTE_NOT_FOUND Attribute not found error is used
when the ATT server cannot find
any handles that belong to the
Attribute type in the given range
of handles that the client
specified in its request. This
error code can be sent to the
client in response to the
following request PDUs – Find
Information, Find by Type Value,
Read by Type, Read by Group
Type requests.

CYBLE_GATT_ERR_ATTRIBUTE_NOT_LONG Attribute Not Long error code is
used when the client tries to
read or write a Attribute handle's
value which cannot be read or
written through Read Blob or
multiple prepare write requests.

CYBLE_GATT_ERR_INSUFFICIENT_ENC_KEY_SIZE Insufficient encryption key size
error code is used when the

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 165 of 482

client tries to access an Attribute
Handle's Value for which the link
need to be encrypted with a key
of certain minimum key size and
the current link is encrypted with
a key of lesser size than the
minimum required.

CYBLE_GATT_ERR_INVALID_ATTRIBUTE_LEN Invalid Attribute length error
code is used when the Attribute
value's length is not correct to
process the request containing
the value.

CYBLE_GATT_ERR_UNLIKELY_ERROR Unlikely error is used when the
processing of the Attribute
request has encountered an
error that is not covered by any
other error code.

CYBLE_GATT_ERR_INSUFFICIENT_ENCRYPTION Insufficient encryption error
code is used when the client
tries to read or write an Attribute
handle which requires the link to
be encrypted and the link is
currently not encrypted.

CYBLE_GATT_ERR_UNSUPPORTED_GROUP_TYPE Unsupported Group Type error
code is used when the Attribute
type requested in the Read by
Group Type request is not a
valid grouping attribute on the
server.

CYBLE_GATT_ERR_INSUFFICIENT_RESOURCE = 0x11 Insufficient Resources error
code is used when the ATT
server does not have enough
resources such as memory etc.
to process the request from the
client.

CYBLE_GATT_ERR_HEART_RATE_CONTROL_POINT_NOT_SUPPORTED
= 0x80u

Heart Rate Control Point Not
Supported error code is used
when a unsupported code is
written into Heart Rate service
Control Point Characteristic.

CYBLE_GATT_ERR_CPS_INAPPROPRIATE_CONNECTION_PARAMETERS
= 0x80u

The notifications of the Cycling
Power Vector Characteristic
cannot be sent due to
inappropriate connection
parameters.

CYBLE_GATTS_ERR_PROCEDURE_ALREADY_IN_PROGRESS = 0x80u Procedure Already in Progress
error code is used when a
profile or service request cannot

Bluetooth Low Energy (BLE)

Page 166 of 482 Document Number: 001-91490 Rev. *B

be serviced because an
operation that has been
previously triggered is still in
progress.

CYBLE_GATTS_ERR_CCCD_IMPROPERLY_CONFIGURED = 0x81u Client Characteristic
Configuration Descriptor
Improperly Configured error
code is used when a Client
Characteristic Configuration
Descriptor is not configured
according to the requirements of
the profile or service.

CYBLE_GATT_ERR_ANS_COMMAND_NOT_SUPPORTED = 0xA0u Command Not Supported used
by the Alert Notification Server
when the Client sends incorrect
value of the Command ID or
Category ID of to the Alert
Notification Control Point
Characteristic.

CYBLE_GATT_ERR_CCCD_IMPROPERLY_CONFIGURED = 0xFDu Client Characteristic
Configuration Descriptor
Improperly Configured error
code is used when a Client
Characteristic Configuration
Descriptor is not configured
according to the requirements of
the profile or service.

CYBLE_GATT_ERR_PROCEDURE_ALREADY_IN_PROGRESS = 0xFEu The Procedure Already in
Progress error code is used
when a profile or service request
cannot be serviced because an
operation that has been
previously triggered is still in
progress.

CYBLE_GATT_ERR_OUT_OF_RANGE = 0xFFu Out of Range error code is used
when an attribute value is out of
range as defined by a profile or
service specification.

CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T

Prototype
typedef struct {
 CYBLE_GATT_HANDLE_VALUE_PAIR_T handleValuePair;
 uint16 offset;
} CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 167 of 482

Description

GATT Handle Value Pair along with offset type

Members

Members Description

CYBLE_GATT_HANDLE_VALUE_PAIR_T handleValuePair; Attribute Handle & Value to be Written

uint16 offset; Offset at which Write is to be performed

CYBLE_GATT_HANDLE_VALUE_PAIR_T

Prototype
typedef struct {
 CYBLE_GATT_VALUE_T value;
 CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle;
} CYBLE_GATT_HANDLE_VALUE_PAIR_T;

Description

GATT handle - value pair type

Members

Members Description

CYBLE_GATT_VALUE_T value; Attribute Value

CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle; Attribute Handle

CYBLE_GATT_PDU_T

Prototype
typedef enum {
 CYBLE_GATT_ERROR_RSP = 0x01u,
 CYBLE_GATT_XCNHG_MTU_REQ,
 CYBLE_GATT_XCHNG_MTU_RSP,
 CYBLE_GATT_FIND_INFO_REQ,
 CYBLE_GATT_FIND_INFO_RSP,
 CYBLE_GATT_FIND_BY_TYPE_VALUE_REQ,
 CYBLE_GATT_FIND_BY_TYPE_VALUE_RSP,
 CYBLE_GATT_READ_BY_TYPE_REQ,
 CYBLE_GATT_READ_BY_TYPE_RSP,
 CYBLE_GATT_READ_REQ,
 CYBLE_GATT_READ_RSP,
 CYBLE_GATT_READ_BLOB_REQ,
 CYBLE_GATT_READ_BLOB_RSP,
 CYBLE_GATT_READ_MULTIPLE_REQ,
 CYBLE_GATT_READ_MULTIPLE_RSP,

Bluetooth Low Energy (BLE)

Page 168 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_GATT_READ_BY_GROUP_REQ,
 CYBLE_GATT_READ_BY_GROUP_RSP,
 CYBLE_GATT_WRITE_REQ,
 CYBLE_GATT_WRITE_RSP,
 CYBLE_GATT_WRITE_CMD = 0x52u,
 CYBLE_GATT_PREPARE_WRITE_REQ = 0x16u,
 CYBLE_GATT_PREPARE_WRITE_RSP,
 CYBLE_GATT_EXECUTE_WRITE_REQ,
 CYBLE_GATT_EXECUTE_WRITE_RSP,
 CYBLE_GATT_HANDLE_VALUE_NTF = 0x1Bu,
 CYBLE_GATT_HANDLE_VALUE_IND = 0x1Du,
 CYBLE_GATT_HANDLE_VALUE_CNF = 0x1Eu,
 CYBLE_GATT_SIGNED_WRITE_CMD = 0xD2,
 CYBLE_GATT_UNKNOWN_PDU_IND = 0xFFu
} CYBLE_GATT_PDU_T;

Description

Opcode which has resulted in error

Members

Members Description

CYBLE_GATT_ERROR_RSP = 0x01u Error Response PDU

CYBLE_GATT_XCNHG_MTU_REQ Exchange MTU Request PDU

CYBLE_GATT_XCHNG_MTU_RSP Exchange MTU Response PDU

CYBLE_GATT_FIND_INFO_REQ Find Information Request PDU

CYBLE_GATT_FIND_INFO_RSP Find Information Response PDU

CYBLE_GATT_FIND_BY_TYPE_VALUE_REQ Find By Type Value Request PDU

CYBLE_GATT_FIND_BY_TYPE_VALUE_RSP Find By Type Value Response PDU

CYBLE_GATT_READ_BY_TYPE_REQ Read By Type Request PDU

CYBLE_GATT_READ_BY_TYPE_RSP Read By Type Response PDU

CYBLE_GATT_READ_REQ Read Request PDU

CYBLE_GATT_READ_RSP Read Response PDU

CYBLE_GATT_READ_BLOB_REQ Read Blob Request PDU

CYBLE_GATT_READ_BLOB_RSP Read Blob Response PDU

CYBLE_GATT_READ_MULTIPLE_REQ Read Multiple Request PDU

CYBLE_GATT_READ_MULTIPLE_RSP Read Multiple Response PDU

CYBLE_GATT_READ_BY_GROUP_REQ Read Group Type Request PDU

CYBLE_GATT_READ_BY_GROUP_RSP Read Group Type Response PDU

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 169 of 482

CYBLE_GATT_WRITE_REQ Write Request PDU

CYBLE_GATT_WRITE_RSP Write Response PDU

CYBLE_GATT_WRITE_CMD = 0x52u Write Command PDU

CYBLE_GATT_PREPARE_WRITE_REQ = 0x16u Prepare Write Request PDU

CYBLE_GATT_PREPARE_WRITE_RSP Prepare Write Response PDU

CYBLE_GATT_EXECUTE_WRITE_REQ Execute Write Request PDU

CYBLE_GATT_EXECUTE_WRITE_RSP Execute Write Response PDU

CYBLE_GATT_HANDLE_VALUE_NTF = 0x1Bu Handle Value Notification PDU

CYBLE_GATT_HANDLE_VALUE_IND = 0x1Du Handle Value Indication PDU

CYBLE_GATT_HANDLE_VALUE_CNF = 0x1Eu Handle Value Confirmation PDU

CYBLE_GATT_SIGNED_WRITE_CMD = 0xD2 Signed Write Command PDU

CYBLE_GATT_UNKNOWN_PDU_IND = 0xFFu Unknown or Unhandled PDU

CYBLE_GATT_VALUE_T

Prototype
typedef struct {
 uint8* val;
 uint16 len;
 uint16 actualLen;
} CYBLE_GATT_VALUE_T;

Description

Abstracts Variable Length Values for GATT.
Apart from data, and length, 'actual length' is needed so that GATT can indicate to the
application actual length of data processed for a PDU.
Is used in multiple commands - see CYBLE_GATT_READ_RSP,
CYBLE_GATT_FIND_BY_TYPE_VALUE_REQ, CYBLE_GATT_READ_BLOB_RSP etc.
In GATT Read Response for example, if the attribute length is 30 octects and the MTU is 23
octets, then only first 22 octets can be sent by GATT, therefore actual length will be 22 (MTU-1).
However, if the GATT MTU is configured to be 54 for example, all 30 octets can be transmitted
and the actual length will be 30.
Actual length should be derived as - actualLen = length>(MTU-1) ? (MTU-1):len
In case multiple values are being packed, the actual length processed will depend on the
available MTU.

Bluetooth Low Energy (BLE)

Page 170 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

uint8* val; Pointer to the value to be packed

uint16 len; Length of Value to be packed

uint16
actualLen;

Out Parameter Indicating Actual Length Packed. Actual length can be less than or equal to the
'len' parameter value.

CYBLE_GATT_XCHG_MTU_PARAM_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 uint16 mtu;
} CYBLE_GATT_XCHG_MTU_PARAM_T;

Description

MTU exchange parameter type

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

uint16 mtu; Client/Server Rx/Tx MTU Size

CYBLE_GATTC_ERR_RSP_PARAM_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATT_PDU_T opCode;
 CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle;
 CYBLE_GATT_ERR_CODE_T errorCode;
} CYBLE_GATTC_ERR_RSP_PARAM_T;

Description

Error Response parameter type received from Server For error codes that are received during
gatt discovery procedure, Client may choose to disconnect the link. i.e. if client did not get the
service of its choice, client may choose to disconnect. the link.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 171 of 482

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATT_PDU_T opCode; Opcode which has resulted in Error

CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle; Attribute Handle in which error is generated

CYBLE_GATT_ERR_CODE_T errorCode; Error Code describing cause of error

CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATT_ATTR_HANDLE_RANGE_T * range;
 uint8 count;
} CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T;

Description

GATT find by type value response received from server

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATT_ATTR_HANDLE_RANGE_T * range; Handle Range List

uint8 count; Size of List

CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T

Prototype
typedef struct {
 CYBLE_GATT_VALUE_T value;
 CYBLE_GATT_ATTR_HANDLE_RANGE_T range;
 CYBLE_UUID16 uuid;
} CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T;

Description

GATT find by type value request to be sent to Server

Bluetooth Low Energy (BLE)

Page 172 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_GATT_VALUE_T value; Attribute Value to Find

CYBLE_GATT_ATTR_HANDLE_RANGE_T range; Handle Range - Start and End Handle

CYBLE_UUID16 uuid; 16-bit UUID to Find

CYBLE_GATTC_FIND_INFO_RSP_PARAM_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T handleValueList;
 uint8 uuidFormat;
} CYBLE_GATTC_FIND_INFO_RSP_PARAM_T;

Description

GATT find info response received from Server

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T
handleValueList;

Handle Value List

uint8 uuidFormat; Format indicating, 16 bit (0x01) or 128 bit
(0x02) UUIDs

CYBLE_GATTC_GRP_ATTR_DATA_LIST_T

Prototype
typedef struct {
 uint8 * attrValue;
 uint16 length;
 uint16 attrLen;
} CYBLE_GATTC_GRP_ATTR_DATA_LIST_T;

Description

Data Element for Group Response

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 173 of 482

Members

Members Description

uint8 * attrValue; atribute handle value pair

uint16 length; Length of each Attribute Data Element including the Handle Range

uint16 attrLen; Total Length of Attribute Data

CYBLE_GATTC_HANDLE_LIST_T

Prototype
typedef struct {
 uint16 * handleList;
 uint16 listCount;
 uint16 actualCount;
} CYBLE_GATTC_HANDLE_LIST_T;

Description

GATT handle list type

Members

Members Description

uint16 * handleList; Handle list where the UUID with value Indicated is found

uint16 listCount; Number of Handles in the list

uint16 actualCount; Actual Number of Handles Packed. This is a output parameter

CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T

Prototype
typedef struct {
 uint8 * list;
 uint16 byteCount;
} CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T;

Description

GATT list of Handle UUID pair parameter type

Members

Members Description

uint8 * list; Handle - UUID Pair list This is a packed byte stream, hence it needs to be unpacked and
decoded.

Bluetooth Low Energy (BLE)

Page 174 of 482 Document Number: 001-91490 Rev. *B

uint16
byteCount;

Number of elements in the list in bytes

CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATT_HANDLE_VALUE_PAIR_T handleValPair; }
CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T;

Description

Handle value notification data received from server

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATT_HANDLE_VALUE_PAIR_T
handleValPair;

handle value pair, actual length files needs to be
ignored

CYBLE_GATTC_READ_BLOB_REQ_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle;
 uint16 offset;
} CYBLE_GATTC_READ_BLOB_REQ_T;

Description

Read blob request to be sent to Server

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle; Handle on which Read Blob is requested

uint16 offset; Value Offset from which the Read is Requested

CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T

Prototype
typedef struct {

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 175 of 482

 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATTC_GRP_ATTR_DATA_LIST_T attrData; } CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T;

Description

Read By Group Response received from Server

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATTC_GRP_ATTR_DATA_LIST_T attrData; group attribute data list

CYBLE_GATTC_READ_BY_TYPE_REQ_T

Prototype
typedef struct {
 CYBLE_GATT_ATTR_HANDLE_RANGE_T range;
 CYBLE_UUID_T uuid;
 uint8 uuidFormat;
} CYBLE_GATTC_READ_BY_TYPE_REQ_T;

Description

GATT read by type request to be sent to Server

Members

Members Description

CYBLE_GATT_ATTR_HANDLE_RANGE_T
range;

Handle Range

CYBLE_UUID_T uuid; UUID

uint8 uuidFormat; Format indicating, 16 bit or 128 bit UUIDs
For 16bits UUID format -
CYBLE_GATT_16_BIT_UUID_FORMAT (0x01)
For 128bits UUID format -
CYBLE_GATT_128_BIT_UUID_FORMAT (0x02)

CYBLE_GATTC_READ_RSP_PARAM_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATT_VALUE_T value;
} CYBLE_GATTC_READ_RSP_PARAM_T;

Bluetooth Low Energy (BLE)

Page 176 of 482 Document Number: 001-91490 Rev. *B

Description

Read response parameter type received from server

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATT_VALUE_T value; Attribute Value

CYBLE_GATTC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T serviceChanged;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
} CYBLE_GATTC_T;

Description

Structure with discovered attributes information of Generic Attribute Service (GATTS)

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T serviceChanged; Handle of the Service Changed Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Client Characteristic Configuration Descriptor handle

CYBLE_GATTC_FIND_INFO_REQ_T

Prototype
typedef CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_GATTC_FIND_INFO_REQ_T;

Description

GATT find info request to be sent to Server

CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T

Prototype
typedef CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 177 of 482

Description

GATT handle value indication parameter received from server type

CYBLE_GATTC_PREP_WRITE_REQ_T

Prototype
typedef CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T CYBLE_GATTC_PREP_WRITE_REQ_T;

Description

Prepare write request to be sent to Server

CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T

Prototype
typedef CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T;

Description

GATT read by type response received from server

CYBLE_GATTC_READ_MULT_REQ_T

Prototype
typedef CYBLE_GATTC_HANDLE_LIST_T CYBLE_GATTC_READ_MULT_REQ_T;

Description

Read multiple request to be sent to Server

CYBLE_GATTC_READ_REQ_T

Prototype
typedef CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTC_READ_REQ_T;

Description

Read request to be sent to Server

CYBLE_GATTC_WRITE_CMD_REQ_T

Prototype
typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_WRITE_CMD_REQ_T;

Bluetooth Low Energy (BLE)

Page 178 of 482 Document Number: 001-91490 Rev. *B

Description

Write command request to be sent to Server

CYBLE_GATTC_WRITE_REQ_T

Prototype
typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_WRITE_REQ_T;

Description

Write request to be sent to Server

CYBLE_GATTC_EXEC_WRITE_RSP_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 uint8 result;
} CYBLE_GATTC_EXEC_WRITE_RSP_T;

Description

Execute Write result

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

uint8 result; Result of the execute write request

CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T

Prototype
typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T;

Description

Signed Write command request to be sent to Server

CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T

Prototype
typedef CYBLE_GATTS_WRITE_REQ_PARAM_T CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 179 of 482

Description

Signed Write command request parameter received from Client

CYBLE_GATTS_EXEC_WRITE_REQ_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle;
 uint16 length;
 uint16 offset;
 uint8 result;
} CYBLE_GATTS_EXEC_WRITE_REQ_T;

Description

Execute Write result

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle; Attribute Handle

uint16 length; Total length written as part of prepare write request

uint16 offset; Offset at which prepare write is started

uint8 result; Result of the execute write request

CYBLE_GATTS_ATT_GENERIC_VAL_T

Prototype
typedef struct {
 uint16 length;
 void * attGenericVal;
} CYBLE_GATTS_ATT_GENERIC_VAL_T;

Description

Attribute value type used in GATT database

Members

Members Description

uint16 length; Length in number of bytes for attGenericVal

Bluetooth Low Energy (BLE)

Page 180 of 482 Document Number: 001-91490 Rev. *B

void *
attGenericVal;

Buffer to the store generic Characteristic value based on length or complete UUID value if the
attribute is of type 128-bit UUID and 32-bit UUID type.

CYBLE_GATTS_ATT_VALUE_T

Prototype
typedef union {
 CYBLE_GATTS_ATT_GENERIC_VAL_T attFormatValue;
 uint16 attValueUuid;
} CYBLE_GATTS_ATT_VALUE_T;

Description

Attribute value type used in GATT database

Members

Members Description

CYBLE_GATTS_ATT_GENERIC_VAL_T
attFormatValue;

Buffer containing 32-bit or 128-bit UUID values for Service and
Characteristic declaration. Attribute format structure: if entry is for
Characteristic value format, then it has the "attribute format value"
of pointer type to represent generic structure to cater wide formats
of available list of Characteristic formats.

uint16 attValueUuid; Attribute UUID value

CYBLE_GATTS_DB_T

Prototype
typedef struct {
 uint16 attHandle;
 uint16 attType;
 uint32 permission;
 uint16 attEndHandle;
 CYBLE_GATTS_ATT_VALUE_T attValue;
} CYBLE_GATTS_DB_T;

Description

GATT database structure used in the GAP Server

Members

Members Description

uint16 attHandle; Start Handle: Act as an index for querying BLE GATT database

uint16 attType; UUID: 16-bit UUID type for an attribute entry, for 32-bit and 128-bit UUIDs the
last 16 bits should be stored in this entry. GATT DB access layer shall retrieve

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 181 of 482

complete 128-bit UUID from CYBLE_GATTS_ATT_GENERIC_VAL_T structure.

uint32 permission; The permission bits are clubbed in to a 32-bit field. These 32-bits can be
grouped in to 4 bytes. The lowest significant byte is byte 0 (B0) and the most
significant byte is byte 3 (B3). The bytes where the permissions have been
grouped is as given below. Attribute permissions (B0) Characteristic
permissions (B1) Implementation specific permission (B3, B2)

uint16 attEndHandle; Attribute end handle, indicating logical boundary of given attribute.

CYBLE_GATTS_ATT_VALUE_T
attValue;

Attribute value format, it can be one of following: uint16 16bit - UUID for 16bit
service & Characteristic declaration CYBLE_GATTS_ATT_GENERIC_VAL_T
attFormatValue - Buffer containing 32-bit or 128-bit UUID values for service &
charactertistic declaration CYBLE_GATTS_ATT_GENERIC_VAL_T
attFormatValue - Buffer containing generic char definition value, or generic
Descriptor values

CYBLE_GATTS_ERR_PARAM_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle;
 uint8 opcode;
 CYBLE_GATT_ERR_CODE_T errorCode;
} CYBLE_GATTS_ERR_PARAM_T;

Description

GATT Server Error Response parameter type

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle;

Handle in which error is generated

uint8 opcode; Opcode which has resulted in Error Information on ATT/GATT
opcodes is available in the Bluetooth specification.

CYBLE_GATT_ERR_CODE_T errorCode; Error Code describing cause of error

CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle;
} CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T;

Bluetooth Low Energy (BLE)

Page 182 of 482 Document Number: 001-91490 Rev. *B

Description

Prepare write request parameter received from Client

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle; Attribute Handle

CYBLE_GATTS_WRITE_REQ_PARAM_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATT_HANDLE_VALUE_PAIR_T handleValPair; } CYBLE_GATTS_WRITE_REQ_PARAM_T;

Description

Write request parameter received from Client

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_GATT_HANDLE_VALUE_PAIR_T handleValPair; Handle value pair

CYBLE_GATTS_HANDLE_VALUE_IND_T

Prototype
typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_HANDLE_VALUE_IND_T;

Description

GATT handle value indication parameter type

CYBLE_GATTS_HANDLE_VALUE_NTF_T

Prototype
typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_HANDLE_VALUE_NTF_T;

Description

Handle value notification data to be sent to Client

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 183 of 482

CYBLE_GATTS_PREP_WRITE_RSP_PARAM_T

Prototype
typedef CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T CYBLE_GATTS_PREP_WRITE_RSP_PARAM_T;

Description

Prepare write response parameter to be sent to Client

CYBLE_GATTS_READ_RSP_PARAM_T

Prototype
typedef CYBLE_GATT_VALUE_T CYBLE_GATTS_READ_RSP_PARAM_T;

Description

Read response parameter to be sent to Client

CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T

Prototype
typedef CYBLE_GATTS_WRITE_REQ_PARAM_T CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T;

Description

Write command request parameter received from Client

CYBLE_GATTS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceChangedHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
} CYBLE_GATTS_T;

Description

Structure with Generic Attribute Service (GATTS) attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T Handle of the Service Changed Characteristic

Bluetooth Low Energy (BLE)

Page 184 of 482 Document Number: 001-91490 Rev. *B

serviceChangedHandle;

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Client Characteristic Configuration Descriptor
handle

CYBLE_DISC_CHAR_INFO_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charDeclHandle;
 uint8 properties;
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
 CYBLE_UUID_T uuid;
 uint8 uuidFormat;
} CYBLE_DISC_CHAR_INFO_T;

Description

Characteristic data received with read by type response during discovery process

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charDeclHandle; Handle for Characteristic declaration

uint8 properties; Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle; Handle to server database attribute value entry

CYBLE_UUID_T uuid; Characteristic UUID

uint8 uuidFormat; UUID Format - 16-bit (0x01) or 128-bit (0x02)

CYBLE_DISC_DESCR_INFO_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle;
 CYBLE_UUID_T uuid;
 uint8 uuidFormat;
} CYBLE_DISC_DESCR_INFO_T;

Description

Characteristic Descriptor data received with find info response during discovery process

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 185 of 482

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Handle to server database attribute entry

CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle; Descriptor handle

CYBLE_UUID_T uuid; Descriptor UUID

uint8 uuidFormat; UUID Format - 16-bit (0x01) or 128-bit (0x02)

CYBLE_DISC_INCL_INFO_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T inclDefHandle;
 CYBLE_GATT_ATTR_HANDLE_RANGE_T inclHandleRange;
 CYBLE_UUID_T uuid;
 uint8 uuidFormat;
} CYBLE_DISC_INCL_INFO_T;

Description

Included service data received with read by type response during discovery process

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T inclDefHandle; Included definition handle

CYBLE_GATT_ATTR_HANDLE_RANGE_T inclHandleRange; Included declaration handle range

CYBLE_UUID_T uuid; Included UUID

uint8 uuidFormat; UUID Format - 16-bit (0x01) or 128-bit (0x02)

CYBLE_DISC_SRVC_INFO_T

Prototype
typedef struct {
 CYBLE_GATT_ATTR_HANDLE_RANGE_T range;
 uint16 uuid;
} CYBLE_DISC_SRVC_INFO_T;

Description

CYBLE_GATT_ROLE_SERVER

Bluetooth Low Energy (BLE)

Page 186 of 482 Document Number: 001-91490 Rev. *B

L2CAP Functions
The L2CAP APIs allow access to the Logical link control and adaptation protocol (L2CAP) layer
of the BLE stack.
The L2CAP API names begin with CyBle_L2cap.

Functions

Function Description

CyBle_L2capCbfcRegisterPsm This function registers a new upper layer protocol or PSM to
L2CAP, along with the set of callbacks for the L2CAP Credit
Based Flow Control... more

CyBle_L2capCbfcUnregisterPsm This function de-registers an upper layer protocol or LE_PSM
from L2CAP for the L2CAP Credit Based Flow Control mode. This
is a blocking function. No... more

CyBle_L2capCbfcConnectReq This L2CAP function initiates L2CAP channel establishment
procedure in Credit Based Flow Control (CBFC) mode.
Connection establishment is initiated to the specified remote
Bluetooth device,... more

CyBle_L2capCbfcConnectRsp This L2CAP function enables an upper layer protocol to respond
to L2CAP connection request for LE Credit Based Flow Control
mode of the specified PSM... more

CyBle_L2capCbfcSendFlowControlCredit This L2CAP function enables an upper layer protocol to send LE
Flow Control Credit packet to peer Bluetooth device, when it is
capable of receiving... more

CyBle_L2capChannelDataWrite This function sends a data packet on the L2CAP CBFC channel.
This is a non-blocking function.
CYBLE_EVT_L2CAP_CBFC_DATA_READ event is generated at
the peer device's end... more

CyBle_L2capDisconnectReq This function initiates sending of an L2CAP Disconnect Request
(CYBLE_EVT_L2CAP_CBFC_DISCONN_IND event received by
the peer device) command to the remote L2CAP entity to initiate
disconnection... more

CyBle_L2capLeConnectionParamUpdateRequest This function sends the connection parameter update request to
the Master of the link. This is a non-blocking function. This
function can only be used... more

CyBle_L2capLeConnectionParamUpdateResponse This API sends the connection parameter update response to
slave. This API can only be used from device connected in LE
master role.

CyBle_L2capCbfcRegisterPsm

Prototype
CYBLE_API_RESULT_T CyBle_L2capCbfcRegisterPsm(uint16 l2capPsm, uint16 creditLwm);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 187 of 482

Description

This function registers a new upper layer protocol or PSM to L2CAP, along with the set of
callbacks for the L2CAP Credit Based Flow Control mode. This is a blocking function. No event
is generated on calling this function.
Refer Bluetooth 4.1 core specification, Volume 3, Part A, section 3.4 for more details about credit
based flow control mode of operation.

Parameters

Parameters Description

uint16 l2capPsm PSM value of the higher-level protocol

uint16 creditLwm Upper Layer defined Receive Credit Low Mark

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER If 'l2capPsm' is 0

CYBLE_ERROR_INSUFFICIENT_RESOURCES Cannot register more than one PSM

CYBLE_ERROR_L2CAP_PSM_WRONG_ENCODING PSM value must be an odd number and the Most
Significant Byte must have Least Significant Bit value
set to '0'. If PSM does not follow this guideline, this
return code is generated.

CYBLE_ERROR_L2CAP_PSM_ALREADY_REGISTERED PSM already Registered

CyBle_L2capCbfcUnregisterPsm

Prototype
CYBLE_API_RESULT_T CyBle_L2capCbfcUnregisterPsm(uint16 l2capPsm);

Description

This function de-registers an upper layer protocol or LE_PSM from L2CAP for the L2CAP Credit
Based Flow Control mode. This is a blocking function. No event is generated on calling this
function.

Bluetooth Low Energy (BLE)

Page 188 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

uint16 l2capPsm PSM value of the higher-level protocol

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CYBLE_ERROR_L2CAP_PSM_WRONG_ENCODING L2CAP PSM value specified is incorrect or does not exist

CyBle_L2capCbfcConnectReq

Prototype
CYBLE_API_RESULT_T CyBle_L2capCbfcConnectReq(uint8 bdHandle, uint16 remotePsm,
uint16 localPsm, CYBLE_L2CAP_CBFC_CONNECT_PARAM_T * param);

Description

This L2CAP function initiates L2CAP channel establishment procedure in Credit Based Flow
Control (CBFC) mode. Connection establishment is initiated to the specified remote Bluetooth
device, for the specified PSM representing an upper layer protocol above L2CAP. This is a non-
blocking function.
At the receiver's end, CYBLE_EVT_L2CAP_CBFC_CONN_IND event is generated. In response
to this call, CYBLE_EVT_L2CAP_CBFC_CONN_CNF event is generated at the sender's end.
Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.22 for more details about
this operation.

Parameters

Parameters Description

uint8 bdHandle Peer device handle.

uint16 remotePsm Remote PSM, representing the upper layer protocol above
L2CAP.

uint16 localPsm Local PSM, representing the upper layer protocol above
L2CAP.

CYBLE_L2CAP_CBFC_CONNECT_PARAM_T *
param

This parameter must be a pointer to the
CYBLE_L2CAP_CBFC_CONNECT_PARAM_T variable containing

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 189 of 482

the connection parameters for the L2CAP channel.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER If "param" is NULL

CYBLE_ERROR_INSUFFICIENT_RESOURCES Insufficient resources

CYBLE_L2CAP_PSM_NOT_REGISTERED PSM not Registered

CyBle_L2capCbfcConnectRsp

Prototype
CYBLE_API_RESULT_T CyBle_L2capCbfcConnectRsp(uint16 localCid, uint16 response,
CYBLE_L2CAP_CBFC_CONNECT_PARAM_T * param);

Description

This L2CAP function enables an upper layer protocol to respond to L2CAP connection request
for LE Credit Based Flow Control mode of the specified PSM from the specified remote
Bluetooth device. This is a non-blocking function. It is mandatory that the upper layer PSM
always responds back by calling this function upon receiving CBFC Connection Request
(CYBLE_EVT_L2CAP_CBFC_CONN_IND) event.
The channel is established (opened) only when the PSM concerned responds back with an
event indicating success (CYBLE_EVT_L2CAP_CBFC_CONN_CNF, at the peer device's end).
Otherwise, the channel establishment request from the peer will be rejected by L2CAP with
appropriate result and status as received from the upper layer PSM.
Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.23 for more details about
this operation.

Parameters

Parameters Description

uint16 localCid This parameter specifies the local L2CAP channel end-point for
this new L2CAP channel. On receipt of L2CAP Connect
Request command from the peer, local L2CAP will temporarily
create a channel. This parameter identifies the new channel. If
the upper layer PSM chooses to reject this connection, this
temporary channel will be closed.

uint16 response This parameter specifies the response of the upper layer for the

Bluetooth Low Energy (BLE)

Page 190 of 482 Document Number: 001-91490 Rev. *B

new L2CAP channel establishment request from the peer. It
must be set to a value as specified in L2CAP Connect Result
Codes. Refer to Bluetooth 4.1 core specification, Volume 3, Part
A, section 4.23 for more details.

CYBLE_L2CAP_CBFC_CONNECT_PARAM_T
* param

This parameter must be a pointer to the
CYBLE_L2CAP_CBFC_CONNECT_PARAM_T variable containing
the connection parameters for the L2CAP channel.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER If "param" is NULL

CYBLE_ERROR_L2CAP_CONNECTION_ENTITY_NOT_FOUND Connection entity is not found

CyBle_L2capCbfcSendFlowControlCredit

Prototype
CYBLE_API_RESULT_T CyBle_L2capCbfcSendFlowControlCredit(uint16 localCid, uint16
credit);

Description

This L2CAP function enables an upper layer protocol to send LE Flow Control Credit packet to
peer Bluetooth device, when it is capable of receiving additional LE-frames. This is a non-
blocking function.
This function is invoked when the device is expecting more data from the peer device and it gets
an event indicating that the peer device is low on credits
CYBLE_EVT_L2CAP_CBFC_RX_CREDIT_IND for which it needs to respond by sending credits
by invoking this function. Once the peer device receives these credits, it gets
CYBLE_EVT_L2CAP_CBFC_TX_CREDIT_IND event indicating the same. It is the responsibility
of the application layer of the device sending the credit to keep track of the total number of
credits and making sure that it does not exceed 65535.
Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.24 for more details about
this operation.

Parameters

Parameters Description

uint16 This parameter specifies the local channel end-point for the L2CAP channel. For the initiator of

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 191 of 482

localCid L2CAP channel establishment, this must be set to the value indicated by the
CYBLE_EVT_L2CAP_CBFC_CONN_CNF event. For the responder, the upper layer protocol
obtains this value when it receives the event CYBLE_EVT_L2CAP_CBFC_CONN_IND.

uint16 credit The credit value field represents number of credits the receiving frames that can be sent to the peer
device sending the LE Flow Control Credit packet. The credit value field is a number between 1 and
65535.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CYBLE_L2CAP_CONNECTION_ENTITY_NOT_FOUND L2CAP connection instance is not present

CyBle_L2capChannelDataWrite

Prototype
CYBLE_API_RESULT_T CyBle_L2capChannelDataWrite(uint8 bdHandle, uint16 localCid,
uint8* buffer, uint16 bufferLen);

Description

This function sends a data packet on the L2CAP CBFC channel. This is a non-blocking function.
CYBLE_EVT_L2CAP_CBFC_DATA_READ event is generated at the peer device's end after
invoking this function.
Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 3.4 for more details about
this operation.

Parameters

Parameters Description

uint8
bdHandle

Peer device handle.

uint16
localCid

This parameter specifies the local channel end-point for the L2CAP channel. For the initiator of
L2CAP channel establishment, this must be set to the value indicated by the
CYBLE_EVT_L2CAP_CBFC_CONN_CNF event. For the responder, the upper layer protocol
obtains this value when it receives the event CYBLE_EVT_L2CAP_CBFC_CONN_IND.

uint8* buffer Buffer containing packet to be sent.

uint16
bufferLen

Packet length.

Bluetooth Low Energy (BLE)

Page 192 of 482 Document Number: 001-91490 Rev. *B

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER If "buffer" is NULL

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CYBLE_ERROR_NO_CONNECTION No Link Layer connection is present

CYBLE_L2CAP_CHANNEL_NOT_FOUND No L2ACP channel found corresponding to CID

CYBLE_L2CAP_NOT_ENOUGH_CREDITS Not Enough Credits to transfer data

CyBle_L2capDisconnectReq

Prototype
CYBLE_API_RESULT_T CyBle_L2capDisconnectReq(uint16 localCid);

Description

This function initiates sending of an L2CAP Disconnect Request
(CYBLE_EVT_L2CAP_CBFC_DISCONN_IND event received by the peer device) command to
the remote L2CAP entity to initiate disconnection of the referred L2CAP channel. This is a non-
blocking function.
Disconnection of the L2CAP channel always succeeds - either by reception of the L2CAP
Disconnect Response from the peer, or by timeout. In any case, L2CAP will confirm
disconnection of the channel, by calling the CYBLE_EVT_L2CAP_CBFC_DISCONN_CNF
event.
Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.6 for more details about
this operation.

Parameters

Parameters Description

uint16
localCid

This parameter specifies the local channel end-point for the L2CAP channel.
For initiator of L2CAP channel establishment, this must be set to the value indicated by the event
CYBLE_EVT_L2CAP_CBFC_CONN_CNF.
For the responder, the upper layer protocol obtains this value when it receives the event
CYBLE_EVT_L2CAP_CBFC_CONN_IND.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 193 of 482

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_OPERATION No Link Layer connection is present

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CYBLE_L2CAP_CONNECTION_ENTITY_NOT_FOUND No connection entity found which can be disconnected

CyBle_L2capLeConnectionParamUpdateRequest

Prototype
CYBLE_API_RESULT_T CyBle_L2capLeConnectionParamUpdateRequest(uint8 bdHandle,
CYBLE_GAP_CONN_UPDATE_PARAM_T * connParam);

Description

This function sends the connection parameter update request to the Master of the link. This is a
non-blocking function. This function can only be used from device connected in LE slave role.
To send connection parameter update request from the master to the slave, use
CyBle_GapcConnectionParamUpdateRequest() function. This function results in
CYBLE_EVT_L2CAP_CONN_PARAM_UPDATE_REQ event at the Master's end.
Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.20 for more details about
this operation.

Parameters

Parameters Description

uint8 bdHandle Peer device handle

CYBLE_GAP_CONN_UPDATE_PARAM_T *
connParam

Pointer to a variable of type
CYBLE_GAP_CONN_UPDATE_PARAM_T which indicates the
response to the Connection Parameter Update Request

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

Bluetooth Low Energy (BLE)

Page 194 of 482 Document Number: 001-91490 Rev. *B

CYBLE_ERROR_INVALID_PARAMETER If "connParam" is NULL

CYBLE_ERROR_INVALID_OPERATION Connection Parameter Update Request is not allowed

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CYBLE_ERROR_NO_CONNECTION No Link Layer connection is present

CyBle_L2capLeConnectionParamUpdateResponse

Prototype
CYBLE_API_RESULT_T CyBle_L2capLeConnectionParamUpdateResponse(uint8 bdHandle, uint16
result);

Description

This API sends the connection parameter update response to slave. This API can only be used
from device connected in LE master role.

Parameters

Parameters Description

uint8 bdHandle Peer device handle

Returns

This field indicates the response to the Connection Parameter Update Request
CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAMETER If 'result' is invalid (greater than connection parameter
reject code i.e., 0x0001)

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED Memory allocation failed

CYBLE_ERROR_NO_CONNECTION No Link Layer connection is present

L2CAP Definitions and Data Structures
Contains the L2CAP specific definitions and data structures used in the L2CAP APIs.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 195 of 482

Enumerations

Enumeration Description

CYBLE_L2CAP_RESULT_PARAM_T The result code of call back structures for L2CAP

CYBLE_L2CAP_COMMAND_REJ_REASON_T Reason for command reject event -
CYBLE_EVT_L2CAP_COMMAND_REJ

Structures

Structure Description

CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T Connect confirmation parameter

CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T Connect indication parameter

CYBLE_L2CAP_CBFC_CONNECT_PARAM_T L2CAP Credit based flow Connection parameter

CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T Data Write parameter

CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T Disconnect confirmation parameter

CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T Rx credit info parameter

CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T Tx credit info parameter

CYBLE_L2CAP_CBFC_RX_PARAM_T Receive Data parameter

CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T

Prototype
typedef struct {
 uint8 bdHandle;
 uint16 lCid;
 uint16 response;
 CYBLE_L2CAP_CBFC_CONNECT_PARAM_T connParam;
} CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T;

Description

Connect confirmation parameter

Members

Members Description

uint8 bdHandle; bd handle of the remote device

uint16 lCid; Local CID

uint16 response; Response codes for Connection parameter update request

CYBLE_L2CAP_CBFC_CONNECT_PARAM_T L2CAP Credit based flow Connection parameter

Bluetooth Low Energy (BLE)

Page 196 of 482 Document Number: 001-91490 Rev. *B

connParam;

CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T

Prototype
typedef struct {
 uint8 bdHandle;
 uint16 lCid;
 uint16 psm;
 CYBLE_L2CAP_CBFC_CONNECT_PARAM_T connParam;
} CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T;

Description

Connect indication parameter

Members

Members Description

uint8 bdHandle; bd handle of the remote device

uint16 lCid; Local CID

uint16 psm; PSM value for the Protocol

CYBLE_L2CAP_CBFC_CONNECT_PARAM_T connParam; L2CAP Credit based flow Connection parameter

CYBLE_L2CAP_CBFC_CONNECT_PARAM_T

Prototype
typedef struct {
 uint16 mtu;
 uint16 mps;
 uint16 credit;
} CYBLE_L2CAP_CBFC_CONNECT_PARAM_T;

Description

L2CAP Credit based flow Connection parameter

Members

Members Description

uint16
mtu;

MTU - Maximum SDU Size
The MTU field specifies the maximum SDU size (in octets) that the L2CAP layer entity sending the LE
Credit Based Connection Request can receive on this channel. L2CAP implementations shall support
a minimum MTU size of 23 octets.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 197 of 482

uint16
mps;

MPS - Maximum PDU Size
The MPS field specifies the maximum payload size (in octets) that the L2CAP layer entity sending the
LE Credit Based Connection Request is capable of receiving on this channel. L2CAP
implementations shall support a minimum MPS of 23 octets and may support an MPS up to 65533
octets.

uint16
credit;

Initial number of Credits
The initial credit value indicates the number of LE-frames that the peer device can send to the L2CAP
layer entity sending the LE Credit Based Connection Request. The initial credit value shall be in the
range of 0 to 65535.

CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T

Prototype
typedef struct {
 uint16 lCid;
 CYBLE_L2CAP_RESULT_PARAM_T result;
 uint8 * buffer;
 uint16 bufferLength;
} CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T;

Description

Data Write parameter

Members

Members Description

uint16 lCid; Local CID

CYBLE_L2CAP_RESULT_PARAM_T
result;

The result field indicates the outcome of the connection request. The
result value of 0x0000 indicates success while a non-zero value
indicates the connection request failed or is pending.

uint8 * buffer; Currently NULL. For future usage

uint16 bufferLength; Currently 0. For future usage

CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T

Prototype
typedef struct {
 uint16 lCid;
 CYBLE_L2CAP_RESULT_PARAM_T result;
} CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T;

Description

Disconnect confirmation parameter

Bluetooth Low Energy (BLE)

Page 198 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

uint16 lCid; Local CID

CYBLE_L2CAP_RESULT_PARAM_T
result;

The result field indicates the outcome of the connection request. The
result value of 0x0000 indicates success while a non-zero value
indicates the connection request failed or is pending.

CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T

Prototype
typedef struct {
 uint16 lCid;
 uint16 credit;
} CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T;

Description

Rx credit info parameter

Members

Members Description

uint16 lCid; Local CID

uint16 credit; The number of credits (LE-frames)

CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T

Prototype
typedef struct {
 uint16 lCid;
 CYBLE_L2CAP_RESULT_PARAM_T result;
 uint16 credit;
} CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T;

Description

Tx credit info parameter

Members

Members Description

uint16 lCid; Local CID

CYBLE_L2CAP_RESULT_PARAM_T A result value of 0x0000 indicates success, while a non-zero value
indicates an error condition (e.g. credit overflow, if total number of

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 199 of 482

result; credits crosses specification defined maximum limit of 0xFFFF)

uint16 credit; The number of credits (LE-frames)

CYBLE_L2CAP_CBFC_RX_PARAM_T

Prototype
typedef struct {
 uint16 lCid;
 CYBLE_L2CAP_RESULT_PARAM_T result;
 uint8 * rxData;
 uint16 rxDataLength;
} CYBLE_L2CAP_CBFC_RX_PARAM_T;

Description

Receive Data parameter

Members

Members Description

uint16 lCid; Local CID

CYBLE_L2CAP_RESULT_PARAM_T
result;

A result value of 0x0000 indicates success, while a non-zero value
indicates an error condition (e.g. peer device violating credit flow, or
MTU size limit)

uint8 * rxData; Received L2cap Data

uint16 rxDataLength; Received L2cap Data Length

CYBLE_L2CAP_RESULT_PARAM_T

Prototype
typedef enum {
 CYBLE_L2CAP_RESULT_SUCCESS = 0x0000u,
 CYBLE_L2CAP_RESULT_COMMAND_TIMEOUT = 0x2318u,
 CYBLE_L2CAP_RESULT_INCORRECT_SDU_LENGTH = 0x2347u,
 CYBLE_L2CAP_RESULT_NOT_ENOUGH_CREDITS = 0x2371u,
 CYBLE_L2CAP_RESULT_CREDIT_OVERFLOW = 0x2373u,
 CYBLE_L2CAP_RESULT_UNACCEPTABLE_CREDIT_VALUE = 0x2374u
} CYBLE_L2CAP_RESULT_PARAM_T;

Description

The result code of call back structures for L2CAP

Bluetooth Low Energy (BLE)

Page 200 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_L2CAP_RESULT_SUCCESS = 0x0000u Operation Successful

CYBLE_L2CAP_RESULT_COMMAND_TIMEOUT = 0x2318u Command timeout, if l2cap signaling
channel timeout occurs, app should
disconnect.

