
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 002-24878 Rev.** Revised August 20, 2018

Features

▪ Supports inductive sensing up to frequencies of 3 MHz

▪ Supports auto-tuning algorithm for easy tuning and reliable operation

▪ Supports up to 16 simultaneous inductive sensing inputs

▪ Contains an integrated graphical user interface for tuning, testing, and debugging

▪ Sampling rate up to 10 ksps

General Description

Inductive sensing technology enables touch and proximity detection for human interface on a
wide variety of materials including both ferrous and non-ferrous materials. The touches are
detected by measuring small deflections of conductive targets. Cypress’s MagSense inductive
sensing solution supports up to 16 inputs and it is insensitive to environmental changes and
non-conductive objects such as dirt and liquids etc. Touch sensing over metal overlays provides
the ability to design cool aesthetics for product user interfaces. Auto-calibration algorithm
automatically compensates overlay deformations over time and provides reliable operation.

The inductive sensor is an inductive coil formed using copper trace on a PCB. It is represented
electrically as an inductor with a series AC resistance (RS). The coil is combined with a parallel
capacitor (C) to form a parallel LC tank. The coil is driven at resonance by a LX voltage where
the resonant frequency is defined as:

𝑓0 =
1

2𝜋
√

1

(𝐿𝐶)
− (

𝑅𝑆

𝐿
)

2

PSoC 4 MagSense™ Inductive Sensing
6.0

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 2 of 64 Document Number: 002-24878 Rev.**

The signal from the LC tank is then coupled into Rx electrode through a capacitor CC where it is
digitized by an analog to digital converter. A metal object changes the amplitude of oscillation of
the LC tank, changing the digitized output code.

The MagSense Inductive Sensing (MagSense) Component includes a configuration wizard to
create and configure inductive sensing widgets, APIs to control the Component from the
application firmware, and a MagSense Tuner application for tuning, testing, and debugging.

This datasheet includes the following sections:

▪ Quick Start – Helps you quickly configure the Component to create a simple demo.

▪ Component Configuration Parameters – Contains descriptions of the Component’s
parameters in the configuration wizard.

▪ Application Programming Interface (APIs) – Provides descriptions of all APIs in the
firmware library, as well as descriptions of all data structures (Register map) used by the
firmware library.

▪ MagSense Tuner – Contains descriptions of all user-interface controls in the tuner
application.

▪ Electrical Characteristics – Provides the Component performance specifications and other
details such as certification specifications.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 3 of 64

When to Use a MagSense Component

Applications for inductive sensing include:

▪ Mechanical open/close switch replacement

□ White goods door open/close.

□ Home security and Tamper detection.

▪ Buttons

□ Industrial keypads

□ Metallic on/off buttons

▪ Distance measurement

□ Proximity detection

▪ Rotation detection

□ Flow Meters

□ Fan speed RPM detection

□ Incremental rotary control knob.

Quick Start

This section will help you create a PSoC Creator project with a Proximity interface.

In order to monitor performance of the sensor using the MagSense Tuner, refer to the Tuner
Quick Start section once the PSoC Creator project has been created.

Step-1: Create a Design in PSoC Creator

Create a project using PSoC Creator and select the desired MagSense-enabled PSoC 4 device
from the drop-down menu in the New Project wizard.

If required, refer to the following documents for more information:

▪ PSoC Creator Quick Start Guide

▪ PSoC Creator User Guide

Step-2: Place and Configure the MagSense Component

Drag and drop the MagSense Component from the Component Catalog onto the design
schematics to add the MagSense functionality to the project.

Double-click on the Component in the schematic to open the Configure dialog. Type the desired
Component name (in this case: MagSense for the code in Step-3 to work).

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 4 of 64 Document Number: 002-24878 Rev.**

The Component Configuration Parameters are arranged over the multiple tabs and sub-tabs.

Basic Tab

Use this tab to select the Widget type and a number of Widgets required for the design. Click ‘+’
to add an ISX proximity sensor widget to the design. See Basic Tab for more information.

Note Each widget consumes two port pins from the device.

Advanced Tab

Use this tab to configure parameters required for an extensive level of manual tuning. For this
project, use the default values for parameters in this tab. This tab has multiple sub-tabs used to
systematically arrange parameters. See Advanced Tab for details about these parameters.

Step-3: Write Application Code

Copy the following code into main.c file:

#include <project.h>

int main()

{

 CyGlobalIntEnable; /* Enable global interrupts */

 MagSense_Start(); /* Initialize Component */

 MagSense_ScanAllWidgets(); /* Scan all widgets */

 for(;;)

 {

 /* Do this only when a scan is done */

 if(MagSense_NOT_BUSY == MagSense_IsBusy())

 {

 MagSense_ProcessAllWidgets(); /* Process all widgets */

 if (MagSense_IsAnyWidgetActive()) /* Scan result verification */

 {

 /* add custom tasks to execute when touch detected */

 }

 MagSense_ScanAllWidgets(); /* Start next scan */

 }

 }

}

Step-4: Assign Pins in Pin Editor

Double-click the Design-Wide Resources Pin Editor (in the Workspace Explorer) and assign
physical pins for all MagSense sensors. If you are using a Cypress kit, refer to the kit user guide
for pin selections for the kit.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 5 of 64

Step-5: Build Design

Select Build <project name> from the Build menu and see the project build without errors.

Further, you can add custom code in the above project to add indicator such as turn on an LED
using GPIO when touch or proximity is detected.

Another choice is to add tuner interface to the project and monitor the status of sensors using
tuner GUI tool. Refer to Tuner Quick Start section for procedure to add tuner interface to the
project and start the tuning sensor on the hardware.

Input / Output Connections

This section describes the various input and output connections for the MagSense Component.
These are not exposed as connectable terminals on the Component symbol but these terminals
can be assigned to the port pins in the Pins tab of the Design-Wide Resources setting of PSoC
Creator. The Pin Editor provides guidelines on the recommended pins for each terminal and
does not allow an invalid pin assignment.

Name I/O Type Description

CintA Analog Integration capacitor. Mandatory for operation of the ISX sensing method and
required only if the ISX sensing is used. The recommended value is 470pF/5v/X7R
or NP0 capacitors. CintB Analog

Lx Digital Output Transmitter electrodes of ISX widgets. There is one Lx electrode for each sensor.

Note To enable the full complement of 16 sensors, it may be necessary to change
the Debug Select option in the Design-Wide Resources System Editor.

Rx Analog Receiver electrodes of ISX widgets. There is one Rx electrode for each sensor.

Rsv N/A This pin is reserved for internal use. There is a reserved pin on an Inductive
Sensing port as long as there is exactly one sensor on that port.

Component Configuration Parameters

This section provides a brief description of all configurable parameters in the Component
Configure dialog. This section does not provide design and tuning guidelines. For complete
guidelines, refer to the MagSense Design guide.

Drag a Component onto the design canvas and double-click to open the dialog.

Common Controls

▪ Load configuration – Open (load) a previously saved configuration (XML) file for the
MagSense Component.

▪ Save configuration – Save the current Component configuration into a (XML) file.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 6 of 64 Document Number: 002-24878 Rev.**

▪ Export Register Map – The MagSense Component firmware library uses a data structure
(known as Register map) to store the configurable parameters, various outputs and
signals of the Component. The Export