CYBLE_L2CAP_RESULT_INCORRECT_SDU_LENGTH = 0x2347u Invalid sdu length

CYBLE_L2CAP_RESULT_NOT_ENOUGH_CREDITS = 0x2371u Not enough credit to perform this operation

CYBLE_L2CAP_RESULT_CREDIT_OVERFLOW = 0x2373u Credit overflow. Total credit exceeded
65535 (maximum)

CYBLE_L2CAP_RESULT_UNACCEPTABLE_CREDIT_VALUE =
0x2374u

Invalid credit value, receive credit is Zero

CYBLE_L2CAP_COMMAND_REJ_REASON_T

Prototype
typedef enum {
 CYBLE_L2CAP_COMMAND_NOT_UNDERSTOOD = 0x0000u,
 CYBLE_L2CAP_SIGNALLING_MTU_EXCEEDED,
 CYBLE_L2CAP_INVALID_CID_IN_REQUEST
} CYBLE_L2CAP_COMMAND_REJ_REASON_T;

Description

Reason for command reject event - CYBLE_EVT_L2CAP_COMMAND_REJ

Members

Members Description

CYBLE_L2CAP_COMMAND_NOT_UNDERSTOOD = 0x0000u Command Not Understood

CYBLE_L2CAP_SIGNALLING_MTU_EXCEEDED Signaling MTU exceeded

CYBLE_L2CAP_INVALID_CID_IN_REQUEST Invalid Connection Identifier in request

BLE Common Events
The BLE stack generates events to notify the application on various status alerts concerning the
stack. These can be generic stack events or can be specific to GAP, GATT or L2CAP layers.
The service specific events are handled separately in BLE Service-Specific Events.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 201 of 482

CYBLE_EVENT_T

Prototype
typedef enum {
 CYBLE_EVT_HOST_INVALID = 0x00u,
 CYBLE_EVT_STACK_ON = 0x01u,
 CYBLE_EVT_TIMEOUT,
 CYBLE_EVT_HARDWARE_ERROR,
 CYBLE_EVT_HCI_STATUS,
 CYBLE_EVT_STACK_BUSY_STATUS,
 CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT = 0x20u,
 CYBLE_EVT_GAP_AUTH_REQ,
 CYBLE_EVT_GAP_PASSKEY_ENTRY_REQUEST,
 CYBLE_EVT_GAP_PASSKEY_DISPLAY_REQUEST,
 CYBLE_EVT_GAP_AUTH_COMPLETE,
 CYBLE_EVT_GAP_AUTH_FAILED,
 CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP,
 CYBLE_EVT_GAP_DEVICE_CONNECTED,
 CYBLE_EVT_GAP_DEVICE_DISCONNECTED,
 CYBLE_EVT_GAP_ENCRYPT_CHANGE,
 CYBLE_EVT_GAP_CONNECTION_UPDATE_COMPLETE,
 CYBLE_EVT_GAPC_SCAN_START_STOP,
 CYBLE_EVT_GAP_KEYINFO_EXCHNGE_CMPLT,
 CYBLE_EVT_GATTC_ERROR_RSP = 0x40u,
 CYBLE_EVT_GATT_CONNECT_IND,
 CYBLE_EVT_GATT_DISCONNECT_IND,
 CYBLE_EVT_GATTS_XCNHG_MTU_REQ,
 CYBLE_EVT_GATTC_XCHNG_MTU_RSP,
 CYBLE_EVT_GATTC_READ_BY_GROUP_TYPE_RSP,
 CYBLE_EVT_GATTC_READ_BY_TYPE_RSP,
 CYBLE_EVT_GATTC_FIND_INFO_RSP,
 CYBLE_EVT_GATTC_FIND_BY_TYPE_VALUE_RSP,
 CYBLE_EVT_GATTC_READ_RSP,
 CYBLE_EVT_GATTC_READ_BLOB_RSP,
 CYBLE_EVT_GATTC_READ_MULTI_RSP,
 CYBLE_EVT_GATTS_WRITE_REQ,
 CYBLE_EVT_GATTC_WRITE_RSP,
 CYBLE_EVT_GATTS_WRITE_CMD_REQ,
 CYBLE_EVT_GATTS_PREP_WRITE_REQ,
 CYBLE_EVT_GATTS_EXEC_WRITE_REQ,
 CYBLE_EVT_GATTC_EXEC_WRITE_RSP,
 CYBLE_EVT_GATTC_HANDLE_VALUE_NTF,
 CYBLE_EVT_GATTC_HANDLE_VALUE_IND,
 CYBLE_EVT_GATTS_HANDLE_VALUE_CNF,
 CYBLE_EVT_GATTS_DATA_SIGNED_CMD_REQ,
 CYBLE_EVT_L2CAP_CONN_PARAM_UPDATE_REQ = 0x70u,
 CYBLE_EVT_L2CAP_CONN_PARAM_UPDATE_RSP,
 CYBLE_EVT_L2CAP_COMMAND_REJ,
 CYBLE_EVT_L2CAP_CBFC_CONN_IND,
 CYBLE_EVT_L2CAP_CBFC_CONN_CNF,
 CYBLE_EVT_L2CAP_CBFC_DISCONN_IND,
 CYBLE_EVT_L2CAP_CBFC_DISCONN_CNF,
 CYBLE_EVT_L2CAP_CBFC_DATA_READ,
 CYBLE_EVT_L2CAP_CBFC_RX_CREDIT_IND,

Bluetooth Low Energy (BLE)

Page 202 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_EVT_L2CAP_CBFC_TX_CREDIT_IND,
 CYBLE_EVT_L2CAP_CBFC_DATA_WRITE_IND,
 CYBLE_EVT_PENDING_FLASH_WRITE = 0xFA,
 CYBLE_EVT_MAX = 0xFF
} CYBLE_EVENT_T;

Description

Host stack events.

 Generic events: 0x01 to 0x1F

 GAP events: 0x20 to 0x3F

 GATT events: 0x40 to 0x6F

 L2AP events: 0x70 to 0x7F

 Future use: 0x80 to 0xFF

Members

Members Description

CYBLE_EVT_STACK_ON = 0x01u This event is received when BLE stack is initialized and
turned ON by invoking CyBle_StackInit () function.

CYBLE_EVT_TIMEOUT This event is received when there is a timeout and
application needs to handle the event. Timeout reason
is defined by CYBLE_TO_REASON_CODE_T.

CYBLE_EVT_HARDWARE_ERROR This event indicates that some internal hardware error
has occurred. Reset of the hardware may be required.

CYBLE_EVT_HCI_STATUS This event is triggered by 'Host Stack' if 'Controller'
responds with an error code for any HCI command.
Event parameter returned will be an HCI error code as
defined in Bluetooth 4.1 core specification, Volume 2,
Part D, section 1.3. This event will be received only if
there is an error.

CYBLE_EVT_STACK_BUSY_STATUS This event is triggered by host stack if BLE stack is busy
or not busy. Parameter corresponding to this event will
be the state of BLE stack. BLE stack busy =
CYBLE_STACK_STATE_BUSY, BLE stack not busy =
CYBLE_STACK_STATE_FREE

CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT =
0x20u

This event is triggered every time a device is
discovered; pointer to structure of type
CYBLE_GAPC_ADV_REPORT_T is returned as the event
parameter.

CYBLE_EVT_GAP_AUTH_REQ This event is received by Peripheral and Central
devices. When it is received by Peripheral, peripheral

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 203 of 482

needs to Call CyBle_GappAuthReqReply() to reply to
authentication request from Central. When this event is
received by Central, that means the slave has requested
Central to initiate authentication procedure. Central
needs to call CyBle_GappAuthReq() to initiate
authentication procedure. Pointer to structure of type
CYBLE_GAP_AUTH_INFO_T is returned as the event
parameter.

CYBLE_EVT_GAP_PASSKEY_ENTRY_REQUEST This event indicates that the device has to send passkey
to be used during the pairing procedure.
CyBle_GapAuthPassKeyReply() is required to be called
with valid parameters on receiving this event. Refer to
Bluetooth Core Spec. 4.1, Part H, Section 2.3.5.1
Selecting STK Generation Method. Nothing is returned
as part of the event parameter.

CYBLE_EVT_GAP_PASSKEY_DISPLAY_REQUEST This event indicates that the device needs to display
passkey during the pairing procedure. Refer to
Bluetooth Core Spec. 4.1, Part H, Section 2.3.5.1
Selecting STK Generation Method. Pointer to data of
type 'uint32' is returned as part of the event parameter.
Passkey can be any 6-decimal-digit value.

CYBLE_EVT_GAP_AUTH_COMPLETE This event indicates that the authentication procedure
has been completed. The event parameter contains the
security information as defined by
CYBLE_GAP_AUTH_INFO_T. This event is generated at
the end of the following three operations: Authentication
is initiated with a newly connected device Encryption is
initiated with a connected device that is already bonded
Re-Encryption is initiated with a connected device with
link already encrypted During encryption/re-encryption,
the Encryption Information exchanged during the pairing
process is used to encrypt/re-encrypt the link. As this
does not modify any of the authentication parameters
with which the devices were paired, this event is
generated with NULL event data and the result of the
encryption operation.

CYBLE_EVT_GAP_AUTH_FAILED Authentication process failed between two devices. The
return value of type
CYBLE_GAP_AUTH_FAILED_REASON_T indicates the
reason for failure.

CYBLE_EVT_GAPP_ADVERTISEMENT_START_STO
P

Peripheral device has started/stopped advertising. This
event is generated after making a call to
CyBle_GappEnterDiscoveryMode and
CyBle_GappExitDiscoveryMode functions. The event
parameter contains the status which is of type 'uint8'. If
the data is '0x00', it indicates 'success'; Anything else
indicates 'failure'.

CYBLE_EVT_GAP_DEVICE_CONNECTED This event is generated at the GAP Central end after
connection is completed with peer device. Event

Bluetooth Low Energy (BLE)

Page 204 of 482 Document Number: 001-91490 Rev. *B

parameter is a pointer to a structure of type
CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROL
LER_T. Disconnected from remote device. Parameter
returned with the event contains pointer to the the
reason for disconnection, which is of type uint8.

CYBLE_EVT_GAP_DEVICE_DISCONNECTED

CYBLE_EVT_GAP_ENCRYPT_CHANGE Encryption change event for active connection.
'evParam' can be decoded as evParam[0] = 0x00 ->
Encryption OFF evParam[0] = 0x01 -> Encryption ON
Any other value of evParam[0] -> Error This is an
informative event for application when there is a change
in encryption. Application may choose to ignore it.

CYBLE_EVT_GAP_CONNECTION_UPDATE_COMPL
ETE

This event is generated at the GAP Central and the
Peripheral end after connection parameter update is
requested from the host to the controller. Event
parameter is a pointer to a structure of type
CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROL LE
R_T.

CYBLE_EVT_GAPC_SCAN_START_STOP Central device has started/stopped scanning. This event
is generated after making a call to
CyBle_GapcStartDiscovery and CyBle_GapcStopDiscovery
APIs. The event parameter contains the status, which is
of type 'uint8'. If the data is '0x00', it indicates 'success';
Anything else indicates 'failure'.

CYBLE_EVT_GAP_KEYINFO_EXCHNGE_CMPLT Indication that the SMP keys exchange with peer device
is complete, the event handler is expected to store the
peer device keys, especially IRK which is used to
resolve the peer device after the connection
establishment. Event parameter returns data of type
CYBLE_GAP_SMP_KEY_DIST_T containing the peer
device keys.

CYBLE_EVT_GATTC_ERROR_RSP = 0x40u The event is received by the Client when the Server
cannot perform the requested operation and sends out
an error response. Event parameter is a pointer to a
structure of type CYBLE_GATTC_ERR_RSP_PARAM_T.

CYBLE_EVT_GATT_CONNECT_IND After completion of authentication events, peer and local
GATT profiles are connected. On receiving this event,
profile may initiate profile level operations.

CYBLE_EVT_GATT_DISCONNECT_IND GATT is disconnected. Nothing is returned as part of the
event parameter.

CYBLE_EVT_GATTS_XCNHG_MTU_REQ 'MTU Exchange Request' received from GATT client
device. Event parameter contains the MTU size of type
CYBLE_GATT_XCHG_MTU_PARAM_T.

CYBLE_EVT_GATTC_XCHNG_MTU_RSP 'MTU Exchange Response' received from server device.
Event parameter is a pointer to a structure of type

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 205 of 482

CYBLE_GATT_XCHG_MTU_PARAM_T.

CYBLE_EVT_GATTC_READ_BY_GROUP_TYPE_RS
P

'Read by Group Type Response' received from server
device. Event parameter is a pointer to a structure of
type CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T.

CYBLE_EVT_GATTC_READ_BY_TYPE_RSP 'Read by Type Response' received from server device.
Event parameter is a pointer to a structure of type
CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T.

CYBLE_EVT_GATTC_FIND_INFO_RSP 'Find Information Response' received from server
device. Event parameter is a pointer to a structure of
type 'CYBLE_GATTC_FIND_INFO_RSP_PARAM_T.

CYBLE_EVT_GATTC_FIND_BY_TYPE_VALUE_RSP 'Find by Type Value Response' received from server
device. Event parameter is a pointer to a structure of
type CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T.

CYBLE_EVT_GATTC_READ_RSP 'Read Response' from server device. Event parameter is
a pointer to a structure of type
CYBLE_GATTC_READ_RSP_PARAM_T.

CYBLE_EVT_GATTC_READ_BLOB_RSP 'Read Blob Response' from server. Event parameter is a
pointer to a structure of type
CYBLE_GATTC_READ_RSP_PARAM_T.

CYBLE_EVT_GATTC_READ_MULTI_RSP 'Read Multiple Responses' from server. Event parameter
is a pointer to a structure of type
CYBLE_GATTC_READ_RSP_PARAM_T. The 'actualLen'
field should be ignored as it is unused in this event
response.

CYBLE_EVT_GATTS_WRITE_REQ 'Write Request' from client device. Event parameter is a
pointer to a structure of type
CYBLE_GATTS_WRITE_REQ_PARAM_T

CYBLE_EVT_GATTC_WRITE_RSP 'Write Response' from server device. Event parameter is
a pointer to a structure of type
CYBLE_CONN_HANDLE_T.

CYBLE_EVT_GATTS_WRITE_CMD_REQ 'Write Command' Request from client device. Event
parameter is a pointer to a structure of type
CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T.

CYBLE_EVT_GATTS_PREP_WRITE_REQ 'Prepare Write' Request from client device. Event
parameter is a pointer to a structure of type
CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T.

CYBLE_EVT_GATTS_EXEC_WRITE_REQ 'Execute Write' response from client device. Event
parameter is a pointer to a structure of type
'CYBLE_GATTS_EXEC_WRITE_REQ_T' This event will be
triggered as soon as GATT DB is modified. If at any
point of time
'CYBLE_GATT_EXECUTE_WRITE_CANCEL_FLAG' is
received in result fields of
'CYBLE_GATTS_EXEC_WRITE_REQ_T' structure, then all

Bluetooth Low Energy (BLE)

Page 206 of 482 Document Number: 001-91490 Rev. *B

previous writes are cancelled.

CYBLE_EVT_GATTC_EXEC_WRITE_RSP 'Execute Write' response from server device. Event
parameter is a pointer to a structure of type
CYBLE_GATTC_EXEC_WRITE_RSP_T.

CYBLE_EVT_GATTC_HANDLE_VALUE_NTF Notification data received from server device. Event
parameter is a pointer to a structure of type
CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T.

CYBLE_EVT_GATTC_HANDLE_VALUE_IND Indication data received from server device. Event
parameter is a pointer to a structure of type
CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T.

CYBLE_EVT_GATTS_HANDLE_VALUE_CNF Confirmation to indication response from client device.
Event parameter is a pointer to a structure of type
CYBLE_CONN_HANDLE_T.

CYBLE_EVT_GATTS_DATA_SIGNED_CMD_REQ Confirmation to indication response from client device.
Event parameter is a pointer to a structure of type
CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T . if
value.val parameter is set to Zero, then signature is not
matched and ignored by stack.

CYBLE_EVT_L2CAP_CONN_PARAM_UPDATE_REQ
= 0x70u

This event indicates the connection parameter update
received from the remote device. The application is
expected to reply to L2CAP using the
CyBle_L2capLeConnectionParamUpdateResponse() function
to respond to the remote device, whether parameters
are accepted or rejected. Event Parameter pointer
points to data of type
'CYBLE_GAP_CONN_UPDATE_PARAM_T'

CYBLE_EVT_L2CAP_CONN_PARAM_UPDATE_RSP This event indicates the connection parameter update
response received from the master. Event Parameter
pointer points to data with two possible values:
• Accepted = 0x0000
• Rejected = 0x0001

Data is of type unit16.

CYBLE_EVT_L2CAP_COMMAND_REJ This event indicates the connection parameter update
request has been rejected. Event parameter is a pointer
to a structure of type
CYBLE_CONN_UPDATE_PARAM_REJ_REASON_T.

CYBLE_EVT_L2CAP_CBFC_CONN_IND This event is used to inform application of the incoming
L2CAP CBFC Connection Request. Event parameter is
a pointer to a structure of type
CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T is returned.

CYBLE_EVT_L2CAP_CBFC_CONN_CNF This event is used to inform application of the L2CAP
CBFC Connection Response/Confirmation. Event
parameter is a pointer to a structure of type
CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T is returned.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 207 of 482

CYBLE_EVT_L2CAP_CBFC_DISCONN_IND This event is used to inform application of the L2CAP
CBFC Disconnection Request received from the Peer
device. Event parameter is a pointer to Local CID of
type unit16.

CYBLE_EVT_L2CAP_CBFC_DISCONN_CNF This event is used to inform application of the L2CAP
CBFC Disconnection confirmation/Response received
from the Peer device. Event parameter is a pointer to a
structure of type
CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T.

CYBLE_EVT_L2CAP_CBFC_DATA_READ This event is used to inform application of data received
over L2CAP CBFC channel. Event parameter is a
pointer to a structure of type
CYBLE_L2CAP_CBFC_RX_PARAM_T.

CYBLE_EVT_L2CAP_CBFC_RX_CREDIT_IND This event is used to inform the application of receive
credits reached low mark. After receiving L2CAP
data/payload from peer device for a specification
Channel, the available credits are calculated. If the
credit count goes below the low mark, this event is
called to inform the application of the condition, so that if
the application wantsm it can send more credits to the
peer device. Event parameter is a pointer to a structure
of type
CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T.

CYBLE_EVT_L2CAP_CBFC_TX_CREDIT_IND This event is used to inform application of having
received transmit credits. This event is called on
receiving LE Flow Control Credit from peer device.
Event parameter is a pointer to a structure of type
CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T. If the
'result' field of the received data is non-zero, this
indicates an error. If the sum of 'credit' field value and
the previously available credit at the peer device
receiving credit information exceeds 65535, it indicates
a 'credit overflow' error. In case of error, the peer device
receiving this event should initiate disconnection of the
L2CAP channel by invoking CyBle_L2capDisconnectReq ()
function.

CYBLE_EVT_L2CAP_CBFC_DATA_WRITE_IND This event is used to inform application of data
transmission completion over L2CAP CBFC channel.
Event parameter is of type
'CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T'

CYBLE_EVT_PENDING_FLASH_WRITE = 0xFA This event is used to inform application that flash write is
pending Stack internal data structures are modified and
require backup .

BLE Common Definitions and Data Structures
Contains definitions and structures that are common to all BLE common APIs. Note that some of
these are also used in Service-specific APIs.

Bluetooth Low Energy (BLE)

Page 208 of 482 Document Number: 001-91490 Rev. *B

Enumerations

Enumeration Description

CYBLE_API_RESULT_T Common error codes received as API result.
• Common error codes: 0x00 to 0x0C
• L2CAP error codes: 0x0D to 0x13
• GATT DB error codes: 0x14 to... more

CYBLE_TO_REASON_CODE_T BLE stack timeout. This is received with
CYBLE_EVT_TIMEOUT event It is application's responsibility to
disconnect or keep the channel on depends on type of
timeouts.... more

CYBLE_BLESS_PWR_LVL_T BLESS Power enum reflecting power level values supported by
BLESS radio

CYBLE_BLESS_PHY_CH_GRP_ID_T BLE channel group ID

CYBLE_BLESS_WCO_SCA_CFG_T BLE WCO sleep clock accuracy configuration

CYBLE_BLESS_ECO_CLK_DIV_T BLE ECO clock divider

CYBLE_LP_MODE_T BLE power modes

CYBLE_CLIENT_STATE_T Client State type

CYBLE_CONN_UPDATE_PARAM_REJ_REASON_T Reason for command reject event -
L2CAP_COMMAND_REJECTED_EVENT

CYBLE_STATE_T Event handler state machine type

CYBLE_BLESS_STATE_T BLESS Power enum reflecting power states supported by
BLESS radio.

Structures

Structure Description

CYBLE_BLESS_PWR_IN_DB_T Structure to set/get BLE radio power

CYBLE_BLESS_CLK_CFG_PARAMS_T BLE clock configuration parameters

CYBLE_CONN_HANDLE_T Connection Handle

CYBLE_UUID128_T GATT 128 Bit UUID type

CYBLE_STACK_LIB_VERSION_T This structure is used to hold version information of the BLE Stack
Library

CYBLE_SRVR_CHAR_INFO_T Characteristic Attribute handle + properties structure

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 209 of 482

Types

Type Description

CYBLE_APP_CB_T Event callback function prototype to receive events from stack

CYBLE_CALLBACK_T Event callback function prototype to receive events from BLE Component

CYBLE_UUID16 GATT 16 Bit UUID

CYBLE_CHAR_AGGREGATE_FMT_T This is type CYBLE_CHAR_AGGREGATE_FMT_T.

CYBLE_CHAR_PRESENT_FMT_T This is type CYBLE_CHAR_PRESENT_FMT_T.

CYBLE_CHAR_USER_DESCRIPTION_T This is type CYBLE_CHAR_USER_DESCRIPTION_T.

CYBLE_CLIENT_CHAR_CONFIG_T This is type CYBLE_CLIENT_CHAR_CONFIG_T.

CYBLE_SERVER_CHAR_CONFIG_T This is type CYBLE_SERVER_CHAR_CONFIG_T.

CYBLE_STACK_EV_CB_PF Event callback function prototype to receive events from stack

Unions

 Union Description

 CYBLE_UUID_T GATT UUID type

CYBLE_API_RESULT_T

Prototype
typedef enum {
CYBLE_ERROR_OK = 0x00u,
CYBLE_ERROR_INVALID_PARAMETER,
CYBLE_ERROR_INVALID_OPERATION,
CYBLE_ERROR_MEMORY_ALLOCATION_FAILED,
CYBLE_ERROR_INSUFFICIENT_RESOURCES,
CYBLE_ERROR_OOB_NOT_AVAILABLE,
CYBLE_ERROR_NO_CONNECTION,
CYBLE_ERROR_NO_DEVICE_ENTITY,
CYBLE_ERROR_REPEATED_ATTEMPTS,
CYBLE_ERROR_GAP_ROLE,
CYBLE_ERROR_TX_POWER_READ,
CYBLE_ERROR_BT_ON_NOT_COMPLETED,
CYBLE_ERROR_SEC_FAILED,
CYBLE_ERROR_L2CAP_PSM_WRONG_ENCODING = 0x0Du,
CYBLE_ERROR_L2CAP_PSM_ALREADY_REGISTERED,
CYBLE_ERROR_L2CAP_PSM_NOT_REGISTERED,
CYBLE_ERROR_L2CAP_CONNECTION_ENTITY_NOT_FOUND,
CYBLE_ERROR_L2CAP_CHANNEL_NOT_FOUND,
CYBLE_ERROR_L2CAP_NOT_ENOUGH_CREDITS,
CYBLE_ERROR_L2CAP_PSM_NOT_IN_RANGE,
CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE,
CYBLE_ERROR_DEVICE_ALREADY_EXISTS = 0x27u,
CYBLE_ERROR_FLASH_WRITE_NOT_PERMITED = 0x28u,
CYBLE_ERROR_MIC_AUTH_FAILED = 0x29u,

Bluetooth Low Energy (BLE)

Page 210 of 482 Document Number: 001-91490 Rev. *B

CYBLE_ERROR_MAX = 0xFFu
} CYBLE_API_RESULT_T;

Description

Common error codes received as API result

Members

Members Description

CYBLE_ERROR_OK = 0x00u No Error occurred

CYBLE_ERROR_INVALID_PARAMETER At least one of the input parameters is invalid

CYBLE_ERROR_INVALID_OPERATION Operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED An internal error occurred in the stack

CYBLE_ERROR_INSUFFICIENT_RESOURCES Insufficient resources to perform requested
operation

CYBLE_ERROR_OOB_NOT_AVAILABLE OOB data not available

CYBLE_ERROR_NO_CONNECTION Connection is required to perform requested
operation. Connection not present

CYBLE_ERROR_NO_DEVICE_ENTITY No device entity to perform requested operation

CYBLE_ERROR_REPEATED_ATTEMPTS Attempted repeat operation is not allowed

CYBLE_ERROR_GAP_ROLE GAP role is incorrect

CYBLE_ERROR_TX_POWER_READ Error reading TC power

CYBLE_ERROR_BT_ON_NOT_COMPLETED BLE Initialization failed

CYBLE_ERROR_SEC_FAILED Security operation failed

CYBLE_ERROR_L2CAP_PSM_WRONG_ENCODING =
0x0Du

L2CAP PSM encoding is incorrect

CYBLE_ERROR_L2CAP_PSM_ALREADY_REGISTERED L2CAP PSM has already been registered

CYBLE_ERROR_L2CAP_PSM_NOT_REGISTERED L2CAP PSM has not been registered

CYBLE_ERROR_L2CAP_CONNECTION_ENTITY_NOT_F
OUND

L2CAPconnection entity not found

CYBLE_ERROR_L2CAP_CHANNEL_NOT_FOUND L2CAP channel not found

CYBLE_ERROR_L2CAP_NOT_ENOUGH_CREDITS L2CAP not enough credits

CYBLE_ERROR_L2CAP_PSM_NOT_IN_RANGE Specified PSM is out of range

CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE Invalid attribute handle

CYBLE_ERROR_DEVICE_ALREADY_EXISTS = 0x27u Device cannot be added to whitelist as it has already
been added

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 211 of 482

Members Description

CYBLE_ERROR_FLASH_WRITE_NOT_PERMITED =
0x28u

Write to flash is not permitted

CYBLE_ERROR_MIC_AUTH_FAILED = 0x29u MIC Authentication failure

CYBLE_ERROR_MAX = 0xFFu All other errors not covered in the above list map to
this error code

CYBLE_TO_REASON_CODE_T

Prototype
typedef enum {
 CYBLE_GAP_ADV_MODE_TO = 0x01u,
 CYBLE_GAP_SCAN_TO,
 CYBLE_GATT_RSP_TO,
 CYBLE_GENERIC_TO
} CYBLE_TO_REASON_CODE_T;

Description

BLE stack timeout. This is received with CYBLE_EVT_TIMEOUT event It is application's
responsibility to disconnect or keep the channel on depends on type of timeouts. i.e. GATT
procedure timeout: Application may choose to disconnect.

Members

Members Description

CYBLE_GAP_ADV_MODE_TO = 0x01u Advertisement time set by application has expired

CYBLE_GAP_SCAN_TO Scan time set by application has expired

CYBLE_GATT_RSP_TO GATT procedure timeout

CYBLE_GENERIC_TO Generic timeout

CYBLE_BLESS_PWR_IN_DB_T

Prototype
typedef struct {
 CYBLE_BLESS_PWR_LVL_T blePwrLevelInDbm;
 CYBLE_BLESS_PHY_CH_GRP_ID_T bleSsChId;
} CYBLE_BLESS_PWR_IN_DB_T;

Description

Structure to set/get BLE radio power

Bluetooth Low Energy (BLE)

Page 212 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_BLESS_PWR_LVL_T lePwrLevelInDbm; Output Power level

CYBLE_BLESS_PHY_CH_GRP_ID_T bleSsChId; Channel group ID for which power level is to be read/written

CYBLE_BLESS_PWR_LVL_T

Prototype
typedef enum {
 CYBLE_LL_PWR_LVL_NEG_18_DBM = 0x01u,
 CYBLE_LL_PWR_LVL_NEG_12_DBM,
 CYBLE_LL_PWR_LVL_NEG_6_DBM,
 CYBLE_LL_PWR_LVL_NEG_3_DBM,
 CYBLE_LL_PWR_LVL_NEG_2_DBM,
 CYBLE_LL_PWR_LVL_NEG_1_DBM,
 CYBLE_LL_PWR_LVL_3_DBM,
 CYBLE_LL_PWR_LVL_0_DBM,
 CYBLE_LL_PWR_LVL_MAX
} CYBLE_BLESS_PWR_LVL_T;

Description

BLESS Power enum reflecting power level values supported by BLESS radio

Members

Members Description

CYBLE_LL_PWR_LVL_NEG_18_DBM = 0x01u ABS PWR = -18dBm, PA_Gain = 0x01

CYBLE_LL_PWR_LVL_NEG_12_DBM ABS PWR = -12dBm, PA_Gain = 0x02

CYBLE_LL_PWR_LVL_NEG_6_DBM ABS PWR = -6dBm, PA_Gain = 0x03

CYBLE_LL_PWR_LVL_NEG_3_DBM ABS PWR = -3dBm, PA_Gain = 0x04

CYBLE_LL_PWR_LVL_NEG_2_DBM ABS PWR = -2dBm, PA_Gain = 0x05

CYBLE_LL_PWR_LVL_NEG_1_DBM ABS PWR = -1dBm, PA_Gain = 0x06

CYBLE_LL_PWR_LVL_3_DBM ABS PWR = 3dBm, PA_Gain = 0x07

CYBLE_LL_PWR_LVL_0_DBM ABS PWR = 0dBm, PA_Gain = 0x07

CYBLE_BLESS_PHY_CH_GRP_ID_T

Prototype
typedef enum {
 CYBLE_LL_ADV_CH_TYPE = 0x00u,

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 213 of 482

 CYBLE_LL_CONN_CH_TYPE,
 CYBLE_LL_MAX_CH_TYPE
} CYBLE_BLESS_PHY_CH_GRP_ID_T;

Description

BLE channel group ID

Members

Members Description

CYBLE_LL_ADV_CH_TYPE = 0x00u Advertisement channel type

CYBLE_LL_CONN_CH_TYPE Connection channel type

CYBLE_LL_MAX_CH_TYPE Maximum value of CYBLE_BLESS_PHY_CH_GRP_ID_T type

CYBLE_BLESS_CLK_CFG_PARAMS_T

Prototype
typedef struct {
 CYBLE_BLESS_WCO_SCA_CFG_T bleLlSca;
 CYBLE_BLESS_ECO_CLK_DIV_T bleLlClockDiv;
 uint16 ecoXtalStartUpTime;
} CYBLE_BLESS_CLK_CFG_PARAMS_T;

Description

BLE clock configuration parameters

Members

Members Description

CYBLE_BLESS_WCO_SCA_CFG_T
bleLlSca;

32 kHz Cycles Link Layer clock divider

uint16 ecoXtalStartUpTime; ECO crystal startup time in micro seconds. The maximum allowed
value for this field is 4000 (4 milliseconds)

CYBLE_BLESS_WCO_SCA_CFG_T

Prototype
typedef enum {
 CYBLE_LL_SCA_251_TO_500_PPM = 0x00u,
 CYBLE_LL_SCA_151_TO_250_PPM,
 CYBLE_LL_SCA_101_TO_150_PPM,
 CYBLE_LL_SCA_076_TO_100_PPM,
 CYBLE_LL_SCA_051_TO_075_PPM,

Bluetooth Low Energy (BLE)

Page 214 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_LL_SCA_031_TO_050_PPM,
 CYBLE_LL_SCA_021_TO_030_PPM,
 CYBLE_LL_SCA_000_TO_020_PPM,
 CYBLE_LL_SCA_IN_PPM_INVALID
} CYBLE_BLESS_WCO_SCA_CFG_T;

Description

BLE WCO sleep clock accuracy configuration

CYBLE_BLESS_ECO_CLK_DIV_T

Prototype
typedef enum {
 CYBLE_LL_ECO_CLK_DIV_1 = 0x00u,
 CYBLE_LL_ECO_CLK_DIV_2,
 CYBLE_LL_ECO_CLK_DIV_4,
 CYBLE_LL_ECO_CLK_DIV_8,
 CYBLE_LL_ECO_CLK_DIV_INVALID
} CYBLE_BLESS_ECO_CLK_DIV_T;

Description

BLE ECO clock divider

CYBLE_APP_CB_T

Prototype
typedef void (* CYBLE_APP_CB_T)(uint8 event, void* evParam);

Description

Event callback function prototype to receive events from stack

CYBLE_CALLBACK_T

Prototype
typedef void (* CYBLE_CALLBACK_T)(uint32 eventCode, void *eventParam);

Description

Event callback function prototype to receive events from BLE Component

CYBLE_LP_MODE_T

Prototype
typedef enum {

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 215 of 482

CYBLE_BLESS_ACTIVE = 0x01u,
CYBLE_BLESS_SLEEP,
CYBLE_BLESS_DEEPSLEEP,
CYBLE_BLESS_HIBERNATE,
CYBLE_BLESS_INVALID = 0xFFu
} CYBLE_LP_MODE_T;

Description

BLE power modes

Members

Members Description

CYBLE_BLESS_ACTIVE = 0x01u Link Layer engine and Digital modem clocked from ECO. The CPU can
access the BLE Sub-System (BLESS) registers. This mode collectively
denotes Tx Mode, Rx Mode, and Idle mode of BLESS.

CYBLE_BLESS_SLEEP The clock to the link layer engine and digital modem is gated. The ECO
continues to run to maintain the link layer timing.

CYBLE_BLESS_DEEPSLEEP The ECO is stopped and WCO is used to maintain link layer timing. RF
transceiver is turned off completely to reduce leakage current. BLESS
logic is kept powered ON from the SRSS deep sleep regulator for
retention.

CYBLE_BLESS_HIBERNATE External power is available but all internal LDOs are turned off.

CYBLE_BLESS_INVALID = 0xFFu Invalid mode

CYBLE_CONN_HANDLE_T

Prototype
typedef struct {
 uint8 bdHandle;
 uint8 attId;
} CYBLE_CONN_HANDLE_T;

Description

Connection Handle

Members

Members Description

uint8 bdHandle; Identifies the peer instance

uint8 attId; Identifies the ATT Instance

Bluetooth Low Energy (BLE)

Page 216 of 482 Document Number: 001-91490 Rev. *B

CYBLE_UUID_T

Prototype
typedef union {
 CYBLE_UUID16 uuid16;
 CYBLE_UUID128_T uuid128;
} CYBLE_UUID_T;

Description

GATT UUID type

Members

Members Description

CYBLE_UUID16 uuid16; 16-bit UUID

CYBLE_UUID128_T uuid128; 128-bit UUID

CYBLE_UUID16

Prototype
typedef uint16 CYBLE_UUID16;

Description

GATT 16-bit UUID

CYBLE_UUID128_T

Prototype
typedef struct {
 uint8 value[CYBLE_GATT_128_BIT_UUID_SIZE];
} CYBLE_UUID128_T;

Description

GATT 128-bit UUID type

CYBLE_STACK_LIB_VERSION_T

Prototype
typedef struct {
 uint8 majorVersion;
 uint8 minorVersion;
 uint8 patch;
 uint8 buildNumber;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 217 of 482

} CYBLE_STACK_LIB_VERSION_T;

Description

This structure is used to hold version information of the BLE Stack Library

Members

Members Description

uint8 majorVersion; The major version of the library

uint8 minorVersion; The minor version of the library

uint8 patch; The patch number of the library

uint8 buildNumber; The build number of the library

CYBLE_CLIENT_STATE_T

Prototype
typedef enum {
 CYBLE_CLIENT_STATE_CONNECTED,
 CYBLE_CLIENT_STATE_SRVC_DISCOVERING,
 CYBLE_CLIENT_STATE_INCL_DISCOVERING,
 CYBLE_CLIENT_STATE_CHAR_DISCOVERING,
 CYBLE_CLIENT_STATE_DESCR_DISCOVERING,
 CYBLE_CLIENT_STATE_DISCOVERED,
 CYBLE_CLIENT_STATE_DISCONNECTING,
 CYBLE_CLIENT_STATE_DISCONNECTED_DISCOVERED,
 CYBLE_CLIENT_STATE_DISCONNECTED
} CYBLE_CLIENT_STATE_T;

Description

Client State type

Members

Members Description

CYBLE_CLIENT_STATE_CONNECTED Server device is connected

CYBLE_CLIENT_STATE_SRVC_DISCOVERING Server services are being discovered

CYBLE_CLIENT_STATE_INCL_DISCOVERING Server included services are being discovered

CYBLE_CLIENT_STATE_CHAR_DISCOVERING Server Characteristics are being discovered

CYBLE_CLIENT_STATE_DESCR_DISCOVERING Server char. Descriptors are being discovered

CYBLE_CLIENT_STATE_DISCOVERED Server is discovered

Bluetooth Low Energy (BLE)

Page 218 of 482 Document Number: 001-91490 Rev. *B

CYBLE_CLIENT_STATE_DISCONNECTING Server is disconnecting

CYBLE_CLIENT_STATE_DISCONNECTED_DISCOVERED Server is disconnected but discovered

CYBLE_CLIENT_STATE_DISCONNECTED Essentially initial client state

CYBLE_SRVR_CHAR_INFO_T

Prototype
typedef struct {
 uint8 properties;
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
} CYBLE_SRVR_CHAR_INFO_T;

Description

Characteristic Attribute handle + properties structure

Members

Members Description

uint8 properties; Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle; Handle of server database attribute value entry

CYBLE_STATE_T

Prototype
typedef enum {
 CYBLE_STATE_STOPPED,
 CYBLE_STATE_INITIALIZING,
 CYBLE_STATE_CONNECTED,
 CYBLE_STATE_ADVERTISING,
 CYBLE_STATE_SCANNING,
 CYBLE_STATE_CONNECTING,
 CYBLE_STATE_DISCONNECTED
} CYBLE_STATE_T;

Description

Event handler state machine type

Members

Members Description

CYBLE_STATE_STOPPED BLE is turned off

CYBLE_STATE_INITIALIZING Initializing state

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 219 of 482

CYBLE_STATE_CONNECTED Peer device is connected

CYBLE_STATE_ADVERTISING Advertising process CYBLE_GAP_ROLE_PERIPHERAL ||
CYBLE_GAP_ROLE_BROADCASTER

CYBLE_STATE_SCANNING Scanning process CYBLE_GAP_ROLE_CENTRAL ||
CYBLE_GAP_ROLE_OBSERVER

CYBLE_STATE_CONNECTING Connecting CYBLE_GAP_ROLE_CENTRAL

CYBLE_STATE_DISCONNECTED Essentially idle state

CYBLE_CHAR_AGGREGATE_FMT_T

Prototype
typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_AGGREGATE_FMT_T;

Description

This is type CYBLE_CHAR_AGGREGATE_FMT_T.

CYBLE_CHAR_PRESENT_FMT_T

Prototype
typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_PRESENT_FMT_T;

Description

This is type CYBLE_CHAR_PRESENT_FMT_T.

CYBLE_CHAR_USER_DESCRIPTION_T

Prototype
typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_USER_DESCRIPTION_T;

Description

This is type CYBLE_CHAR_USER_DESCRIPTION_T.

CYBLE_CLIENT_CHAR_CONFIG_T

Prototype
typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CLIENT_CHAR_CONFIG_T;

Bluetooth Low Energy (BLE)

Page 220 of 482 Document Number: 001-91490 Rev. *B

Description

This is type CYBLE_CLIENT_CHAR_CONFIG_T.

CYBLE_SERVER_CHAR_CONFIG_T

Prototype
typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_SERVER_CHAR_CONFIG_T;

Description

This is type CYBLE_SERVER_CHAR_CONFIG_T.

CYBLE_STACK_EV_CB_PF

Prototype
typedef void (* CYBLE_STACK_EV_CB_PF)(CYBLE_EVENT_T event, void* evParam);

Description

Event callback function prototype to receive events from stack

CYBLE_BLESS_STATE_T

Prototype
typedef enum {
 CYBLE_BLESS_STATE_ACTIVE = 0x01,
 CYBLE_BLESS_STATE_EVENT_CLOSE,
 CYBLE_BLESS_STATE_SLEEP,
 CYBLE_BLESS_STATE_ECO_ON,
 CYBLE_BLESS_STATE_ECO_STABLE,
 CYBLE_BLESS_STATE_DEEPSLEEP,
 CYBLE_BLESS_STATE_HIBERNATE,
 CYBLE_BLESS_STATE_INVALID = 0xFFu
} CYBLE_BLESS_STATE_T;

Description

BLESS Power enum reflecting power states supported by BLESS radio.

BLE Service-Specific APIs
This section describes BLE Service-specific APIs. The Service APIs are only included in the
design if the Service is added to the selected Profile in the Component GUI. These are interfaces
for the BLE application to use during BLE connectivity. The service specific APIs internally use
the BLE Stack APIs to achieve the Service use case.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 221 of 482

Refer to the Bluetooth Special Interest Group Web Site for links to the latest specifications and
other documentation.
Many of the APIs will generate Service-specifc events. The events are also used in the Service-
specific callback functions. These are documented in:

 BLE Service-Specific Events

Alert Notification Service (ANS)
The Alert Notification Service exposes alert information in a device. This information includes:

 Type of alert occurring in a device

 Additional text information such as the caller's ID or sender's ID

 Count of new alerts

 Count of unread alert items
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The ANS API names begin with CyBle_Ans. In addition to this, the APIs also append the GATT
role initial letter in the API name.

ANS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Ans

Functions

Function Description

CyBle_AnsRegisterAttrCallback Registers a callback function for Alert Notification Service specific attribute
operations.

CyBle_AnsRegisterAttrCallback

Prototype
void CyBle_AnsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for Alert Notification Service specific attribute operations.

Bluetooth Low Energy (BLE)

Page 222 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

An application layer event callback function to receive service specific events from the
BLE Component. The definition of CYBLE_CALLBACK_T for Alert Notification Service
is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_ANSS_NOTIFICATION_ENABLED)
eventParam contains the parameters corresponding to the current event (e.g. Pointer
to CYBLE_ANS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered).

Returns

None

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

ANS Server Functions
APIs unique to ANS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Anss

Functions

Function Description

CyBle_AnssSetCharacteristicValue Sets a Characteristic value of Alert Notification Service, which is a value
identified by charIndex, to the local database.

CyBle_AnssGetCharacteristicValue Gets a Characteristic value of Alert Notification Service. The value is
identified by charIndex.

CyBle_AnssGetCharacteristicDescriptor Gets a Characteristic Descriptor of the specified Characteristic of Alert
Notification Service.

CyBle_AnssSendNotification Sends a notification with the Characteristic value, as specified by its
charIndex, to the Client device.

CyBle_AnssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_AnssSetCharacteristicValue(CYBLE_ANS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 223 of 482

Description

Sets a Characteristic value of Alert Notification Service, which is a value identified by charIndex,
to the local database.

Parameters

Parameters Description

CYBLE_ANS_CHAR_INDEX_T
charIndex

The index of the service Characteristic of type
CYBLE_ANS_CHAR_INDEX_T. The valid values are,
CYBLE_ANS_SUPPORTED_NEW_ALERT_CAT
CYBLE_ANS_SUPPORTED_UNREAD_ALERT_CAT

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to Characteristic value data that should be sent to the server
device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CyBle_AnssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_AnssGetCharacteristicValue(CYBLE_ANS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of Alert Notification Service. The value is identified by charIndex.

Parameters

Parameters Description

CYBLE_ANS_CHAR_INDEX_T
charIndex

The index of the service Characteristic of type
CYBLE_ANS_CHAR_INDEX_T. The valid values are,
CYBLE_ANS_NEW_ALERT
CYBLE_ANS_UNREAD_ALERT_STATUS

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Bluetooth Low Energy (BLE)

Page 224 of 482 Document Number: 001-91490 Rev. *B

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CyBle_AnssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_AnssGetCharacteristicDescriptor(CYBLE_ANS_CHAR_INDEX_T
charIndex, CYBLE_ANS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic Descriptor of the specified Characteristic of Alert Notification Service.

Parameters

Parameters Description

CYBLE_ANS_CHAR_INDEX_T
charIndex

The index of the service Characteristic of type
CYBLE_ANS_CHAR_INDEX_T. The valid values are,
CYBLE_ANS_NEW_ALERT
CYBLE_ANS_UNREAD_ALERT_STATUS

CYBLE_ANS_DESCR_INDEX_T
descrIndex

The index of the service Characteristic Descriptor of type
CYBLE_ANS_DESCR_INDEX_T. The valid value is,
CYBLE_ANS_CCCD

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CyBle_AnssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_AnssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 225 of 482

Description

Sends a notification with the Characteristic value, as specified by its charIndex, to the Client
device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_ANS_CHAR_INDEX_T
charIndex

The index of the service Characteristic of type
CYBLE_ANS_CHAR_INDEX_T. The valid values are,
CYBLE_ANS_UNREAD_ALERT_STATUS
CYBLE_ANS_NEW_ALERT

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The function completed successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. Characteristic.

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

ANS Client Functions
APIs unique to ANS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Ansc

Functions

Function Description

CyBle_AnscSetCharacteristicValue Sends a request to the peer device to set the Characteristic value, as
identified by its charIndex.

CyBle_AnscGetCharacteristicValue Sends a request to the peer device to get a Characteristic value, as

Bluetooth Low Energy (BLE)

Page 226 of 482 Document Number: 001-91490 Rev. *B

identified by its charIndex.

CyBle_AnscSetCharacteristicDescriptor Sends a request to the peer device to set the Characteristic Descriptor
of the specified Characteristic of Alert Notification Service.

CyBle_AnscGetCharacteristicDescriptor Sends a request to the peer device to get the Characteristic Descriptor
of the specified Characteristic of Alert Notification Service.

CyBle_AnscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_AnscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a request to the peer device to set the Characteristic value, as identified by its charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_ANS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize Size of the Characteristic value attribute.

uint8 * attrValue Pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully.

 CYBLE_ERROR_INVALID_STATE - The Component is in invalid state for current
operation.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 227 of 482

CyBle_AnscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_AnscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex);

Description

Sends a request to the peer device to get a Characteristic value, as identified by its charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_ANS_CHAR_INDEX_T charIndex The index of the service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully;

 CYBLE_ERROR_INVALID_STATE - The Component is in invalid state for current
operation.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

CyBle_AnscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_AnscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_ANS_CHAR_INDEX_T charIndex, CYBLE_ANS_DESCR_INDEX_T descrIndex, uint8
attrSize, uint8 * attrValue);

Description

Sends a request to the peer device to set the Characteristic Descriptor of the specified
Characteristic of Alert Notification Service.

Bluetooth Low Energy (BLE)

Page 228 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The BLE peer device connection handle.

CYBLE_ANS_CHAR_INDEX_T
charIndex

The index of the ANS Characteristic.

CYBLE_ANS_DESCR_INDEX_T
descrIndex

The index of the ANS Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully.

 CYBLE_ERROR_INVALID_STATE - The Component is in invalid state for current
operation.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

CyBle_AnscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_AnscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 descrIndex);

Description

Sends a request to the peer device to get the Characteristic Descriptor of the specified
Characteristic of Alert Notification Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle BLE peer device connection handle.

CYBLE_ANS_CHAR_INDEX_T charIndex The index of the Service Characteristic.

uint8 descrIndex The index of the Service Characteristic Descriptor.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 229 of 482

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - A request was sent successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_INVALID_STATE - The Component is in invalid state for current
operation.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Cannot process a request to send PDU due to
invalid operation performed by the application.

ANS Definitions and Data Structures
Contains the ANS specific definitions and data structures used in the ANS APIs.

Enumerations

Enumeration Description

CYBLE_ANS_CHAR_INDEX_T ANS Characteristic indexes

CYBLE_ANS_DESCR_INDEX_T ANS Characteristic Descriptors indexes

Structures

Structure Description

CYBLE_ANS_CHAR_VALUE_T Alert Notification Service Characteristic Value parameter structure

CYBLE_ANS_DESCR_VALUE_T Alert Notification Service Characteristic Descriptor Value parameter structure

CYBLE_ANSC_T Structure with discovered attributes information of Alert Notification Service

CYBLE_ANSS_CHAR_T ANS Characteristic with Descriptors

CYBLE_ANSS_T Structure with Alert Notification Service attribute handles

CYBLE_ANS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_ANS_SUPPORTED_NEW_ALERT_CAT,
 CYBLE_ANS_NEW_ALERT,
 CYBLE_ANS_SUPPORTED_UNREAD_ALERT_CAT,
 CYBLE_ANS_UNREAD_ALERT_STATUS,
 CYBLE_ANS_ALERT_NTF_CONTROL_POINT,
 CYBLE_ANS_CHAR_COUNT

Bluetooth Low Energy (BLE)

Page 230 of 482 Document Number: 001-91490 Rev. *B

} CYBLE_ANS_CHAR_INDEX_T;

Description

ANS Characteristic indexes

Members

Members Description

CYBLE_ANS_SUPPORTED_NEW_ALERT_CAT Supported New Alert Category Characteristic index

CYBLE_ANS_NEW_ALERT New Alert Characteristic index

CYBLE_ANS_SUPPORTED_UNREAD_ALERT_CAT Supported Unread Alert Category Characteristic index

CYBLE_ANS_UNREAD_ALERT_STATUS Unread Alert Status Characteristic index

CYBLE_ANS_ALERT_NTF_CONTROL_POINT Alert Notification Control Point Characteristic index

CYBLE_ANS_CHAR_COUNT Total count of ANS Characteristics

CYBLE_ANS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_ANS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_ANS_CHAR_VALUE_T;

Description

Alert Notification Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_ANS_CHAR_INDEX_T charIndex; Index of Alert Notification Service Characteristic

CYBLE_GATT_VALUE_T * value; Pointer to Characteristic value

CYBLE_ANS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_ANS_CCCD,
 CYBLE_ANS_DESCR_COUNT

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 231 of 482

} CYBLE_ANS_DESCR_INDEX_T;

Description

ANS Characteristic Descriptors indexes

Members

Members Description

CYBLE_ANS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_ANS_DESCR_COUNT Total count of Descriptors

CYBLE_ANS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_ANS_CHAR_INDEX_T charIndex;
 CYBLE_ANS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_ANS_DESCR_VALUE_T;

Description

Alert Notification Service Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_ANS_CHAR_INDEX_T charIndex; Characteristic index of Service

CYBLE_ANS_DESCR_INDEX_T descrIndex; Service Characteristic Descriptor index

CYBLE_GATT_VALUE_T * value; Pointer to value of Service Characteristic Descriptor value

CYBLE_ANSC_T

Prototype
typedef struct {
 CYBLE_SRVR_FULL_CHAR_INFO_T Characteristics[CYBLE_ANS_CHAR_COUNT]; } CYBLE_ANSC_T;

Description

Structure with discovered attributes information of Alert Notification Service

Bluetooth Low Energy (BLE)

Page 232 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_SRVR_FULL_CHAR_INFO_T
Characteristics[CYBLE_ANS_CHAR_COUNT];

Structure with Characteristic handles +
properties of Alert Notification Service

CYBLE_ANSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_ANS_DESCR_COUNT]; }
CYBLE_ANSS_CHAR_T;

Description

ANS Characteristic with Descriptors

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Handle of Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_ANS_DESCR_COUNT];

Handle of Descriptor

CYBLE_ANSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_ANSS_CHAR_T charInfo[CYBLE_ANS_CHAR_COUNT];
} CYBLE_ANSS_T;

Description

Structure with Alert Notification Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Alert Notification Service handle

CYBLE_ANSS_CHAR_T
charInfo[CYBLE_ANS_CHAR_COUNT];

Array of Alert Notification Service Characteristics +
Descriptors handles

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 233 of 482

Battery Service (BAS)
The Battery Service exposes the battery level of a single battery or set of batteries in a device.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The BAS API names begin with CyBle_Bas. In addition to this, the APIs also append the GATT
role initial letter in the API name.

BAS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Bas

Functions

Function Description

CyBle_BasRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_BasRegisterAttrCallback

Prototype
void CyBle_BasRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive battery service events from the
BLE Component. The definition of CYBLE_CALLBACK_T for Battery Service is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_BASS_NOTIFICATION_ENABLED)
eventParam contains the parameters corresponding to the current event (e.g.,pointer
to CYBLE_BAS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered)

Returns

None

Bluetooth Low Energy (BLE)

Page 234 of 482 Document Number: 001-91490 Rev. *B

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

BAS Server Functions
APIs unique to BAS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Bass

Functions

Function Description

CyBle_BassSetCharacteristicValue Sets a Characteristic value of the service in the local database.

CyBle_BassGetCharacteristicValue Gets a Characteristic value of the Battery service, which is identified by
charIndex.

CyBle_BassGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the
Battery service from the local GATT database.

CyBle_BassSendNotification This function updates the value of the Battery Level Characteristic in the
GATT database. If the client has configured a notification on the Battery
Level... more

CyBle_BassSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_BassSetCharacteristicValue(uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets a Characteristic value of the service in the local database.

Parameters

Parameters Description

uint8 serviceIndex The index of the service instance.

CYBLE_BAS_CHAR_INDEX_T
charIndex

The index of the service Characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute. A battery level
Characteristic has 1 byte length.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 235 of 482

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_BassGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_BassGetCharacteristicValue(uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the Battery service, which is identified by charIndex.

Parameters

Parameters Description

uint8 serviceIndex The index of the service instance. e.g. If two Battery Services are supported
in your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_BAS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type CYBLE_BAS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute. A battery level Characteristic
has a 1 byte length.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_BassGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_BassGetCharacteristicDescriptor(uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 * attrValue);

Bluetooth Low Energy (BLE)

Page 236 of 482 Document Number: 001-91490 Rev. *B

Description

Gets a Characteristic Descriptor of a specified Characteristic of the Battery service from the local
GATT database.

Parameters

Parameters Description

uint8 serviceIndex The index of the service instance. e.g. If two Battery Services are supported
in your design, then first service will be identified by serviceIndex of 0 and
the second by serviceIndex of 1.

CYBLE_BAS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type CYBLE_BAS_CHAR_INDEX_T.

CYBLE_BAS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor of type
CYBLE_BAS_DESCR_INDEX_T.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_BassSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_BassSendNotification(CYBLE_CONN_HANDLE_T connHandle, uint8
serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

This function updates the value of the Battery Level Characteristic in the GATT database. If the
client has configured a notification on the Battery Level Characteristic, the function additionally
sends this value using a GATT Notification message.
The CYBLE_EVT_BASC_NOTIFICATION event is received by the peer device, on invoking this
function.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 237 of 482

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The BLE peer device connection handle

uint8 serviceIndex The index of the service instance. e.g. If two Battery Services are supported
in your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_BAS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type CYBLE_BAS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute. A battery level Characteristic
has 1 byte length.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the Client
device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

BAS Client Functions
APIs unique to BAS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Basc

Functions

Function Description

CyBle_BascGetCharacteristicValue This function is used to read the Characteristic value from a server which is
identified by charIndex. This function call can result in generation of... more

CyBle_BascSetCharacteristicDescriptor Sends a request to set Characteristic Descriptor of specified Battery Service
Characteristic on the server device. This function call can result in the
generation of... more

Bluetooth Low Energy (BLE)

Page 238 of 482 Document Number: 001-91490 Rev. *B

Function Description

CyBle_BascGetCharacteristicDescriptor Sends a request to get Characteristic Descriptor of specified Battery Service
Characteristic from the server device. This function call can result in
generation of the... more

CyBle_BascGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_BascGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex);

Description

This function is used to read the Characteristic value from a server which is identified by
charIndex.
This function call can result in generation of the following events based on the response from the
server device.

 CYBLE_EVT_BASC_READ_CHAR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The BLE peer device connection handle.

uint8 serviceIndex Index of the service instance. e.g. If two Battery Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_BAS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type CYBLE_BAS_CHAR_INDEX_T.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 239 of 482

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_BascSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_BascSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex,
CYBLE_BAS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a request to set Characteristic Descriptor of specified Battery Service Characteristic on
the server device. This function call can result in the generation of the following events based on
the response from the server device.

 CYBLE_EVT_BASC_WRITE_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP
One of the following events is received by the peer device, on invoking this function.

 CYBLE_EVT_BASS_NOTIFICATION_ENABLED

 CYBLE_EVT_BASS_NOTIFICATION_DISABLED

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The BLE peer device connection handle.

uint8 serviceIndex Index of the service instance. e.g. If two Battery Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_BAS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type CYBLE_BAS_CHAR_INDEX_T.

CYBLE_BAS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor of type
CYBLE_BAS_DESCR_INDEX_T.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue Pointer to the Characteristic Descriptor value data that should be sent to
the server device.

Bluetooth Low Energy (BLE)

Page 240 of 482 Document Number: 001-91490 Rev. *B

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_BascGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_BascGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex,
CYBLE_BAS_DESCR_INDEX_T descrIndex);

Description

Sends a request to get Characteristic Descriptor of specified Battery Service Characteristic from
the server device. This function call can result in generation of the following events based on the
response from the server device.

 CYBLE_EVT_BASC_READ_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The BLE peer device connection handle.

uint8 serviceIndex Index of the service instance. e.g. If two Battery Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_BAS_CHAR_INDEX_T
charIndex

The index of a Battery service Characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

CYBLE_BAS_DESCR_INDEX_T
descrIndex

The index of a Battery service Characteristic Descriptor of type
CYBLE_BAS_DESCR_INDEX_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 241 of 482

Returns

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

BAS Definitions and Data Structures
Contains the BAS specific definitions and data structures used in the BAS APIs.

Enumerations

Enumeration Description

CYBLE_BAS_CHAR_INDEX_T This is type CYBLE_BAS_CHAR_INDEX_T.

CYBLE_BAS_DESCR_INDEX_T BAS Characteristic Descriptors indexes

Structures

Structure Description

CYBLE_BAS_CHAR_VALUE_T Battery Service Characteristic Value parameter structure

CYBLE_BAS_DESCR_VALUE_T Battery Service Characteristic Descriptor Value parameter structure

CYBLE_BASC_T Structure with discovered attributes information of Battery Service

CYBLE_BASS_NOTIF_PAR_T This is type CYBLE_BASS_NOTIF_PAR_T.

CYBLE_BASS_T Structure with Battery Service attribute handles

CYBLE_BAS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_BAS_BATTERY_LEVEL,
 CYBLE_BAS_CHAR_COUNT
} CYBLE_BAS_CHAR_INDEX_T;

Description

This is type CYBLE_BAS_CHAR_INDEX_T.

Bluetooth Low Energy (BLE)

Page 242 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_BAS_BATTERY_LEVEL Battery Level Characteristic index

CYBLE_BAS_CHAR_COUNT Total count of Characteristics

CYBLE_BAS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 uint8 serviceIndex;
 CYBLE_BAS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_BAS_CHAR_VALUE_T;

Description

Battery Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

uint8 serviceIndex; Service instance

CYBLE_BAS_CHAR_INDEX_T charIndex; Index of a service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_BAS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_BAS_BATTERY_LEVEL_CCCD,
 CYBLE_BAS_BATTERY_LEVEL_CPFD,
 CYBLE_BAS_DESCR_COUNT
} CYBLE_BAS_DESCR_INDEX_T;

Description

BAS Characteristic Descriptors indexes

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 243 of 482

Members

Members Description

CYBLE_BAS_BATTERY_LEVEL_CCCD Client Characteristic Configuration Descriptor index

CYBLE_BAS_BATTERY_LEVEL_CPFD Characteristic Presentation Format Descriptor index

CYBLE_BAS_DESCR_COUNT Total count of Descriptors

CYBLE_BAS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 uint8 serviceIndex;
 CYBLE_BAS_CHAR_INDEX_T charIndex;
 CYBLE_BAS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_BAS_DESCR_VALUE_T;

Description

Battery Service Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

uint8 serviceIndex; Service instance

CYBLE_BAS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_BAS_DESCR_INDEX_T descrIndex; Index of service Characteristic Descriptor

CYBLE_GATT_VALUE_T * value; Descriptor value

CYBLE_BASC_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_SRVR_CHAR_INFO_T batteryLevel;
 CYBLE_GATT_DB_ATTR_HANDLE_T cpfdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T rrdHandle;
} CYBLE_BASC_T;

Bluetooth Low Energy (BLE)

Page 244 of 482 Document Number: 001-91490 Rev. *B

Description

Structure with discovered attributes information of Battery Service

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_SRVR_CHAR_INFO_T batteryLevel; Battery Level Characteristic info

CYBLE_GATT_DB_ATTR_HANDLE_T cpfdHandle; Characteristic Presentation Format Descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Client Characteristic Configuration Descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T rrdHandle; Report Reference Descriptor handle

CYBLE_BASS_NOTIF_PAR_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 uint8 serviceIndex;
 CYBLE_BAS_CHAR_INDEX_T charIndex;
} CYBLE_BASS_NOTIF_PAR_T;

Description

This is type CYBLE_BASS_NOTIF_PAR_T.

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

uint8 serviceIndex; Service instance

CYBLE_BAS_CHAR_INDEX_T charIndex; Index of a service Characteristic

CYBLE_BASS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T batteryLevelHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cpfdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
} CYBLE_BASS_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 245 of 482

Description

Structure with Battery Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Battery Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T
batteryLevelHandle;

Battery Level Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T cpfdHandle; Characteristic Presentation Format Descriptor
handle

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Client Characteristic Configuration Descriptor handle

Blood Pressure Service (BLS)
The Blood Pressure Service exposes blood pressure and other data related to a non-invasive
blood pressure monitor for consumer and professional healthcare applications.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The BLS API names begin with CyBle_Bls. In addition to this, the APIs also append the GATT
role initial letter in the API name.

BLS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Bls

Functions

Function Description

CyBle_BlsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_BlsRegisterAttrCallback

Prototype
void CyBle_BlsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Bluetooth Low Energy (BLE)

Page 246 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for Blood Pressure Service is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_BASS_NOTIFICATION_ENABLED)
eventParam contains the parameters corresponding to the current event (e.g. Pointer
to CYBLE_BLS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered).

Returns

None

BLS Server Functions
APIs unique to BLS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Blss

Functions

Function Description

CyBle_BlssGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the Blood
pressure service from the local GATT database.

CyBle_BlssGetCharacteristicValue Gets a Characteristic value of the Blood pressure service, which is
identified by charIndex.

CyBle_BlssSendIndication Sends an indication of the specified Characteristic to the Client device.

CyBle_BlssSendNotification Sends a notification of the specified Characteristic to the Client device.

CyBle_BlssSetCharacteristicValue Sets the value of a Characteristic which is identified by charIndex.

CyBle_BlssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_BlssGetCharacteristicDescriptor(CYBLE_BLS_CHAR_INDEX_T
charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic Descriptor of a specified Characteristic of the Blood pressure service from
the local GATT database.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 247 of 482

Parameters

Parameters Description

CYBLE_BLS_CHAR_INDEX_T charIndex The index of the Characteristic.

CYBLE_BLS_DESCR_INDEX_T
descrIndex

The index of the Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value
data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

CyBle_BlssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_BlssGetCharacteristicValue(CYBLE_BLS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the Blood pressure service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_BLS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be in the GATT
database.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

Bluetooth Low Energy (BLE)

Page 248 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

CyBle_BlssSendIndication

Prototype
CYBLE_API_RESULT_T CyBle_BlssSendIndication(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends an indication of the specified Characteristic to the Client device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle which consist of the device ID and ATT
connection ID.

CYBLE_BLS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 249 of 482

CyBle_BlssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_BlssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a notification of the specified Characteristic to the Client device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle which consist of the device ID and ATT
connection ID.

CYBLE_BLS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

CyBle_BlssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_BlssSetCharacteristicValue(CYBLE_BLS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Bluetooth Low Energy (BLE)

Page 250 of 482 Document Number: 001-91490 Rev. *B

Description

Sets the value of a Characteristic which is identified by charIndex.

Parameters

Parameters Description

CYBLE_BLS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

BLS Client Functions
APIs unique to BLS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Blsc

Functions

Function Description

CyBle_BlscGetCharacteristicValue This function is used to read the Characteristic Value from a server which is
identified by charIndex.

CyBle_BlscSetCharacteristicDescriptor Sends a request to set Characteristic Descriptor of specified Blood Pressure
Service Characteristic on the server device.

CyBle_BlscGetCharacteristicDescriptor Sends a request to get Characteristic Descriptor of specified Blood Pressure
Service Characteristic from the server device. This function call can result in
the generation... more

CyBle_BlscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_BlscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 251 of 482

Description

This function is used to read the Characteristic Value from a server which is identified by
charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_BLS_CHAR_INDEX_T charIndex The index of the service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_BlscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_BlscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex, uint8
attrSize, uint8 * attrValue);

Description

Sends a request to set Characteristic Descriptor of specified Blood Pressure Service
Characteristic on the server device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The BLE peer device connection handle.

CYBLE_BLS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

Bluetooth Low Energy (BLE)

Page 252 of 482 Document Number: 001-91490 Rev. *B

CYBLE_BLS_DESCR_INDEX_T
descrIndex

The index of the service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor value attribute.

uint8 * attrValue Pointer to the Characteristic Descriptor value data that should be sent
to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_BlscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_BlscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex);

Description

Sends a request to get Characteristic Descriptor of specified Blood Pressure Service
Characteristic from the server device. This function call can result in the generation of the
following events based on the response from the server device.

 CYBLE_EVT_BLSC_READ_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The BLE peer device connection handle.

CYBLE_BLS_CHAR_INDEX_T charIndex The index of a service Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 253 of 482

CYBLE_BLS_DESCR_INDEX_T descrIndex The index of a service Characteristic Descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Descriptor

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

BLS Definitions and Data Structures
Contains the BLS specific definitions and data structures used in the BLS APIs.

Enumerations

Enumeration Description

CYBLE_BLS_CHAR_INDEX_T Service Characteristics indexes

CYBLE_BLS_DESCR_INDEX_T Service Characteristic Descriptors indexes

Structures

 Structure Description

CYBLE_BLS_CHAR_VALUE_T Blood Pressure Service Characteristic Value parameter structure

CYBLE_BLS_DESCR_VALUE_T Blood Pressure Service Characteristic Descriptor Value parameter structure

CYBLE_BLSC_CHAR_T Blood Pressure Client Server's Characteristic structure type

CYBLE_BLSC_T Structure with discovered atributes information of Blood Pressure Service

CYBLE_BLSS_CHAR_T Characteristic with Descriptors

CYBLE_BLSS_T Structure with Blood Pressure Service attribute handles

Bluetooth Low Energy (BLE)

Page 254 of 482 Document Number: 001-91490 Rev. *B

CYBLE_BLS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_BLS_BPM,
 CYBLE_BLS_ICP,
 CYBLE_BLS_BPF,
 CYBLE_BLS_CHAR_COUNT
} CYBLE_BLS_CHAR_INDEX_T;

Description

Service Characteristics indexes

Members

Members Description

CYBLE_BLS_BPM Blood Pressure Measurement Characteristic index

CYBLE_BLS_ICP Intermediate Cuff Pressure Context Characteristic index

CYBLE_BLS_BPF Blood Pressure Feature Characteristic index

CYBLE_BLS_CHAR_COUNT Total count of BLS Characteristics

CYBLE_BLS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_BLS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_BLS_CHAR_VALUE_T;

Description

Blood Pressure Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_BLS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 255 of 482

CYBLE_BLS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_BLS_CCCD,
 CYBLE_BLS_DESCR_COUNT
} CYBLE_BLS_DESCR_INDEX_T;

Description

Service Characteristic Descriptors indexes

Members

Members Description

CYBLE_BLS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_BLS_DESCR_COUNT Total count of BLS Descriptors

CYBLE_BLS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_BLS_CHAR_INDEX_T charIndex;
 CYBLE_BLS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_BLS_DESCR_VALUE_T;

Description

Blood Pressure Service Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_BLS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_BLS_DESCR_INDEX_T descrIndex; Index of service Characteristic Descriptor

CYBLE_GATT_VALUE_T * value; Descriptor value

CYBLE_BLSC_CHAR_T

Prototype
typedef struct {

Bluetooth Low Energy (BLE)

Page 256 of 482 Document Number: 001-91490 Rev. *B

 uint8 properties;
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
} CYBLE_BLSC_CHAR_T;

Description

Blood Pressure Client Server's Characteristic structure type

Members

Members Description

uint8 properties; Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle; Handle of server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Blood Pressure client char. config. Descriptor's handle

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; Characteristic end handle

CYBLE_BLSC_T

Prototype
typedef struct {
 CYBLE_BLSC_CHAR_T charInfo[CYBLE_BLS_CHAR_COUNT];
} CYBLE_BLSC_T;

Description

Structure with discovered atributes information of Blood Pressure Service

Members

Members Description

CYBLE_BLSC_CHAR_T
charInfo[CYBLE_BLS_CHAR_COUNT];

Structure with Characteristic handles + properties of
Blood Pressure Service

CYBLE_BLSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
} CYBLE_BLSS_CHAR_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 257 of 482

Description

Characteristic with Descriptors

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Blood Pressure Service Characteristic's handle

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Blood Pressure Service char. Descriptor's handle

CYBLE_BLSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_BLSS_CHAR_T charInfo[CYBLE_BLS_CHAR_COUNT];
} CYBLE_BLSS_T;

Description

Structure with Blood Pressure Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Blood Pressure Service handle

CYBLE_BLSS_CHAR_T
charInfo[CYBLE_BLS_CHAR_COUNT];

Array of Blood Pressure Service Characteristics +
Descriptors handles

Current Time Service (CTS)
Many Bluetooth devices have the ability to store and show time information. This Service defines
how a Bluetooth device can expose time information to other Bluetooth devices.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The CTS API names begin with CyBle_Cts. In addition to this, the APIs also append the GATT
role initial letter in the API name.

CTS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Cts

Bluetooth Low Energy (BLE)

Page 258 of 482 Document Number: 001-91490 Rev. *B

Functions

Function Description

CyBle_CtsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_CtsRegisterAttrCallback

Prototype
void CyBle_CtsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for Current Time Service is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_CTSS_NOTIFICATION_ENABLED)
eventParam contains the parameters corresponding to the current event (e.g. Pointer
to CYBLE_CTS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered).

Returns

None

CTS Server Functions
APIs unique to CTS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Ctss

Functions

Function Description

CyBle_CtssSetCharacteristicValue Sets a value for one of three Characteristic values of the Current Time
Service. The Characteristic is identified by charIndex.

CyBle_CtssGetCharacteristicValue Gets a Characteristic value of the Current Time Service, which is identified
by charIndex.

CyBle_CtssGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the Current
Time Service.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 259 of 482

CyBle_CtssSendNotification Sends a notification to the Client device. A Characteristic value also gets
written to the GATT database.

CyBle_CtssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CtssSetCharacteristicValue(CYBLE_CTS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sets a value for one of three Characteristic values of the Current Time Service. The
Characteristic is identified by charIndex.

Parameters

Parameters Description

CYBLE_CTS_CHAR_INDEX_T
charIndex

The index of the Current Time Service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The Characteristic value was written successfully

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

CyBle_CtssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CtssGetCharacteristicValue(CYBLE_CTS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the Current Time Service, which is identified by charIndex.

Bluetooth Low Energy (BLE)

Page 260 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CTS_CHAR_INDEX_T
charIndex

The index of a Current Time Service Characteristic.

uint8 attrSize The size of the Current Time Service Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The Characteristic value was read successfully

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

CyBle_CtssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CtssGetCharacteristicDescriptor(CYBLE_CTS_CHAR_INDEX_T
charIndex, CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *
attrValue);

Description

Gets a Characteristic Descriptor of a specified Characteristic of the Current Time Service.

Parameters

Parameters Description

CYBLE_CTS_CHAR_INDEX_T charIndex The index of the Characteristic.

CYBLE_CTS_CHAR_DESCRIPTORS_T
descrIndex

The index of the Descriptor.

uint8 attrSize The size of the Descriptor value.

uint8 * attrValue The pointer to the location where Characteristic Descriptor
value data should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 261 of 482

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

CyBle_CtssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_CtssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a notification to the Client device. A Characteristic value also gets written to the GATT
database.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_CTS_CHAR_INDEX_T
charIndex

The index of a service Characteristic to be send as a notification to the
Client device.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The Characteristic notification was sent successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

Bluetooth Low Energy (BLE)

Page 262 of 482 Document Number: 001-91490 Rev. *B

CTS Client Functions
APIs unique to CTS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Ctsc

Functions

Function Description

CyBle_CtscGetCharacteristicValue Gets a Characteristic value of the Current Time Service, which is identified
by charIndex.

CyBle_CtscSetCharacteristicDescriptor Sets a Characteristic Descriptor of the Current Time Characteristic of the
Current Time Service.

CyBle_CtscGetCharacteristicDescriptor Gets a Characteristic Descriptor of the Current Time Characteristic of the
Current Time Service.

CyBle_CtscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CtscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex);

Description

Gets a Characteristic value of the Current Time Service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CTS_CHAR_INDEX_T charIndex The index of a service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 263 of 482

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Characteristic.

CyBle_CtscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CtscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_CTS_CHAR_INDEX_T charIndex, CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sets a Characteristic Descriptor of the Current Time Characteristic of the Current Time Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CTS_CHAR_INDEX_T charIndex The index of the Current Time Service Characteristic.

CYBLE_CTS_CHAR_DESCRIPTORS_T
descrIndex

The index of the Current Time Service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that
should be sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on specified
attribute.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Descriptor.

Bluetooth Low Energy (BLE)

Page 264 of 482 Document Number: 001-91490 Rev. *B

CyBle_CtscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CtscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 descrIndex);

Description

Gets a Characteristic Descriptor of the Current Time Characteristic of the Current Time Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CTS_CHAR_INDEX_T charIndex The index of the service Characteristic.

uint8 descrIndex The index of a service Characteristic Descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_INVALID_STATE - State is not valid.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on specified
attribute.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Descriptor.

CTS Definitions and Data Structures
Contains the CTS specific definitions and data structures used in the CTS APIs.

Enumerations

Enumeration Description

CYBLE_CTS_CHAR_INDEX_T Service Characteristics indexes

CYBLE_CTS_CHAR_DESCRIPTORS_T Service Characteristic Descriptors
indexes

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 265 of 482

Structures

Structure Description

CYBLE_CTS_CURRENT_TIME_T Current Time Characteristic structure

CYBLE_CTS_LOCAL_TIME_INFO_T Local Time Information Characteristic structure

CYBLE_CTS_REFERENCE_TIME_INFO_T Reference Time Information Characteristic structure

CYBLE_CTS_CHAR_VALUE_T Current Time Service Characteristic Value parameter structure

CYBLE_CTS_DESCR_VALUE_T Current Time Service Characteristic Descriptor Value parameter
structure

CYBLE_CTSC_T Structure with discovered attributes information of Current Time Service

CYBLE_CTSS_T Structure with Current Time Service attribute handles

CYBLE_CTS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_CTS_CURRENT_TIME,
 CYBLE_CTS_LOCAL_TIME_INFO,
 CYBLE_CTS_REFERENCE_TIME_INFO,
 CYBLE_CTS_CHAR_COUNT
} CYBLE_CTS_CHAR_INDEX_T;

Description

Service Characteristics indexes

Members

Members Description

CYBLE_CTS_CURRENT_TIME Current Time Characteristic index

CYBLE_CTS_LOCAL_TIME_INFO Local Time Information Characteristic index

CYBLE_CTS_REFERENCE_TIME_INFO Reference Time Information Characteristic index

CYBLE_CTS_CHAR_COUNT Total count of Current Time Service Characteristics

CYBLE_CTS_CHAR_DESCRIPTORS_T

Prototype
typedef enum {
 CYBLE_CTS_CURRENT_TIME_CCCD,
 CYBLE_CTS_COUNT
} CYBLE_CTS_CHAR_DESCRIPTORS_T;

Bluetooth Low Energy (BLE)

Page 266 of 482 Document Number: 001-91490 Rev. *B

Description

Service Characteristic Descriptors indexes

Members

Members Description

CYBLE_CTS_CURRENT_TIME_CCCD Current Time Client Characteristic configuration Descriptor index

CYBLE_CTS_COUNT Total count of Current Time Service Characteristic Descriptors

CYBLE_CTS_CURRENT_TIME_T

Prototype
typedef struct {
 uint8 yearLow;
 uint8 yearHigh;
 uint8 month;
 uint8 day;
 uint8 hours;
 uint8 minutes;
 uint8 seconds;
 uint8 dayOfWeek;
 uint8 fractions256;
 uint8 adjustReason;
} CYBLE_CTS_CURRENT_TIME_T;

Description

Current Time Characteristic structure

Members

Members Description

uint8 yearLow; LSB of current year

uint8 yearHigh; MSB of current year

uint8 month; Current month

uint8 day; Current day

uint8 hours; Current time - hours

uint8 minutes; Current time - minutes

uint8 seconds; Current time – seconds

uint8 dayOfWeek; Current day of week

uint8 fractions256; The value of 1/256th of second

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 267 of 482

uint8 adjustReason; Reason of Current Time service Characteristics change

CYBLE_CTS_LOCAL_TIME_INFO_T

Prototype
typedef struct {
 int8 timeZone;
 uint8 dst;
} CYBLE_CTS_LOCAL_TIME_INFO_T;

Description

Local Time Information Characteristic structure

Members

Members Description

int8 timeZone; Current Time Zone

uint8 dst; Daylight Saving Time value

CYBLE_CTS_REFERENCE_TIME_INFO_T

Prototype
typedef struct {
 uint8 timeSource;
 uint8 timeAccuracy;
 uint8 daysSinceUpdate;
 uint8 hoursSinseUpdate;
} CYBLE_CTS_REFERENCE_TIME_INFO_T;

Description

Reference Time Information Characteristic structure

Members

Members Description

uint8 timeSource; Time update source

uint8 timeAccuracy; Time accuracy

uint8 daysSinceUpdate; Days since last time update

uint8 hoursSinseUpdate; Hours since last time update

Bluetooth Low Energy (BLE)

Page 268 of 482 Document Number: 001-91490 Rev. *B

CYBLE_CTS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_CTS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_CTS_CHAR_VALUE_T;

Description

Current Time Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_CTS_CHAR_INDEX_T charIndex; Characteristic index of Current Time Service

CYBLE_GATT_VALUE_T * value; Pointer to value of Current Time Service Characteristic

CYBLE_CTS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_CTS_CHAR_INDEX_T charIndex;
 CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_CTS_DESCR_VALUE_T;

Description

Current Time Service Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_CTS_CHAR_INDEX_T charIndex; Characteristic index of Current Time Service

CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex; Characteristic index Descriptor of Current Time Service

CYBLE_GATT_VALUE_T * value; Pointer to value of Current Time Service Characteristic

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 269 of 482

CYBLE_CTSC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T currTimeCharacteristics[CYBLE_CTS_CHAR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T currTimeCccdHandle;
} CYBLE_CTSC_T;

Description

Structure with discovered attributes information of Current Time Service

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T
currTimeCharacteristics[CYBLE_CTS_CHAR_COUNT];

Structure with Characteristic handles +
properties of Current Time Service

CYBLE_GATT_DB_ATTR_HANDLE_T currTimeCccdHandle; Current Time Client Characteristic
Configuration handle of Current Time
Service

CYBLE_CTSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T currTimeCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T currTimeCccdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T localTimeInfCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T refTimeInfCharHandle;
} CYBLE_CTSS_T;

Description

Structure with Current Time Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Current Time Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T
currTimeCharHandle;

Current Time Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T
currTimeCccdHandle;

Current Time Client Characteristic Configuration
Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T Local Time Information Characteristic handle

Bluetooth Low Energy (BLE)

Page 270 of 482 Document Number: 001-91490 Rev. *B

localTimeInfCharHandle;

CYBLE_GATT_DB_ATTR_HANDLE_T
refTimeInfCharHandle;

Reference Time Information Characteristic handle

Cycling Power Service (CPS)
The Cycling Power Service (CPS) exposes power- and force-related data and optionally speed-
and cadence-related data from a Cycling Power sensor (GATT Server) intended for sports and
fitness applications.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The CPS API names begin with CyBle_Cps. In addition to this, the APIs also append the GATT
role initial letter in the API name.

CPS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Cps

Functions

Function Description

CyBle_CpsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_CpsRegisterAttrCallback

Prototype
void CyBle_CpsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for CPS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
• eventCode indicates the event that triggered this callback.
• eventParam contains the parameters corresponding to the current event.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 271 of 482

Returns

None.

CPS Server Functions
APIs unique to CPS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Cpss

Functions

Function Description

CyBle_CpssGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the service.

CyBle_CpssGetCharacteristicValue Gets a Characteristic value of the service, which is a value identified by
charIndex.

CyBle_CpssSendIndication Sends indication with a Characteristic value of the CPS,which is a value
specified by charIndex, to the Client device.

CyBle_CpssSendNotification Sends notification with a Characteristic value of the CPS, which is a value
specified by charIndex, to the Client device.

CyBle_CpssSetCharacteristicDescriptor Sets a Characteristic Descriptor of a specified Characteristic of the service.

CyBle_CpssSetCharacteristicValue Sets a Characteristic value of the service in the local database.

CyBle_CpssStartBroadcast This function is used to start broadcasting of the Cycling Power
Measurement Characteristic or update broadcasting data when it was
started before. It is available... more

CyBle_CpssStopBroadcast This function is used to stop broadcasting of the Cycling Power
Measurement Characteristic.

CyBle_CpssStopBroadcast

Prototype
void CyBle_CpssStopBroadcast(void);

Description

This function is used to stop broadcasting of the Cycling Power Measurement Characteristic.

Returns

None

Bluetooth Low Energy (BLE)

Page 272 of 482 Document Number: 001-91490 Rev. *B

CyBle_CpssStartBroadcast

Prototype
CYBLE_API_RESULT_T CyBle_CpssStartBroadcast(uint16 advInterval, uint8 attrSize,
uint8 * attrValue);

Description

This function is used to start broadcasting of the Cycling Power Measurement Characteristic or
update broadcasting data when it was started before. It is available only in Broadcaster role.

Parameters

Parameters Description

uint16
advInterval

Advertising interval in 625 us units. The valid range is from
CYBLE_GAP_ADV_ADVERT_INTERVAL_NONCON_MIN to
CYBLE_GAP_ADV_ADVERT_INTERVAL_MAX.

uint8 attrSize The size of the Characteristic value attribute. This size is limited by maximum advertising packet
length and advertising header size.

uint8 *
attrValue

The pointer to the Cycling Power Measurement Characteristic that include the mandatory fields
(e.g. the Flags field and the Instantaneous Power field) and depending on the Flags field, some
optional fields in a non connectable undirected advertising event.

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAMETER On passing an invalid parameter.

CyBle_CpssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CpssSetCharacteristicValue(CYBLE_CPS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets a Characteristic value of the service in the local database.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 273 of 482

Parameters

Parameters Description

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type CYBLE_CPS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the server
device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_CpssSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CpssSetCharacteristicDescriptor(CYBLE_CPS_CHAR_INDEX_T
charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets a Characteristic Descriptor of a specified Characteristic of the service.

Parameters

Parameters Description

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

CYBLE_CPS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor of type
CYBLE_CPS_DESCR_INDEX_T.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the Descriptor value data that should be stored in the
GATT database.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

Bluetooth Low Energy (BLE)

Page 274 of 482 Document Number: 001-91490 Rev. *B

CyBle_CpssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_CpssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends notification with a Characteristic value of the CPS, which is a value specified by
charIndex, to the Client device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

CyBle_CpssSendIndication

Prototype
CYBLE_API_RESULT_T CyBle_CpssSendIndication(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 275 of 482

Description

Sends indication with a Characteristic value of the CPS,which is a value specified by charIndex,
to the Client device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client

CyBle_CpssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CpssGetCharacteristicValue(CYBLE_CPS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the service, which is a value identified by charIndex.

Bluetooth Low Energy (BLE)

Page 276 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_CpssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CpssGetCharacteristicDescriptor(CYBLE_CPS_CHAR_INDEX_T
charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic Descriptor of a specified Characteristic of the service.

Parameters

Parameters Description

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

CYBLE_CPS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor of type
CYBLE_CPS_DESCR_INDEX_T.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 277 of 482

CPS Client Functions
APIs unique to CPS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Cpsc

Functions

Function Description

CyBle_CpscSetCharacteristicValue Sends a request to set a Characteristic value of the service, which is a
value identified by charIndex, to the server device.

CyBle_CpscGetCharacteristicValue This function is used to read a Characteristic value, which is a value
identified by charIndex, from the server. The Read Response returns the
Characteristic... more

CyBle_CpscGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the service.

CyBle_CpscSetCharacteristicDescriptor This function is used to write the Characteristic Descriptor to the server
which is identified by charIndex

CyBle_CpscStartObserve This function is used for observing GAP peripheral devices. A device
performing the observer role receives only advertisement data from devices
irrespective of their discoverable... more

CyBle_CpscStopObserve This function used to stop the discovery of devices. On stopping discovery
operation, CYBLE_EVT_GAPC_SCAN_START_STOP event is generated.
Application layer needs to keep track of the... more

CyBle_CpscStopObserve

Prototype
void CyBle_CpscStopObserve(void);

Description

This function used to stop the discovery of devices. On stopping discovery operation,
CYBLE_EVT_GAPC_SCAN_START_STOP event is generated. Application layer needs to keep
track of the function call made before receiving this event to associate this event with either the
start or stop discovery function.
Possible events generated are:

 CYBLE_EVT_GAPC_SCAN_START_STOP

Returns

None

Bluetooth Low Energy (BLE)

Page 278 of 482 Document Number: 001-91490 Rev. *B

CyBle_CpscStartObserve

Prototype
CYBLE_API_RESULT_T CyBle_CpscStartObserve(void);

Description

This function is used for observing GAP peripheral devices. A device performing the observer
role receives only advertisement data from devices irrespective of their discoverable mode
settings. Advertisement data received is provided by the event,
CYBLE_EVT_CPSC_SCAN_PROGRESS_RESULT. This procedure sets the scanType sub
parameter to passive scanning.
If 'scanTo' sub-parameter is set to zero value, then passive scanning procedure will continue
until you call CyBle_GapcStopObserve API. Possible generated events are:

 CYBLE_EVT_CPSC_SCAN_PROGRESS_RESULT

Returns

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_STACK_INTERNAL An error occurred in the BLE stack.

CyBle_CpscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CpscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a request to set a Characteristic value of the service, which is a value identified by
charIndex, to the server device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 279 of 482

uint8 * attrValue The pointer to the Characteristic value data that should be send to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_CpscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CpscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8
attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic Descriptor to the server which is identified by
charIndex

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

CYBLE_CPS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor of type
CYBLE_CPS_DESCR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue Pointer to the Characteristic Descriptor value data that should be sent
to the server device.

Bluetooth Low Energy (BLE)

Page 280 of 482 Document Number: 001-91490 Rev. *B

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_CpscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CpscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex);

Description

This function is used to read a Characteristic value, which is a value identified by charIndex, from
the server.
The Read Response returns the Characteristic Value in the Attribute Value parameter.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 281 of 482

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_CpscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CpscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex);

Description

Gets a Characteristic Descriptor of a specified Characteristic of the service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CPS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

CYBLE_CPS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor of type
CYBLE_CPS_DESCR_INDEX_T.

Returns

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CPS Definitions and Data Structures
Contains the CPS specific definitions and data structures used in the CPS APIs.

Enumerations

Enumeration Description

CYBLE_CPS_CHAR_INDEX_T Characteristic indexes

Bluetooth Low Energy (BLE)

Page 282 of 482 Document Number: 001-91490 Rev. *B

CYBLE_CPS_CP_OC_T Op Codes of the Cycling Power Control Point Characteristic

CYBLE_CPS_CP_RC_T Response Code of the Cycling Power Control Point Characteristic

CYBLE_CPS_DESCR_INDEX_T Characteristic descriptors indexes

CYBLE_CPS_SL_VALUE_T Sensor Location Characteristic value

Structures

Structure Description

CYBLE_CPS_CHAR_VALUE_T CYBLE_CPS_CLIENT

CYBLE_CPS_DESCR_VALUE_T This is type CYBLE_CPS_DESCR_VALUE_T.

CYBLE_CPSC_CHAR_T Characteristic with Descriptors

CYBLE_CPSC_T Structure with discovered attributes information of Cycling Power Service

CYBLE_CPSS_CHAR_T Characteristic with Descriptors

CYBLE_CPSS_T Structure with Cycling Power Service attribute handles

CYBLE_CPS_CP_ADJUSTMENT_T This is type CYBLE_CPS_CP_ADJUSTMENT_T.

CYBLE_CPS_DATE_TIME_T This is type CYBLE_CPS_DATE_TIME_T.

CYBLE_CPS_SL_VALUE_T

Prototype
typedef enum {
 CYBLE_CPS_SL_OTHER,
 CYBLE_CPS_SL_TOP_OF_SHOE,
 CYBLE_CPS_SL_IN_SHOE,
 CYBLE_CPS_SL_HIP,
 CYBLE_CPS_SL_FRONT_WHEEL,
 CYBLE_CPS_SL_LEFT_CRANK,
 CYBLE_CPS_SL_RIGHT_CRANK,
 CYBLE_CPS_SL_LEFT_PEDAL,
 CYBLE_CPS_SL_RIGHT_PEDAL,
 CYBLE_CPS_SL_FRONT_HUB,
 CYBLE_CPS_SL_REAR_DROPOUT,
 CYBLE_CPS_SL_CHAINSTAY,
 CYBLE_CPS_SL_REAR_WHEEL,
 CYBLE_CPS_SL_REAR_HUB,
 CYBLE_CPS_SL_CHEST,
 CYBLE_CPS_SL_COUNT
} CYBLE_CPS_SL_VALUE_T;

Description

Sensor Location Characteristic value

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 283 of 482

CYBLE_CPS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_CPS_CHAR_INDEX_T charIndex;
 CYBLE_CPS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_CPS_DESCR_VALUE_T;

Description

This is type CYBLE_CPS_DESCR_VALUE_T.

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_CPS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_CPS_DESCR_INDEX_T descrIndex; Index of Descriptor

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_CPS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_CPS_CCCD,
 CYBLE_CPS_SCCD,
 CYBLE_CPS_DESCR_COUNT
} CYBLE_CPS_DESCR_INDEX_T;

Description

Characteristic descriptors indexes

Members

Members Description

CYBLE_CPS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_CPS_SCCD Handle of the Server Characteristic Configuration Descriptor

CYBLE_CPS_DESCR_COUNT Total count of Descriptors

Bluetooth Low Energy (BLE)

Page 284 of 482 Document Number: 001-91490 Rev. *B

CYBLE_CPS_DATE_TIME_T

Prototype
typedef struct {
 uint16 year;
 uint8 month;
 uint8 day;
 uint8 hours;
 uint8 minutes;
 uint8 seconds;
} CYBLE_CPS_DATE_TIME_T;

Description

This is type CYBLE_CPS_DATE_TIME_T.

CYBLE_CPS_CP_RC_T

Prototype
typedef enum {
 CYBLE_CPS_CP_RC_SUCCESS = 1u,
 CYBLE_CPS_CP_RC_NOT_SUPPORTED,
 CYBLE_CPS_CP_RC_INVALID_PARAMETER,
 CYBLE_CPS_CP_RC_OPERATION_FAILED
} CYBLE_CPS_CP_RC_T;

Description

Response Code of the Cycling Power Control Point Characteristic

Members

Members Description

CYBLE_CPS_CP_RC_SUCCESS = 1u Response for successful operation.

CYBLE_CPS_CP_RC_NOT_SUPPORTED Response if unsupported Op Code is received

CYBLE_CPS_CP_RC_INVALID_PARAMETER Response if Parameter received does not meet the requirements
of the service or is outside of the supported range of the Sensor

CYBLE_CPS_CP_RC_OPERATION_FAILED Response if the requested procedure failed

CYBLE_CPS_CP_OC_T

Prototype
typedef enum {
 CYBLE_CPS_CP_OC_SCV = 1u,
 CYBLE_CPS_CP_OC_USL,
 CYBLE_CPS_CP_OC_RSSL,

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 285 of 482

 CYBLE_CPS_CP_OC_SCRL,
 CYBLE_CPS_CP_OC_RCRL,
 CYBLE_CPS_CP_OC_SCHL,
 CYBLE_CPS_CP_OC_RCHL,
 CYBLE_CPS_CP_OC_SCHW,
 CYBLE_CPS_CP_OC_RCHW,
 CYBLE_CPS_CP_OC_SSL,
 CYBLE_CPS_CP_OC_RSL,
 CYBLE_CPS_CP_OC_SOC,
 CYBLE_CPS_CP_OC_MCPMCC,
 CYBLE_CPS_CP_OC_RSR,
 CYBLE_CPS_CP_OC_RFCD,
 CYBLE_CPS_CP_OC_RC = 32u
} CYBLE_CPS_CP_OC_T;

Description

Op Codes of the Cycling Power Control Point Characteristic

Members

Members Description

CYBLE_CPS_CP_OC_SCV = 1u Set Cumulative Value

CYBLE_CPS_CP_OC_USL Update Sensor Location

CYBLE_CPS_CP_OC_RSSL Request Supported Sensor Locations

CYBLE_CPS_CP_OC_SCRL Set Crank Length

CYBLE_CPS_CP_OC_RCRL Request Crank Length

CYBLE_CPS_CP_OC_SCHL Set Chain Length

CYBLE_CPS_CP_OC_RCHL Request Chain Length

CYBLE_CPS_CP_OC_SCHW Set Chain Weight

CYBLE_CPS_CP_OC_RCHW Request Chain Weight

CYBLE_CPS_CP_OC_SSL Set Span Length

CYBLE_CPS_CP_OC_RSL Request Span Length

CYBLE_CPS_CP_OC_SOC Start Offset Compensation

CYBLE_CPS_CP_OC_MCPMCC Mask Cycling Power Measurement Characteristic Content

CYBLE_CPS_CP_OC_RSR Request Sampling Rate

CYBLE_CPS_CP_OC_RFCD Request Factory Calibration Date

CYBLE_CPS_CP_OC_RC = 32u Response Code

Bluetooth Low Energy (BLE)

Page 286 of 482 Document Number: 001-91490 Rev. *B

CYBLE_CPS_CP_ADJUSTMENT_T

Prototype
typedef struct {
 uint16 crankLength;
 uint16 chainLength;
 uint16 chainWeight;
 uint16 spanLength;
 CYBLE_CPS_DATE_TIME_T factoryCalibrationDate;
 uint8 samplingRate;
 int16 offsetCompensation;
} CYBLE_CPS_CP_ADJUSTMENT_T;

Description

This is type CYBLE_CPS_CP_ADJUSTMENT_T.

Members

Members Description

uint16 crankLength; In millimeters with a resolution of 1/2 millimeter

uint16 chainLength; In millimeters with a resolution of 1 millimeter

uint16 chainWeight; In grams with a resolution of 1 gram

uint16 spanLength; In millimeters with a resolution of 1 millimeter

CYBLE_CPS_DATE_TIME_T
factoryCalibrationDate;

Use the same format as the Date Time Characteristic

uint8 samplingRate; In Hertz with a resolution of 1 Hertz

int16 offsetCompensation; either the raw force in Newton or the raw torque in 1/32 Newton meter
based on the server capabilities. 0xFFFF means Not Available"

CYBLE_CPS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_CPS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_CPS_CHAR_VALUE_T;

Description

CYBLE_CPS_CLIENT

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 287 of 482

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_CPS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_CPS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_CPS_POWER_MEASURE,
 CYBLE_CPS_POWER_FEATURE,
 CYBLE_CPS_SENSOR_LOCATION,
 CYBLE_CPS_POWER_VECTOR,
 CYBLE_CPS_POWER_CP,
 CYBLE_CPS_CHAR_COUNT
} CYBLE_CPS_CHAR_INDEX_T;

Description

Characteristic indexes

Members

Members Description

CYBLE_CPS_POWER_MEASURE Cycling Power Measurement Characteristic index

CYBLE_CPS_POWER_FEATURE Cycling Power Feature Characteristic index

CYBLE_CPS_SENSOR_LOCATION Sensor Location Characteristic index

CYBLE_CPS_POWER_VECTOR Cycling Power Vector Characteristic index

CYBLE_CPS_POWER_CP Cycling Power Control Point Characteristic index

CYBLE_CPS_CHAR_COUNT Total count of CPS Characteristics

CYBLE_CPSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_CPSS_CHAR_T charInfo[CYBLE_CPS_CHAR_COUNT]; } CYBLE_CPSS_T;

Description

Structure with Cycling Power Service attribute handles

Bluetooth Low Energy (BLE)

Page 288 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Cycling Power Service handle

CYBLE_CPSS_CHAR_T charInfo[CYBLE_CPS_CHAR_COUNT]; Cycling Power Service Characteristic handles

CYBLE_CPSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_CPS_DESCR_COUNT]; }
CYBLE_CPSS_CHAR_T;

Description

Characteristic with Descriptors

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Handle of Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_CPS_DESCR_COUNT];

Handle of Descriptor

CYBLE_CPSC_T

Prototype
typedef struct {
 CYBLE_CPSC_CHAR_T charInfo[CYBLE_CPS_CHAR_COUNT]; } CYBLE_CPSC_T;

Description

Structure with discovered attributes information of Cycling Power Service

Members

Members Description

CYBLE_CPSC_CHAR_T charInfo[CYBLE_CPS_CHAR_COUNT]; Characteristics handles array

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 289 of 482

CYBLE_CPSC_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_CPS_DESCR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
 uint8 properties;
} CYBLE_CPSC_CHAR_T;

Description

Characteristic with Descriptors

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_CPS_DESCR_COUNT];

Handles of Descriptors

CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle; Handle of Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; End handle of Characteristic

uint8 properties; Properties for value field

Cycling Speed and Cadence Service (CSCS)
The Cycling Speed and Cadence (CSC) Service exposes speed-related data and/or cadence-
related data while using the Cycling Speed and Cadence sensor (Server).
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The CSCS API names begin with CyBle_Cscs. In addition to this, the APIs also append the
GATT role initial letter in the API name.

CSCS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Cscs

Functions

Function Description

CyBle_CscsRegisterAttrCallback Registers a callback function for Cycling Speed and Cadence Service specific
attribute operations.

Bluetooth Low Energy (BLE)

Page 290 of 482 Document Number: 001-91490 Rev. *B

CyBle_CscsRegisterAttrCallback

Prototype
void CyBle_CscsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for Cycling Speed and Cadence Service specific attribute
operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for CSCS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.
eventParam contains the parameters corresponding to the current event

Returns

None.

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

CSCS Server Functions
APIs unique to CSCS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Cscss

Functions

Function Description

CyBle_CscssSetCharacteristicValue Sets Characteristic value of the Cycling Speed and Cadence Service,
which is identified by charIndex, to the local database.

CyBle_CscssGetCharacteristicValue Gets a Characteristic value of the Cycling Speed and Cadence Service,
which is identified by charIndex, from the GATT database.

CyBle_CscssGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the
Cycling Speed and Cadence Service, from the GATT database.

CyBle_CscssSendNotification Sends notification with a Characteristic value, which is specified by
charIndex, of the Cycling Speed and Cadence Service to the Client device.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 291 of 482

CyBle_CscssSendIndication Sends indication with a Characteristic value, which is specified by
charIndex, of the Cycling Speed and Cadence Service to the Client device.

CyBle_CscssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CscssSetCharacteristicValue(CYBLE_CSCS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets Characteristic value of the Cycling Speed and Cadence Service, which is identified by
charIndex, to the local database.

Parameters

Parameters Description

CYBLE_CSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CSCS_CHAR_INDEX_T. Valid values are,
CYBLE_CSCS_CSC_FEATURE
CYBLE_CSCS_SENSOR_LOCATION.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Characteristic.

CyBle_CscssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_CscssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Bluetooth Low Energy (BLE)

Page 292 of 482 Document Number: 001-91490 Rev. *B

Description

Sends notification with a Characteristic value, which is specified by charIndex, of the Cycling
Speed and Cadence Service to the Client device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_CSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CSCS_CHAR_INDEX_T. Valid value is
CYBLE_CSCS_CSC_MEASUREMENT.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

CyBle_CscssSendIndication

Prototype
CYBLE_API_RESULT_T CyBle_CscssSendIndication(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends indication with a Characteristic value, which is specified by charIndex, of the Cycling
Speed and Cadence Service to the Client device.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 293 of 482

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CSCS_CHAR_INDEX_T.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

 CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

CyBle_CscssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CscssGetCharacteristicValue(CYBLE_CSCS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the Cycling Speed and Cadence Service, which is identified by
charIndex, from the GATT database.

Parameters

Parameters Description

CYBLE_CSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CSCS_CHAR_INDEX_T. Valid value is,
CYBLE_CSCS_SC_CONTROL_POINT.

uint8 attrSize The size of the Characteristic value attribute.

Bluetooth Low Energy (BLE)

Page 294 of 482 Document Number: 001-91490 Rev. *B

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent.

CyBle_CscssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CscssGetCharacteristicDescriptor(CYBLE_CSCS_CHAR_INDEX_T
charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic Descriptor of a specified Characteristic of the Cycling Speed and Cadence
Service, from the GATT database.

Parameters

Parameters Description

CYBLE_CSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic of type
CYBLE_CSCS_CHAR_INDEX_T. Valid values are,
CYBLE_CSCS_CSC_MEASUREMENT
CYBLE_CSCS_SC_CONTROL_POINT.

CYBLE_CSCS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor of type
CYBLE_CSCS_DESCR_INDEX_T. Valid value is CYBLE_CSCS_CCCD.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request is handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 295 of 482

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Characteristic.

CSCS Client Functions
APIs unique to CSCS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Cscsc

Functions

Function Description

CyBle_CscscGetCharacteristicValue Sends a request to peer device to get Characteristic value of the Cycling
Speed and Cadence Service, which is identified by charIndex.

CyBle_CscscSetCharacteristicValue Sends a request to peer device to get Characteristic Descriptor of specified
Characteristic of the Cycling Speed and Cadence Service.

CyBle_CscscGetCharacteristicDescriptor Sends a request to peer device to get Characteristic Descriptor of specified
Characteristic of the Cycling Speed and Cadence Service.

CyBle_CscscSetCharacteristicDescriptor Sends a request to peer device to get Characteristic Descriptor of specified
Characteristic of the Cycling Speed and Cadence Service.

CyBle_CscscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CscscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a request to peer device to get Characteristic Descriptor of specified Characteristic of the
Cycling Speed and Cadence Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize size of the Characteristic value attribute.

uint8 * attrValue Pointer to the Characteristic value data that should be sent to the
server device.

Bluetooth Low Energy (BLE)

Page 296 of 482 Document Number: 001-91490 Rev. *B

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully;

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. Characteristic.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Characteristic.

CyBle_CscscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CscscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sends a request to peer device to get Characteristic Descriptor of specified Characteristic of the
Cycling Speed and Cadence Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CSCS_CHAR_INDEX_T
charIndex

The index of a CSCS Characteristic.

CYBLE_CSCS_DESCR_INDEX_T
descrIndex

The index of a CSCS Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request was sent successfully.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 297 of 482

 CYBLE_ERROR_INVALID_STATE - connection with the client is not established.

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Descriptor.

CyBle_CscscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_CscscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex);

Description

Sends a request to peer device to get Characteristic value of the Cycling Speed and Cadence
Service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CSCS_CHAR_INDEX_T charIndex The index of a service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully;

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Characteristic.

Bluetooth Low Energy (BLE)

Page 298 of 482 Document Number: 001-91490 Rev. *B

CyBle_CscscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_CscscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex);

Description

Sends a request to peer device to get Characteristic Descriptor of specified Characteristic of the
Cycling Speed and Cadence Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_CSCS_CHAR_INDEX_T charIndex The index of a Service Characteristic.

CYBLE_CSCS_DESCR_INDEX_T descrIndex The index of a Service Characteristic descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

 CYBLE_ERROR_INVALID_OPERATION - Cannot process a request to send PDU due to
invalid operation performed by the application.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Descriptor.

CSCS Definitions and Data Structures
Contains the CSCS specific definitions and data structures used in the CSCS APIs.

Enumerations

Enumeration Description

CYBLE_CSCS_CHAR_INDEX_T Characteristic indexes

CYBLE_CSCS_DESCR_INDEX_T Characteristic descriptors indexes

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 299 of 482

Structures

Structure Description

CYBLE_CSCS_CHAR_VALUE_T Cycling Speed and Cadence Service Characteristic Value parameter
structure

CYBLE_CSCS_DESCR_VALUE_T Cycling Speed and Cadence Service Characteristic Descriptor Value
parameter structure

CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T Service full Characteristic information type

CYBLE_CSCSC_T Structure with discovered attributes information of Cycling Speed
and Cadence Service

CYBLE_CSCSS_CHAR_T Characteristic with Descriptors type

CYBLE_CSCSS_T Structure with Cycling Speed and Cadence Service attribute handles

CYBLE_CSCSC_T

Prototype
typedef struct {
 CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T Characteristics[CYBLE_CSCS_CHAR_COUNT]; }
CYBLE_CSCSC_T;

Description

Structure with discovered attributes information of Cycling Speed and Cadence Service

Members

Members Description

CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T
Characteristics[CYBLE_CSCS_CHAR_COUNT];

Characteristics handles
array

CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T charInfo;
 CYBLE_GATT_DB_ATTR_HANDLE_T descriptors[CYBLE_CSCS_DESCR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
} CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T;

Description

Service full Characteristic information type

Bluetooth Low Energy (BLE)

Page 300 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T charInfo; Characteristic handle and
properties

CYBLE_GATT_DB_ATTR_HANDLE_T
Descriptors[CYBLE_CSCS_DESCR_COUNT];

Characteristic Descriptors
handles

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; End handle of Characteristic

CYBLE_CSCS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_CSCS_CHAR_INDEX_T charIndex;
 CYBLE_CSCS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_CSCS_DESCR_VALUE_T;

Description

Cycling Speed and Cadence Service Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_CSCS_CHAR_INDEX_T charIndex; Characteristic index of the Service

CYBLE_CSCS_DESCR_INDEX_T descrIndex; Characteristic Descriptor index

CYBLE_GATT_VALUE_T * value; Pointer to value of the Service Characteristic Descriptor

CYBLE_CSCS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_CSCS_CCCD,
 CYBLE_CSCS_DESCR_COUNT
} CYBLE_CSCS_DESCR_INDEX_T;

Description

Characteristic Descriptors indexes

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 301 of 482

Members

Members Description

CYBLE_CSCS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_CSCS_DESCR_COUNT Total count of Descriptors

CYBLE_CSCS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_CSCS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_CSCS_CHAR_VALUE_T;

Description

Cycling Speed and Cadence Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_CSCS_CHAR_INDEX_T charIndex; Index of Cycling Speed and Cadence Service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_CSCS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_CSCS_CSC_MEASUREMENT,
 CYBLE_CSCS_CSC_FEATURE,
 CYBLE_CSCS_SENSOR_LOCATION,
 CYBLE_CSCS_SC_CONTROL_POINT,
 CYBLE_CSCS_CHAR_COUNT
} CYBLE_CSCS_CHAR_INDEX_T;

Description

Characteristic indexes

Bluetooth Low Energy (BLE)

Page 302 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_CSCS_CSC_MEASUREMENT CSC Measurement Characteristic index

CYBLE_CSCS_CSC_FEATURE CSC Feature Characteristic index

CYBLE_CSCS_SENSOR_LOCATION CSC Sensor Location Characteristic index

CYBLE_CSCS_SC_CONTROL_POINT CSC SC Control Point Characteristic index

CYBLE_CSCS_CHAR_COUNT Total count of CSCS Characteristics

CYBLE_CSCSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_CSCSS_CHAR_T charInfo[CYBLE_CSCS_CHAR_COUNT];
} CYBLE_CSCSS_T;

Description

Structure with Cycling Speed and Cadence Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Cycling Speed and Cadence Service handle

CYBLE_CSCSS_CHAR_T
charInfo[CYBLE_CSCS_CHAR_COUNT];

Array of Cycling Speed and Cadence Service
Characteristics and
Descriptors handles

CYBLE_CSCSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_CSCS_DESCR_COUNT]; }
CYBLE_CSCSS_CHAR_T;

Description

Characteristic with Descriptors type

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 303 of 482

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Handle of the Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_CSCS_DESCR_COUNT];

Handles of the Descriptors

Device Information Service (DIS)
The Device Information Service exposes manufacturer and/or vendor information about a device.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The DIS API names begin with CyBle_Dis. In addition to this, the APIs also append the GATT
role initial letter in the API name.

DIS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Dis

Functions

Function Description

CyBle_DisRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_DisRegisterAttrCallback

Prototype
void CyBle_DisRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for Device Information Service
is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.

Bluetooth Low Energy (BLE)

Page 304 of 482 Document Number: 001-91490 Rev. *B

eventParam contains the parameters corresponding to the current event.

Returns

None

DIS Server Functions
APIs unique to DIS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Diss

Functions

Function Description

CyBle_DissSetCharacteristicValue Sets a Characteristic value of the service, which is identified by charIndex, to the
local database.

CyBle_DissGetCharacteristicValue Gets a Characteristic value of the service, which is identified by charIndex, from
the GATT database.

CyBle_DissSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_DissSetCharacteristicValue(CYBLE_DIS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sets a Characteristic value of the service, which is identified by charIndex, to the local database.

Parameters

Parameters Description

CYBLE_DIS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 305 of 482

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_DissGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_DissGetCharacteristicValue(CYBLE_DIS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the service, which is identified by charIndex, from the GATT
database.

Parameters

Parameters Description

CYBLE_DIS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T. Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

DIS Client Functions
APIs unique to DIS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Disc

Functions

Function Description

CyBle_DiscGetCharacteristicValue This function is used to read the Characteristic Value from a server which is
identified by charIndex. The Read Response returns the Characteristic value in...
more

Bluetooth Low Energy (BLE)

Page 306 of 482 Document Number: 001-91490 Rev. *B

CyBle_DiscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_DiscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_DIS_CHAR_INDEX_T charIndex);

Description

This function is used to read the Characteristic Value from a server which is identified by
charIndex.
The Read Response returns the Characteristic value in the Attribute Value parameter. The Read
Response only contains the Characteristic value that is less than or equal to (MTU - 1) octets in
length. If the Characteristic value is greater than (MTU - 1) octets in length, a Read Long
Characteristic Value procedure may be used if the rest of the Characteristic value is required.
This function call can result in generation of the following events based on the response from the
server device.

 CYBLE_EVT_DISC_READ_CHAR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_DIS_CHAR_INDEX_T charIndex The index of the service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

DIS Definitions and Data Structures
Contains the DIS specific definitions and data structures used in the DIS APIs.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 307 of 482

Enumerations

Enumeration Description

CYBLE_DIS_CHAR_INDEX_T DIS Characteristic index

Structures

Structure Description

CYBLE_DIS_CHAR_VALUE_T Device Information Service Characteristic Value parameter structure

CYBLE_DISC_T Structure with discovered attributes information of Device Information Service

CYBLE_DISS_T Structure with Device Information Service attribute handles

CYBLE_DIS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_DIS_MANUFACTURER_NAME,
 CYBLE_DIS_MODEL_NUMBER,
 CYBLE_DIS_SERIAL_NUMBER,
 CYBLE_DIS_HARDWARE_REV,
 CYBLE_DIS_FIRMWARE_REV,
 CYBLE_DIS_SOFTWARE_REV,
 CYBLE_DIS_SYSTEM_ID,
 CYBLE_DIS_REG_CERT_DATA,
 CYBLE_DIS_PNP_ID,
 CYBLE_DIS_CHAR_COUNT
} CYBLE_DIS_CHAR_INDEX_T;

Description

DIS Characteristic index

Members

Members Description

CYBLE_DIS_MANUFACTURER_NAME Manufacturer Name String Characteristic index

CYBLE_DIS_MODEL_NUMBER Model Number String Characteristic index

CYBLE_DIS_SERIAL_NUMBER Serial Number String Characteristic index

CYBLE_DIS_HARDWARE_REV Hardware Revision String Characteristic index

CYBLE_DIS_FIRMWARE_REV Firmware Revision String Characteristic index

CYBLE_DIS_SOFTWARE_REV Software Revision String Characteristic index

CYBLE_DIS_SYSTEM_ID System ID Characteristic index

Bluetooth Low Energy (BLE)

Page 308 of 482 Document Number: 001-91490 Rev. *B

CYBLE_DIS_REG_CERT_DATA IEEE 11073-20601 Characteristic index

CYBLE_DIS_PNP_ID PnP ID Characteristic index

CYBLE_DIS_CHAR_COUNT Total count of DIS Characteristics

CYBLE_DIS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_DIS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_DIS_CHAR_VALUE_T;

Description

Device Information Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_DIS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_DISC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T charInfo[CYBLE_DIS_CHAR_COUNT]; } CYBLE_DISC_T;

Description

Structure with discovered attributes information of Device Information Service

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T charInfo[CYBLE_DIS_CHAR_COUNT]; Characteristics handle + properties array

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 309 of 482

CYBLE_DISS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle[CYBLE_DIS_CHAR_COUNT]; } CYBLE_DISS_T;

Description

Structure with Device Information Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Device Information Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T
charHandle[CYBLE_DIS_CHAR_COUNT];

Device Information Service
Characteristic handles

Glucose Service (GLS)
The Glucose Service exposes glucose and other data related to a personal glucose sensor for
consumer healthcare applications and is not designed for clinical use.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The GLS API names begin with CyBle_Gls. In addition to this, the APIs also append the GATT
role initial letter in the API name.

GLS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Gls

Functions

Function Description

CyBle_GlsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_GlsRegisterAttrCallback

Prototype
void CyBle_GlsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Bluetooth Low Energy (BLE)

Page 310 of 482 Document Number: 001-91490 Rev. *B

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for Glucose Service is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.
eventParam contains the parameters corresponding to the current event.

Returns

None

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

GLS Server Functions
APIs unique to GLS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Glss

Functions

Function Description

CyBle_GlssSetCharacteristicValue Sets a Characteristic value of the service, which is identified by charIndex.

CyBle_GlssGetCharacteristicValue Gets a Characteristic value of the service, which is identified by charIndex.

CyBle_GlssGetCharacteristicDescriptor Gets the Characteristic Descriptor of the specified Characteristic.

CyBle_GlssSendNotification Sends a notification of the specified Characteristic to the client device, as
defined by the charIndex value.

CyBle_GlssSendIndication Sends a indication of the specified Characteristic to the client device, as
defined by the charIndex value.

CyBle_GlssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_GlssSetCharacteristicValue(CYBLE_GLS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 311 of 482

Description

Sets a Characteristic value of the service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_GLS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue Pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

CyBle_GlssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_GlssGetCharacteristicValue(CYBLE_GLS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_GLS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue Pointer to the location where Characteristic value data should be
stored.

Bluetooth Low Energy (BLE)

Page 312 of 482 Document Number: 001-91490 Rev. *B

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

CyBle_GlssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_GlssGetCharacteristicDescriptor(CYBLE_GLS_CHAR_INDEX_T
charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets the Characteristic Descriptor of the specified Characteristic.

Parameters

Parameters Description

CYBLE_GLS_CHAR_INDEX_T charIndex The index of the Characteristic.

CYBLE_GLS_DESCR_INDEX_T
descrIndex

The index of the Descriptor.

uint8 attrSize The size of the Descriptor value attribute.

uint8 * attrValue Pointer to the location where the Descriptor value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

CyBle_GlssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_GlssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 313 of 482

Description

Sends a notification of the specified Characteristic to the client device, as defined by the
charIndex value.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle which consist of the device ID and ATT
connection ID.

CYBLE_GLS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue Pointer to the Characteristic value data that should be sent to Client
device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_ PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

CyBle_GlssSendIndication

Prototype
CYBLE_API_RESULT_T CyBle_GlssSendIndication(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a indication of the specified Characteristic to the client device, as defined by the
charIndex value.

Bluetooth Low Energy (BLE)

Page 314 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle which consist of the device ID and ATT
connection ID.

CYBLE_GLS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue Pointer to the Characteristic value data that should be sent to Client
device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client

GLS Client Functions
APIs unique to GLS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Glsc

Functions

Function Description

CyBle_GlscSetCharacteristicValue This function is used to write the Characteristic (which is identified by
charIndex) value attribute to the server. The Write Response just
confirms the operation... more

CyBle_GlscGetCharacteristicValue This function is used to read the Characteristic Value from a server
which is identified by charIndex.

CyBle_GlscSetCharacteristicDescriptor Sets the Characteristic Descriptor of the specified Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 315 of 482

CyBle_GlscGetCharacteristicDescriptor Gets the Characteristic Descriptor of the specified Characteristic.

CyBle_GlscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_GlscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic (which is identified by charIndex) value attribute
to the server.
The Write Response just confirms the operation success.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_GLS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

Bluetooth Low Energy (BLE)

Page 316 of 482 Document Number: 001-91490 Rev. *B

CyBle_GlscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_GlscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex);

Description

This function is used to read the Characteristic Value from a server which is identified by
charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_GLS_CHAR_INDEX_T charIndex The index of the service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_GlscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_GlscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex, uint8
attrSize, uint8 * attrValue);

Description

Sets the Characteristic Descriptor of the specified Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 317 of 482

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_GLS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

CYBLE_GLS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor value attribute.

uint8 * attrValue Pointer to the Characteristic Descriptor value data that should be sent
to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_GlscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_GlscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex);

Description

Gets the Characteristic Descriptor of the specified Characteristic.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

Bluetooth Low Energy (BLE)

Page 318 of 482 Document Number: 001-91490 Rev. *B

CYBLE_GLS_CHAR_INDEX_T charIndex The index of a service Characteristic.

CYBLE_GLS_DESCR_INDEX_T descrIndex The index of the service Characteristic Descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Descriptor

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

GLS Definitions and Data Structures
Contains the GLS specific definitions and data structures used in the GLS APIs.

Enumerations

Enumeration Description

CYBLE_GLS_CHAR_INDEX_T Service Characteristics indexes

CYBLE_GLS_DESCR_INDEX_T Service Characteristic Descriptors indexes

Structures

Structure Description

CYBLE_GLS_CHAR_VALUE_T Glucose Service Characteristic value parameter structure

CYBLE_GLS_DESCR_VALUE_T Glucose Service Characteristic Descriptor value parameter structure

CYBLE_GLSC_CHAR_T Glucose Client Characteristic structure type

CYBLE_GLSC_T Glucose Service structure type

CYBLE_GLSS_CHAR_T Glucose Server Characteristic structure type

CYBLE_GLSS_T Structure with Glucose Service attribute handles

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 319 of 482

CYBLE_GLS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_GLS_GLMT,
 CYBLE_GLS_GLMC,
 CYBLE_GLS_GLFT,
 CYBLE_GLS_RACP,
 CYBLE_GLS_CHAR_COUNT
} CYBLE_GLS_CHAR_INDEX_T;

Description

Service Characteristics indexes

Members

Members Description

CYBLE_GLS_GLMT Glucose Measurement Characteristic index

CYBLE_GLS_GLMC Glucose Measurement Context Characteristic index

CYBLE_GLS_GLFT Glucose Feature Characteristic index

CYBLE_GLS_RACP Record Access Control Point Characteristic index

CYBLE_GLS_CHAR_COUNT Total count of GLS Characteristics

CYBLE_GLS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GLS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_GLS_CHAR_VALUE_T;

Description

Glucose Service Characteristic value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_GLS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

Bluetooth Low Energy (BLE)

Page 320 of 482 Document Number: 001-91490 Rev. *B

CYBLE_GLS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_GLS_CCCD,
 CYBLE_GLS_DESCR_COUNT
} CYBLE_GLS_DESCR_INDEX_T;

Description

Service Characteristic Descriptors indexes

Members

Members Description

CYBLE_GLS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_GLS_DESCR_COUNT Total count of GLS Descriptors

CYBLE_GLS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_GLS_CHAR_INDEX_T charIndex;
 CYBLE_GLS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_GLS_DESCR_VALUE_T;

Description

Glucose Service Characteristic Descriptor value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_GLS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GLS_DESCR_INDEX_T descrIndex; Index of service Characteristic Descriptor

CYBLE_GATT_VALUE_T * value; Descriptor value

CYBLE_GLSC_CHAR_T

Prototype
typedef struct {

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 321 of 482

 uint8 properties;
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
} CYBLE_GLSC_CHAR_T;

Description

Glucose Client Characteristic structure type

Members

Members Description

uint8 properties; Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle; Handle of server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Glucose client char. Descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; Characteristic End Handle

CYBLE_GLSC_T

Prototype
typedef struct {
 CYBLE_GLSC_CHAR_T charInfo[CYBLE_GLS_CHAR_COUNT]; } CYBLE_GLSC_T;

Description

Glucose Service structure type

Members

Members Description

CYBLE_GLSC_CHAR_T charInfo[CYBLE_GLS_CHAR_COUNT]; Characteristics handle + properties array

CYBLE_GLSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
} CYBLE_GLSS_CHAR_T;

Description

Glucose Server Characteristic structure type

Bluetooth Low Energy (BLE)

Page 322 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Glucose Service char handle

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Glucose Service CCCD handle

CYBLE_GLSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GLSS_CHAR_T charInfo[CYBLE_GLS_CHAR_COUNT];
} CYBLE_GLSS_T;

Description

Structure with Glucose Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Glucose Service handle

CYBLE_GLSS_CHAR_T charInfo[CYBLE_GLS_CHAR_COUNT]; Glucose Service Characteristics info array

HID Service (HIDS)
The HID Service exposes data and associated formatting for HID Devices and HID Hosts.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The HID API names begin with CyBle_Hid. In addition to this, the APIs also append the GATT
role initial letter in the API name.

HIDS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Hid

Functions

Function Description

CyBle_HidsRegisterAttrCallback Registers a callback function for service specific attribute operations.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 323 of 482

CyBle_HidsRegisterAttrCallback

Prototype
void CyBle_HidsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for HID Service
is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_HIDS_NOTIFICATION_ENABLED).
eventParam contains the parameters corresponding to the current event. (e.g. pointer
to CYBLE_HIDS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered).

Returns

None

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

HIDS Server Functions
APIs unique to HID designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Hids

Functions

Function Description

CyBle_HidssSetCharacteristicValue Sets local Characteristic value of the specified HID Service Characteristics.

CyBle_HidssGetCharacteristicValue Gets local Characteristic value of the specified HID Service Characteristics.

CyBle_HidssGetCharacteristicDescriptor Gets local Characteristic Descriptor of the specified HID Service
Characteristic.

CyBle_HidssSendNotification Sends specified HID Service Characteristic notification to the Client device.

Bluetooth Low Energy (BLE)

Page 324 of 482 Document Number: 001-91490 Rev. *B

CYBLE_EVT_HIDSC_NOTIFICATION event is received by the peer
device, on invoking this function.

CyBle_HidssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HidssSetCharacteristicValue(uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets local Characteristic value of the specified HID Service Characteristics.

Parameters

Parameters Description

uint8 serviceIndex The index of the service instance. e.g. If two HID Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_HIDS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.
• CYBLE_HIDS_PROTOCOL_MODE - Protocol Mode Characteristic
• CYBLE_HIDS_REPORT_MAP - Report Map Characteristic
• CYBLE_HIDS_INFORMATION - HID Information Characteristic
• CYBLE_HIDS_CONTROL_POINT - HID Control Point Characteristic
• CYBLE_HIDS_BOOT_KYBRD_IN_REP - Boot Keyboard Input Report

Characteristic
• CYBLE_HIDS_BOOT_KYBRD_OUT_REP - Boot Keyboard Output

Report Characteristic
• CYBLE_HIDS_BOOT_MOUSE_IN_REP - Boot Mouse Input Report

Characteristic
• CYBLE_HIDS_REPORT - Report Characteristic

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be stored in the
GATT database.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 325 of 482

CyBle_HidssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HidssGetCharacteristicValue(uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets local Characteristic value of the specified HID Service Characteristics.

Parameters

Parameters Description

uint8 serviceIndex The index of the service instance. e.g. If two HID Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_HIDS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.
• CYBLE_HIDS_PROTOCOL_MODE - Protocol Mode Characteristic
• CYBLE_HIDS_REPORT_MAP - Report Map Characteristic
• CYBLE_HIDS_INFORMATION - HID Information Characteristic
• CYBLE_HIDS_CONTROL_POINT - HID Control Point Characteristic
• CYBLE_HIDS_BOOT_KYBRD_IN_REP - Boot Keyboard Input Report

Characteristic
• CYBLE_HIDS_BOOT_KYBRD_OUT_REP - Boot Keyboard Output

Report Characteristic
• CYBLE_HIDS_BOOT_MOUSE_IN_REP - Boot Mouse Input Report

Characteristic
• CYBLE_HIDS_REPORT - Report Characteristic

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

Bluetooth Low Energy (BLE)

Page 326 of 482 Document Number: 001-91490 Rev. *B

CyBle_HidssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HidssGetCharacteristicDescriptor(uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex, uint8 attrSize,
uint8 * attrValue);

Description

Gets local Characteristic Descriptor of the specified HID Service Characteristic.

Parameters

Parameters Description

uint8 serviceIndex The index of the service instance. e.g. If two HID Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_HIDS_CHAR_INDEX_T
charIndex

The index of the Characteristic.
• CYBLE_HIDS_REPORT_MAP - Report Map Characteristic
• CYBLE_HIDS_BOOT_KYBRD_IN_REP - Boot Keyboard Input Report

Characteristic
• CYBLE_HIDS_BOOT_KYBRD_OUT_REP - Boot Keyboard Output

Report Characteristic
• CYBLE_HIDS_BOOT_MOUSE_IN_REP - Boot Mouse Input Report

Characteristic
• CYBLE_HIDS_REPORT - Report Characteristic

CYBLE_HIDS_DESCR_T
descrIndex

 The index of the Descriptor.
• CYBLE_HIDS_REPORT_CCCD - Client Characteristic Configuration

Descriptor
• CYBLE_HIDS_REPORT_RRD - Report Reference Descriptor
• CYBLE_HIDS_REPORT_MAP_ERRD - Report Map External Report

Reference Descriptor

uint8 attrSize The size of the Descriptor value attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data should
be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 327 of 482

CyBle_HidssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_HidssSendNotification(CYBLE_CONN_HANDLE_T connHandle, uint8
serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends specified HID Service Characteristic notification to the Client device.
CYBLE_EVT_HIDSC_NOTIFICATION event is received by the peer device, on invoking this
function.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

BLE peer device connection handle.

uint8 serviceIndex The index of the HID service instance. e.g. If two HID Services are
supported in your design, then first service will be identified by serviceIndex
of 0 and the second by serviceIndex of 1.

CYBLE_HIDS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue Pointer to the Characteristic value data that should be sent to the Client
device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

Bluetooth Low Energy (BLE)

Page 328 of 482 Document Number: 001-91490 Rev. *B

HIDS Client Functions
APIs unique to HID designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Hidc

Functions

Function Description

CyBle_HidscGetCharacteristicValue
This function is used to read the Characteristic value from a server which is
identified by charIndex. The Read Response returns the Characteristic
value in... more

CyBle_HidscSetCharacteristicValue
Sends a request to set Characteristic value of the specified HID Service,
which is identified by serviceIndex and reportIndex, on the server device.
This function... more

CyBle_HidscSetCharacteristicDescriptor
This function is used to write the Characteristic Descriptor to the server,
which is identified by charIndex. This function call can result in generation
of... more

CyBle_HidscGetCharacteristicDescriptor
Gets a Characteristic Descriptor of the specified Characteristic of the HID
Service from the server device. This function call can result in generation of
the... more

CyBle_HidscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HidscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HIDSC_CHAR_READ_T subProcedure, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T
charIndex);

Description

This function is used to read the Characteristic value from a server which is identified by
charIndex.
The Read Response returns the Characteristic value in the Attribute Value parameter.
The Read Response only contains the Characteristic value that is less than or equal to (MTU - 1)
octets in length. If the Characteristic value is greater than (MTU - 1) octets in length, the Read
Long Characteristic Value procedure may be used if the rest of the Characteristic Value is
required.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_HIDSC_READ_CHAR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 329 of 482

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_HIDSC_CHAR_READ_T subProcedure The Characteristic value read sub-procedure.
CYBLE_HIDSC_READ_CHAR_VALUE
CYBLE_HIDSC_READ_LONG_CHAR_VALUE.

uint8 serviceIndex The index of the service instance.

CYBLE_HIDS_CHAR_INDEX_T charIndex The index of the service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_HidscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HidscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HIDSC_CHAR_WRITE_T subProcedure, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a request to set Characteristic value of the specified HID Service, which is identified by
serviceIndex and reportIndex, on the server device. This function call can result in generation of
the following events based on the response from the server device:

 CYBLE_EVT_HIDSC_WRITE_CHAR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Bluetooth Low Energy (BLE)

Page 330 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_HIDSC_CHAR_WRITE_T
subProcedure

Characteristic value write sub-procedure.
CYBLE_HIDSC_WRITE_WITHOUT_RESPONSE
CYBLE_HIDSC_WRITE_CHAR_VALUE

uint8 serviceIndex The index of the service instance. e.g. If two HID Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_HIDS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_HidscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HidscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T
descrIndex, uint8 attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic Descriptor to the server, which is identified by
charIndex. This function call can result in generation of the following events based on the
response from the server device:

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 331 of 482

 CYBLE_EVT_HIDSC_WRITE_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP
Following event is received by the peer device, on invoking this function:

 CYBLE_EVT_HIDSS_NOTIFICATION_ENABLED

 CYBLE_EVT_HIDSS_NOTIFICATION_DISABLED

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The BLE peer device connection handle.

uint8 serviceIndex The index of the service instance. e.g. If two HID Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_HIDS_CHAR_INDEX_T
charIndex

The index of the HID service Characteristic.

CYBLE_HIDS_DESCR_T
descrIndex

 The index of the HID service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that should be
stored in the GATT database.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

Bluetooth Low Energy (BLE)

Page 332 of 482 Document Number: 001-91490 Rev. *B

CyBle_HidscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HidscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T
descrIndex);

Description

Gets a Characteristic Descriptor of the specified Characteristic of the HID Service from the
server device.
This function call can result in generation of the following events based on the response from the
server device.

 CYBLE_EVT_HIDSC_READ_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

uint8 serviceIndex The index of the service instance. e.g. If two HID Services are supported in
your design, then first service will be identified by serviceIndex of 0 and the
second by serviceIndex of 1.

CYBLE_HIDS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

CYBLE_HIDS_DESCR_T
descrIndex

 The index of the HID Service Characteristic Descriptor.

Returns

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Descriptor

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 333 of 482

HIDS Definitions and Data Structures
Contains the HID specific definitions and data structures used in the HID APIs.

Enumerations

Enumeration Description

CYBLE_HIDS_CHAR_INDEX_T This is type CYBLE_HIDS_CHAR_INDEX_T.

CYBLE_HIDS_DESCR_T HID Service Characteristic Descriptors indexes

CYBLE_HIDSC_CHAR_READ_T Characteristic Value Read Sub-Procedure supported by HID Service

CYBLE_HIDSC_CHAR_WRITE_T Characteristic Value Write Sub-Procedure supported by HID Service

Structures

Structure
Description

CYBLE_HIDS_CHAR_VALUE_T HID Service Characteristic value parameter structure

CYBLE_HIDS_DESCR_VALUE_T HID Service Characteristic Descriptor value parameter structure

CYBLE_HIDSC_REPORT_MAP_T HID client Report map Characteristic

CYBLE_HIDSC_REPORT_T HID Client Report Characteristic

CYBLE_HIDSC_T Structure with discovered attributes information of HID Service

CYBLE_HIDSS_INFORMATION_T HID Information Characteristic value

CYBLE_HIDSS_REPORT_REF_T HID server Report Reference Descriptor value - Report ID and Report
Type

CYBLE_HIDSS_REPORT_T HID Server Report Characteristic

CYBLE_HIDSS_T Structure with HID Service attribute handles

CYBLE_HIDS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_HIDS_PROTOCOL_MODE,
 CYBLE_HIDS_INFORMATION,
 CYBLE_HIDS_CONTROL_POINT,
 CYBLE_HIDS_REPORT_MAP,
 CYBLE_HIDS_BOOT_KYBRD_IN_REP,
 CYBLE_HIDS_BOOT_KYBRD_OUT_REP,
 CYBLE_HIDS_BOOT_MOUSE_IN_REP,
 CYBLE_HIDS_REPORT,
 CYBLE_HIDS_CHAR_COUNT
} CYBLE_HIDS_CHAR_INDEX_T;

Bluetooth Low Energy (BLE)

Page 334 of 482 Document Number: 001-91490 Rev. *B

Description

This is type CYBLE_HIDS_CHAR_INDEX_T.

Members

Members Description

CYBLE_HIDS_PROTOCOL_MODE Protocol Mode Characteristic index

CYBLE_HIDS_INFORMATION HID Information Characteristic index

CYBLE_HIDS_CONTROL_POINT HID Control Point Characteristic index

CYBLE_HIDS_REPORT_MAP Report Map Characteristic index

CYBLE_HIDS_BOOT_KYBRD_IN_REP Boot Keyboard Input Report Characteristic index

CYBLE_HIDS_BOOT_KYBRD_OUT_REP Boot Keyboard Output Report Characteristic index

CYBLE_HIDS_BOOT_MOUSE_IN_REP Boot Mouse Input Report Characteristic index

CYBLE_HIDS_REPORT Report Characteristic index

CYBLE_HIDS_CHAR_COUNT Total count of Characteristics

CYBLE_HIDS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 uint8 serviceIndex;
 CYBLE_HIDS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_HIDS_CHAR_VALUE_T;

Description

HID Service Characteristic value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

uint8 serviceIndex; Index of HID Service

CYBLE_HIDS_CHAR_INDEX_T
charIndex;

Index of HID Service Characteristic

CYBLE_GATT_VALUE_T * value; Pointer to Characteristic value

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 335 of 482

CYBLE_HIDS_DESCR_T

Prototype
typedef enum {
 CYBLE_HIDS_REPORT_CCCD,
 CYBLE_HIDS_REPORT_RRD,
 CYBLE_HIDS_REPORT_MAP_ERRD,
 CYBLE_HIDS_DESCR_COUNT
} CYBLE_HIDS_DESCR_T;

Description

HID Service Characteristic Descriptors indexes

Members

Members Description

CYBLE_HIDS_REPORT_CCCD Client Characteristic Configuration Descriptor index

CYBLE_HIDS_REPORT_RRD Report Reference Descriptor index

CYBLE_HIDS_REPORT_MAP_ERRD Report Map External Report Reference Descriptor index

CYBLE_HIDS_DESCR_COUNT Total count of Descriptors

CYBLE_HIDS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 uint8 serviceIndex;
 CYBLE_HIDS_CHAR_INDEX_T charIndex;
 CYBLE_HIDS_DESCR_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_HIDS_DESCR_VALUE_T;

Description

HID Service Characteristic Descriptor value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

uint8 serviceIndex; Index of HID Service

CYBLE_HIDS_CHAR_INDEX_T charIndex; Index of HID Service Characteristic

CYBLE_HIDS_DESCR_T descrIndex; Service Characteristic Descriptor index

Bluetooth Low Energy (BLE)

Page 336 of 482 Document Number: 001-91490 Rev. *B

CYBLE_GATT_VALUE_T * value; Pointer to value of Service Characteristic Descriptor value

CYBLE_HIDSC_CHAR_READ_T

Prototype
typedef enum {
 CYBLE_HIDSC_READ_CHAR_VALUE,
 CYBLE_HIDSC_READ_LONG_CHAR_VALUE
} CYBLE_HIDSC_CHAR_READ_T;

Description

Characteristic Value Read Sub-Procedure supported by HID Service

Members

Members Description

CYBLE_HIDSC_READ_CHAR_VALUE Read Characteristic Value

CYBLE_HIDSC_READ_LONG_CHAR_VALUE Read Long Characteristic Values

CYBLE_HIDSC_CHAR_WRITE_T

Prototype
typedef enum {
 CYBLE_HIDSC_WRITE_WITHOUT_RESPONSE,
 CYBLE_HIDSC_WRITE_CHAR_VALUE
} CYBLE_HIDSC_CHAR_WRITE_T;

Description

Characteristic Value Write Sub-Procedure supported by HID Service

Members

Members Description

CYBLE_HIDSC_WRITE_WITHOUT_RESPONSE Write Without Response

CYBLE_HIDSC_WRITE_CHAR_VALUE Write Characteristic Value

CYBLE_HIDSC_REPORT_MAP_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T errdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 337 of 482

 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
 uint8 properties;
} CYBLE_HIDSC_REPORT_MAP_T;

Description

HID client Report map Characteristic

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T errdHandle; Handle of Report Map External Report Reference Descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T
valueHandle;

Handle of Report Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
endHandle;

End handle of Characteristic

uint8 properties; Properties for value field

CYBLE_HIDSC_REPORT_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T rrdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
 uint8 properties;
} CYBLE_HIDSC_REPORT_T;

Description

HID Client Report Characteristic

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T
cccdHandle;

Handle of Client Characteristic Configuration Descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T
rrdHandle;

Handle of Report Reference Descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T
valueHandle;

Handle of Report Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T End handle of Characteristic

Bluetooth Low Energy (BLE)

Page 338 of 482 Document Number: 001-91490 Rev. *B

endHandle;

uint8 properties; Properties for value field

CYBLE_HIDSC_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_SRVR_CHAR_INFO_T protocolMode;
 CYBLE_HIDSC_REPORT_T bootReport[CYBLE_HIDS_BOOT_REPORT_COUNT];
 CYBLE_HIDSC_REPORT_MAP_T reportMap;
 CYBLE_SRVR_CHAR_INFO_T information;
 CYBLE_SRVR_CHAR_INFO_T controlPoint;
 CYBLE_HIDSC_REPORT_T report[CYBLE_HIDSC_REPORT_COUNT];
 uint8 reportCount;
 CYBLE_GATT_DB_ATTR_HANDLE_T includeHandle;
} CYBLE_HIDSC_T;

Description

Structure with discovered attributes information of HID Service

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_SRVR_CHAR_INFO_T protocolMode; Protocol Mode Characteristic handle
and properties

CYBLE_HIDSC_REPORT_T
bootReport[CYBLE_HIDS_BOOT_REPORT_COUNT];

Boot Report Characteristic info

CYBLE_HIDSC_REPORT_MAP_T reportMap; Report Map Characteristic handle and
Descriptors

CYBLE_SRVR_CHAR_INFO_T information; Information Characteristic handle and
properties

CYBLE_SRVR_CHAR_INFO_T controlPoint; Control Point Characteristic handle
and properties

CYBLE_HIDSC_REPORT_T report[CYBLE_HIDSC_REPORT_COUNT]; Report Characteristic info

uint8 reportCount; Number of report Characteristics

CYBLE_GATT_DB_ATTR_HANDLE_T
includeHandle;

Included declaration handle

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 339 of 482

CYBLE_HIDSS_INFORMATION_T

Prototype
typedef struct {
 uint16 bcdHID;
 uint8 bCountryCode;
 uint8 flags;
} CYBLE_HIDSS_INFORMATION_T;

Description

HID Information Characteristic value

Members

Members Description

uint16 bcdHID; Version number of HIDSe USB HID Specification implemented by HID
Device

uint8 bCountryCode; Identifies which country hardware is localized for

uint8 flags; Bit 0: RemoteWake - Indicates whether HID Device is capable of sending
wake-signal to HID Host. Bit 1: NormallyConnectable - Indicates whether
HID Device will be advertising when bonded but not connected.

CYBLE_HIDSS_REPORT_REF_T

Prototype
typedef struct {
 uint8 reportId;
 uint8 reportType;
} CYBLE_HIDSS_REPORT_REF_T;

Description

HID server Report Reference Descriptor value - Report ID and Report Type

Members

Members Description

uint8 reportId; Non-zero value if there are more than one instance of the same Report
Type

uint8 reportType; Type of Report Characteristic

Bluetooth Low Energy (BLE)

Page 340 of 482 Document Number: 001-91490 Rev. *B

CYBLE_HIDSS_REPORT_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T reportHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T rrdHandle;
} CYBLE_HIDSS_REPORT_T;

Description

HID Server Report Characteristic

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T reportHandle; Handle of Report Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle; Handle of Client Characteristic Configuration Descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T rrdHandle; Handle of Report Reference Descriptor

CYBLE_HIDSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T protocolModeHandle;
 uint8 reportCount;
 const CYBLE_HIDSS_REPORT_T * reportArray;
 CYBLE_HIDSS_REPORT_T bootReportArray[CYBLE_HIDS_BOOT_REPORT_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T reportMapHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T reportMapErrdHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T informationHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T controlPointHandle;
} CYBLE_HIDSS_T;

Description

Structure with HID Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Handle of HID service

CYBLE_GATT_DB_ATTR_HANDLE_T protocolModeHandle; Handle of Protocol Mode
Characteristic

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 341 of 482

uint8 reportCount; Number of report Characteristics

const CYBLE_HIDSS_REPORT_T * reportArray; Info about report Characteristics

CYBLE_HIDSS_REPORT_T
bootReportArray[CYBLE_HIDS_BOOT_REPORT_COUNT];

Info about Boot Report
Characteristics

CYBLE_GATT_DB_ATTR_HANDLE_T reportMapHandle; Handle of Report Map Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T reportMapErrdHandle; Handle of Report Map External
Report Reference descr.

CYBLE_GATT_DB_ATTR_HANDLE_T informationHandle; Handle of HID Information
Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T controlPointHandle; Handle of HID Control Point
Characteristic

Heart Rate Service (HRS)
The Heart Rate Service exposes heart rate and other data related to a heart rate sensor
intended for fitness applications.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The HRS API names begin with CyBle_Hrs. In addition to this, the APIs also append the GATT
role initial letter in the API name.

HRS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Hrs

Functions

Function Description

CyBle_HrsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_HrsRegisterAttrCallback

Prototype
void CyBle_HrsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Bluetooth Low Energy (BLE)

Page 342 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for HRS Service is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_HRSS_NOTIFICATION_ENABLED).
eventParam contains the parameters corresponding to the current event. (e.g. pointer
to CYBLE_HRS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered).

Returns

None

HRS Server Functions
APIs unique to HRS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Hrss

Functions

Function

Description

CyBle_HrssSetCharacteristicValue Sets local Characteristic value of the specified Heart Rate Service
Characteristic.

CyBle_HrssGetCharacteristicValue Gets the local Characteristic value of specified Heart Rate Service
Characteristic.

CyBle_HrssGetCharacteristicDescriptor Gets the local Characteristic Descriptor of the specified Heart Rate Service
Characteristic.

CyBle_HrssSendNotification Sends notification of a specified Heart Rate Service Characteristic value to
the Client device. No response is expected. The
CYBLE_EVT_HRSC_NOTIFICATION event is received by the... more

CyBle_HrssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HrssSetCharacteristicValue(CYBLE_HRS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sets local Characteristic value of the specified Heart Rate Service Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 343 of 482

Parameters

Parameters Description

CYBLE_HRS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute. The Heart Rate Measurement
Characteristic has a 20 byte length (by default). The Body Sensor Location
and Control Point Characteristic both have 1 byte length.

uint8 * attrValue The pointer to the Characteristic value data that should be stored in the
GATT database.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

CyBle_HrssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HrssGetCharacteristicValue(CYBLE_HRS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets the local Characteristic value of specified Heart Rate Service Characteristic.

Parameters

Parameters Description

CYBLE_HRS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute. The Heart Rate Measurement
Characteristic has a 20 byte length (by default). The Body Sensor Location and
Control Point Characteristic both have 1 byte length.

uint8 * attrValue The pointer to the location where Characteristic value data should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

Bluetooth Low Energy (BLE)

Page 344 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

CyBle_HrssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HrssGetCharacteristicDescriptor(CYBLE_HRS_CHAR_INDEX_T
charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets the local Characteristic Descriptor of the specified Heart Rate Service Characteristic.

Parameters

Parameters Description

CYBLE_HRS_CHAR_INDEX_T
charIndex

The index of the Characteristic.

CYBLE_HRS_DESCR_INDEX_T
descrIndex

The index of the Descriptor.

uint8 attrSize The size of the Descriptor value attribute. The Heart Rate Measurement
Characteristic client configuration Descriptor has 2 bytes length.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

CyBle_HrssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_HrssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 345 of 482

Description

Sends notification of a specified Heart Rate Service Characteristic value to the Client device. No
response is expected.
The CYBLE_EVT_HRSC_NOTIFICATION event is received by the peer device, on invoking this
function.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle which consist of the device ID and ATT connection
ID.

CYBLE_HRS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute. The Heart Rate Measurement
Characteristic has a 20 byte length (by default). The Body Sensor Location
and Control Point Characteristic both have 1 byte length.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the client
device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

HRS Client Functions
APIs unique to HRS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Hrsc

Functions

Function Description

CyBle_HrscSetCharacteristicValue This function is used to write the Characteristic value attribute (identified by
charIndex) to the server. The Write Response just confirms the operation

Bluetooth Low Energy (BLE)

Page 346 of 482 Document Number: 001-91490 Rev. *B

success. This... more

CyBle_HrscGetCharacteristicValue This function is used to read the Characteristic Value from a server which is
identified by charIndex. The Read Response returns the Characteristic
Value in... more

CyBle_HrscSetCharacteristicDescriptor This function is used to write the Characteristic Value to the server, which is
identified by charIndex. This function call can result in generation of... more

CyBle_HrscGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the service.
This function call can result in generation of the following events based on
the... more

CyBle_HrscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HrscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic value attribute (identified by charIndex) to the
server. The Write Response just confirms the operation success.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_HRSC_WRITE_CHAR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_HRS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 347 of 482

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the

 particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_HrscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HrscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex);

Description

This function is used to read the Characteristic Value from a server which is identified by
charIndex.
The Read Response returns the Characteristic Value in the Attribute Value parameter.
The Read Response only contains the Characteristic Value that is less than or equal to (MTU -
1) octets in length. If the Characteristic Value is greater than (MTU - 1) octets in length, the Read
Long Characteristic Value procedure may be used if the rest of the Characteristic Value is
required.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_HRS_CHAR_INDEX_T charIndex The index of the service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

Bluetooth Low Energy (BLE)

Page 348 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_HrscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HrscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex, uint8
attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic Value to the server, which is identified by
charIndex.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_HRSC_WRITE_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP
One of the following events is received by the peer device, on invoking this function:

 CYBLE_EVT_HRSS_NOTIFICATION_ENABLED

 CYBLE_EVT_HRSS_NOTIFICATION_DISABLED

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_HRS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

CYBLE_HRS_DESCR_INDEX_T
descrIndex

The index of the service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor value attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 349 of 482

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_HrscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HrscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex);

Description

Gets a Characteristic Descriptor of a specified Characteristic of the service.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_HRSC_READ_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_HRS_CHAR_INDEX_T charIndex The index of the service Characteristic.

CYBLE_HRS_DESCR_INDEX_T descrIndex The index of the service Characteristic Descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

Bluetooth Low Energy (BLE)

Page 350 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the

 particular Descriptor

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

HRS Definitions and Data Structures
Contains the HRS specific definitions and data structures used in the HRS APIs.

Enumerations

Enumeration Description

CYBLE_HRS_CHAR_INDEX_T HRS Characteristics indexes

CYBLE_HRS_DESCR_INDEX_T HRS Characteristic Descriptors indexes

Structures

Structure Description

CYBLE_HRS_CHAR_VALUE_T HRS Characteristic value parameter structure

CYBLE_HRS_DESCR_VALUE_T HRS Characteristic Descriptor value parameter structure

CYBLE_HRSC_T Structure with discovered attributes information of Heart Rate Service

CYBLE_HRSS_T Structure with Heart Rate Service attribute handles

CYBLE_HRS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_HRS_HRM,
 CYBLE_HRS_BSL,
 CYBLE_HRS_CPT,
 CYBLE_HRS_CHAR_COUNT
} CYBLE_HRS_CHAR_INDEX_T;

Description

HRS Characteristics indexes

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 351 of 482

Members

Members Description

CYBLE_HRS_HRM Heart Rate Measurement Characteristic index

CYBLE_HRS_BSL Body Sensor Location Characteristic index

CYBLE_HRS_CPT Control Point Characteristic index

CYBLE_HRS_CHAR_COUNT Total count of HRS Characteristics

CYBLE_HRS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_HRS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_HRS_CHAR_VALUE_T;

Description

HRS Characteristic value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T
connHandle;

Peer device handle

CYBLE_HRS_CHAR_INDEX_T
charIndex;

Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_HRS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_HRS_HRM_CCCD,
 CYBLE_HRS_DESCR_COUNT
} CYBLE_HRS_DESCR_INDEX_T;

Description

HRS Characteristic Descriptors indexes

Bluetooth Low Energy (BLE)

Page 352 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_HRS_HRM_CCCD Heart Rate Measurement client char. config. Descriptor index

CYBLE_HRS_DESCR_COUNT Total count of HRS HRM Descriptors

CYBLE_HRS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_HRS_CHAR_INDEX_T charIndex;
 CYBLE_HRS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_HRS_DESCR_VALUE_T;

Description

HRS Characteristic Descriptor value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T
connHandle;

Peer device handle

CYBLE_HRS_CHAR_INDEX_T
charIndex;

Index of service Characteristic

CYBLE_HRS_DESCR_INDEX_T
descrIndex;

Index of service Characteristic Descriptor

CYBLE_GATT_VALUE_T * value; Descriptor value

CYBLE_HRSC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T charInfo[CYBLE_HRS_CHAR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T hrmCccdHandle;
} CYBLE_HRSC_T;

Description

Structure with discovered attributes information of Heart Rate Service

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 353 of 482

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T
charInfo[CYBLE_HRS_CHAR_COUNT];

Heart Rate Service Characteristics handles and properties array

CYBLE_GATT_DB_ATTR_HANDLE_T
hrmCccdHandle;

Heart Rate Measurement client char. config. Descriptor Handle

CYBLE_HRSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle[CYBLE_HRS_CHAR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T hrmCccdHandle;
} CYBLE_HRSS_T;

Description

Structure with Heart Rate Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T
serviceHandle;

Heart Rate Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T
charHandle[CYBLE_HRS_CHAR_COUNT];

Heart Rate Service Characteristics handles and properties
array

CYBLE_GATT_DB_ATTR_HANDLE_T
hrmCccdHandle;

Heart Rate Measurement client char. config. Descriptor
Handle

Health Thermometer Service (HTS)
The Health Thermometer Service exposes temperature and other data related to a thermometer
used for healthcare applications.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The HTS API names begin with CyBle_Hts. In addition to this, the APIs also append the GATT
role initial letter in the API name.

HTS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.

Bluetooth Low Energy (BLE)

Page 354 of 482 Document Number: 001-91490 Rev. *B

No letter is appended to the API name: CyBle_Hts

Functions

Function Description

CyBle_HtsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_HtsRegisterAttrCallback

Prototype
void CyBle_HtsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for HTS Service is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_HTSS_NOTIFICATION_ENABLED).
eventParam contains the parameters corresponding to the current event. (e.g. pointer
to CYBLE_HTS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered).

Returns

None

HTS Server Functions
APIs unique to HTS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Htss

Functions

Function Description

CyBle_HtssSetCharacteristicValue Sets the Characteristic value of the service in the local database.

CyBle_HtssGetCharacteristicValue Gets the Characteristic value of the service, which is a value identified by
charIndex.

CyBle_HtssSetCharacteristicDescriptor Sets the Characteristic Descriptor of the specified Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 355 of 482

CyBle_HtssGetCharacteristicDescriptor Gets the Characteristic Descriptor of the specified Characteristic.

CyBle_HtssSendIndication Sends indication with a Characteristic value of the Health Thermometer
Service, which is a value specified by charIndex, to the Client device.

CyBle_HtssSendNotification Sends notification with a Characteristic value of the Health Thermometer
Service, which is a value specified by charIndex, to the Client device.

CyBle_HtssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HtssSetCharacteristicValue(CYBLE_HTS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sets the Characteristic value of the service in the local database.

Parameters

Parameters Description

CYBLE_HTS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size (in Bytes) of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_HtssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HtssGetCharacteristicValue(CYBLE_HTS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets the Characteristic value of the service, which is a value identified by charIndex.

Bluetooth Low Energy (BLE)

Page 356 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_HTS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_HtssSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HtssSetCharacteristicDescriptor(CYBLE_HTS_CHAR_INDEX_T
charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets the Characteristic Descriptor of the specified Characteristic.

Parameters

Parameters Description

CYBLE_HTS_CHAR_INDEX_T charIndex The index of the service Characteristic.

CYBLE_HTS_DESCR_INDEX_T
descrIndex

The index of the service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the Descriptor value data that should be stored in the
GATT database.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 357 of 482

CyBle_HtssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HtssGetCharacteristicDescriptor(CYBLE_HTS_CHAR_INDEX_T
charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets the Characteristic Descriptor of the specified Characteristic.

Parameters

Parameters Description

CYBLE_HTS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

CYBLE_HTS_DESCR_INDEX_T
descrIndex

The index of the service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CyBle_HtssSendIndication

Prototype
CYBLE_API_RESULT_T CyBle_HtssSendIndication(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends indication with a Characteristic value of the Health Thermometer Service, which is a value
specified by charIndex, to the Client device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

Bluetooth Low Energy (BLE)

Page 358 of 482 Document Number: 001-91490 Rev. *B

CYBLE_HTS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client

CyBle_HtssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_HtssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends notification with a Characteristic value of the Health Thermometer Service, which is a
value specified by charIndex, to the Client device.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_HTS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 359 of 482

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

HTS Client Functions
APIs unique to HTS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Htsc

Functions

Function Description

CyBle_HtscSetCharacteristicValue Sends a request to set a Characteristic value of the service, which is a value
identified by charIndex,to the server device.

CyBle_HtscGetCharacteristicValue This function is used to read a Characteristic value, which is a value
identified by charIndex, from the server.

CyBle_HtscSetCharacteristicDescriptor This function is used to write the Characteristic Descriptor to the server,
which is identified by charIndex.

CyBle_HtscGetCharacteristicDescriptor Gets the Characteristic Descriptor of the specified Characteristic of the
service.

CyBle_HtscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HtscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a request to set a Characteristic value of the service, which is a value identified by
charIndex,to the server device.

Bluetooth Low Energy (BLE)

Page 360 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_HTS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_HtscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_HtscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex);

Description

This function is used to read a Characteristic value, which is a value identified by charIndex, from
the server.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_HTS_CHAR_INDEX_T charIndex The index of the service Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 361 of 482

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_HtscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HtscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8
attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic Descriptor to the server, which is identified by
charIndex and descrIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_HTS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

CYBLE_HTS_DESCR_INDEX_T
descrIndex

The index of the service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

Bluetooth Low Energy (BLE)

Page 362 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_HtscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_HtscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex);

Description

Gets the Characteristic Descriptor of the specified Characteristic of the service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_HTS_CHAR_INDEX_T charIndex The index of the service Characteristic.

CYBLE_HTS_DESCR_INDEX_T descrIndex The index of the service Characteristic Descriptor.

Returns

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

HTS Definitions and Data Structures
Contains the HTS specific definitions and data structures used in the HTS APIs.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 363 of 482

Enumerations

Enumeration Description

CYBLE_HTS_CHAR_INDEX_T HTS Characteristic indexes

CYBLE_HTS_DESCR_INDEX_T HTS Characteristic Descriptors indexes

CYBLE_HTS_TEMP_TYPE_T Temperature Type measurement indicates where
the temperature was measured

Structures

Structure Description

CYBLE_HTS_CHAR_VALUE_T HTS Characteristic value parameter structure

CYBLE_HTS_DESCR_VALUE_T HTS Characteristic Descriptor value parameter structure

CYBLE_HTSC_CHAR_T HTS Characteristic with Descriptors

CYBLE_HTSC_T Structure with discovered attributes information of Health Thermometer Service

CYBLE_HTSS_CHAR_T HTS Characteristic with Descriptors

CYBLE_HTSS_T Structure with Health Thermometer Service attribute handles

CYBLE_HTS_FLOAT32 The IEEE-11073 FLOAT-Type is defined as a 32-bit value with a 24-bit
mantissa and an 8-bit exponent.

CYBLE_HTS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_HTS_TEMP_MEASURE,
 CYBLE_HTS_TEMP_TYPE,
 CYBLE_HTS_INTERM_TEMP,
 CYBLE_HTS_MEASURE_INTERVAL,
 CYBLE_HTS_CHAR_COUNT
} CYBLE_HTS_CHAR_INDEX_T;

Description

HTS Characteristic indexes

Members

Members Description

CYBLE_HTS_TEMP_MEASURE Temperature Measurement Characteristic index

CYBLE_HTS_TEMP_TYPE Temperature Type Characteristic index

Bluetooth Low Energy (BLE)

Page 364 of 482 Document Number: 001-91490 Rev. *B

CYBLE_HTS_INTERM_TEMP Intermediate Temperature Characteristic index

CYBLE_HTS_MEASURE_INTERVAL Measurement Interval Characteristic index

CYBLE_HTS_CHAR_COUNT Total count of HTS Characteristics

CYBLE_HTS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_HTS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_HTS_CHAR_VALUE_T;

Description

HTS Characteristic value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_HTS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_HTS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_HTS_CCCD,
 CYBLE_HTS_VRD,
 CYBLE_HTS_DESCR_COUNT
} CYBLE_HTS_DESCR_INDEX_T;

Description

HTS Characteristic Descriptors indexes

Members

Members Description

CYBLE_HTS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_HTS_VRD Valid Range Descriptor index

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 365 of 482

CYBLE_HTS_DESCR_COUNT Total count of Descriptors

CYBLE_HTS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_HTS_CHAR_INDEX_T charIndex;
 CYBLE_HTS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_HTS_DESCR_VALUE_T;

Description

HTS Characteristic Descriptor value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_HTS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_HTS_DESCR_INDEX_T descrIndex; Index of Descriptor

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_HTS_TEMP_TYPE_T

Prototype
typedef enum {
 CYBLE_HTS_TEMP_TYPE_ARMPIT = 0x01u,
 CYBLE_HTS_TEMP_TYPE_BODY,
 CYBLE_HTS_TEMP_TYPE_EAR,
 CYBLE_HTS_TEMP_TYPE_FINGER,
 CYBLE_HTS_TEMP_TYPE_GI_TRACT,
 CYBLE_HTS_TEMP_TYPE_MOUTH,
 CYBLE_HTS_TEMP_TYPE_RECTUM,
 CYBLE_HTS_TEMP_TYPE_TOE,
 CYBLE_HTS_TEMP_TYPE_TYMPANUM
} CYBLE_HTS_TEMP_TYPE_T;

Description

Temperature Type measurement indicates where the temperature was measured

Bluetooth Low Energy (BLE)

Page 366 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_HTS_TEMP_TYPE_ARMPIT = 0x01u Armpit

CYBLE_HTS_TEMP_TYPE_BODY Body (general)

CYBLE_HTS_TEMP_TYPE_EAR Ear (usually ear lobe)

CYBLE_HTS_TEMP_TYPE_FINGER Finger

CYBLE_HTS_TEMP_TYPE_GI_TRACT Gastro-intestinal Tract

CYBLE_HTS_TEMP_TYPE_MOUTH Mouth

CYBLE_HTS_TEMP_TYPE_RECTUM Rectum

CYBLE_HTS_TEMP_TYPE_TOE Toe

CYBLE_HTS_TEMP_TYPE_TYMPANUM Tympanum (ear drum)

CYBLE_HTSC_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_HTS_DESCR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
 uint8 properties;
} CYBLE_HTSC_CHAR_T;

Description

HTS Characteristic with Descriptors

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_HTS_DESCR_COUNT];

Handle of Descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle; Handle of Report Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; End handle of Characteristic

uint8 properties; Properties for value field

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 367 of 482

CYBLE_HTSC_T

Prototype
typedef struct {
 CYBLE_HTSC_CHAR_T charInfo[CYBLE_HTS_CHAR_COUNT]; } CYBLE_HTSC_T;

Description

Structure with discovered attributes information of Health Thermometer Service

Members

Members Description

CYBLE_HTSC_CHAR_T charInfo[CYBLE_HTS_CHAR_COUNT]; Characteristics handles array

CYBLE_HTSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_HTS_DESCR_COUNT]; }
CYBLE_HTSS_CHAR_T;

Description

HTS Characteristic with Descriptors

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Handle of Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_HTS_DESCR_COUNT];

Handle of Descriptor

CYBLE_HTSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_HTSS_CHAR_T charInfo[CYBLE_HTS_CHAR_COUNT];
} CYBLE_HTSS_T;

Description

Structure with Health Thermometer Service attribute handles

Bluetooth Low Energy (BLE)

Page 368 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Health Thermometer Service handle

CYBLE_HTSS_CHAR_T
charInfo[CYBLE_HTS_CHAR_COUNT];

Health Thermometer Service Characteristic
handles

CYBLE_HTS_FLOAT32

Prototype
typedef struct {
 int8 exponent;
 int32 mantissa;
} CYBLE_HTS_FLOAT32;

Description

The IEEE-11073 FLOAT-Type is defined as a 32-bit value with a 24-bit mantissa and an 8-bit
exponent.

Members

Members Description

int8 exponent; Base 10 exponent

int32 mantissa; Mantissa, should be using only 24 bits

Immediate Alert Service (IAS)
The Immediate Alert Service uses the Alert Level Characteristic to cause an alert when it is
written with a value other than "No Alert".
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The IAS API names begin with CyBle_Ias. In addition to this, the APIs also append the GATT
role initial letter in the API name.

IAS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Ias

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 369 of 482

Functions

Function Description

CyBle_IasRegisterAttrCallback Registers callback function for service specific attribute operations.

CyBle_IasRegisterAttrCallback

Prototype
void CyBle_IasRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for IAS Service is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_IASS_NOTIFICATION_ENABLED).
eventParam contains the parameters corresponding to the current event. (e.g. pointer
to CYBLE_IAS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered).

Returns

None

Notes

IAS only has events for the GATT server. There are no events for the GATT client since the
client sends data without waiting for response. Therefore there is no need to register a callback
through CyBle_IasRegisterAttrCallback for an IAS GATT client.

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

IAS Server Functions
APIs unique to IAS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Iass

Bluetooth Low Energy (BLE)

Page 370 of 482 Document Number: 001-91490 Rev. *B

Functions

Function Description

CyBle_IassGetCharacteristicValue Gets the Alert Level Characteristic value of the service, which is identified by
charIndex.

CyBle_IassGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_IassGetCharacteristicValue(CYBLE_IAS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets the Alert Level Characteristic value of the service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_IAS_CHAR_INDEX_T
charIndex

The index of the Alert Level Characteristic.

uint8 attrSize The size of the Alert Level Characteristic value attribute.

uint8 * attrValue The pointer to the location where the Alert Level Characteristic value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The Characteristic value was read successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

IAS Client Functions
APIs unique to IAS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Iasc

Functions

Function Description

CyBle_IascSetCharacteristicValue Sets a Alert Level Characteristic value of the service, which is identified by
charIndex.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 371 of 482

CyBle_IascSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_IascSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets a Alert Level Characteristic value of the service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_IAS_CHAR_INDEX_T
charIndex

The index of the Alert Level service Characteristic.

uint8 attrSize The size of the Alert Level Characteristic value attribute.

uint8 * attrValue The pointer to the Alert Level Characteristic value data that should be
stored in the GATT database.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

IAS Definitions and Data Structures
Contains the IAS specific definitions and data structures used in the IAS APIs.

Enumerations

Enumeration Description

CYBLE_IAS_CHAR_INDEX_T Immediate Alert Service Characteristic indexes

Bluetooth Low Energy (BLE)

Page 372 of 482 Document Number: 001-91490 Rev. *B

Structures

Structure Description

CYBLE_IAS_CHAR_VALUE_T Immediate Alert Service Characteristic Value parameters structure

CYBLE_IASC_T Structure with discovered attributes information of Immediate Alert Service

CYBLE_IASS_T Structure with Immediate Alert Service attribute handles

CYBLE_IAS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_IAS_ALERT_LEVEL,
 CYBLE_IAS_CHAR_COUNT
} CYBLE_IAS_CHAR_INDEX_T;

Description

Immediate Alert Service Characteristic indexes

Members

Members Description

CYBLE_IAS_ALERT_LEVEL Alert Level Characteristic index

CYBLE_IAS_CHAR_COUNT Total count of Characteristics

CYBLE_IAS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_IAS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_IAS_CHAR_VALUE_T;

Description

Immediate Alert Service Characteristic Value parameters structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_IAS_CHAR_INDEX_T charIndex; Characteristic index of Immediate Alert Service

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 373 of 482

CYBLE_GATT_VALUE_T * value; Pointer to value of Immediate Alert Service Characteristic

CYBLE_IASC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T alertLevelChar;
} CYBLE_IASC_T;

Description

Structure with discovered attributes information of Immediate Alert Service

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T alertLevelChar; Handle of Alert Level Characteristic of Immediate Alert Service

CYBLE_IASS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T alertLevelCharHandle;
} CYBLE_IASS_T;

Description

Structure with Immediate Alert Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Immediate Alert Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T alertLevelCharHandle; Handle of Alert Level Characteristic

Link Loss Service (LLS)
The Link Loss Service uses the Alert Level Characteristic to cause an alert in the device when
the link is lost.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The LLS API names begin with CyBle_Lls. In addition to this, the APIs also append the GATT
role initial letter in the API name.

Bluetooth Low Energy (BLE)

Page 374 of 482 Document Number: 001-91490 Rev. *B

LLS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Lls

Functions

Function Description

CyBle_LlsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_LlsRegisterAttrCallback

Prototype
void CyBle_LlsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for Link Loss Service is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_LLSS_NOTIFICATION_ENABLED).
eventParam contains the parameters corresponding to the current event. (e.g. pointer
to CYBLE_LLS_CHAR_VALUE_T structure that contains details of the Characteristic for
which notification enabled event was triggered).

Returns

None

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

LLS Server Functions
APIs unique to LLS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Llss

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 375 of 482

Functions

Function Description

CyBle_LlssGetCharacteristicValue Gets an Alert Level Characteristic value of the service, which is identified by
charIndex.

CyBle_LlssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_LlssGetCharacteristicValue(CYBLE_LLS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Gets an Alert Level Characteristic value of the service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_LLS_CHAR_INDEX_TcharIndex The index of an Alert Level Characteristic.

uint8 attrSize The size of the Alert Level Characteristic value attribute.

uint8 * attrValue The pointer to the location where an Alert Level Characteristic value
data should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The Characteristic value was read successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

LLS Client Functions
APIs unique to LLS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Llsc

Functions

Function Description

CyBle_LlscSetCharacteristicValue Sets the Alert Level Characteristic value of the Link Loss Service, which is
identified by charIndex. This function call can result in generation of the... more

CyBle_LlscGetCharacteristicValue Sends a request to get Characteristic value of the Link Loss Service, which is
identified by charIndex. This function call can result in generation of... more

Bluetooth Low Energy (BLE)

Page 376 of 482 Document Number: 001-91490 Rev. *B

CyBle_LlscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_LlscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets the Alert Level Characteristic value of the Link Loss Service, which is identified by
charIndex.
This function call can result in generation of the following events based on the response from the
server device.

 CYBLE_EVT_LLSC_WRITE_CHAR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_LLS_CHAR_INDEX_T
charIndex

The index of the Alert Level service Characteristic.

uint8 attrSize The size of the Alert Level Characteristic value attribute.

uint8 * attrValue The pointer to the Alert Level Characteristic value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

CyBle_LlscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_LlscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LLS_CHAR_INDEX_T charIndex);

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 377 of 482

Description

Sends a request to get Characteristic value of the Link Loss Service, which is identified by
charIndex.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_LLSC_READ_CHAR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_LLS_CHAR_INDEX_T charIndex The index of the Link Loss Service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

LLS Definitions and Data Structures
Contains the LLS specific definitions and data structures used in the LLS APIs.

Enumerations

Enumeration Description

CYBLE_LLS_CHAR_INDEX_T Link Loss Service Characteristic indexes

Structures

Structure Description

CYBLE_LLS_CHAR_VALUE_T Link Loss Service Characteristic Value parameter structure

CYBLE_LLSC_T Structure with discovered attributes information of Link Loss Service

Bluetooth Low Energy (BLE)

Page 378 of 482 Document Number: 001-91490 Rev. *B

Structure Description

CYBLE_LLSS_T Structure with Link Loss Service attribute handles

CYBLE_LLS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_LLS_ALERT_LEVEL,
 CYBLE_LLS_CHAR_COUNT
} CYBLE_LLS_CHAR_INDEX_T;

Description

Link Loss Service Characteristic indexes

Members

Members Description

CYBLE_LLS_ALERT_LEVEL Alert Level Characteristic index

CYBLE_LLS_CHAR_COUNT Total count of Characteristics

CYBLE_LLS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_LLS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_LLS_CHAR_VALUE_T;

Description

Link Loss Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_LLS_CHAR_INDEX_T charIndex; Characteristic index of Link Loss Service

CYBLE_GATT_VALUE_T * value; Pointer to value of Link Loss Service Characteristic

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 379 of 482

CYBLE_LLSC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T alertLevelChar;
} CYBLE_LLSC_T;

Description

Structure with discovered attributes information of Link Loss Service

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T alertLevelChar; Handle of Alert Level Characteristic of Link Loss Service

CYBLE_LLSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T alertLevelCharHandle;
} CYBLE_LLSS_T;

Description

Structure with Link Loss Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Link Loss Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T alertLevelCharHandle; Handle of Alert Level Characteristic

Location and Navigation Service (LNS)
The Location and Navigation Service exposes location and navigation-related data from a
Location and Navigation sensor (Server) intended for outdoor activity applications.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The LNS API names begin with CyBle_Lns. In addition to this, the APIs also append the GATT
role initial letter in the API name.

Bluetooth Low Energy (BLE)

Page 380 of 482 Document Number: 001-91490 Rev. *B

LNS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Lns

Functions

Function Description

CyBle_LnsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_LnsRegisterAttrCallback

Prototype
void CyBle_LnsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for LNS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.
eventParam contains the parameters corresponding to the current event.

Returns

None

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

LNS Server Functions
APIs unique to LNS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Lnss

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 381 of 482

Functions

Function Description

CyBle_LnssGetCharacteristicDescriptor Gets a Characteristic Descriptor of the specified Characteristic.

CyBle_LnssGetCharacteristicValue Gets the value of the Characteristic, as identified by charIndex.

CyBle_LnssSendIndication Sends an indication of the specified Characteristic value, as identified by the
charIndex.

CyBle_LnssSendNotification Sends a notification of the specified Characteristic value, as identified by the
charIndex.

CyBle_LnssSetCharacteristicValue Sets the value of the Characteristic, as identified by charIndex.

CyBle_LnssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_LnssGetCharacteristicDescriptor(CYBLE_LNS_CHAR_INDEX_T
charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic Descriptor of the specified Characteristic.

Parameters

Parameters Description

CYBLE_LNS_CHAR_INDEX_T
charIndex

The index of the Characteristic.

CYBLE_LNS_DESCR_INDEX_T
descrIndex

The index of the Descriptor.

uint8 attrSize The size of the Descriptor value attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - Characteristic Descriptor value was read successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Characteristic is absent.

Bluetooth Low Energy (BLE)

Page 382 of 482 Document Number: 001-91490 Rev. *B

CyBle_LnssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_LnssGetCharacteristicValue(CYBLE_LNS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets the value of the Characteristic, as identified by charIndex.

Parameters

Parameters Description

CYBLE_LNS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - Characteristic value was read successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the
CyBle_GattsWriteAttributeValue input parameter failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Characteristic is absent.

CyBle_LnssSendIndication

Prototype
CYBLE_API_RESULT_T CyBle_LnssSendIndication(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends an indication of the specified Characteristic value, as identified by the charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T The connection handle which consist of the device ID and ATT

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 383 of 482

connHandle connection ID.

CYBLE_LNS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE – Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

 CYBLE_ERROR_IND_DISABLED - Indication is disabled for this Characteristic

CyBle_LnssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_LnssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a notification of the specified Characteristic value, as identified by the charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle which consist of the device ID and ATT
connection ID.

CYBLE_LNS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

Bluetooth Low Energy (BLE)

Page 384 of 482 Document Number: 001-91490 Rev. *B

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

CyBle_LnssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_LnssSetCharacteristicValue(CYBLE_LNS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sets the value of the Characteristic, as identified by charIndex.

Parameters

Parameters Description

CYBLE_LNS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 385 of 482

 CYBLE_ERROR_OK - The request handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

LNS Client Functions
APIs unique to LNS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Lnsc

Functions

Function Description

CyBle_LnscSetCharacteristicValue This function is used to write the Characteristic (which is identified by
charIndex) value attribute in the server. The Write Response just confirms
the operation... more

CyBle_LnscGetCharacteristicValue This function is used to read the Characteristic Value from a server, as
identified by its charIndex The Read Response returns the Characteristic
Value in... more

CyBle_LnscSetCharacteristicDescriptor This function is used to write the Characteristic Value to the server, as
identified by its charIndex.

CyBle_LnscGetCharacteristicDescriptor Gets the Characteristic Descriptor of the specified Characteristic.

CyBle_LnscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_LnscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic (which is identified by charIndex) value attribute
in the server.
The Write Response just confirms the operation success.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_LNS_CHAR_INDEX_T The index of the service Characteristic.

Bluetooth Low Energy (BLE)

Page 386 of 482 Document Number: 001-91490 Rev. *B

charIndex

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_LnscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_LnscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex);

Description

This function is used to read the Characteristic Value from a server, as identified by its charIndex
The Read Response returns the Characteristic Value in the Attribute Value parameter.
The Read Response only contains the Characteristic Value that is less than or equal to (MTU -
1) octets in length. If the Characteristic Value is greater than (MTU - 1) octets in length, the Read
Long Characteristic Value procedure may be used if the rest of the Characteristic Value is
required.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_LNS_CHAR_INDEX_T charIndex The index of the service Characteristic.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 387 of 482

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_LnscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_LnscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex, uint8
attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic Value to the server, as identified by its charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_LNS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

CYBLE_LNS_DESCR_INDEX_T
descrIndex

The index of the service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor value attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

Bluetooth Low Energy (BLE)

Page 388 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_LnscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_LnscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex);

Description

Gets the Characteristic Descriptor of the specified Characteristic.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_LNS_CHAR_INDEX_T charIndex The index of the service Characteristic.

CYBLE_LNS_DESCR_INDEX_T descrIndex The index of the service Characteristic Descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Descriptor

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 389 of 482

LNS Definitions and Data Structures
Contains the LNS specific definitions and data structures used in the LNS APIs.

Enumerations

Enumeration Description

CYBLE_LNS_CHAR_INDEX_T LNS Service Characteristics indexes

CYBLE_LNS_DESCR_INDEX_T LNS Service Characteristic Descriptors indexes

Structures

Structure Description

CYBLE_LNS_CHAR_VALUE_T LNS Characteristic Value parameter structure

CYBLE_LNS_DESCR_VALUE_T LNS Characteristic Descriptor Value parameter structure

CYBLE_LNSC_CHAR_T Location and Navigation Client Characteristic structure type

CYBLE_LNSC_T Structure with discovered attributes information of Location and Navigation
Service

CYBLE_LNSS_CHAR_T Location and Navigation Server Characteristic structure type

CYBLE_LNSS_T Structure with Location and Navigation Service attribute handles

CYBLE_LNS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_LNS_FT,
 CYBLE_LNS_LS,
 CYBLE_LNS_PQ,
 CYBLE_LNS_CP,
 CYBLE_LNS_NV,
 CYBLE_LNS_CHAR_COUNT
} CYBLE_LNS_CHAR_INDEX_T;

Description

LNS Service Characteristics indexes

Members

Members Description

CYBLE_LNS_FT Location and Navigation Feature Characteristic index

CYBLE_LNS_LS Location and Speed Characteristic index

Bluetooth Low Energy (BLE)

Page 390 of 482 Document Number: 001-91490 Rev. *B

CYBLE_LNS_PQ Position Quality Characteristic index

CYBLE_LNS_CP Location and Navigation Control Point Characteristic index

CYBLE_LNS_NV Navigation Characteristic index

CYBLE_LNS_CHAR_COUNT Total count of LNS Characteristics

CYBLE_LNS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_LNS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_LNS_CHAR_VALUE_T;

Description

LNS Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_LNS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_LNS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_LNS_CCCD,
 CYBLE_LNS_DESCR_COUNT
} CYBLE_LNS_DESCR_INDEX_T;

Description

LNS Service Characteristic Descriptors indexes

Members

Members Description

CYBLE_LNS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_LNS_DESCR_COUNT Total count of LNS Descriptors

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 391 of 482

CYBLE_LNS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_LNS_CHAR_INDEX_T charIndex;
 CYBLE_LNS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_LNS_DESCR_VALUE_T;

Description

LNS Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_LNS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_LNS_DESCR_INDEX_T descrIndex; Index of service Characteristic Descriptor

CYBLE_GATT_VALUE_T * value; Descriptor value

CYBLE_LNSC_CHAR_T

Prototype
typedef struct {
 uint8 properties;
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_LNS_DESCR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
} CYBLE_LNSC_CHAR_T;

Description

Location and Navigation Client Characteristic structure type

Members

Members Description

uint8 properties; Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle; Handle of server database attribute
value entry

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_LNS_DESCR_COUNT];

Location and Navigation client char.
Descriptor handle

Bluetooth Low Energy (BLE)

Page 392 of 482 Document Number: 001-91490 Rev. *B

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; Characteristic End Handle

CYBLE_LNSC_T

Prototype
typedef struct {
 CYBLE_LNSC_CHAR_T charInfo[CYBLE_LNS_CHAR_COUNT];
} CYBLE_LNSC_T;

Description

Structure with discovered attributes information of Location and Navigation Service

Members

Members Description

CYBLE_LNSC_CHAR_T charInfo[CYBLE_LNS_CHAR_COUNT]; Characteristics handle + properties array

CYBLE_LNSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_LNS_DESCR_COUNT]; }
CYBLE_LNSS_CHAR_T;

Description

Location and Navigation Server Characteristic structure type

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Handle of Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_LNS_DESCR_COUNT];

Handle of Descriptor

CYBLE_LNSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_LNSS_CHAR_T charInfo[CYBLE_LNS_CHAR_COUNT];
} CYBLE_LNSS_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 393 of 482

Description

Structure with Location and Navigation Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Location and Navigation Service handle

CYBLE_LNSS_CHAR_T
charInfo[CYBLE_LNS_CHAR_COUNT];

Location and Navigation Service Characteristics
info array

Next DST Change Service (NDCS)
This Service enables a BLE device that has knowledge about the next occurrence of a DST
change to expose this information to another Bluetooth device. The Service uses the "Time with
DST" Characteristic and the functions exposed in this Service are used to interact with that
Characteristic.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The NDSC API names begin with CyBle_Ndsc. In addition to this, the APIs also append the
GATT role initial letter in the API name.

NDCS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Ndsc

Functions

Function Description

CyBle_NdcsRegisterAttrCallback Registers a callback function for Next DST Change Service specific attribute
operations.

CyBle_NdcsRegisterAttrCallback

Prototype
void CyBle_NdcsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for Next DST Change Service specific attribute operations.

Bluetooth Low Energy (BLE)

Page 394 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for NDCS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.
eventParam contains the parameters corresponding to the current event.

Returns

None.

NDCS Server Functions
APIs unique to NDSC designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Ndscs

Functions

Function Description

CyBle_NdcssGetCharacteristicValue Gets a Characteristic value of the Next DST Change Service, which is
identified by charIndex.

CyBle_NdcssSetCharacteristicValue Sets Characteristic value of the Next DST Change Service, which is identified
by charIndex in the local database.

CyBle_NdcssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_NdcssGetCharacteristicValue(CYBLE_NDCS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the Next DST Change Service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_NDCS_CHAR_INDEX_T
charIndex

the index of a service Characteristic of type
CYBLE_NDCS_CHAR_INDEX_T.

uint8 attrSize the size of the Characteristic value attribute.

uint8 * attrValue the pointer to the location where Characteristic value data should be
stored.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 395 of 482

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request is handled successfully;

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameter failed.

CyBle_NdcssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_NdcssSetCharacteristicValue(CYBLE_NDCS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets Characteristic value of the Next DST Change Service, which is identified by charIndex in
the local database.

Parameters

Parameters Description

CYBLE_NDCS_CHAR_INDEX_T
charIndex

the index of a service Characteristic of type
CYBLE_NDCS_CHAR_INDEX_T.

uint8 attrSize the size of the Characteristic value attribute.

uint8 * attrValue the pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request is handled successfully;

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

NDCS Client Functions
APIs unique to NDSC designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Ndscc

Functions

Function Description

CyBle_NdcscGetCharacteristicValue Sends a request to peer device to set Characteristic value of the Next DST
Change Service, which is identified by charIndex.

Bluetooth Low Energy (BLE)

Page 396 of 482 Document Number: 001-91490 Rev. *B

CyBle_NdcscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_NdcscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_NDCS_CHAR_INDEX_T charIndex);

Description

Sends a request to peer device to set Characteristic value of the Next DST Change Service,
which is identified by charIndex.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle the connection handle.

CYBLE_NDCS_CHAR_INDEX_T charIndex the index of a service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request was sent successfully.

 CYBLE_ERROR_INVALID_STATE - connection with the client is not established.

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

NDCS Definitions and Data Structures
Contains the NDSC specific definitions and data structures used in the NDSC APIs.

Enumerations

Enumeration Description

CYBLE_NDCS_CHAR_INDEX_T Characteristic indexes

Structures

Structure Description

CYBLE_NDCS_CHAR_VALUE_T Next DST Change Service Characteristic Value parameter structure

CYBLE_NDCSC_T Structure with discovered attributes information of Next DST Change Service

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 397 of 482

CYBLE_NDCSS_T Structure with Device Information Service atribute handles

CYBLE_NDCS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_NDCS_TIME_WITH_DST,
 CYBLE_NDCS_CHAR_COUNT
} CYBLE_NDCS_CHAR_INDEX_T;

Description

Characteristic indexes

Members

Members Description

CYBLE_NDCS_TIME_WITH_DST Time with DST Characteristic index

CYBLE_NDCS_CHAR_COUNT Total count of NDCS Characteristics

CYBLE_NDCS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_NDCS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_NDCS_CHAR_VALUE_T;

Description

Next DST Change Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_NDCS_CHAR_INDEX_T charIndex; Index of Next DST Change Service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

Bluetooth Low Energy (BLE)

Page 398 of 482 Document Number: 001-91490 Rev. *B

CYBLE_NDCSC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T charInfo[CYBLE_NDCS_CHAR_COUNT]; } CYBLE_NDCSC_T;

Description

Structure with discovered attributes information of Next DST Change Service

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T charInfo[CYBLE_NDCS_CHAR_COUNT]; Characteristic handle + properties

CYBLE_NDCSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T timeWithDst;
} CYBLE_NDCSS_T;

Description

Structure with Device Information Service atribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Handle of the Next DST Change Service

CYBLE_GATT_DB_ATTR_HANDLE_T timeWithDst; Handle of the Time with DST Characteristic

Phone Alert Status Service (PASS)
The Phone Alert Status Service uses the Alert Status Characteristic and Ringer Setting
Characteristic to expose the phone alert status and uses the Ringer Control Point Characteristic
to control the phone's ringer into mute or enable.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The PASS API names begin with CyBle_Pass. In addition to this, the APIs also append the
GATT role initial letter in the API name.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 399 of 482

PASS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Pass

Functions

Function Description

CyBle_PassRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_PassRegisterAttrCallback

Prototype
void CyBle_PassRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for PASS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.
eventParam contains the parameters corresponding to the current event.

Returns

None.

PASS Server Functions
APIs unique to PASS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Passs

Functions

Function Description

CyBle_PasssGetCharacteristicValue Gets the value of a Characteristic which is identified by charIndex.

CyBle_PasssSetCharacteristicValue Sets the value of a Characteristic which is identified by charIndex.

Bluetooth Low Energy (BLE)

Page 400 of 482 Document Number: 001-91490 Rev. *B

CyBle_PasssGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the
service.

CyBle_PasssSendNotification Sends a notification of the specified by the charIndex Characteristic value.

CyBle_PasssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_PasssSetCharacteristicValue(CYBLE_PASS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets the value of a Characteristic which is identified by charIndex.

Parameters

Parameters Description

CYBLE_PASS_CHAR_INDEX_T
charIndex

the index of a service Characteristic.

uint8 attrSize the size of the Characteristic value attribute.

uint8 * attrValue the pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

CyBle_PasssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_PasssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a notification of the specified by the charIndex Characteristic value.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 401 of 482

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle the connection handle which consists of the device ID and ATT
connection ID.

CYBLE_PASS_CHAR_INDEX_T
charIndex

the index of a service Characteristic.

uint8 attrSize the size of the Characteristic value attribute.

uint8 * attrValue the pointer to the Characteristic value data that should be sent to the
client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

CyBle_PasssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_PasssGetCharacteristicValue(CYBLE_PASS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets the value of a Characteristic which is identified by charIndex.

Parameters

Parameters Description

CYBLE_PASS_CHAR_INDEX_T
charIndex

the index of a service Characteristic.

Bluetooth Low Energy (BLE)

Page 402 of 482 Document Number: 001-91490 Rev. *B

uint8 attrSize the size of the Characteristic value attribute.

uint8 * attrValue the pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

CyBle_PasssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_PasssGetCharacteristicDescriptor(CYBLE_PASS_CHAR_INDEX_T
charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic Descriptor of a specified Characteristic of the service.

Parameters

Parameters Description

CYBLE_PASS_CHAR_INDEX_T charIndex the index of the Characteristic.

CYBLE_PASS_DESCR_INDEX_T
descrIndex

the index of the Descriptor.

uint8 attrSize the size of the Descriptor value attribute.

uint8 * attrValue the pointer to the Descriptor value data that should be stored to the
GATT database.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 403 of 482

PASS Client Functions
APIs unique to PASS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Passc

Functions

Function Description

CyBle_PasscGetCharacteristicValue This function is used to read the Characteristic Value from a server which
is identified by the charIndex. The Read Response returns the
Characteristic Value in... more

CyBle_PasscSetCharacteristicValue This function is used to write the Characteristic (which is identified by
charIndex) value attribute to the server. The Write Response just confirms
the operation... more

CyBle_PasscGetCharacteristicDescriptor Gets a Characteristic Descriptor of a specified Characteristic of the
service.

CyBle_PasscSetCharacteristicDescriptor This function is used to write the Characteristic Value to the server which is
identified by the charIndex

CyBle_PasscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_PasscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic (which is identified by charIndex) value attribute
to the server.
The Write Response just confirms the operation success.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle the connection handle.

CYBLE_PASS_CHAR_INDEX_T
charIndex

the index of a service Characteristic.

uint8 attrSize the size of the Characteristic value attribute.

uint8 * attrValue the pointer to the Characteristic value data that should be sent to the
server device.

Bluetooth Low Energy (BLE)

Page 404 of 482 Document Number: 001-91490 Rev. *B

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the

 particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_PasscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_PasscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 * attrValue);

Description

This function is used to write the Characteristic Value to the server which is identified by the
charIndex

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle the connection handle.

CYBLE_PASS_CHAR_INDEX_T
charIndex

the index of a service Characteristic.

CYBLE_PASS_DESCR_INDEX_T
descrIndex

the index of a service Characteristic Descriptor.

uint8 attrSize the size of the Characteristic Descriptor value attribute.

uint8 * attrValue the pointer to the Characteristic Descriptor value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 405 of 482

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the

 particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_PasscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_PasscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex);

Description

This function is used to read the Characteristic Value from a server which is identified by the
charIndex
The Read Response returns the Characteristic Value in the Attribute Value parameter.
The Read Response only contains the Characteristic Value that is less than or equal to (MTU -
1) octets in length. If the Characteristic Value is greater than (MTU - 1) octets in length, the Read
Long Characteristic Value procedure may be used if the rest of the Characteristic Value is
required.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle the connection handle.

CYBLE_PASS_CHAR_INDEX_T charIndex the index of a service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The read request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

Bluetooth Low Energy (BLE)

Page 406 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_PasscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_PasscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex);

Description

Gets a Characteristic Descriptor of a specified Characteristic of the service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle the connection handle.

CYBLE_PASS_CHAR_INDEX_T charIndex the index of a service Characteristic.

CYBLE_PASS_DESCR_INDEX_T descrIndex the index of a service Characteristic Descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Descriptor

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 407 of 482

PASS Definitions and Data Structures
Contains the PASS specific definitions and data structures used in the PASS APIs.

Enumerations

Enumeration Description

CYBLE_PASS_CHAR_INDEX_T Service Characteristics indexes

CYBLE_PASS_CP_T Ringer Control Point values

CYBLE_PASS_DESCR_INDEX_T Service Characteristic Descriptors indexes

CYBLE_PASS_RS_T Ringer Setting values

Structures

Structure Description

CYBLE_PASS_CHAR_VALUE_T Phone Alert Status Service Characteristic value parameter structure

CYBLE_PASS_DESCR_VALUE_T Phone Alert Status Service Characteristic Descriptor value parameter structure

CYBLE_PASSC_CHAR_T Phone Alert Status Client Server's Characteristic structure type

CYBLE_PASSC_T Structure with discovered attributes information of Phone Alert Status Service

CYBLE_PASSS_CHAR_T Structure with Phone Alert Status Service Characteristics and Descriptors
attribute handles

CYBLE_PASSS_T Structure with Phone Alert Status Service attribute handles

CYBLE_PASSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_PASSS_CHAR_T charInfo[CYBLE_PASS_CHAR_COUNT];
} CYBLE_PASSS_T;

Description

Structure with Phone Alert Status Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Phone Alert Status Service handle

CYBLE_PASSS_CHAR_T
charInfo[CYBLE_PASS_CHAR_COUNT];

Phone Alert Status Service Characteristics info
array

Bluetooth Low Energy (BLE)

Page 408 of 482 Document Number: 001-91490 Rev. *B

CYBLE_PASSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_PASS_DESCR_COUNT]; }
CYBLE_PASSS_CHAR_T;

Description

Structure with Phone Alert Status Service Characteristics and Descriptors attribute handles.

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Handle of Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_PASS_DESCR_COUNT];

Handle of Descriptor

CYBLE_PASSC_T

Prototype
typedef struct {
 CYBLE_PASSC_CHAR_T charInfo[CYBLE_PASS_CHAR_COUNT];
} CYBLE_PASSC_T;

Description

Structure with discovered attributes information of Phone Alert Status Service

Members

Members Description

CYBLE_PASSC_CHAR_T charInfo[CYBLE_PASS_CHAR_COUNT]; Characteristics handle + properties array

CYBLE_PASSC_CHAR_T

Prototype
typedef struct {
 uint8 properties;
 CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_PASS_DESCR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
} CYBLE_PASSC_CHAR_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 409 of 482

Description

Phone Alert Status Client Server's Characteristic structure type

Members

Members Description

uint8 properties; Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle; Handle of server database attribute value
entry

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_PASS_DESCR_COUNT];

Phone Alert Status Client Characteristics
Descriptors handles

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; Characteristic End Handle

CYBLE_PASS_RS_T

Prototype
typedef enum {
 CYBLE_PASS_RS_SILENT,
 CYBLE_PASS_RS_NORMAL
} CYBLE_PASS_RS_T;

Description

Ringer Setting values

Members

Members Description

CYBLE_PASS_RS_SILENT Ringer Silent

CYBLE_PASS_RS_NORMAL Ringer Normal

CYBLE_PASS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_PASS_CHAR_INDEX_T charIndex;
 CYBLE_PASS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_PASS_DESCR_VALUE_T;

Description

Phone Alert Status Service Characteristic Descriptor value parameter structure.

Bluetooth Low Energy (BLE)

Page 410 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_PASS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_PASS_DESCR_INDEX_T descrIndex; Index of service Characteristic Descriptor

CYBLE_GATT_VALUE_T * value; Descriptor value

CYBLE_PASS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_PASS_CCCD,
 CYBLE_PASS_DESCR_COUNT
} CYBLE_PASS_DESCR_INDEX_T;

Description

Service Characteristic Descriptors indexes

Members

Members Description

CYBLE_PASS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_PASS_DESCR_COUNT Total count of PASS Descriptors

CYBLE_PASS_CP_T

Prototype
typedef enum {
 CYBLE_PASS_CP_SILENT = 1,
 CYBLE_PASS_CP_MUTE,
 CYBLE_PASS_CP_CANCEL
} CYBLE_PASS_CP_T;

Description

Ringer Control Point values

Members

Members Description

CYBLE_PASS_CP_SILENT = 1 Silent Mode

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 411 of 482

CYBLE_PASS_CP_MUTE Mute Once

CYBLE_PASS_CP_CANCEL Cancel Silent Mode

CYBLE_PASS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_PASS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_PASS_CHAR_VALUE_T;

Description

Phone Alert Status Service Characteristic value parameter structure.

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_PASS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_PASS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_PASS_AS,
 CYBLE_PASS_RS,
 CYBLE_PASS_CP,
 CYBLE_PASS_CHAR_COUNT
} CYBLE_PASS_CHAR_INDEX_T;

Description

Service Characteristics indexes

Members

Members Description

CYBLE_PASS_AS Alert Status Characteristic index

CYBLE_PASS_RS Ringer Setting Characteristic index

CYBLE_PASS_CP Ringer Control Point Characteristic index

Bluetooth Low Energy (BLE)

Page 412 of 482 Document Number: 001-91490 Rev. *B

CYBLE_PASS_CHAR_COUNT Total count of PASS Characteristics

Running Speed and Cadence Service (RSCS)
The Running Speed and Cadence (RSC) Service exposes speed, cadence and other data
related to fitness applications such as the stride length and the total distance the user has
travelled while using the Running Speed and Cadence sensor (Server).
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The RSCS API names begin with CyBle_Rscs. In addition to this, the APIs also append the
GATT role initial letter in the API name.

RSCS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Rscs

Functions

Function Description

CyBle_RscsRegisterAttrCallback Registers a callback function for Running Speed and Cadence Service specific
attribute operations.

CyBle_RscsRegisterAttrCallback

Prototype
void CyBle_RscsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for Running Speed and Cadence Service specific attribute
operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for RSCS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.
eventParam contains the parameters corresponding to the current event.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 413 of 482

Returns

None

RSCS Server Functions
APIs unique to RSCS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Rscss

Functions

Function Description

CyBle_RscssSetCharacteristicValue Sets the Characteristic value of the Running Speed and Cadence Service
in the local GATT database. The Characteristic is identified by charIndex.

CyBle_RscssGetCharacteristicValue Gets the Characteristic value of the Running Speed and Cadence Service
from the GATT database. The Characteristic is identified by charIndex.

CyBle_RscssGetCharacteristicDescriptor Gets the Characteristic Descriptor of a specified Characteristic of the
Running Speed and Cadence Service from the GATT database.

CyBle_RscssSendNotification Sends a notification with the Characteristic value to the Client device. This
is specified by charIndex of the Running Speed and Cadence Service.

CyBle_RscssSendIndication Sends an indication with a Characteristic value to the Client device. This is
specified by charIndex of the Running Speed and Cadence Service.

CyBle_RscssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_RscssSetCharacteristicValue(CYBLE_RSCS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets the Characteristic value of the Running Speed and Cadence Service in the local GATT
database. The Characteristic is identified by charIndex.

Parameters

Parameters Description

CYBLE_RSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic. Valid values are,
CYBLE_RSCS_RSC_FEATURE
CYBLE_RSCS_SENSOR_LOCATION.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Bluetooth Low Energy (BLE)

Page 414 of 482 Document Number: 001-91490 Rev. *B

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

CyBle_RscssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_RscssGetCharacteristicValue(CYBLE_RSCS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets the Characteristic value of the Running Speed and Cadence Service from the GATT
database. The Characteristic is identified by charIndex.

Parameters

Parameters Description

CYBLE_RSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic. Valid value is,
CYBLE_RSCS_SC_CONTROL_POINT.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular

 Characteristic

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 415 of 482

CyBle_RscssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_RscssGetCharacteristicDescriptor(CYBLE_RSCS_CHAR_INDEX_T
charIndex, CYBLE_RSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets the Characteristic Descriptor of a specified Characteristic of the Running Speed and
Cadence Service from the GATT database.

Parameters

Parameters Description

CYBLE_RSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic. Valid values are,
CYBLE_RSCS_RSC_MEASUREMENT
CYBLE_RSCS_SC_CONTROL_POINT

CYBLE_RSCS_DESCR_INDEX_T
descrIndex

The index of a service Characteristic Descriptor. Valid value is,
CYBLE_RSCS_CCCD

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Descriptor

CyBle_RscssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_RscssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a notification with the Characteristic value to the Client device. This is specified by
charIndex of the Running Speed and Cadence Service.

Bluetooth Low Energy (BLE)

Page 416 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_RSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic. Valid value is,
CYBLE_RSCS_RSC_MEASUREMENT

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

CyBle_RscssSendIndication

Prototype
CYBLE_API_RESULT_T CyBle_RscssSendIndication(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends an indication with a Characteristic value to the Client device. This is specified by
charIndex of the Running Speed and Cadence Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_RSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 417 of 482

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Characteristic

RSCS Client Functions
APIs unique to RSCS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Rscsc

Functions

Function Description

CyBle_RscscSetCharacteristicValue Sends a request to the peer device to get the Characteristic Descriptor of
the specified Characteristic of the Running Speed and Cadence Service.

CyBle_RscscGetCharacteristicValue Sends a request to the peer device to set the Characteristic value of the
Running Speed and Cadence Service.

CyBle_RscscSetCharacteristicDescriptor Sends a request to the peer device to get the Characteristic Descriptor of
the specified Characteristic of the Running Speed and Cadence Service.

CyBle_RscscGetCharacteristicDescriptor Sends a request to the peer device to get Characteristic Descriptor of the
specified Characteristic of the Running Speed and Cadence Service.

CyBle_RscscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_RscscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Bluetooth Low Energy (BLE)

Page 418 of 482 Document Number: 001-91490 Rev. *B

Description

Sends a request to the peer device to get the Characteristic Descriptor of the specified
Characteristic of the Running Speed and Cadence Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_RSCS_CHAR_INDEX_T
charIndex

The index of a service Characteristic.

uint8 attrSize Size of the Characteristic value attribute.

uint8 * attrValue Pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Characteristic

CyBle_RscscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_RscscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex);

Description

Sends a request to the peer device to set the Characteristic value of the Running Speed and
Cadence Service.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 419 of 482

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_RSCS_CHAR_INDEX_T charIndex The index of the service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Characteristic

CyBle_RscscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_RscscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_RSCS_CHAR_INDEX_T charIndex, CYBLE_RSCS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sends a request to the peer device to get the Characteristic Descriptor of the specified
Characteristic of the Running Speed and Cadence Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_RSCS_CHAR_INDEX_T
charIndex

The index of a RSCS Characteristic.

CYBLE_RSCS_DESCR_INDEX_T
descrIndex

The index of a RSCS Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor attribute.

Bluetooth Low Energy (BLE)

Page 420 of 482 Document Number: 001-91490 Rev. *B

uint8 * attrValue The pointer to the Characteristic Descriptor value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request was sent successfully

 CYBLE_ERROR_INVALID_STATE - connection with the client is not established

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Descriptor

CyBle_RscscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_RscscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 descrIndex);

Description

Sends a request to the peer device to get Characteristic Descriptor of the specified
Characteristic of the Running Speed and Cadence Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_RSCS_CHAR_INDEX_T charIndex The index of a Service Characteristic.

uint8 descrIndex The index of a Service Characteristic Descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 421 of 482

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_INVALID_OPERATION - Cannot process a request to send PDU due to
invalid operation performed by the application

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a
particular Descriptor

RSCS Definitions and Data Structures

RSCS Definitions and Data Structures
Contains the RSCS specific definitions and data structures used in the RSCS APIs.

Enumerations

Enumeration Description

CYBLE_RSCS_CHAR_INDEX_T RSCS Characteristic indexes

CYBLE_RSCS_DESCR_INDEX_T RSCS Characteristic Descriptors indexes

Structures

Structure Description

CYBLE_RSCS_CHAR_VALUE_T Running Speed and Cadence Service Characteristic Value parameter
structure

CYBLE_RSCS_DESCR_VALUE_T Running Speed and Cadence Service Characteristic Descriptor Value
parameter structure

CYBLE_RSCSC_T Structure with discovered attributes information of Running Speed
and Cadence Service

CYBLE_RSCSS_CHAR_T RSCS Characteristic with Descriptors

CYBLE_RSCSS_T Structure with Running Speed and Cadence Service attribute handles

CYBLE_SRVR_FULL_CHAR_INFO_T Service Full Characteristic information type

CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T RSCS Service Full Characteristic information type

CYBLE_RSCS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_RSCS_RSC_MEASUREMENT,

Bluetooth Low Energy (BLE)

Page 422 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_RSCS_RSC_FEATURE,
 CYBLE_RSCS_SENSOR_LOCATION,
 CYBLE_RSCS_SC_CONTROL_POINT,
 CYBLE_RSCS_CHAR_COUNT
} CYBLE_RSCS_CHAR_INDEX_T;

Description

RSCS Characteristic indexes

Members

Members Description

CYBLE_RSCS_RSC_MEASUREMENT RSC Measurement Characteristic index

CYBLE_RSCS_RSC_FEATURE RSC Feature Characteristic index

CYBLE_RSCS_SENSOR_LOCATION Sensor Location Characteristic index

CYBLE_RSCS_SC_CONTROL_POINT SC Control Point Characteristic index

CYBLE_RSCS_CHAR_COUNT Total count of RSCS Characteristics

CYBLE_RSCS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_RSCS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_RSCS_CHAR_VALUE_T;

Description

Running Speed and Cadence Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_RSCS_CHAR_INDEX_T charIndex; Index of Running Speed and Cadence Service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_RSCS_DESCR_INDEX_T

Prototype
typedef enum {

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 423 of 482

 CYBLE_RSCS_CCCD,
 CYBLE_RSCS_DESCR_COUNT
} CYBLE_RSCS_DESCR_INDEX_T;

Description

RSCS Characteristic Descriptors indexes

Members

Members Description

CYBLE_RSCS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_RSCS_DESCR_COUNT Total count of Descriptors

CYBLE_RSCS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_RSCS_CHAR_INDEX_T charIndex;
 CYBLE_RSCS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_RSCS_DESCR_VALUE_T;

Description

Running Speed and Cadence Service Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_RSCS_CHAR_INDEX_T charIndex; Characteristic index of the Service

CYBLE_RSCS_DESCR_INDEX_T descrIndex; Characteristic index Descriptor the Service

CYBLE_GATT_VALUE_T * value; Pointer to value of the Service Characteristic Descriptor

CYBLE_RSCSC_T

Prototype
typedef struct {
 CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T Characteristics[CYBLE_RSCS_CHAR_COUNT]; }
CYBLE_RSCSC_T;

Bluetooth Low Energy (BLE)

Page 424 of 482 Document Number: 001-91490 Rev. *B

Description

Structure with discovered attributes information of Running Speed and Cadence Service

Members

Members Description

CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T
Characteristics[CYBLE_RSCS_CHAR_COUNT];

Characteristics handles
array

CYBLE_RSCSS_CHAR_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T charHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle[CYBLE_RSCS_DESCR_COUNT]; }
CYBLE_RSCSS_CHAR_T;

Description

RSCS Characteristic with Descriptors

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T charHandle; Handle of the Characteristic
value

CYBLE_GATT_DB_ATTR_HANDLE_T
descrHandle[CYBLE_RSCS_DESCR_COUNT];

Handle of the Descriptor

CYBLE_RSCSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_RSCSS_CHAR_T charInfo[CYBLE_RSCS_CHAR_COUNT];
} CYBLE_RSCSS_T;

Description

Structure with Running Speed and Cadence Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Running Speed and Cadence Service handle

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 425 of 482

CYBLE_RSCSS_CHAR_T
charInfo[CYBLE_RSCS_CHAR_COUNT];

Array of Running Speed and Cadence Service
Characteristics +
Descriptors handles

CYBLE_SRVR_FULL_CHAR_INFO_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T charInfo;
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T descriptors[CYBLE_ANS_DESCR_COUNT]; }
CYBLE_SRVR_FULL_CHAR_INFO_T;

Description

Service Full Characteristic information type

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T charInfo; Characteristic handle +
properties

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; End handle of Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
Descriptors[CYBLE_ANS_DESCR_COUNT];

Characteristic Descriptors
handles

CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T charInfo;
 CYBLE_GATT_DB_ATTR_HANDLE_T descriptors[CYBLE_RSCS_DESCR_COUNT];
 CYBLE_GATT_DB_ATTR_HANDLE_T endHandle;
} CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T;

Description

RSCS Service Full Characteristic information type

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T charInfo; Characteristic handle + properties

CYBLE_GATT_DB_ATTR_HANDLE_T Characteristic Descriptors handles

Bluetooth Low Energy (BLE)

Page 426 of 482 Document Number: 001-91490 Rev. *B

Descriptors[CYBLE_RSCS_DESCR_COUNT]; handle

CYBLE_GATT_DB_ATTR_HANDLE_T endHandle; End handle of Characteristic

Reference Time Update Service (RTUS)
This Service enables a Bluetooth device that can update the system time using the reference
time such as a GPS receiver to expose a control point and expose the accuracy (drift) of the
local system time compared to the reference time source.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The RTUS API names begin with CyBle_Rtus. In addition to this, the APIs also append the
GATT role initial letter in the API name.

RTUS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Rtus

Functions

Function Description

CyBle_RtusRegisterAttrCallback Registers a callback function for Reference Time Update Service specific attribute
operations.

CyBle_RtusRegisterAttrCallback

Prototype
void CyBle_RtusRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for Reference Time Update Service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for RTUS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.
eventParam contains the parameters corresponding to the current event.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 427 of 482

Returns

None.

RTUS Server Functions
APIs unique to RTUS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Rtuss

Functions

Function Description

CyBle_RtussGetCharacteristicValue Gets a Characteristic value of the Reference Time Update Service, which is
identified by charIndex.

CyBle_RtussSetCharacteristicValue Sets Characteristic value of the Reference Time Update Service, which is
identified by charIndex in the local database.

CyBle_RtussGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_RtussGetCharacteristicValue(CYBLE_RTUS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the Reference Time Update Service, which is identified by
charIndex.

Parameters

Parameters Description

CYBLE_RTUS_CHAR_INDEX_T
charIndex

the index of a service Characteristic of type CYBLE_RTUS_CHAR_INDEX_T.
Valid value is CYBLE_RTUS_SC_CONTROL_POINT.

uint8 attrSize the size of the Characteristic value attribute.

uint8 * attrValue the pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request is handled successfully;

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameter failed.

Bluetooth Low Energy (BLE)

Page 428 of 482 Document Number: 001-91490 Rev. *B

CyBle_RtussSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_RtussSetCharacteristicValue(CYBLE_RTUS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets Characteristic value of the Reference Time Update Service, which is identified by charIndex
in the local database.

Parameters

Parameters Description

CYBLE_RTUS_CHAR_INDEX_T
charIndex

the index of a service Characteristic of type
CYBLE_RTUS_CHAR_INDEX_T.

uint8 attrSize the size of the Characteristic value attribute.

uint8 * attrValue the pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request is handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed

RTUS Client Functions
APIs unique to RTUS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Rtusc

Functions

Function Description

CyBle_RtuscSetCharacteristicValue Sends a request to a peer device to get Characteristic Descriptor of specified
Characteristic of the Reference Time Update Service.

CyBle_RtuscGetCharacteristicValue Sends a request to a peer device to set Characteristic value of the Reference
Time Update Service, which is identified by charIndex.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 429 of 482

CyBle_RtuscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_RtuscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RTUS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sends a request to a peer device to get Characteristic Descriptor of specified Characteristic of
the Reference Time Update Service.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle the connection handle.

CYBLE_RTUS_CHAR_INDEX_T
charIndex

the index of a service Characteristic.

uint8 attrSize size of the Characteristic value attribute.

uint8 * attrValue pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request was sent successfully;

 CYBLE_ERROR_INVALID_STATE - connection with the client is not established;

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

CyBle_RtuscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_RtuscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RTUS_CHAR_INDEX_T charIndex);

Description

Sends a request to a peer device to set Characteristic value of the Reference Time Update
Service, which is identified by charIndex.

Bluetooth Low Energy (BLE)

Page 430 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle the connection handle.

CYBLE_RTUS_CHAR_INDEX_T charIndex the index of a service Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - the request was sent successfully;

 CYBLE_ERROR_INVALID_STATE - connection with the client is not established.

 CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

RTUS Definitions and Data Structures
Contains the RTUS specific definitions and data structures used in the RTUS APIs.

Enumerations

Enumeration Description

CYBLE_RTUS_CHAR_INDEX_T Characteristic indexes

Structures

Structure

Description

CYBLE_RTUS_CHAR_VALUE_T

Reference Time Update Service Characteristic Value parameter structure

CYBLE_RTUSC_T

Structure with discovered attributes information of Reference Time Update
Service

CYBLE_RTUSS_T Structure with Reference Time Update Service atribute handles

CYBLE_RTUS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_RTUS_TIME_UPDATE_CONTROL_POINT,
 CYBLE_RTUS_TIME_UPDATE_STATE,
 CYBLE_RTUS_CHAR_COUNT
} CYBLE_RTUS_CHAR_INDEX_T;

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 431 of 482

Description

Characteristic indexes

Members

Members Description

CYBLE_RTUS_TIME_UPDATE_CONTROL_POINT Time Update Control Point Characteristic index

CYBLE_RTUS_TIME_UPDATE_STATE Time Update State Characteristic index

CYBLE_RTUS_CHAR_COUNT Total count of RTUS Characteristics

CYBLE_RTUS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_RTUS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_RTUS_CHAR_VALUE_T;

Description

Reference Time Update Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_RTUS_CHAR_INDEX_T charIndex; Index of Reference Time Update Service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_RTUSC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T charInfo[CYBLE_RTUS_CHAR_COUNT]; } CYBLE_RTUSC_T;

Description

Structure with discovered attributes information of Reference Time Update Service

Bluetooth Low Energy (BLE)

Page 432 of 482 Document Number: 001-91490 Rev. *B

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T charInfo[CYBLE_RTUS_CHAR_COUNT]; Characteristic handle + properties

CYBLE_RTUSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T timeUpdateCpHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T timeUpdateStateHandle;
} CYBLE_RTUSS_T;

Description

Structure with Reference Time Update Service atribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Handle of the Reference Time Update Service

CYBLE_GATT_DB_ATTR_HANDLE_T
timeUpdateCpHandle;

Handle of the Time Update Control Point
Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
timeUpdateStateHandle;

Handle of the Time Update State Characteristic

Scan Parameters Service (ScPS)
The Scan Parameters Service enables a Server device to expose a Characteristic for the GATT
Client to write its scan interval and scan window on the Server device, and enables a Server to
request a refresh of the GATT Client scan interval and scan window.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The ScPS API names begin with CyBle_Scps. In addition to this, the APIs also append the
GATT role initial letter in the API name.

ScPS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Scps

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 433 of 482

Functions

Function Description

CyBle_ScpsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_ScpsRegisterAttrCallback

Prototype
void CyBle_ScpsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for ScPS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
• eventCode indicates the event that triggered this callback.
• eventParam contains the parameters corresponding to the current event.

Returns

None

ScPS Server Functions
APIs unique to ScPS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Scpss

Functions

Function Description

CyBle_ScpssSetCharacteristicValue Sets a Characteristic value of the Scan Parameters service, which is
identified by charIndex.

CyBle_ScpssGetCharacteristicValue Gets a Characteristic value of the Scan Parameters service, which is
identified by charIndex.

CyBle_ScpssGetCharacteristicDescriptor Gets a Characteristic Descriptor of the specified Characteristic of the Scan
Parameters service.

CyBle_ScpssSendNotification This function notifies the client that the server requires the Scan Interval
Window Characteristic to be written with the latest values upon notification.
The CYBLE_EVT_SCPSC_NOTIFICATION... more

Bluetooth Low Energy (BLE)

Page 434 of 482 Document Number: 001-91490 Rev. *B

CyBle_ScpssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_ScpssSetCharacteristicValue(CYBLE_SCPS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets a Characteristic value of the Scan Parameters service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_SCPS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.
• CYBLE_SCPS_SCAN_INT_WIN - The Scan Interval Window

Characteristic index
• CYBLE_SCPS_SCAN_REFRESH - The Scan Refresh

Characteristic index

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional Characteristic is
absent

CyBle_ScpssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_ScpssGetCharacteristicValue(CYBLE_SCPS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic value of the Scan Parameters service, which is identified by charIndex.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 435 of 482

Parameters

Parameters Description

CYBLE_SCPS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.
• CYBLE_SCPS_SCAN_INT_WIN - The Scan Interval Window

Characteristic index
• CYBLE_SCPS_SCAN_REFRESH - The Scan Refresh

Characteristic index

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic value data should be
stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Characteristic is
absent

CyBle_ScpssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_ScpssGetCharacteristicDescriptor(CYBLE_SCPS_CHAR_INDEX_T
charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 * attrValue);

Description

Gets a Characteristic Descriptor of the specified Characteristic of the Scan Parameters service.

Parameters

Parameters Description

CYBLE_SCPS_CHAR_INDEX_T
charIndex

The index of the Characteristic.
• CYBLE_SCPS_SCAN_REFRESH - The Scan Refresh Characteristic

index

CYBLE_SCPS_DESCR_INDEX_T
descrIndex

The index of the Descriptor.
• CYBLE_SCPS_SCAN_REFRESH_CCCD - The Client Characteristic

Configuration Descriptor index of the Scan Refresh Characteristic

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where the Characteristic Descriptor value data

Bluetooth Low Energy (BLE)

Page 436 of 482 Document Number: 001-91490 Rev. *B

should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

CyBle_ScpssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_ScpssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

This function notifies the client that the server requires the Scan Interval Window Characteristic
to be written with the latest values upon notification.
The CYBLE_EVT_SCPSC_NOTIFICATION event is received by the peer device, on invoking
this function.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle

CYBLE_SCPS_CHAR_INDEX_T
charIndex

The index of the Characteristic.
• CYBLE_SCPS_SCAN_REFRESH - The Scan Refresh

Characteristic index

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 437 of 482

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

 CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

ScPS Client Functions
APIs unique to ScPS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Scpsc

Functions

Function Description

CyBle_ScpscSetCharacteristicValue Sets a Characteristic value of the Scan Parameters Service, which is
identified by charIndex. This function call can result in generation of the
following events... more

CyBle_ScpscSetCharacteristicDescriptor Sets Characteristic Descriptor of specified Characteristic of the Scan
Parameters Service. This function call can result in generation of the
following events based on the... more

CyBle_ScpscGetCharacteristicDescriptor Gets Characteristic Descriptor of specified Characteristic of the Scan
Parameters Service. This function call can result in generation of the
following events based on the... more

CyBle_ScpscSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_ScpscSetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 * attrValue);

Description

Sets a Characteristic value of the Scan Parameters Service, which is identified by charIndex.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_GATTC_WRITE_RSP

 CYBLE_EVT_GATTC_ERROR_RSP
The CYBLE_EVT_SCPSS_SCAN_INT_WIN_CHAR_WRITE event is received by the peer
device on invoking this function.

Bluetooth Low Energy (BLE)

Page 438 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_SCPS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

CyBle_ScpscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_ScpscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sets Characteristic Descriptor of specified Characteristic of the Scan Parameters Service.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_SCPSC_WRITE_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP
Following events can be received by the peer device on invoking this function:

 CYBLE_EVT_SCPSS_NOTIFICATION_ENABLED

 CYBLE_EVT_SCPSS_NOTIFICATION_DISABLED

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 439 of 482

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_SCPS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

CYBLE_SCPS_DESCR_INDEX_T
descrIndex

The index of the service Characteristic Descriptor.

uint8 attrSize The size of the Descriptor value attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that should be
sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Characteristic

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

CyBle_ScpscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_ScpscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex);

Description

Gets Characteristic Descriptor of specified Characteristic of the Scan Parameters Service.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_SCPSC_READ_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Bluetooth Low Energy (BLE)

Page 440 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_SCPS_CHAR_INDEX_T charIndex The index of a Service Characteristic.

CYBLE_SCPS_DESCR_INDEX_T descrIndex The index of a Service Characteristic Descriptor.

Returns

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - The state is not valid

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have
the particular Descriptor

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute

ScPS Definitions and Data Structures
Contains the ScPS specific definitions and data structures used in the ScPS APIs.

Enumerations

Enumeration Description

CYBLE_SCPS_CHAR_INDEX_T ScPS Characteristic indexes

CYBLE_SCPS_DESCR_INDEX_T ScPS Characteristic Descriptors indexes

Structures

Structure Description

CYBLE_SCPS_CHAR_VALUE_T Scan Parameters Service Characteristic Value parameter structure

CYBLE_SCPS_DESCR_VALUE_T Scan Parameters Service Characteristic Descriptor Value parameter structure

CYBLE_SCPSC_T Structure with discovered attributes information of Scan Parameters Service

CYBLE_SCPSS_T Structure with Scan Parameters Service attribute handles

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 441 of 482

CYBLE_SCPS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_SCPS_SCAN_INT_WIN,
 CYBLE_SCPS_SCAN_REFRESH,
 CYBLE_SCPS_CHAR_COUNT
} CYBLE_SCPS_CHAR_INDEX_T;

Description

ScPS Characteristic indexes

Members

Members Description

CYBLE_SCPS_SCAN_INT_WIN Scan Interval Window Characteristic index

CYBLE_SCPS_SCAN_REFRESH Scan Refresh Characteristic index

CYBLE_SCPS_CHAR_COUNT Total count of Characteristics

CYBLE_SCPS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_SCPS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_SCPS_CHAR_VALUE_T;

Description

Scan Parameters Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_SCPS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_GATT_VALUE_T * value; Characteristic value

CYBLE_SCPS_DESCR_INDEX_T

Prototype
typedef enum {
 CYBLE_SCPS_SCAN_REFRESH_CCCD,
 CYBLE_SCPS_DESCR_COUNT
} CYBLE_SCPS_DESCR_INDEX_T;

Bluetooth Low Energy (BLE)

Page 442 of 482 Document Number: 001-91490 Rev. *B

Description

ScPS Characteristic Descriptors indexes

Members

Members Description

CYBLE_SCPS_SCAN_REFRESH_CCCD Client Characteristic Configuration Descriptor index

CYBLE_SCPS_DESCR_COUNT Total count of Descriptors

CYBLE_SCPS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_SCPS_CHAR_INDEX_T charIndex;
 CYBLE_SCPS_DESCR_INDEX_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_SCPS_DESCR_VALUE_T;

Description

Scan Parameters Service Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_SCPS_CHAR_INDEX_T charIndex; Index of service Characteristic

CYBLE_SCPS_DESCR_INDEX_T descrIndex; Index of service Characteristic Descriptor

CYBLE_GATT_VALUE_T * value; Descriptor value

CYBLE_SCPSC_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_SRVR_CHAR_INFO_T intervalWindowChar;
 CYBLE_SRVR_CHAR_INFO_T refreshChar;
 CYBLE_GATT_DB_ATTR_HANDLE_T refreshCccdHandle;
} CYBLE_SCPSC_T;

Description

Structure with discovered attributes information of Scan Parameters Service

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 443 of 482

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Peer device handle

CYBLE_SRVR_CHAR_INFO_T intervalWindowChar; Handle + properties of Scan Interval Window
Characteristic

CYBLE_SRVR_CHAR_INFO_T refreshChar; Handle + properties of Scan Refresh Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
refreshCccdHandle;

Handle of Client Characteristic Configuration
Descriptor

CYBLE_SCPSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T intervalWindowCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T refreshCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T refreshCccdHandle;
} CYBLE_SCPSS_T;

Description

Structure with Scan Parameters Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Scan Parameter Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T
intervalWindowCharHandle;

Handle of Scan Interval Window Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T refreshCharHandle; Handle of Scan Refresh Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T refreshCccdHandle; Handle of Client Characteristic Configuration
Descriptor

TX Power Service (TPS)
The Tx Power Service uses the Tx Power Level Characteristic to expose the current transmit
power level of a device when in a connection.
Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.
The TPS API names begin with CyBle_Tps. In addition to this, the APIs also append the GATT
role initial letter in the API name.

Bluetooth Low Energy (BLE)

Page 444 of 482 Document Number: 001-91490 Rev. *B

TPS Server and Client Function
These are APIs common to both GATT Client role and GATT Server role. You may use them in
either roles.
No letter is appended to the API name: CyBle_Tps

Functions

Function Description

CyBle_TpsRegisterAttrCallback Registers a callback function for service specific attribute operations.

CyBle_TpsRegisterAttrCallback

Prototype
void CyBle_TpsRegisterAttrCallback(CYBLE_CALLBACK_T callbackFunc);

Description

Registers a callback function for service specific attribute operations.

Parameters

Parameters Description

CYBLE_CALLBACK_T
callbackFunc

 An application layer event callback function to receive events from the BLE
Component. The definition of CYBLE_CALLBACK_T for TPS is,
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
eventCode indicates the event that triggered this callback.
eventParam contains the parameters corresponding to the current event.

Returns

None

Side Effects

The *eventParams in the callback function should not be used by the application once the
callback function execution is finished. Otherwise this data may become corrupted.

TPS Server Functions
APIs unique to TPS designs configured as a GATT Server role.
A letter 's' is appended to the API name: CyBle_Tpss

Functions

Function Description

CyBle_TpssSetCharacteristicValue Sets Characteristic value of the Tx Power Service, which is identified by
charIndex.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 445 of 482

CyBle_TpssGetCharacteristicValue Gets Characteristic value of the Tx Power Service, which is identified by
charIndex.

CyBle_TpssGetCharacteristicDescriptor Gets Characteristic Descriptor of specified Characteristic of the Tx Power
Service.

CyBle_TpssSendNotification Sends a notification with the Characteristic value, as specified by
charIndex, to the Client device. The CYBLE_EVT_TPSC_NOTIFICATION
event is received by the peer device on... more

CyBle_TpssSetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_TpssSetCharacteristicValue(CYBLE_TPS_CHAR_INDEX_T charIndex,
uint8 attrSize, int8 * attrValue);

Description

Sets Characteristic value of the Tx Power Service, which is identified by charIndex.

Parameters

Parameters Description

CYBLE_TPS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

int8 * attrValue The pointer to the Characteristic value data that should be sent to the
server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The Characteristic value was read successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameters failed.

CyBle_TpssGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_TpssGetCharacteristicValue(CYBLE_TPS_CHAR_INDEX_T charIndex,
uint8 attrSize, int8 * attrValue);

Description

Gets Characteristic value of the Tx Power Service, which is identified by charIndex.

Bluetooth Low Energy (BLE)

Page 446 of 482 Document Number: 001-91490 Rev. *B

Parameters

Parameters Description

CYBLE_TPS_CHAR_INDEX_T
charIndex

The index of the Tx Power Characteristic.

uint8 attrSize The size of the Tx Power Characteristic value attribute.

int8 * attrValue The pointer to the location where Tx Power Characteristic value data
should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - Characteristic value was read successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

CyBle_TpssGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_TpssGetCharacteristicDescriptor(CYBLE_TPS_CHAR_INDEX_T
charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *
attrValue);

Description

Gets Characteristic Descriptor of specified Characteristic of the Tx Power Service.

Parameters

Parameters Description

CYBLE_TPS_CHAR_INDEX_T charIndex The index of the Characteristic.

CYBLE_TPS_CHAR_DESCRIPTORS_T
descrIndex

The index of the Descriptor.

uint8 attrSize The size of the Characteristic value attribute.

uint8 * attrValue The pointer to the location where Characteristic Descriptor
value data should be stored.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - Characteristic Descriptor value was read successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameters failed

 CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional Descriptor is absent

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 447 of 482

CyBle_TpssSendNotification

Prototype
CYBLE_API_RESULT_T CyBle_TpssSendNotification(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex, uint8 attrSize, int8 * attrValue);

Description

Sends a notification with the Characteristic value, as specified by charIndex, to the Client device.
The CYBLE_EVT_TPSC_NOTIFICATION event is received by the peer device on invoking this
function.

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T
connHandle

The connection handle.

CYBLE_TPS_CHAR_INDEX_T
charIndex

The index of the service Characteristic.

uint8 attrSize The size of the Characteristic value attribute.

int8 * attrValue The pointer to the Characteristic value data that should be sent to the
Client device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request handled successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter failed.

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic.

 CYBLE_ERROR_INVALID_STATE - Connection with client is not established.

 CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

TPS Client Functions
APIs unique to TPS designs configured as a GATT Client role.
A letter 'c' is appended to the API name: CyBle_Tpsc

Bluetooth Low Energy (BLE)

Page 448 of 482 Document Number: 001-91490 Rev. *B

Functions

Functions Description

CyBle_TpscGetCharacteristicValue Gets the Characteristic value of the TX Power service, which is identified by
charIndex. This function call can result in generation of the following events...
more

CyBle_TpscSetCharacteristicDescriptor Sets a Characteristic Descriptor value of the Tx Power Service. This function
call can result in generation of the following events based on the response...
more

CyBle_TpscGetCharacteristicDescriptor Gets a Characteristic Descriptor of the Tx Power Service. This function call
can result in generation of the following events based on the response
from... more

CyBle_TpscGetCharacteristicValue

Prototype
CYBLE_API_RESULT_T CyBle_TpscGetCharacteristicValue(CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex);

Description

Gets the Characteristic value of the TX Power service, which is identified by charIndex.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_TPSC_READ_CHAR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_TPS_CHAR_INDEX_T charIndex The index of the Characteristic.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - Request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

 CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this Characteristic

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 449 of 482

CyBle_TpscSetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_TpscSetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex,
uint8 attrSize, uint8 * attrValue);

Description

Sets a Characteristic Descriptor value of the Tx Power Service.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_TPSC_WRITE_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP
Following events can be received by the peer device, on invoking this function:

 CYBLE_EVT_TPSS_NOTIFICATION_ENABLED

 CYBLE_EVT_TPSS_NOTIFICATION_DISABLED

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_TPS_CHAR_INDEX_T charIndex The index of the Characteristic

CYBLE_TPS_CHAR_DESCRIPTORS_T
descrIndex

The index of the TX Power Service Characteristic Descriptor.

uint8 attrSize The size of the Characteristic Descriptor attribute.

uint8 * attrValue The pointer to the Characteristic Descriptor value data that
should be sent to the server device.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - The request was sent successfully

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

 CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

 CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the
specified attribute.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed

Bluetooth Low Energy (BLE)

Page 450 of 482 Document Number: 001-91490 Rev. *B

CyBle_TpscGetCharacteristicDescriptor

Prototype
CYBLE_API_RESULT_T CyBle_TpscGetCharacteristicDescriptor(CYBLE_CONN_HANDLE_T
connHandle, CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex);

Description

Gets a Characteristic Descriptor of the Tx Power Service.
This function call can result in generation of the following events based on the response from the
server device:

 CYBLE_EVT_TPSC_READ_DESCR_RESPONSE

 CYBLE_EVT_GATTC_ERROR_RSP

Parameters

Parameters Description

CYBLE_CONN_HANDLE_T connHandle The connection handle.

CYBLE_TPS_CHAR_INDEX_T charIndex The index of the Characteristic.

CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex The index of the Characteristic Descriptor.

Returns

Return value is of type CYBLE_API_RESULT_T.

 CYBLE_ERROR_OK - Request was sent successfully.

 CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

 CYBLE_ERROR_INVALID_STATE - The Component is in invalid state for current
operation.

 CYBLE_ERROR_MEMORY_ALLOCATION_FAILED -Memory allocation failed.

 CYBLE_ERROR_INVALID_OPERATION - Cannot process request to send PDU due to
invalid operation performed by the application.

TPS Definitions and Data Structures
Contains the TPS specific definitions and data structures used in the TPS APIs.

Enumerations

Enumeration Description

CYBLE_TPS_CHAR_DESCRIPTORS_T TPS Characteristic Descriptors indexes

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 451 of 482

CYBLE_TPS_CHAR_INDEX_T TPS Characteristic indexes

Structures

Structure Description

CYBLE_TPS_CHAR_VALUE_T Tx Power Service Characteristic Value parameter structure

CYBLE_TPS_DESCR_VALUE_T Tx Power Service Characteristic Descriptor Value parameter structure

CYBLE_TPSC_T Structure with discovered attributes information of Tx Power Service

CYBLE_TPSS_T Structure with Tx Power Service attribute handles

CYBLE_TPS_CHAR_DESCRIPTORS_T

Prototype
typedef enum {
 CYBLE_TPS_CCCD,
 CYBLE_TPS_DESCR_COUNT
} CYBLE_TPS_CHAR_DESCRIPTORS_T;

Description

TPS Characteristic Descriptors indexes

Members

Members Description

CYBLE_TPS_CCCD Tx Power Level Client Characteristic configuration Descriptor index

CYBLE_TPS_DESCR_COUNT Total count of Tx Power Service Characteristic Descriptors

CYBLE_TPS_CHAR_INDEX_T

Prototype
typedef enum {
 CYBLE_TPS_TX_POWER_LEVEL,
 CYBLE_TPS_CHAR_COUNT
} CYBLE_TPS_CHAR_INDEX_T;

Description

TPS Characteristic indexes

Members

Members Description

CYBLE_TPS_TX_POWER_LEVEL Tx Power Level Characteristic index

CYBLE_TPS_CHAR_COUNT Total count of Characteristics

Bluetooth Low Energy (BLE)

Page 452 of 482 Document Number: 001-91490 Rev. *B

CYBLE_TPS_CHAR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_TPS_CHAR_INDEX_T charIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_TPS_CHAR_VALUE_T;

Description

Tx Power Service Characteristic Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_TPS_CHAR_INDEX_T charIndex; Characteristic index of Tx Power Service

CYBLE_GATT_VALUE_T * value; Pointer to value of Tx Power Service Characteristic

CYBLE_TPS_DESCR_VALUE_T

Prototype
typedef struct {
 CYBLE_CONN_HANDLE_T connHandle;
 CYBLE_TPS_CHAR_INDEX_T charIndex;
 CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex;
 CYBLE_GATT_VALUE_T * value;
} CYBLE_TPS_DESCR_VALUE_T;

Description

Tx Power Service Characteristic Descriptor Value parameter structure

Members

Members Description

CYBLE_CONN_HANDLE_T connHandle; Connection handle

CYBLE_TPS_CHAR_INDEX_T charIndex; Characteristic index of Tx Power Service

CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex; Characteristic index Descriptor of Tx Power Service

CYBLE_GATT_VALUE_T * value; Pointer to value of Tx Power Service Characteristic

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 453 of 482

CYBLE_TPSC_T

Prototype
typedef struct {
 CYBLE_SRVR_CHAR_INFO_T txPowerLevelChar;
 CYBLE_GATT_DB_ATTR_HANDLE_T txPowerLevelCccdHandle;
} CYBLE_TPSC_T;

Description

Structure with discovered attributes information of Tx Power Service

Members

Members Description

CYBLE_SRVR_CHAR_INFO_T txPowerLevelChar; Tx Power Level Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T
txPowerLevelCccdHandle;

Tx Power Level Client Characteristic Configuration
Descriptor handle

CYBLE_TPSS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T txPowerLevelCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T txPowerLevelCccdHandle;
} CYBLE_TPSS_T;

Description

Structure with Tx Power Service attribute handles

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle; Tx Power Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T
txPowerLevelCharHandle;

Tx Power Level Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T
txPowerLevelCccdHandle;

Tx Power Level Client Characteristic Configuration
Descriptor handle

Custom Service
This section contains the CYBLE_CUSTOMS_INFO_T and CYBLE_CUSTOMS_T structs used for Custom
Serivces.

Bluetooth Low Energy (BLE)

Page 454 of 482 Document Number: 001-91490 Rev. *B

Structures

Structure Description

CYBLE_CUSTOMS_INFO_T Below are the indexes and handles of the defined Custom Services and their
Characteristics

CYBLE_CUSTOMS_T Structure with Custom Service attribute handles.

CYBLE_CUSTOMS_INFO_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T customServiceCharHandle;
 CYBLE_GATT_DB_ATTR_HANDLE_T
customServiceCharDescriptors[CYBLE_CUSTOM_SERVICE_CHAR_DESCRIPTORS_COUNT]; }
CYBLE_CUSTOMS_INFO_T;

Description

Below are the indexes and handles of the defined Custom Services and their Characteristics

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T customServiceCharHandle; Custom Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T
customServiceCharDescriptors[CYBLE_CUSTOM_SERVICE_CHAR_D
ESCRIPTORS_COUNT];

Custom Characteristic Descriptors
handles

CYBLE_CUSTOMS_T

Prototype
typedef struct {
 CYBLE_GATT_DB_ATTR_HANDLE_T customServiceHandle;
 CYBLE_CUSTOMS_INFO_T customServiceInfo[CYBLE_CUSTOM_SERVICE_CHAR_COUNT]; }
CYBLE_CUSTOMS_T;

Description

Structure with Custom Service attribute handles.

Members

Members Description

CYBLE_GATT_DB_ATTR_HANDLE_T customServiceHandle; Handle of a Custom Service

CYBLE_CUSTOMS_INFO_T
customServiceInfo[CYBLE_CUSTOM_SERVICE_CHAR_COUNT];

Information about Custom Characteristics

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 455 of 482

BLE Service-Specific Events
The BLE stack generates service-specific events to notify the application that a service specific
status change needs attention. For general stack events, refer to BLE Common Events.

CYBLE_EVT_T

Prototype
typedef enum {
 CYBLE_EVT_GATTS_INDICATION_ENABLED,
 CYBLE_EVT_GATTS_INDICATION_DISABLED,
 CYBLE_EVT_GATTC_INDICATION,
 CYBLE_EVT_GATTC_SRVC_DISCOVERY_FAILED,
 CYBLE_EVT_GATTC_INCL_DISCOVERY_FAILED,
 CYBLE_EVT_GATTC_CHAR_DISCOVERY_FAILED,
 CYBLE_EVT_GATTC_DESCR_DISCOVERY_FAILED,
 CYBLE_EVT_GATTC_SRVC_DUPLICATION,
 CYBLE_EVT_GATTC_CHAR_DUPLICATION,
 CYBLE_EVT_GATTC_DESCR_DUPLICATION,
 CYBLE_EVT_GATTC_SRVC_DISCOVERY_COMPLETE,
 CYBLE_EVT_GATTC_INCL_DISCOVERY_COMPLETE,
 CYBLE_EVT_GATTC_CHAR_DISCOVERY_COMPLETE,
 CYBLE_EVT_GATTC_DISCOVERY_COMPLETE,
 CYBLE_EVT_ANSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_ANSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_ANSS_CHAR_WRITE,
 CYBLE_EVT_ANSC_NOTIFICATION,
 CYBLE_EVT_ANSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_ANSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_ANSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_ANSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_BASS_NOTIFICATION_ENABLED,
 CYBLE_EVT_BASS_NOTIFICATION_DISABLED,
 CYBLE_EVT_BASC_NOTIFICATION,
 CYBLE_EVT_BASC_READ_CHAR_RESPONSE,
 CYBLE_EVT_BASC_READ_DESCR_RESPONSE,
 CYBLE_EVT_BASC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_BLSS_INDICATION_ENABLED,
 CYBLE_EVT_BLSS_INDICATION_DISABLED,
 CYBLE_EVT_BLSS_INDICATION_CONFIRMED,
 CYBLE_EVT_BLSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_BLSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_BLSC_INDICATION,
 CYBLE_EVT_BLSC_NOTIFICATION,
 CYBLE_EVT_BLSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_BLSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_BLSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_CPSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_CPSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_CPSS_INDICATION_ENABLED,
 CYBLE_EVT_CPSS_INDICATION_DISABLED,
 CYBLE_EVT_CPSS_INDICATION_CONFIRMED,
 CYBLE_EVT_CPSS_BROADCAST_ENABLED,
 CYBLE_EVT_CPSS_BROADCAST_DISABLED,

Bluetooth Low Energy (BLE)

Page 456 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_EVT_CPSS_CHAR_WRITE,
 CYBLE_EVT_CPSC_NOTIFICATION,
 CYBLE_EVT_CPSC_INDICATION,
 CYBLE_EVT_CPSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_CPSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_CPSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_CPSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_CPSC_SCAN_PROGRESS_RESULT,
 CYBLE_EVT_CSCSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_CSCSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_CSCSS_INDICATION_ENABLED,
 CYBLE_EVT_CSCSS_INDICATION_DISABLED,
 CYBLE_EVT_CSCSS_INDICATION_CONFIRMATION,
 CYBLE_EVT_CSCSS_CHAR_WRITE,
 CYBLE_EVT_CSCSC_NOTIFICATION,
 CYBLE_EVT_CSCSC_INDICATION,
 CYBLE_EVT_CSCSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_CSCSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_CSCSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_CSCSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_CTSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_CTSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_CTSC_NOTIFICATION,
 CYBLE_EVT_CTSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_CTSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_CTSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_DISC_READ_CHAR_RESPONSE,
 CYBLE_EVT_GLSS_INDICATION_ENABLED,
 CYBLE_EVT_GLSS_INDICATION_DISABLED,
 CYBLE_EVT_GLSS_INDICATION_CONFIRMED,
 CYBLE_EVT_GLSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_GLSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_GLSS_WRITE_CHAR,
 CYBLE_EVT_GLSC_INDICATION,
 CYBLE_EVT_GLSC_NOTIFICATION,
 CYBLE_EVT_GLSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_GLSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_GLSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_GLSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_HIDSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_HIDSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_HIDSS_BOOT_MODE_ENTER,
 CYBLE_EVT_HIDSS_REPORT_MODE_ENTER,
 CYBLE_EVT_HIDSS_SUSPEND,
 CYBLE_EVT_HIDSS_EXIT_SUSPEND,
 CYBLE_EVT_HIDSS_REPORT_CHAR_WRITE,
 CYBLE_EVT_HIDSC_NOTIFICATION,
 CYBLE_EVT_HIDSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_HIDSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_HIDSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_HIDSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_HRSS_ENERGY_EXPENDED_RESET,
 CYBLE_EVT_HRSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_HRSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_HRSC_NOTIFICATION,

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 457 of 482

 CYBLE_EVT_HRSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_HRSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_HRSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_HRSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_HTSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_HTSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_HTSS_INDICATION_ENABLED,
 CYBLE_EVT_HTSS_INDICATION_DISABLED,
 CYBLE_EVT_HTSS_INDICATION_CONFIRMED,
 CYBLE_EVT_HTSS_CHAR_WRITE,
 CYBLE_EVT_HTSC_NOTIFICATION,
 CYBLE_EVT_HTSC_INDICATION,
 CYBLE_EVT_HTSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_HTSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_HTSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_HTSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_IASS_WRITE_CHAR_CMD,
 CYBLE_EVT_LLSS_WRITE_CHAR_REQ,
 CYBLE_EVT_LLSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_LLSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_LNSS_INDICATION_ENABLED,
 CYBLE_EVT_LNSS_INDICATION_DISABLED,
 CYBLE_EVT_LNSS_INDICATION_CONFIRMED,
 CYBLE_EVT_LNSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_LNSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_LNSS_WRITE_CHAR,
 CYBLE_EVT_LNSC_INDICATION,
 CYBLE_EVT_LNSC_NOTIFICATION,
 CYBLE_EVT_LNSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_LNSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_LNSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_LNSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_NDCSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_PASSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_PASSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_PASSS_WRITE_CHAR,
 CYBLE_EVT_PASSC_NOTIFICATION,
 CYBLE_EVT_PASSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_PASSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_PASSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_PASSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_RSCSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_RSCSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_RSCSS_INDICATION_ENABLED,
 CYBLE_EVT_RSCSS_INDICATION_DISABLED,
 CYBLE_EVT_RSCSS_INDICATION_CONFIRMATION,
 CYBLE_EVT_RSCSS_CHAR_WRITE,
 CYBLE_EVT_RSCSC_NOTIFICATION,
 CYBLE_EVT_RSCSC_INDICATION,
 CYBLE_EVT_RSCSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_RSCSC_WRITE_CHAR_RESPONSE,
 CYBLE_EVT_RSCSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_RSCSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_RTUSS_WRITE_CHAR_CMD,
 CYBLE_EVT_RTUSC_READ_CHAR_RESPONSE,

Bluetooth Low Energy (BLE)

Page 458 of 482 Document Number: 001-91490 Rev. *B

 CYBLE_EVT_SCPSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_SCPSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_SCPSS_SCAN_INT_WIN_CHAR_WRITE,
 CYBLE_EVT_SCPSC_NOTIFICATION,
 CYBLE_EVT_SCPSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_SCPSC_WRITE_DESCR_RESPONSE,
 CYBLE_EVT_TPSS_NOTIFICATION_ENABLED,
 CYBLE_EVT_TPSS_NOTIFICATION_DISABLED,
 CYBLE_EVT_TPSC_NOTIFICATION,
 CYBLE_EVT_TPSC_READ_CHAR_RESPONSE,
 CYBLE_EVT_TPSC_READ_DESCR_RESPONSE,
 CYBLE_EVT_TPSC_WRITE_DESCR_RESPONSE,
 CYBLE_DEBUG_EVT_BLESS_INT = 0xE000u
} CYBLE_EVT_T;

Description

Service specific events

Members

Members Description

CYBLE_EVT_GATTS_INDICATION_ENABLED GATT Server - Notifications for GATT Service's
"Service Changed" Characteristic were enabled. The
parameter of this event is a structure of
CYBLE_GATTS_WRITE_REQ_PARAM_T type.

CYBLE_EVT_GATTS_INDICATION_DISABLED GATT Server - Notifications for GATT Service's
"Service Changed" Characteristic were disabled. The
parameter of this event is a structure of
CYBLE_GATTS_WRITE_REQ_PARAM_T type.

CYBLE_EVT_GATTC_INDICATION GATT Client - GATT Service's "Service Changed"
Characteristic Indications were received. The
parameter of this event is a structure of
CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_GATTC_SRVC_DISCOVERY_FAILED GATT Client - Service discovery procedure failed. This
event may be generated on calling
CyBle_GattcDiscoverAllPrimaryServices(). No parameters
passed for this event.

CYBLE_EVT_GATTC_INCL_DISCOVERY_FAILED GATT Client - Discovery of included services failed.
This event may be generated on calling
CyBle_GattcFindIncludedServices(). No parameters passed
for this event.

CYBLE_EVT_GATTC_CHAR_DISCOVERY_FAILED GATT Client - Discovery of service's Characteristics
failed. This event may be generated on calling
CyBle_GattcDiscoverAllCharacteristics() or
CyBle_GattcReadUsingCharacteristicUuid(). No parameters
passed for this event.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 459 of 482

Members Description

CYBLE_EVT_GATTC_DESCR_DISCOVERY_FAILED GATT Client - Discovery of service's Characteristics
failed. This event may be generated on calling
CyBle_GattcDiscoverAllCharacteristicDescriptors(). No
parameters passed for this event.

CYBLE_EVT_GATTC_SRVC_DUPLICATION GATT Client - Duplicate service record was found
during server device discovery. The parameter of this
event is a structure of uint16 (UUID16) type.

CYBLE_EVT_GATTC_CHAR_DUPLICATION GATT Client - Duplicate service's Characteristic record
was found during server device discovery. The
parameter of this event is a structure of uint16
(UUID16) type.

CYBLE_EVT_GATTC_DESCR_DUPLICATION GATT Client - Duplicate service's Characteristic
Descriptor record was found during server device
discovery. The parameter of this event is a structure of
uint16 (UUID16) type.

CYBLE_EVT_GATTC_SRVC_DISCOVERY_COMPLETE GATT Client - Service discovery procedure completed
successfully. This event may be generated on calling
CyBle_GattcDiscoverAllPrimaryServices(). No parameters
passed for this event.

CYBLE_EVT_GATTC_INCL_DISCOVERY_COMPLETE GATT Client - Included services discovery is
completed successfully. This event may be generated
on calling CyBle_GattcFindIncludedServices(). No
parameters passed for this event.

CYBLE_EVT_GATTC_CHAR_DISCOVERY_COMPLETE GATT Client - Discovery of service's Characteristics
discovery is completed successfully. This event may
be generated on calling
CyBle_GattcDiscoverAllCharacteristics() or
CyBle_GattcReadUsingCharacteristicUuid(). No parameters
passed for this event.

CYBLE_EVT_GATTC_DISCOVERY_COMPLETE GATT Client - Discovery of remote device completed
successfully. No parameters passed for this event.

CYBLE_EVT_ANSS_NOTIFICATION_ENABLED ANS Server - Notifications for Alert Notification Service
Characteristic were enabled. The parameter of this
event is a structure of CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_ANSS_NOTIFICATION_DISABLED ANS Server - Notifications for Alert Notification Service
Characteristic were disabled. The parameter of this
event is a structure of CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_ANSS_CHAR_WRITE ANS Server - Write Request for Alert Notification
Service Characteristic was received. The parameter of
this event is a structure of CYBLE_ANS_CHAR_VALUE_T
type.

CYBLE_EVT_ANSC_NOTIFICATION ANS Client - Alert Notification Characteristic Service
Notification was received. The parameter of this event
is a structure of CYBLE_ANS_CHAR_VALUE_T type.

Bluetooth Low Energy (BLE)

Page 460 of 482 Document Number: 001-91490 Rev. *B

Members Description

CYBLE_EVT_ANSC_READ_CHAR_RESPONSE ANS Client - Read Response for Alert Notification
Service Characteristic Value. The parameter of this
event is a structure of CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_ANSC_WRITE_CHAR_RESPONSE ANS Client - Write Response for Write Request for
Alert Notification Service Characteristic Value. The
parameter of this event is a structure of
CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_ANSC_READ_DESCR_RESPONSE ANS Client - Read Response for Read Request for
Alert Notification Service Characteristic Descriptor
Read Request. The parameter of this event is a
structure of CYBLE_ANS_DESCR_VALUE_T type.

CYBLE_EVT_ANSC_WRITE_DESCR_RESPONSE ANS Client - Write Response for Write Request for
Alert Notification Service Client Characteristic
Configuration Descriptor Value. The parameter of this
event is a structure of CYBLE_ANS_DESCR_VALUE_T type.

CYBLE_EVT_BASS_NOTIFICATION_ENABLED BAS Server - Notifications for Battery Level
Characteristic were enabled. The parameter of this
event is a structure of CYBLE_BAS_CHAR_VALUE_T type.

CYBLE_EVT_BASS_NOTIFICATION_DISABLED BAS Server - Notifications for Battery Level
Characteristic were disabled. The parameter of this
event is a structure of CYBLE_BAS_CHAR_VALUE_T type.

CYBLE_EVT_BASC_NOTIFICATION BAS Client - Battery Level Characteristic Notification
was received. The parameter of this event is a
structure of CYBLE_BAS_CHAR_VALUE_T type.

CYBLE_EVT_BASC_READ_CHAR_RESPONSE BAS Client - Read Response for Battery Level
Characteristic Value. The parameter of this event is a
structure of CYBLE_BAS_CHAR_VALUE_T type.

CYBLE_EVT_BASC_READ_DESCR_RESPONSE BAS Client - Read Response for Battery Level
Characteristic Descriptor Read Request. The
parameter of this event is a structure of
CYBLE_BAS_DESCR_VALUE_T type.

CYBLE_EVT_BASC_WRITE_DESCR_RESPONSE BAS Client - Write Response for Battery Level Client
Characteristic Configuration Descriptor Value. The
parameter of this event is a structure of
CYBLE_BAS_DESCR_VALUE_T type.

CYBLE_EVT_BLSS_INDICATION_ENABLED BLS Server - Indication for Blood Pressure Service
Characteristic was enabled. The parameter of this
event is a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSS_INDICATION_DISABLED BLS Server - Indication for Blood Pressure Service
Characteristic was disabled. The parameter of this
event is a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSS_INDICATION_CONFIRMED BLS Server - Blood Pressure Service Characteristic
Indication was confirmed. The parameter of this event
is a structure of CYBLE_BLS_CHAR_VALUE_T type

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 461 of 482

Members Description

CYBLE_EVT_BLSS_NOTIFICATION_ENABLED BLS Server - Notifications for Blood Pressure Service
Characteristic were enabled. The parameter of this
event is a structure of CYBLE_BLS_CHAR_VALUE_T type.

CYBLE_EVT_BLSS_NOTIFICATION_DISABLED BLS Server - Notifications for Blood Pressure Service
Characteristic were disabled. The parameter of this
event is a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSC_INDICATION BLS Client - Blood Pressure Service Characteristic
Indication was received. The parameter of this event is
a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSC_NOTIFICATION BLS Client - Blood Pressure Service Characteristic
Notification was received. The parameter of this event
is a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSC_READ_CHAR_RESPONSE BLS Client - Read Response for Read Request of
Blood Pressure Service Characteristic value. The
parameter of this event is a structure of
CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSC_READ_DESCR_RESPONSE BLS Client - Read Response for Read Request of
Blood Pressure Service Characteristic Descriptor Read
request. The parameter of this event is a structure of
CYBLE_BLS_DESCR_VALUE_T type

CYBLE_EVT_BLSC_WRITE_DESCR_RESPONSE BLS Client - Write Response for Write Request of
Blood Pressure Service Characteristic Configuration
Descriptor value. The parameter of this event is a
structure of CYBLE_BLS_DESCR_VALUE_T type

CYBLE_EVT_CPSS_NOTIFICATION_ENABLED CPS Server - Notifications for Cycling Power Service
Characteristic were enabled. The parameter of this
event is a structure of CYBLE_CPS_CHAR_VALUE_T type.

CYBLE_EVT_CPSS_NOTIFICATION_DISABLED CPS Server - Notifications for Cycling Power Service
Characteristic were disabled. The parameter of this
event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSS_INDICATION_ENABLED CPS Server - Indication for Cycling Power Service
Characteristic was enabled. The parameter of this
event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSS_INDICATION_DISABLED CPS Server - Indication for Cycling Power Service
Characteristic was disabled. The parameter of this
event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSS_INDICATION_CONFIRMED CPS Server - Cycling Power Service Characteristic
Indication was confirmed. The parameter of this event
is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSS_BROADCAST_ENABLED CPS Server - Broadcast for Cycling Power Service
Characteristic was enabled. The parameter of this
event is a structure of CYBLE_CPS_CHAR_VALUE_T type

Bluetooth Low Energy (BLE)

Page 462 of 482 Document Number: 001-91490 Rev. *B

Members Description

CYBLE_EVT_CPSS_BROADCAST_DISABLED CPS Server - Broadcast for Cycling Power Service
Characteristic was disabled. The parameter of this
event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSS_CHAR_WRITE CPS Server - Write Request for Cycling Power Service
Characteristic was received. The parameter of this
event is a structure of CYBLE_CPS_CHAR_VALUE_T type.

CYBLE_EVT_CPSC_NOTIFICATION CPS Client - Cycling Power Service Characteristic
Notification was received. The parameter of this event
is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSC_INDICATION CPS Client - Cycling Power Service Characteristic
Indication was received. The parameter of this event is
a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSC_READ_CHAR_RESPONSE CPS Client - Read Response for Read Request of
Cycling Power Service Characteristic value. The
parameter of this event is a structure of
CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSC_WRITE_CHAR_RESPONSE CPS Client - Write Response for Write Request of
Cycling Power Service Characteristic value. The
parameter of this event is a structure of
CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSC_READ_DESCR_RESPONSE CPS Client - Read Response for Read Request of
Cycling Power Service Characteristic Descriptor Read
request. The parameter of this event is a structure of
CYBLE_CPS_DESCR_VALUE_T type

CYBLE_EVT_CPSC_WRITE_DESCR_RESPONSE CPS Client - Write Response for Write Request of
Cycling Power Service Characteristic Configuration
Descriptor value. The parameter of this event is a
structure of CYBLE_CPS_DESCR_VALUE_T type

CYBLE_EVT_CPSC_SCAN_PROGRESS_RESULT CPS Client - This event is triggered every time a
device receive non-connectable undirected advertising
event. The parameter of this event is a structure of
CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CSCSS_NOTIFICATION_ENABLED CSCS Server - Notifications for Cycling Speed and
Cadence Service Characteristic were enabled. The
parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSS_NOTIFICATION_DISABLED CSCS Server - Notifications for Cycling Speed and
Cadence Service Characteristic were disabled. The
parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type

CYBLE_EVT_CSCSS_INDICATION_ENABLED CSCS Server - Indication for Cycling Speed and
Cadence Service Characteristic was enabled. The
parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 463 of 482

Members Description

CYBLE_EVT_CSCSS_INDICATION_DISABLED CSCS Server - Indication for Cycling Speed and
Cadence Service Characteristic was disabled. The
parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type

CYBLE_EVT_CSCSS_INDICATION_CONFIRMATION CSCS Server - Cycling Speed and Cadence Service
Characteristic Indication was confirmed. The
parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type

CYBLE_EVT_CSCSS_CHAR_WRITE CSCS Server - Write Request for Cycling Speed and
Cadence Service Characteristic was received. The
parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSC_NOTIFICATION CSCS Client - Cycling Speed and Cadence Service
Characteristic Notification was received. The
parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type

CYBLE_EVT_CSCSC_INDICATION CSCS Client - Cycling Speed and Cadence Service
Characteristic Indication was received. The parameter
of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type

CYBLE_EVT_CSCSC_READ_CHAR_RESPONSE CSCS Client - Read Response for Read Request of
Cycling Speed and Cadence Service Characteristic
value. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type

CYBLE_EVT_CSCSC_WRITE_CHAR_RESPONSE CSCS Client - Write Response for Write Request of
Cycling Speed and Cadence Service Characteristic
value. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type

CYBLE_EVT_CSCSC_READ_DESCR_RESPONSE CSCS Client - Read Response for Read Request of
Cycling Speed and Cadence Service Characteristic
Descriptor Read request. The parameter of this event
is a structure of CYBLE_CSCS_DESCR_VALUE_T type

CYBLE_EVT_CSCSC_WRITE_DESCR_RESPONSE CSCS Client - Write Response for Write Request of
Cycling Speed and Cadence Service Characteristic
Configuration Descriptor value. The parameter of this
event is a structure of CYBLE_CSCS_DESCR_VALUE_T
type

CYBLE_EVT_CTSS_NOTIFICATION_ENABLED CTS Server - Notification for Current Time
Characteristic was enabled. The parameter of this
event is a structure of CYBLE_CTS_CHAR_VALUE_T type

CYBLE_EVT_CTSS_NOTIFICATION_DISABLED CTS Server - Notification for Current Time
Characteristic was disabled. The parameter of this
event is a structure of CYBLE_CTS_CHAR_VALUE_T type

Bluetooth Low Energy (BLE)

Page 464 of 482 Document Number: 001-91490 Rev. *B

Members Description

CYBLE_EVT_CTSC_NOTIFICATION CTS Client - Current Time Characteristic Notification
was received. The parameter of this event is a
structure of CYBLE_CTS_CHAR_VALUE_T type

CYBLE_EVT_CTSC_READ_CHAR_RESPONSE CTS Client - Read Response for Current Time
Characteristic Value Read Request. The parameter of
this event is a structure of CYBLE_CTS_CHAR_VALUE_T
type

CYBLE_EVT_CTSC_READ_DESCR_RESPONSE CTS Client - Read Response for Current Time Client
Characteristic Configuration Descriptor Value Read
Request. The parameter of this event is a structure of
CYBLE_CTS_DESCR_VALUE_T type

CYBLE_EVT_CTSC_WRITE_DESCR_RESPONSE CTS Client - Write Response for Current Time
Characteristic Configuration Descriptor Value. The
parameter of this event is a structure of
CYBLE_CTS_DESCR_VALUE_T type

CYBLE_EVT_DISC_READ_CHAR_RESPONSE DIS Client - Read Response for a Read Request for a
Device Service Characteristic. The parameter of this
event is a structure of CYBLE_DIS_CHAR_VALUE_T type

CYBLE_EVT_GLSS_INDICATION_ENABLED GLS Server - Indication for Glucose Service
Characteristic was enabled. The parameter of this
event is a structure of CYBLE_GLS_CHAR_VALUE_T type

CYBLE_EVT_GLSS_INDICATION_DISABLED GLS Server - Indication for Glucose Service
Characteristic was disabled. The parameter of this
event is a structure of CYBLE_GLS_CHAR_VALUE_T type

CYBLE_EVT_GLSS_INDICATION_CONFIRMED GLS Server - Glucose Service Characteristic Indication
was confirmed. The parameter of this event is a
structure of CYBLE_GLS_CHAR_VALUE_T type

CYBLE_EVT_GLSS_NOTIFICATION_ENABLED GLS Server - Notifications for Glucose Service
Characteristic were enabled. The parameter of this
event is a structure of CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSS_NOTIFICATION_DISABLED GLS Server - Notifications for Glucose Service
Characteristic were disabled. The parameter of this
event is a structure of CYBLE_GLS_CHAR_VALUE_T type

CYBLE_EVT_GLSS_WRITE_CHAR GLS Server - Write Request for Glucose Service was
received. The parameter of this event is a structure of
CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSC_INDICATION GLS Client - Glucose Service Characteristic Indication
was received. The parameter of this event is a
structure of CYBLE_GLS_CHAR_VALUE_T type

CYBLE_EVT_GLSC_NOTIFICATION GLS Client - Glucose Service Characteristic
Notification was received. The parameter of this event
is a structure of CYBLE_GLS_CHAR_VALUE_T type

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 465 of 482

Members Description

CYBLE_EVT_GLSC_READ_CHAR_RESPONSE GLS Client - Read Response for Read Request of
Glucose Service Characteristic value. The parameter
of this event is a structure of CYBLE_GLS_CHAR_VALUE_T
type

CYBLE_EVT_GLSC_WRITE_CHAR_RESPONSE GLS Client - Write Response for Write Request of
Glucose Service Characteristic value. The parameter
of this event is a structure of CYBLE_GLS_CHAR_VALUE_T
type

CYBLE_EVT_GLSC_READ_DESCR_RESPONSE GLS Client - Read Response for Read Request of
Glucose Service Characteristic Descriptor Read
request. The parameter of this event is a structure of
CYBLE_GLS_DESCR_VALUE_T type

CYBLE_EVT_GLSC_WRITE_DESCR_RESPONSE GLS Client - Write Response for Write Request of
Glucose Service Characteristic Configuration
Descriptor value. The parameter of this event is a
structure of CYBLE_GLS_DESCR_VALUE_T type

CYBLE_EVT_HIDSS_NOTIFICATION_ENABLED HIDS Server - Notifications for HID service were
enabled. The parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HIDSS_NOTIFICATION_DISABLED HIDS Server - Notifications for HID service were
disabled. The parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HIDSS_BOOT_MODE_ENTER HIDS Server - Enter boot mode request. The
parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HIDSS_REPORT_MODE_ENTER HIDS Server - Enter report mode request. The
parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HIDSS_SUSPEND HIDS Server - Enter suspend mode request. The
parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HIDSS_EXIT_SUSPEND HIDS Server - Exit suspend mode request. The
parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HIDSS_REPORT_CHAR_WRITE HIDS Server - Write Report Characteristic request.
The parameter of this event is a structure of
CYBLE_HIDSS_REPORT_VALUE_T type

CYBLE_EVT_HIDSC_NOTIFICATION HIDS Client - HID Service Characteristic Notification
was received. The parameter of this event is a
structure of CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HIDSC_READ_CHAR_RESPONSE HIDS Client - Read Response for Read Request of
HID Service Characteristic value. The parameter of
this event is a structure of CYBLE_HIDS_DESCR_VALUE_T
type

Bluetooth Low Energy (BLE)

Page 466 of 482 Document Number: 001-91490 Rev. *B

Members Description

CYBLE_EVT_HIDSC_WRITE_CHAR_RESPONSE HIDS Client - Write Response for Write Request of
HID Service Characteristic value. The parameter of
this event is a structure of CYBLE_HIDS_CHAR_VALUE_T
type

CYBLE_EVT_HIDSC_READ_DESCR_RESPONSE HIDS Client - Read Response for Read Request of
HID Service Characteristic Descriptor Read request.
The parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HIDSC_WRITE_DESCR_RESPONSE HIDS Client - Write Response for Write Request of
HID Service Characteristic Configuration Descriptor
value. The parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type

CYBLE_EVT_HRSS_ENERGY_EXPENDED_RESET HRS Server - Reset Energy Expended. The parameter
of this event is a structure of CYBLE_HRS_CHAR_VALUE_T
type

CYBLE_EVT_HRSS_NOTIFICATION_ENABLED HRS Server - Notification for Heart Rate Measurement
Characteristic was enabled. The parameter of this
event is a structure of CYBLE_HRS_CHAR_VALUE_T type

CYBLE_EVT_HRSS_NOTIFICATION_DISABLED HRS Server - Notification for Heart Rate Measurement
Characteristic was disabled. The parameter of this
event is a structure of CYBLE_HRS_CHAR_VALUE_T type

CYBLE_EVT_HRSC_NOTIFICATION HRS Client - Heart Rate Measurement Characteristic
Notification was received. The parameter of this event
is a structure of CYBLE_HRS_CHAR_VALUE_T type

CYBLE_EVT_HRSC_READ_CHAR_RESPONSE HRS Client - Read Response for Read Request of
HRS Service Characteristic value. The parameter of
this event is a structure of CYBLE_HRS_CHAR_VALUE_T
type

CYBLE_EVT_HRSC_WRITE_CHAR_RESPONSE HRS Client - Write Response for Write Request of
HRS Service Characteristic value. The parameter of
this event is a structure of CYBLE_HRS_CHAR_VALUE_T
type

CYBLE_EVT_HRSC_READ_DESCR_RESPONSE HRS Client - Read Response for Read Request of
HRS Service Characteristic Descriptor Read request.
The parameter of this event is a structure of
CYBLE_HRS_CHAR_VALUE_T type

CYBLE_EVT_HRSC_WRITE_DESCR_RESPONSE HRS Client - Write Response for Write Request of
HRS Service Characteristic Configuration Descriptor
value. The parameter of this event is a structure of
CYBLE_HRS_CHAR_VALUE_T type

CYBLE_EVT_HTSS_NOTIFICATION_ENABLED HTS Server - Notifications for Health Thermometer
Service Characteristic were enabled. The parameter of
this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 467 of 482

Members Description

CYBLE_EVT_HTSS_NOTIFICATION_DISABLED HTS Server - Notifications for Health Thermometer
Service Characteristic were disabled. The parameter
of this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type

CYBLE_EVT_HTSS_INDICATION_ENABLED HTS Server - Indication for Health Thermometer
Service Characteristic was enabled. The parameter of
this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type

CYBLE_EVT_HTSS_INDICATION_DISABLED HTS Server - Indication for Health Thermometer
Service Characteristic was disabled. The parameter of
this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type

CYBLE_EVT_HTSS_INDICATION_CONFIRMED HTS Server - Health Thermometer Service
Characteristic Indication was confirmed. The
parameter of this event is a structure of
CYBLE_HTS_CHAR_VALUE_T type

CYBLE_EVT_HTSS_CHAR_WRITE HTS Server - Write Request for Health Thermometer
Service Characteristic was received. The parameter of
this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type.

CYBLE_EVT_HTSC_NOTIFICATION HTS Client - Health Thermometer Service
Characteristic Notification was received. The
parameter of this event is a structure of
CYBLE_HTS_CHAR_VALUE_T type

CYBLE_EVT_HTSC_INDICATION HTS Client - Health Thermometer Service
Characteristic Indication was received. The parameter
of this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type

CYBLE_EVT_HTSC_READ_CHAR_RESPONSE HTS Client - Read Response for Read Request of
Health Thermometer Service Characteristic value. The
parameter of this event is a structure of
CYBLE_HTS_CHAR_VALUE_T type

CYBLE_EVT_HTSC_WRITE_CHAR_RESPONSE HTS Client - Write Response for Write Request of
Health Thermometer Service Characteristic value. The
parameter of this event is a structure of
CYBLE_HTS_CHAR_VALUE_T type

CYBLE_EVT_HTSC_READ_DESCR_RESPONSE HTS Client - Read Response for Read Request of
Health Thermometer Service Characteristic Descriptor
Read request. The parameter of this event is a
structure of CYBLE_HTS_DESCR_VALUE_T type

CYBLE_EVT_HTSC_WRITE_DESCR_RESPONSE HTS Client - Write Response for Write Request of
Health Thermometer Service Characteristic
Configuration Descriptor value. The parameter of this
event is a structure of CYBLE_HTS_DESCR_VALUE_T type

Bluetooth Low Energy (BLE)

Page 468 of 482 Document Number: 001-91490 Rev. *B

Members Description

CYBLE_EVT_IASS_WRITE_CHAR_CMD IAS Server - Write command request for Alert Level
Characteristic. The parameter of this event is a
structure of CYBLE_IAS_CHAR_VALUE_T type

CYBLE_EVT_LLSS_WRITE_CHAR_REQ LLS Server - Write request for Alert Level
Characteristic. The parameter of this event is a
structure of CYBLE_LLS_CHAR_VALUE_T type

CYBLE_EVT_LLSC_READ_CHAR_RESPONSE LLS Client - Read response for Alert Level
Characteristic. The parameter of this event is a
structure of CYBLE_LLS_CHAR_VALUE_T type

CYBLE_EVT_LLSC_WRITE_CHAR_RESPONSE LLS Client - Write response for write request of Alert
Level Characteristic. The parameter of this event is a
structure of CYBLE_LLS_CHAR_VALUE_T type

CYBLE_EVT_LNSS_INDICATION_ENABLED LNS Server - Indication for Location and Navigation
Service Characteristic was enabled. The parameter of
this event is a structure of CYBLE_LNS_CHAR_VALUE_T
type

CYBLE_EVT_LNSS_INDICATION_DISABLED LNS Server - Indication for Location and Navigation
Service Characteristic was disabled. The parameter of
this event is a structure of CYBLE_LNS_CHAR_VALUE_T
type

CYBLE_EVT_LNSS_INDICATION_CONFIRMED LNS Server - Location and Navigation Service
Characteristic Indication was confirmed. The
parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type

CYBLE_EVT_LNSS_NOTIFICATION_ENABLED LNS Server - Notifications for Location and Navigation
Service Characteristic were enabled. The parameter of
this event is a structure of CYBLE_LNS_CHAR_VALUE_T
type.

CYBLE_EVT_LNSS_NOTIFICATION_DISABLED LNS Server - Notifications for Location and Navigation
Service Characteristic were disabled. The parameter
of this event is a structure of CYBLE_LNS_CHAR_VALUE_T
type

CYBLE_EVT_LNSS_WRITE_CHAR LNS Server - Write Request for Location and
Navigation Service Characteristic was received. The
parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type.

CYBLE_EVT_LNSC_INDICATION LNS Client - Location and Navigation Service
Characteristic Indication was received. The parameter
of this event is a structure of CYBLE_LNS_CHAR_VALUE_T
type

CYBLE_EVT_LNSC_NOTIFICATION LNS Client - Location and Navigation Service
Characteristic Notification was received. The
parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 469 of 482

Members Description

CYBLE_EVT_LNSC_READ_CHAR_RESPONSE LNS Client - Read Response for Read Request of
Location and Navigation Service Characteristic value.
The parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type

CYBLE_EVT_LNSC_WRITE_CHAR_RESPONSE LNS Client - Write Response for Write Request of
Location and Navigation Service Characteristic value.
The parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type

CYBLE_EVT_LNSC_READ_DESCR_RESPONSE LNS Client - Read Response for Read Request of
Location and Navigation Service Characteristic
Descriptor Read request. The parameter of this event
is a structure of CYBLE_LNS_DESCR_VALUE_T type

CYBLE_EVT_LNSC_WRITE_DESCR_RESPONSE LNS Client - Write Response for Write Request of
Location and Navigation Service Characteristic
Configuration Descriptor value. The parameter of this
event is a structure of CYBLE_LNS_DESCR_VALUE_T type

CYBLE_EVT_PASSS_NOTIFICATION_ENABLED PASS Server - Notifications for Phone Alert Status
Service Characteristic were enabled. The parameter of
this event is a structure of CYBLE_PASS_CHAR_VALUE_T
type.

CYBLE_EVT_PASSS_NOTIFICATION_DISABLED PASS Server - Notifications for Phone Alert Status
Service Characteristic were disabled. The parameter
of this event is a structure of
CYBLE_PASS_CHAR_VALUE_T type

CYBLE_EVT_PASSS_WRITE_CHAR PASS Server - Write Request for Phone Alert Status
Service Characteristic was received. The parameter of
this event is a structure of CYBLE_PASS_CHAR_VALUE_T
type.

CYBLE_EVT_PASSC_NOTIFICATION PASS Client - Phone Alert Status Service
Characteristic Notification was received. The
parameter of this event is a structure of
CYBLE_PASS_CHAR_VALUE_T type

CYBLE_EVT_PASSC_READ_CHAR_RESPONSE PASS Client - Read Response for Read Request of
Phone Alert Status Service Characteristic value. The
parameter of this event is a structure of
CYBLE_PASS_CHAR_VALUE_T type

CYBLE_EVT_PASSC_WRITE_CHAR_RESPONSE PASS Client - Write Response for Write Request of
Phone Alert Status Service Characteristic value. The
parameter of this event is a structure of
CYBLE_PASS_CHAR_VALUE_T type

CYBLE_EVT_PASSC_READ_DESCR_RESPONSE PASS Client - Read Response for Read Request of
Phone Alert Status Service Characteristic Descriptor
Read request. The parameter of this event is a
structure of CYBLE_PASS_DESCR_VALUE_T type

Bluetooth Low Energy (BLE)

Page 470 of 482 Document Number: 001-91490 Rev. *B

Members Description

CYBLE_EVT_PASSC_WRITE_DESCR_RESPONSE PASS Client - Write Response for Write Request of
Phone Alert Status Service Characteristic
Configuration Descriptor value. The parameter of this
event is a structure of CYBLE_PASS_DESCR_VALUE_T
type

CYBLE_EVT_RSCSS_NOTIFICATION_ENABLED RSCS Server - Notifications for Running Speed and
Cadence Service Characteristic were enabled. The
parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSS_NOTIFICATION_DISABLED RSCS Server - Notifications for Running Speed and
Cadence Service Characteristic were disabled. The
parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type

CYBLE_EVT_RSCSS_INDICATION_ENABLED RSCS Server - Indication for Running Speed and
Cadence Service Characteristic was enabled. The
parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type

CYBLE_EVT_RSCSS_INDICATION_DISABLED RSCS Server - Indication for Running Speed and
Cadence Service Characteristic was disabled. The
parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type

CYBLE_EVT_RSCSS_INDICATION_CONFIRMATION RSCS Server - Running Speed and Cadence Service
Characteristic Indication was confirmed. The
parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type

CYBLE_EVT_RSCSS_CHAR_WRITE RSCS Server - Write Request for Running Speed and
Cadence Service Characteristic was received. The
parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSC_NOTIFICATION RSCS Client - Running Speed and Cadence Service
Characteristic Notification was received. The
parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type

CYBLE_EVT_RSCSC_INDICATION RSCS Client - Running Speed and Cadence Service
Characteristic Indication was received. The parameter
of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type

CYBLE_EVT_RSCSC_READ_CHAR_RESPONSE RSCS Client - Read Response for Read Request of
Running Speed and Cadence Service Characteristic
value. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type

CYBLE_EVT_RSCSC_WRITE_CHAR_RESPONSE RSCS Client - Write Response for Write Request of
Running Speed and Cadence Service Characteristic
value. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 471 of 482

Members Description

CYBLE_EVT_RSCSC_READ_DESCR_RESPONSE RSCS Client - Read Response for Read Request of
Running Speed and Cadence Service Characteristic
Descriptor Read request. The parameter of this event
is a structure of CYBLE_RSCS_DESCR_VALUE_T type

CYBLE_EVT_RSCSC_WRITE_DESCR_RESPONSE RSCS Client - Write Response for Write Request of
Running Speed and Cadence Service Characteristic
Configuration Descriptor value. The parameter of this
event is a structure of CYBLE_RSCS_DESCR_VALUE_T
type

CYBLE_EVT_RTUSS_WRITE_CHAR_CMD RTUS Server - Write command request for Reference
Time Update Characteristic value. The parameter of
this event is a structure of CYBLE_RTUS_CHAR_VALUE_T
type

CYBLE_EVT_RTUSC_READ_CHAR_RESPONSE RTUS Client - Read Response for Read Request of
Reference Time Update Service Characteristic value.
The parameter of this event is a structure of
CYBLE_RTUS_CHAR_VALUE_T type

CYBLE_EVT_SCPSS_NOTIFICATION_ENABLED ScPS Server - Notifications for Scan Refresh
Characteristic were enabled. The parameter of this
event is a structure of CYBLE_SCPS_CHAR_VALUE_T type

CYBLE_EVT_SCPSS_NOTIFICATION_DISABLED ScPS Server - Notifications for Scan Refresh
Characteristic were disabled. The parameter of this
event is a structure of CYBLE_SCPS_CHAR_VALUE_T type

CYBLE_EVT_SCPSS_SCAN_INT_WIN_CHAR_WRITE ScPS Client - Read Response for Scan Interval
Window Characteristic Value of Scan Parameters
Service. The parameter of this event is a structure of
CYBLE_SCPS_CHAR_VALUE_T type

CYBLE_EVT_SCPSC_NOTIFICATION ScPS Client - Scan Refresh Characteristic Notification
was received. The parameter of this event is a
structure of CYBLE_SCPS_CHAR_VALUE_T type

CYBLE_EVT_SCPSC_READ_DESCR_RESPONSE ScPS Client - Read Response for Scan Refresh
Characteristic Descriptor Read Request. The
parameter of this event is a structure of
CYBLE_SCPS_DESCR_VALUE_T type

CYBLE_EVT_SCPSC_WRITE_DESCR_RESPONSE ScPS Client - Write Response for Scan Refresh Client
Characteristic Configuration Descriptor Value. The
parameter of this event is a structure of
CYBLE_SCPS_DESCR_VALUE_T type

CYBLE_EVT_TPSS_NOTIFICATION_ENABLED TPS Server - Notification for Tx Power Level
Characteristic was enabled. The parameter of this
event is a structure of CYBLE_TPS_CHAR_VALUE_T type

CYBLE_EVT_TPSS_NOTIFICATION_DISABLED TPS Server - Notification for Tx Power Level
Characteristic was disabled. The parameter of this
event is a structure of CYBLE_TPS_CHAR_VALUE_T type

Bluetooth Low Energy (BLE)

Page 472 of 482 Document Number: 001-91490 Rev. *B

Members Description

CYBLE_EVT_TPSC_NOTIFICATION TPS Client - Tx Power Level Characteristic
Notification. The parameter of this event is a structure
of CYBLE_TPS_CHAR_VALUE_T type

CYBLE_EVT_TPSC_READ_CHAR_RESPONSE TPS Client - Read Response for Tx Power Level
Characteristic Value Read Request. The parameter of
this event is a structure of CYBLE_TPS_CHAR_VALUE_T
type

CYBLE_EVT_TPSC_READ_DESCR_RESPONSE TPS Client - Read Response for Tx Power Level Client
Characteristic Configuration Descriptor Value Read
Request. The parameter of this event is a structure of
CYBLE_TPS_DESCR_VALUE_T type

CYBLE_EVT_TPSC_WRITE_DESCR_RESPONSE TPS Client - Write Response for Tx Power Level
Characteristic Descriptor Value Write Request. The
parameter of this event is a structure of
CYBLE_TPS_DESCR_VALUE_T type

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 473 of 482

Functional Description

Operation Flow
A typical application code consists of three separate stages: Initialization, Normal operation, and
Low power operation.

System
 low power m

odes

Power-on

Platform initialization

BLE-Component Initialization

BLE-Init Success

- Process received packet &
status of previous transfer
- Scan sensors

No

Any data to Tx

Call BLE component’s
Tx function

Pending Event

No sensor / BLE event
till Deep sleep timeout Go to sleep mode

Go to deep sleep mode

Event
Occurred

No

Yes

No

Yes

Yes

No

Process BLE Events

Yes

BLE-Establish Connection

Yes

Application to call
process BLE events
API at least once in
BLE connection
event period.

Execute deep sleep
wakeup sequence

Wake-up from
hibernate

No

Yes

Execute hibernate
wakeup sequence

No

Device
connected Yes

No

Connected
Success

Yes

No

Error handling –
Application can decide to

go power down mode

System
 Norm

al Operation
System

 Initialization

Bluetooth Low Energy (BLE)

Page 474 of 482 Document Number: 001-91490 Rev. *B

Once the Component is initialized, it enters normal operation and periodically enters various
degrees of low power operation to conserve power. Hence initialization should only happen at
system power-up, and the Component should operate between normal mode and low power
mode afterwards.

System Initialization
The initialization stage happens at system power-up or when waking from system hibernation.
This stage sets up the platform and the Component parameters. The application code should
also start the Component and set up the callback functions for the event callbacks that will
happen in the other modes of operation.

System Normal Operation
Upon successful initialization of the BLE Component or hibernate wakeup sequence, the
Component enters normal mode. Normal operation first establishes a BLE connection if it is not
already connected. It should then process all pending BLE events by checking the stack status.
This is accomplished by calling CyBle_ProcessEvents(). When all events have been processed,
it can transmit any data that need to be communicated and enters low power operation unless
there is another pending event. In such a case, it should execute the normal operation flow
again. Processing of BLE events should be performed at least once in a BLE connection event
period. The BLE connection event is configured by application using the customizer.

System Low power Operation
When there are no pending interrupts in Normal operation, the Component should be placed in
low power mode. It should first enter sleep mode. After a certain application defined timeout, you
may place the Component in Deep Sleep Mode. If an event happens at any time in low power
mode, it should re-enter normal operation.
Note The MCU and BLE Sub-System (BLESS) have separate power modes and are able to go
to different power modes independent of each other. The check marks in the the following table
show the possible combination of power modes of MCU and BLESS.

BLESS Power Modes

PSoC 4200-BL, PRoC 4200-BL MCUs Power Modes

Active Sleep Deep Sleep Hibernate Off

Active (idle/Tx/Rx)

Sleep

Deep Sleep (ECO off)

Off

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 475 of 482

Callback Functions
The BLE Component requires that you define a callback function for handling BLE stack events.
This is passed as a parameter to the CyBle_Start() API. The callback function is of type
CYBLE_CALLBACK_T, as defined by:

void (* CYBLE_CALLBACK_T)(uint32 eventCode, void *eventParam);

 eventCode: The stack event code

 eventParam : Stack event parameters
The callback function should then evaluate the eventCode (and eventParam for certain events)
and provide stack event-specific actions. Hence the events are used to build your application
specific state machine for general events such as advertisement, scan, connection and timeout.
Refer to the BLE Common Events section for the BLE stack events.
Similarly, you will need to provide a callback function for each Service that you wish to use. This
function is also of type CYBLE_CALLBACK_T and is passed as a parameter to the Service-
specific callback registration function. The callback function is used to evaluate the Service-
specific events and to take appropriate action as defined by your application. Then a Service
specific state machine can be built using these events. Refer to the BLE Service-Specific Events
section for the BLE Service-specific events.

Device Bonding
The BLE Component will store the link key of a connection after pairing with the remote device. If
a connection is lost and re-established, the devices will use the previously stored key for the
connection.
The BLE stack will update the bonding data in RAM while the devices are connected. If the
bonding data is to be retained during shutdown, the application can use
CyBle_StoreBondingData() API to write the bonding data from RAM to the dedicated Flash
location, as defined by the Component. Refer to the BLE_HID_Keyboard example project for
usage details.
Notes

 The Flash write modifies the IMO of the chip to 48 MHz temporarily during the write cycle.
Therefore, you should only perform the bonding data Flash storage while the BLE devices
are disconnected, because the change in IMO will disrupt the communication. Likewise,
you should either temporarily halt all peripherals running off of the IMO or compensate for
the brief frequency change during the Flash write cycle.

 If your design is configured to run at 48 MHz, then the IMO does not change and does not
affect other peripherals. However, the Flash write is a blocking call and may disrupt the
BLE communication. Therefore, it is advisable to perform the Flash write while the devices
are disconnected.

Bluetooth Low Energy (BLE)

Page 476 of 482 Document Number: 001-91490 Rev. *B

LFCLK configuration
The LFCLK configuration as set in the Clocks tab of the Design-Wide Resources
(<project>.cydwr) file affects the BLE Component’s ability to operate in Deep Sleep Mode. If the
WCO is chosen, then the Component Deep Sleep Mode is available for use. However, if the ILO
is chosen, then the Component cannot enter Deep Sleep.
Note The LFCLK is used in the BLE Component only during Deep Sleep Mode and hence the
ILO inaccuracy does not affect the BLE communication.

Unsupported Features
The BLE Component stack does not support the following optional Bluetooth v4.1 protocol
features, as listed in Vol 6, Part B, section 4.6 of the specification:

 Connection Parameters Request Procedure (Vol 6, Part B, section 4.6.2)

 Extended Reject Indication (Vol 6, Part B, section 4.6.3)

 Slave-initiated Features Exchange (Vol 6, Part B, section 4.6.4)
The BLE Component does not support automatic Custom Service discovery in a GATT Client
implementation.

Resources
The BLE Component uses one BLESS block, two external crystals, interrupt(s), and an optional
SCB Block:

Configuration

Resource Type

BLESS SCB [1] Interrupt ECO WCO [2]

Profile Mode 1 - 1 1 1

HCI Mode 1 1 2 1 1

1 The BLE Component instantiates an SCB Component when configured in HCI Mode. Refer to the SCB

Component datasheet for its resource usage.
2 WCO is optional. It is used if Component deep sleep is required. If WCO is not used, then ILO is used as the

LFCLK source.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 477 of 482

DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

Parameter Description Min Typ Max Units Details/Conditions

RF Receiver Specification

RXS, IDLE RX sensitivity with idle transmitter – –89 – dBm

 RX sensitivity with idle transmitter
excluding Balun loss

– –91 – dBm Guaranteed by design
simulation

RXS, DIRTY RX sensitivity with dirty transmitter – –87 –70 dBm RF-PHY Specification (RCV-
LE/CA/01/C)

RXS, HIGHGAIN RX sensitivity in high-gain mode with
idle transmitter

– –91 – dBm

PRXMAX Maximum input power –10 –1 – dBm RF-PHY Specification (RCV-
LE/CA/06/C)

CI1 Cochannel interference,
Wanted signal at –67 dBm and
Interferer at FRX

– 9 21 dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI2 Adjacent channel interference
Wanted signal at –67 dBm and
Interferer at FRX ±1 MHz

– 3 15 dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI3 Adjacent channel interference
Wanted signal at –67 dBm and
Interferer at FRX ±2 MHz

– –29 – dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI4 Adjacent channel interference
Wanted signal at –67 dBm and
Interferer at ≥FRX ±3 MHz

– –39 – dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI5 Adjacent channel interference
Wanted Signal at –67 dBm and
Interferer at Image frequency
(FIMAGE)

– –20 – dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI3 Adjacent channel interference
Wanted signal at –67 dBm and
Interferer at Image frequency (FIMAGE
± 1 MHz)

– –30 – dB RF-PHY Specification (RCV-
LE/CA/03/C)

OBB1 Out-of-band blocking,
Wanted signal at –67 dBm and
Interferer at F = 30–2000 MHz

–30 –27 – dBm RF-PHY Specification (RCV-
LE/CA/04/C)

OBB2 Out-of-band blocking,
Wanted signal at –67 dBm and
Interferer at F = 2003–2399 MHz

–35 –27 – dBm RF-PHY Specification (RCV-
LE/CA/04/C)

OBB3 Out-of-band blocking,
Wanted signal at –67 dBm and
Interferer at F = 2484–2997 MHz

–35 –27 – dBm RF-PHY Specification (RCV-
LE/CA/04/C)

Bluetooth Low Energy (BLE)

Page 478 of 482 Document Number: 001-91490 Rev. *B

Parameter Description Min Typ Max Units Details/Conditions

OBB4 Out-of-band blocking,
Wanted signal a –67 dBm and
Interferer at F = 3000–12750 MHz

–30 –27 – dBm RF-PHY Specification (RCV-
LE/CA/04/C)

IMD Intermodulation performance
Wanted signal at –64 dBm and 1-
Mbps BLE, third, fourth, and fifth
offset channel

–50 – – dBm RF-PHY Specification (RCV-
LE/CA/05/C)

RXSE1 Receiver spurious emission
30 MHz to 1.0 GHz

– – –57 dBm 100-kHz measurement
bandwidth
ETSI EN300 328 V1.8.1

RXSE2 Receiver spurious emission
1.0 GHz to 12.75 GHz

– – –47 dBm 1-MHz measurement
bandwidth
ETSI EN300 328 V1.8.1

RF Transmitter Specifications

TXP, ACC RF power accuracy – – ±4 dB

TXP, RANGE RF power control range – 20 – dB

TXP, 0dBm Output power, 0-dB Gain setting
(PA7)

–4 0 3 dBm

TXP, MAX Output power, maximum power
setting (PA10)

–1 3 6 dBm

TXP, MIN Output power, minimum power
setting (PA1)

– –18 – dBm

F2AVG Average frequency deviation for
10101010 pattern

185 – – kHz RF-PHY Specification (TRM-
LE/CA/05/C)

F1AVG Average frequency deviation for
11110000 pattern

225 250 275 kHz RF-PHY Specification (TRM-
LE/CA/05/C)

EO Eye opening = ∆F2AVG/∆F1AVG 0.8 – – RF-PHY Specification (TRM-
LE/CA/05/C)

FTX, ACC Frequency accuracy –150 – 150 kHz RF-PHY Specification (TRM-
LE/CA/06/C)

FTX, MAXDR Maximum frequency drift –50 – 50 kHz RF-PHY Specification (TRM-
LE/CA/06/C)

FTX, INITDR Initial frequency drift –20 – 20 kHz RF-PHY Specification (TRM-
LE/CA/06/C)

FTX, DR Maximum drift rate –20 – 20 kHz/
50 µs

RF-PHY Specification (TRM-
LE/CA/06/C)

IBSE1 In-band spurious emission at 2-MHz
offset

– – –20 dBm RF-PHY Specification (TRM-
LE/CA/03/C)

IBSE2 In-band spurious emission at ≥3-
MHz offset

– – -30 dBm RF-PHY Specification (TRM-
LE/CA/03/C)

TXSE1 Transmitter spurious emissions
(average), <1.0 GHz

– – -55.5 dBm FCC-15.247

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 479 of 482

Parameter Description Min Typ Max Units Details/Conditions

TXSE2 Transmitter spurious emissions
(average), >1.0 GHz

– – -41.5 dBm FCC-15.247

RF Current Specifications

IRX Receive current in normal mode – 18.7 – mA

IRX_RF Radio receive current in normal
mode

– 16.4 – mA Measured at VDDR

IRX, HIGHGAIN Receive current in high-gain mode – 21.5 – mA

ITX, 3dBm TX current at 3-dBm setting (PA10) – 20 – mA

ITX, 0dBm TX current at 0-dBm setting (PA7) – 16.5 – mA

ITX_RF, 0dBm Radio TX current at 0 dBm setting
(PA7)

– 15.6 – mA Measured at VDDR

ITX_RF, 0dBm Radio TX current at 0 dBm excluding
Balun loss

– 14.2 – mA Guaranteed by design
simulation

ITX,-3dBm TX current at –3-dBm setting (PA4) – 15.5 – mA

ITX,-6dBm TX current at –6-dBm setting (PA3) – 14.5 – mA

ITX,-12dBm TX current at –12-dBm setting (PA2) – 13.2 – mA

ITX,-18dBm TX current at –18-dBm setting (PA1) – 12.5 – mA

Iavg_1sec,
0dBm

Average current at 1-second BLE
connection interval

– 18.9 – µA TXP: 0 dBm; ±20-ppm master
and slave clock accuracy.

Iavg_4sec,
0dBm

Average current at 4-second BLE
connection interval

– 6.25 – µA TXP: 0 dBm; ±20-ppm master
and slave clock accuracy.

General RF Specifications

FREQ RF operating frequency 2400 – 2482 MHz

CHBW Channel spacing – 2 – MHz

DR On-air data rate – 1000 – kbps

IDLE2TX BLE.IDLE to BLE. TX transition time – 120 140 µs

IDLE2RX BLE.IDLE to BLE. RX transition time – 75 120 µs

RSSI Specifications

RSSI, ACC RSSI accuracy – ±5 – dB

RSSI, RES RSSI resolution – 1 – dB

RSSI, PER RSSI sample period – 6 – µs

Bluetooth Low Energy (BLE)

Page 480 of 482 Document Number: 001-91490 Rev. *B

The following table summarizes the different measurements of the time taken by the BLE
firmware stack to perform / initiate different BLE operations. The measurements have been
performed with IMO set to 12 MHz and connection interval set to 7.5ms.

Operation Duration (μs)

‘CyBle_ProcessEvents’ execution time (Best case) 4

Worst case BLE ISR Execution time 83

Start Scan execution time 1860

Passive Scan receive advertisement duration 168

Active Scan receive {Advertisement + Scan Response} duration 320

Read request processing time on GATT Server (MTU = 512 Bytes) 23600

Write request processing time on GATT Server (MTU = 512 Bytes) 16800

Connection time on GAP Central 2690

Connection time on GAP Peripheral 1300

Start advertisement execution time 2960

‘CyBle_EnterLPM’ execution time 342

Notification processing time on GATT Server (MTU = 23 Bytes) 900

Write command processing time on GATT Server (MTU = 23 Bytes) 930

Component Changes
This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

1.0.b Support of the following profiles was added to the component:
• Phone Alert Status Profile (PASP)
• Location and Navigation Profile (LNP)
• Cycling Speed and Cadence Profile (CSCP)
• Cycling Power Profile (CPP)

New feature-support added.

The CYBLE_L2CAP_COMMAND_REJ_REASON_T event was
renamed to CYBLE_EVT_L2CAP_COMMAND_REJ.

The event was renamed to be
consistent with other event name
formats.

The CYBLE_EVT_GAP_RESOLVE_PVT_ADDR_VERIFY_CNF event
was removed.

The event became obsolete.

 Bluetooth Low Energy (BLE)

Document Number: 001-91490 Rev. *B Page 481 of 482

Version Description of Changes Reason for Changes / Impact

The following members of the CYBLE_API_RESULT_T
structure were deprecated:

CYBLE_ERROR_GATT_DB_INVALID_OFFSET,
CYBLE_ERROR_GATT_DB_NULL_PARAMETER_NOT_ALLOWED,
CYBLE_ERROR_GATT_DB_UNSUPPORTED_GROUP_TYPE,
CYBLE_ERROR_GATT_DB_INSUFFICIENT_BUFFER_LEN,
CYBLE_ERROR_GATT_DB_MORE_MATCHING_RESULT_FOUND,
CYBLE_ERROR_GATT_DB_NO_MATCHING_RESULT,
CYBLE_ERROR_GATT_DB_HANDLE_NOT_FOUND,
CYBLE_ERROR_GATT_DB_HANDLE_NOT_IN_RANGE,
CYBLE_ERROR_GATT_DB_HANDLE_IN_GROUP_RANGE,
CYBLE_ERROR_GATT_DB_INVALID_OPERATION,
CYBLE_ERROR_GATT_DB_UUID_NOT_IN_BT_SPACE,
CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE,
CYBLE_ERROR_GATT_DB_INSUFFICIENT_SECURITY,
CYBLE_ERROR_GATT_DB_INSUFFICIENT_ENC_KEY_SIZE,
CYBLE_ERROR_GATT_DB_INVALID_INSTANCE,
CYBLE_ERROR_GATT_DB_INCORRECT_UUID_FRMT,
CYBLE_ERROR_GATT_DB_UUID_FRMT_UNSUPPORTED,
CYBLE_ERROR_GATT_DB_TYPE_MISMATCH,
CYBLE_ERROR_GATT_DB_INSUFFICIENT_ENCRYPTION,
CYBLE_ERROR_L2CAP_NOT_ENOUGH_CREDITS

The elements weren’t used as return
values in any of the API functions.

Removed WDT from the BLE Component. In the preliminary release of the BLE
Component, the protocol procedure
timeout functionality was
implemented using the WDT. For the
production release, the Component
was optimized to use the BLESS Link
Layer timer.

Edits to the datasheet. Update Configure dialog screen
captures.
Added the APIs into the datasheet.
Added Unsupported Features section.
Added characterization data.
Addressed all Errata from the
preliminary version of the datasheet
and removed the section.

1.0.a Edits to the datasheet. Added sections to describe WDT
counter and interrupt.
Clarified descriptions for several APIs
and GUIs.
Added Errata section.
Moved API documentation to
separate CHM file.
Updated Functional Description
section.

1.0 Initial document for new Component.

Bluetooth Low Energy (BLE)

Page 482 of 482 Document Number: 001-91490 Rev. *B

© Cypress Semiconductor Corporation, 2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical Components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical Components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	SIG adopted Profiles and Services
	Custom Profiles
	Comprehensive APIs
	Debug Support
	When to use the BLE Component
	BLE Component Architecture
	BLE Stack
	Generic Access Profile (GAP)
	Generic Attribute Profile (GATT)
	GATT Roles
	Attribute Protocol (ATT)
	Security Manager Protocol (SMP)
	Logical Link Control Adaptation Protocol (L2CAP)
	Host Controller Interface (HCI)
	Link Layer (LL)

	Profile Layer
	Hardware Abstraction Layer (HAL)

	Input/Output Connections
	Component Parameters
	General Tab
	Load Configuration/Save Configuration
	Profile
	Alert Notification
	Blood Pressure
	Cycling Power
	Cycling Speed and Cadence
	Find Me
	Glucose
	Health Thermometer
	Heart Rate
	HID over GATT
	Location and Navigation
	Phone Alert Status
	Proximity
	Running Speed and Cadence
	Scan Parameters
	Time
	Custom

	Profile Role
	Gap Role
	Host Controller Mode
	Use Deep Sleep

	Profiles Tab
	Toolbars
	Profiles Tree
	Parameters Configuration
	Generic Access Service
	Generic Attribute Service

	Custom Service Configuration
	UUID
	Service type
	Included services

	Custom Characteristic Configuration
	UUID
	Fields
	Properties
	Permissions

	Custom Descriptor Configuration
	UUID
	Fields
	Permissions

	GAP Settings Tab
	GAP Settings Tab (General
	Public device address (Company ID – Company assigned)
	Silicon generated “Company assigned” part of device address
	Device Name
	Appearance
	MTU Size
	TX Power level

	GAP Settings Tab (Advertisement Settings
	Discovery mode
	Advertising type
	Filter policy
	Advertising channel map
	Advertising Interval
	Connection Parameters

	GAP Settings Tab (Advertisement packet
	Advertisement / Scan response data settings

	GAP Settings Tab (Scan response packet
	GAP Settings Tab (Scan settings
	Discovery procedure
	Scanning state
	Filter policy
	Duplicate filtering
	Scan parameters
	Connection Parameters

	GAP Settings Tab (Security
	Security mode
	Security level
	I/O capabilities
	Pairing Method
	Bonding Requirement:
	Encryption Key Size

	BLE Component APIs
	HTML-Based API Document
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage
	HCI Mode
	Peripheral and Central Profile Mode
	Central Profile Mode
	Peripheral Profile Mode

	BLE Common APIs
	BLE Common Core Functions
	CyBle_Start
	CyBle_Stop
	CyBle_GetState
	CyBle_GetBleSsState
	CyBle_SetState
	CyBle_StoreAppData
	CyBle_StoreBondingData
	CyBle_StoreStackData
	CyBle_SoftReset
	CyBle_EnterLPM
	CyBle_ExitLPM
	CyBle_ProcessEvents
	CyBle_GetDeviceAddress
	CyBle_SetDeviceAddress
	CyBle_GetRssi
	CyBle_GetTxPowerLevel
	CyBle_SetTxPowerLevel
	CyBle_GetBleClockCfgParam
	CyBle_SetBleClockCfgParam
	CyBle_GenerateRandomNumber
	CyBle_AesEncrypt
	CyBle_SetCeLengthParam
	CyBle_WriteAuthPayloadTimeout
	CyBle_ReadAuthPayloadTimeout
	CyBle_SetRxGainMode
	CyBle_SetTxGainMode
	CyBle_GetStackLibraryVersion

	GAP Functions
	GAP Central and Peripheral Functions
	CyBle_GapSetIoCap
	CyBle_GapSetOobData
	CyBle_GapGetPeerBdAddr
	CyBle_GapGetPeerBdHandle
	CyBle_GapGetPeerDevSecurity
	CyBle_GapDisconnect
	CyBle_GapGetPeerDevSecurityKeyInfo
	CyBle_GapGenerateDeviceAddress
	CyBle_GapAuthReq
	CyBle_GapAuthPassKeyReply
	CyBle_GapRemoveDeviceFromWhiteList
	CyBle_GapRemoveOldestDeviceFromBondedList
	CyBle_GapAddDeviceToWhiteList
	CyBle_GapGetBondedDevicesList
	CyBle_GapGenerateKeys
	CyBle_GapGetLocalName
	CyBle_GapSetLocalName
	CyBle_GapSetSecurityKeys
	CyBle_GapGetDevSecurityKeyInfo
	CyBle_GapUpdateAdvData

	GAP Central Functions
	CyBle_GapcStartScan
	CyBle_GapcStopScan
	CyBle_GapcStartDiscovery
	CyBle_GapcStopDiscovery
	CyBle_GapcConnectDevice
	CyBle_GapcInitConnection
	CyBle_GapcCancelConnection
	CyBle_GapcConnectionParamUpdateRequest
	CyBle_GapcResolveDevice
	CyBle_GapcSetHostChannelClassification
	CyBle_GapcSetRemoteAddr

	GAP Peripheral Functions
	CyBle_GappStartAdvertisement
	CyBle_GappStopAdvertisement
	CyBle_GappEnterDiscoveryMode
	CyBle_GappExitDiscoveryMode
	CyBle_GappAuthReqReply

	GAP Definitions and Data Structures
	CYBLE_GAP_SEC_LEVEL_T
	CYBLE_GAP_SMP_KEY_DIST_T
	CYBLE_GAP_ADDR_TYPE_T
	CYBLE_GAP_ADV_ASSIGN_NUMBERS
	CYBLE_GAP_AUTH_FAILED_REASON_T
	CYBLE_GAP_AUTH_INFO_T
	CYBLE_GAP_BD_ADDR_T
	CYBLE_GAP_BONDED_DEV_ADDR_LIST_T
	CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T
	CYBLE_GAP_CONN_UPDATE_PARAM_T
	CYBLE_GAP_IOCAP_T
	CYBLE_GAP_PASSKEY_DISP_INFO_T
	CYBLE_GAPC_ADV_EVENT_T
	CYBLE_GAPC_ADV_REPORT_T
	CYBLE_GAPC_CONN_PARAM_T
	CYBLE_GAPC_DISC_INFO_T
	CYBLE_GAPC_T
	CYBLE_GAPP_ADV_T
	CYBLE_GAPP_DISC_DATA_T
	CYBLE_GAPP_DISC_MODE_INFO_T
	CYBLE_GAPP_DISC_PARAM_T
	CYBLE_GAPP_SCAN_RSP_DATA_T

	GATT Functions
	GATT Client and Server Functions
	CyBle_GattGetMtuSize

	GATT Server Functions
	CyBle_GattsReInitGattDb
	CyBle_GattsWriteAttributeValue
	CyBle_GattsReadAttributeValue
	CyBle_GattsEnableAttribute
	CyBle_GattsDisableAttribute
	CyBle_GattsNotification
	CyBle_GattsIndication
	CyBle_GattsErrorRsp
	CyBle_GattsExchangeMtuRsp
	CyBle_GattsWriteRsp
	CyBle_GattsPrepWriteReqSupport

	GATT Client Functions
	CyBle_GattcStopCmd
	CyBle_GattcExchangeMtuReq
	CyBle_GattcDiscoverAllPrimaryServices
	CyBle_GattcDiscoverPrimaryServiceByUuid
	CyBle_GattcFindIncludedServices
	CyBle_GattcDiscoverAllCharacteristics
	CyBle_GattcDiscoverCharacteristicByUuid
	CyBle_GattcDiscoverAllCharacteristicDescriptors
	CyBle_GattcReadCharacteristicValue
	CyBle_GattcReadUsingCharacteristicUuid
	CyBle_GattcReadLongCharacteristicValues
	CyBle_GattcReadMultipleCharacteristicValues
	CyBle_GattcWriteWithoutResponse
	CyBle_GattcSignedWriteWithoutRsp
	CyBle_GattcWriteCharacteristicValue
	CyBle_GattcWriteLongCharacteristicValues
	CyBle_GattcReliableWrites
	CyBle_GattcConfirmation
	CyBle_GattcReadCharacteristicDescriptors
	CyBle_GattcReadLongCharacteristicDescriptors
	CyBle_GattcWriteCharacteristicDescriptors
	CyBle_GattcWriteLongCharacteristicDescriptors
	CyBle_GattcStartDiscovery

	GATT Definitions and Data Structures
	CYBLE_GATT_ATTR_HANDLE_RANGE_T
	CYBLE_GATT_DB_ATTR_HANDLE_T
	CYBLE_GATT_ERR_CODE_T
	CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T
	CYBLE_GATT_HANDLE_VALUE_PAIR_T
	CYBLE_GATT_PDU_T
	CYBLE_GATT_VALUE_T
	CYBLE_GATT_XCHG_MTU_PARAM_T
	CYBLE_GATTC_ERR_RSP_PARAM_T
	CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T
	CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T
	CYBLE_GATTC_FIND_INFO_RSP_PARAM_T
	CYBLE_GATTC_GRP_ATTR_DATA_LIST_T
	CYBLE_GATTC_HANDLE_LIST_T
	CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T
	CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T
	CYBLE_GATTC_READ_BLOB_REQ_T
	CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T
	CYBLE_GATTC_READ_BY_TYPE_REQ_T
	CYBLE_GATTC_READ_RSP_PARAM_T
	CYBLE_GATTC_T
	CYBLE_GATTC_FIND_INFO_REQ_T
	CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T
	CYBLE_GATTC_PREP_WRITE_REQ_T
	CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T
	CYBLE_GATTC_READ_MULT_REQ_T
	CYBLE_GATTC_READ_REQ_T
	CYBLE_GATTC_WRITE_CMD_REQ_T
	CYBLE_GATTC_WRITE_REQ_T
	CYBLE_GATTC_EXEC_WRITE_RSP_T
	CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T
	CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T
	CYBLE_GATTS_EXEC_WRITE_REQ_T
	CYBLE_GATTS_ATT_GENERIC_VAL_T
	CYBLE_GATTS_ATT_VALUE_T
	CYBLE_GATTS_DB_T
	CYBLE_GATTS_ERR_PARAM_T
	CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T
	CYBLE_GATTS_WRITE_REQ_PARAM_T
	CYBLE_GATTS_HANDLE_VALUE_IND_T
	CYBLE_GATTS_HANDLE_VALUE_NTF_T
	CYBLE_GATTS_PREP_WRITE_RSP_PARAM_T
	CYBLE_GATTS_READ_RSP_PARAM_T
	CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T
	CYBLE_GATTS_T
	CYBLE_DISC_CHAR_INFO_T
	CYBLE_DISC_DESCR_INFO_T
	CYBLE_DISC_INCL_INFO_T
	CYBLE_DISC_SRVC_INFO_T

	L2CAP Functions
	CyBle_L2capCbfcRegisterPsm
	CyBle_L2capCbfcUnregisterPsm
	CyBle_L2capCbfcConnectReq
	CyBle_L2capCbfcConnectRsp
	CyBle_L2capCbfcSendFlowControlCredit
	CyBle_L2capChannelDataWrite
	CyBle_L2capDisconnectReq
	CyBle_L2capLeConnectionParamUpdateRequest
	CyBle_L2capLeConnectionParamUpdateResponse

	L2CAP Definitions and Data Structures
	CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T
	CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T
	CYBLE_L2CAP_CBFC_CONNECT_PARAM_T
	CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T
	CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T
	CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T
	CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T
	CYBLE_L2CAP_CBFC_RX_PARAM_T
	CYBLE_L2CAP_RESULT_PARAM_T
	CYBLE_L2CAP_COMMAND_REJ_REASON_T

	BLE Common Events
	CYBLE_EVENT_T

	BLE Common Definitions and Data Structures
	CYBLE_API_RESULT_T
	CYBLE_TO_REASON_CODE_T
	CYBLE_BLESS_PWR_IN_DB_T
	CYBLE_BLESS_PWR_LVL_T
	CYBLE_BLESS_PHY_CH_GRP_ID_T
	CYBLE_BLESS_CLK_CFG_PARAMS_T
	CYBLE_BLESS_WCO_SCA_CFG_T
	CYBLE_BLESS_ECO_CLK_DIV_T
	CYBLE_APP_CB_T
	CYBLE_CALLBACK_T
	CYBLE_LP_MODE_T
	CYBLE_CONN_HANDLE_T
	CYBLE_UUID_T
	CYBLE_UUID16
	CYBLE_UUID128_T
	CYBLE_STACK_LIB_VERSION_T
	CYBLE_CLIENT_STATE_T
	CYBLE_SRVR_CHAR_INFO_T
	CYBLE_STATE_T
	CYBLE_CHAR_AGGREGATE_FMT_T
	CYBLE_CHAR_PRESENT_FMT_T
	CYBLE_CHAR_USER_DESCRIPTION_T
	CYBLE_CLIENT_CHAR_CONFIG_T
	CYBLE_SERVER_CHAR_CONFIG_T
	CYBLE_STACK_EV_CB_PF
	CYBLE_BLESS_STATE_T

	BLE Service-Specific APIs
	Alert Notification Service (ANS)
	ANS Server and Client Function
	CyBle_AnsRegisterAttrCallback

	ANS Server Functions
	CyBle_AnssSetCharacteristicValue
	CyBle_AnssGetCharacteristicValue
	CyBle_AnssGetCharacteristicDescriptor
	CyBle_AnssSendNotification

	ANS Client Functions
	CyBle_AnscSetCharacteristicValue
	CyBle_AnscGetCharacteristicValue
	CyBle_AnscSetCharacteristicDescriptor
	CyBle_AnscGetCharacteristicDescriptor

	ANS Definitions and Data Structures
	CYBLE_ANS_CHAR_INDEX_T
	CYBLE_ANS_CHAR_VALUE_T
	CYBLE_ANS_DESCR_INDEX_T
	CYBLE_ANS_DESCR_VALUE_T
	CYBLE_ANSC_T
	CYBLE_ANSS_CHAR_T
	CYBLE_ANSS_T

	Battery Service (BAS)
	BAS Server and Client Function
	CyBle_BasRegisterAttrCallback

	BAS Server Functions
	CyBle_BassSetCharacteristicValue
	CyBle_BassGetCharacteristicValue
	CyBle_BassGetCharacteristicDescriptor
	CyBle_BassSendNotification

	BAS Client Functions
	CyBle_BascGetCharacteristicValue
	CyBle_BascSetCharacteristicDescriptor
	CyBle_BascGetCharacteristicDescriptor

	BAS Definitions and Data Structures
	CYBLE_BAS_CHAR_INDEX_T
	CYBLE_BAS_CHAR_VALUE_T
	CYBLE_BAS_DESCR_INDEX_T
	CYBLE_BAS_DESCR_VALUE_T
	CYBLE_BASC_T
	CYBLE_BASS_NOTIF_PAR_T
	CYBLE_BASS_T

	Blood Pressure Service (BLS)
	BLS Server and Client Function
	CyBle_BlsRegisterAttrCallback

	BLS Server Functions
	CyBle_BlssGetCharacteristicDescriptor
	CyBle_BlssGetCharacteristicValue
	CyBle_BlssSendIndication
	CyBle_BlssSendNotification
	CyBle_BlssSetCharacteristicValue

	BLS Client Functions
	CyBle_BlscGetCharacteristicValue
	CyBle_BlscSetCharacteristicDescriptor
	CyBle_BlscGetCharacteristicDescriptor

	BLS Definitions and Data Structures
	CYBLE_BLS_CHAR_INDEX_T
	CYBLE_BLS_CHAR_VALUE_T
	CYBLE_BLS_DESCR_INDEX_T
	CYBLE_BLS_DESCR_VALUE_T
	CYBLE_BLSC_CHAR_T
	CYBLE_BLSC_T
	CYBLE_BLSS_CHAR_T
	CYBLE_BLSS_T

	Current Time Service (CTS)
	CTS Server and Client Function
	CyBle_CtsRegisterAttrCallback

	CTS Server Functions
	CyBle_CtssSetCharacteristicValue
	CyBle_CtssGetCharacteristicValue
	CyBle_CtssGetCharacteristicDescriptor
	CyBle_CtssSendNotification

	CTS Client Functions
	CyBle_CtscGetCharacteristicValue
	CyBle_CtscSetCharacteristicDescriptor
	CyBle_CtscGetCharacteristicDescriptor

	CTS Definitions and Data Structures
	CYBLE_CTS_CHAR_INDEX_T
	CYBLE_CTS_CHAR_DESCRIPTORS_T
	CYBLE_CTS_CURRENT_TIME_T
	CYBLE_CTS_LOCAL_TIME_INFO_T
	CYBLE_CTS_REFERENCE_TIME_INFO_T
	CYBLE_CTS_CHAR_VALUE_T
	CYBLE_CTS_DESCR_VALUE_T
	CYBLE_CTSC_T
	CYBLE_CTSS_T

	Cycling Power Service (CPS)
	CPS Server and Client Function
	CyBle_CpsRegisterAttrCallback

	CPS Server Functions
	CyBle_CpssStopBroadcast
	CyBle_CpssStartBroadcast
	CyBle_CpssSetCharacteristicValue
	CyBle_CpssSetCharacteristicDescriptor
	CyBle_CpssSendNotification
	CyBle_CpssSendIndication
	CyBle_CpssGetCharacteristicValue
	CyBle_CpssGetCharacteristicDescriptor

	CPS Client Functions
	CyBle_CpscStopObserve
	CyBle_CpscStartObserve
	CyBle_CpscSetCharacteristicValue
	CyBle_CpscSetCharacteristicDescriptor
	CyBle_CpscGetCharacteristicValue
	CyBle_CpscGetCharacteristicDescriptor

	CPS Definitions and Data Structures
	CYBLE_CPS_SL_VALUE_T
	CYBLE_CPS_DESCR_VALUE_T
	CYBLE_CPS_DESCR_INDEX_T
	CYBLE_CPS_DATE_TIME_T
	CYBLE_CPS_CP_RC_T
	CYBLE_CPS_CP_OC_T
	CYBLE_CPS_CP_ADJUSTMENT_T
	CYBLE_CPS_CHAR_VALUE_T
	CYBLE_CPS_CHAR_INDEX_T
	CYBLE_CPSS_T
	CYBLE_CPSS_CHAR_T
	CYBLE_CPSC_T
	CYBLE_CPSC_CHAR_T

	Cycling Speed and Cadence Service (CSCS)
	CSCS Server and Client Function
	CyBle_CscsRegisterAttrCallback

	CSCS Server Functions
	CyBle_CscssSetCharacteristicValue
	CyBle_CscssSendNotification
	CyBle_CscssSendIndication
	CyBle_CscssGetCharacteristicValue
	CyBle_CscssGetCharacteristicDescriptor

	CSCS Client Functions
	CyBle_CscscSetCharacteristicValue
	CyBle_CscscSetCharacteristicDescriptor
	CyBle_CscscGetCharacteristicValue
	CyBle_CscscGetCharacteristicDescriptor

	CSCS Definitions and Data Structures
	CYBLE_CSCSC_T
	CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T
	CYBLE_CSCS_DESCR_VALUE_T
	CYBLE_CSCS_DESCR_INDEX_T
	CYBLE_CSCS_CHAR_VALUE_T
	CYBLE_CSCS_CHAR_INDEX_T
	CYBLE_CSCSS_T
	CYBLE_CSCSS_CHAR_T

	Device Information Service (DIS)
	DIS Server and Client Function
	CyBle_DisRegisterAttrCallback

	DIS Server Functions
	CyBle_DissSetCharacteristicValue
	CyBle_DissGetCharacteristicValue

	DIS Client Functions
	CyBle_DiscGetCharacteristicValue

	DIS Definitions and Data Structures
	CYBLE_DIS_CHAR_INDEX_T
	CYBLE_DIS_CHAR_VALUE_T
	CYBLE_DISC_T
	CYBLE_DISS_T

	Glucose Service (GLS)
	GLS Server and Client Function
	CyBle_GlsRegisterAttrCallback

	GLS Server Functions
	CyBle_GlssSetCharacteristicValue
	CyBle_GlssGetCharacteristicValue
	CyBle_GlssGetCharacteristicDescriptor
	CyBle_GlssSendNotification
	CyBle_GlssSendIndication

	GLS Client Functions
	CyBle_GlscSetCharacteristicValue
	CyBle_GlscGetCharacteristicValue
	CyBle_GlscSetCharacteristicDescriptor
	CyBle_GlscGetCharacteristicDescriptor

	GLS Definitions and Data Structures
	CYBLE_GLS_CHAR_INDEX_T
	CYBLE_GLS_CHAR_VALUE_T
	CYBLE_GLS_DESCR_INDEX_T
	CYBLE_GLS_DESCR_VALUE_T
	CYBLE_GLSC_CHAR_T
	CYBLE_GLSC_T
	CYBLE_GLSS_CHAR_T
	CYBLE_GLSS_T

	HID Service (HIDS)
	HIDS Server and Client Function
	CyBle_HidsRegisterAttrCallback

	HIDS Server Functions
	CyBle_HidssSetCharacteristicValue
	CyBle_HidssGetCharacteristicValue
	CyBle_HidssGetCharacteristicDescriptor
	CyBle_HidssSendNotification

	HIDS Client Functions
	CyBle_HidscGetCharacteristicValue
	CyBle_HidscSetCharacteristicValue
	CyBle_HidscSetCharacteristicDescriptor
	CyBle_HidscGetCharacteristicDescriptor

	HIDS Definitions and Data Structures
	CYBLE_HIDS_CHAR_INDEX_T
	CYBLE_HIDS_CHAR_VALUE_T
	CYBLE_HIDS_DESCR_T
	CYBLE_HIDS_DESCR_VALUE_T
	CYBLE_HIDSC_CHAR_READ_T
	CYBLE_HIDSC_CHAR_WRITE_T
	CYBLE_HIDSC_REPORT_MAP_T
	CYBLE_HIDSC_REPORT_T
	CYBLE_HIDSC_T
	CYBLE_HIDSS_INFORMATION_T
	CYBLE_HIDSS_REPORT_REF_T
	CYBLE_HIDSS_REPORT_T
	CYBLE_HIDSS_T

	Heart Rate Service (HRS)
	HRS Server and Client Function
	CyBle_HrsRegisterAttrCallback

	HRS Server Functions
	CyBle_HrssSetCharacteristicValue
	CyBle_HrssGetCharacteristicValue
	CyBle_HrssGetCharacteristicDescriptor
	CyBle_HrssSendNotification

	HRS Client Functions
	CyBle_HrscSetCharacteristicValue
	CyBle_HrscGetCharacteristicValue
	CyBle_HrscSetCharacteristicDescriptor
	CyBle_HrscGetCharacteristicDescriptor

	HRS Definitions and Data Structures
	CYBLE_HRS_CHAR_INDEX_T
	CYBLE_HRS_CHAR_VALUE_T
	CYBLE_HRS_DESCR_INDEX_T
	CYBLE_HRS_DESCR_VALUE_T
	CYBLE_HRSC_T
	CYBLE_HRSS_T

	Health Thermometer Service (HTS)
	HTS Server and Client Function
	CyBle_HtsRegisterAttrCallback

	HTS Server Functions
	CyBle_HtssSetCharacteristicValue
	CyBle_HtssGetCharacteristicValue
	CyBle_HtssSetCharacteristicDescriptor
	CyBle_HtssGetCharacteristicDescriptor
	CyBle_HtssSendIndication
	CyBle_HtssSendNotification

	HTS Client Functions
	CyBle_HtscSetCharacteristicValue
	CyBle_HtscGetCharacteristicValue
	CyBle_HtscSetCharacteristicDescriptor
	CyBle_HtscGetCharacteristicDescriptor

	HTS Definitions and Data Structures
	CYBLE_HTS_CHAR_INDEX_T
	CYBLE_HTS_CHAR_VALUE_T
	CYBLE_HTS_DESCR_INDEX_T
	CYBLE_HTS_DESCR_VALUE_T
	CYBLE_HTS_TEMP_TYPE_T
	CYBLE_HTSC_CHAR_T
	CYBLE_HTSC_T
	CYBLE_HTSS_CHAR_T
	CYBLE_HTSS_T
	CYBLE_HTS_FLOAT32

	Immediate Alert Service (IAS)
	IAS Server and Client Function
	CyBle_IasRegisterAttrCallback

	IAS Server Functions
	CyBle_IassGetCharacteristicValue

	IAS Client Functions
	CyBle_IascSetCharacteristicValue

	IAS Definitions and Data Structures
	CYBLE_IAS_CHAR_INDEX_T
	CYBLE_IAS_CHAR_VALUE_T
	CYBLE_IASC_T
	CYBLE_IASS_T

	Link Loss Service (LLS)
	LLS Server and Client Function
	CyBle_LlsRegisterAttrCallback

	LLS Server Functions
	CyBle_LlssGetCharacteristicValue

	LLS Client Functions
	CyBle_LlscSetCharacteristicValue
	CyBle_LlscGetCharacteristicValue

	LLS Definitions and Data Structures
	CYBLE_LLS_CHAR_INDEX_T
	CYBLE_LLS_CHAR_VALUE_T
	CYBLE_LLSC_T
	CYBLE_LLSS_T

	Location and Navigation Service (LNS)
	LNS Server and Client Function
	CyBle_LnsRegisterAttrCallback

	LNS Server Functions
	CyBle_LnssGetCharacteristicDescriptor
	CyBle_LnssGetCharacteristicValue
	CyBle_LnssSendIndication
	CyBle_LnssSendNotification
	CyBle_LnssSetCharacteristicValue

	LNS Client Functions
	CyBle_LnscSetCharacteristicValue
	CyBle_LnscGetCharacteristicValue
	CyBle_LnscSetCharacteristicDescriptor
	CyBle_LnscGetCharacteristicDescriptor

	LNS Definitions and Data Structures
	CYBLE_LNS_CHAR_INDEX_T
	CYBLE_LNS_CHAR_VALUE_T
	CYBLE_LNS_DESCR_INDEX_T
	CYBLE_LNS_DESCR_VALUE_T
	CYBLE_LNSC_CHAR_T
	CYBLE_LNSC_T
	CYBLE_LNSS_CHAR_T
	CYBLE_LNSS_T

	Next DST Change Service (NDCS)
	NDCS Server and Client Function
	CyBle_NdcsRegisterAttrCallback

	NDCS Server Functions
	CyBle_NdcssGetCharacteristicValue
	CyBle_NdcssSetCharacteristicValue

	NDCS Client Functions
	CyBle_NdcscGetCharacteristicValue

	NDCS Definitions and Data Structures
	CYBLE_NDCS_CHAR_INDEX_T
	CYBLE_NDCS_CHAR_VALUE_T
	CYBLE_NDCSC_T
	CYBLE_NDCSS_T

	Phone Alert Status Service (PASS)
	PASS Server and Client Function
	CyBle_PassRegisterAttrCallback

	PASS Server Functions
	CyBle_PasssSetCharacteristicValue
	CyBle_PasssSendNotification
	CyBle_PasssGetCharacteristicValue
	CyBle_PasssGetCharacteristicDescriptor

	PASS Client Functions
	CyBle_PasscSetCharacteristicValue
	CyBle_PasscSetCharacteristicDescriptor
	CyBle_PasscGetCharacteristicValue
	CyBle_PasscGetCharacteristicDescriptor

	PASS Definitions and Data Structures
	CYBLE_PASSS_T
	CYBLE_PASSS_CHAR_T
	CYBLE_PASSC_T
	CYBLE_PASSC_CHAR_T
	CYBLE_PASS_RS_T
	CYBLE_PASS_DESCR_VALUE_T
	CYBLE_PASS_DESCR_INDEX_T
	CYBLE_PASS_CP_T
	CYBLE_PASS_CHAR_VALUE_T
	CYBLE_PASS_CHAR_INDEX_T

	Running Speed and Cadence Service (RSCS)
	RSCS Server and Client Function
	CyBle_RscsRegisterAttrCallback

	RSCS Server Functions
	CyBle_RscssSetCharacteristicValue
	CyBle_RscssGetCharacteristicValue
	CyBle_RscssGetCharacteristicDescriptor
	CyBle_RscssSendNotification
	CyBle_RscssSendIndication

	RSCS Client Functions
	CyBle_RscscSetCharacteristicValue
	CyBle_RscscGetCharacteristicValue
	CyBle_RscscSetCharacteristicDescriptor
	CyBle_RscscGetCharacteristicDescriptor

	RSCS Definitions and Data Structures
	RSCS Definitions and Data Structures
	CYBLE_RSCS_CHAR_INDEX_T
	CYBLE_RSCS_CHAR_VALUE_T
	CYBLE_RSCS_DESCR_INDEX_T
	CYBLE_RSCS_DESCR_VALUE_T
	CYBLE_RSCSC_T
	CYBLE_RSCSS_CHAR_T
	CYBLE_RSCSS_T
	CYBLE_SRVR_FULL_CHAR_INFO_T
	CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T

	Reference Time Update Service (RTUS)
	RTUS Server and Client Function
	CyBle_RtusRegisterAttrCallback

	RTUS Server Functions
	CyBle_RtussGetCharacteristicValue
	CyBle_RtussSetCharacteristicValue

	RTUS Client Functions
	CyBle_RtuscSetCharacteristicValue
	CyBle_RtuscGetCharacteristicValue

	RTUS Definitions and Data Structures
	CYBLE_RTUS_CHAR_INDEX_T
	CYBLE_RTUS_CHAR_VALUE_T
	CYBLE_RTUSC_T
	CYBLE_RTUSS_T

	Scan Parameters Service (ScPS)
	ScPS Server and Client Function
	CyBle_ScpsRegisterAttrCallback

	ScPS Server Functions
	CyBle_ScpssSetCharacteristicValue
	CyBle_ScpssGetCharacteristicValue
	CyBle_ScpssGetCharacteristicDescriptor
	CyBle_ScpssSendNotification

	ScPS Client Functions
	CyBle_ScpscSetCharacteristicValue
	CyBle_ScpscSetCharacteristicDescriptor
	CyBle_ScpscGetCharacteristicDescriptor

	ScPS Definitions and Data Structures
	CYBLE_SCPS_CHAR_INDEX_T
	CYBLE_SCPS_CHAR_VALUE_T
	CYBLE_SCPS_DESCR_INDEX_T
	CYBLE_SCPS_DESCR_VALUE_T
	CYBLE_SCPSC_T
	CYBLE_SCPSS_T

	TX Power Service (TPS)
	TPS Server and Client Function
	CyBle_TpsRegisterAttrCallback

	TPS Server Functions
	CyBle_TpssSetCharacteristicValue
	CyBle_TpssGetCharacteristicValue
	CyBle_TpssGetCharacteristicDescriptor
	CyBle_TpssSendNotification

	TPS Client Functions
	CyBle_TpscGetCharacteristicValue
	CyBle_TpscSetCharacteristicDescriptor
	CyBle_TpscGetCharacteristicDescriptor

	TPS Definitions and Data Structures
	CYBLE_TPS_CHAR_DESCRIPTORS_T
	CYBLE_TPS_CHAR_INDEX_T
	CYBLE_TPS_CHAR_VALUE_T
	CYBLE_TPS_DESCR_VALUE_T
	CYBLE_TPSC_T
	CYBLE_TPSS_T

	Custom Service
	CYBLE_CUSTOMS_INFO_T
	CYBLE_CUSTOMS_T

	BLE Service-Specific Events
	CYBLE_EVT_T

	Functional Description
	Operation Flow
	System Initialization
	System Normal Operation
	System Low power Operation

	Callback Functions
	Device Bonding
	LFCLK configuration
	Unsupported Features

	Resources
	DC and AC Electrical Characteristics
	Component Changes

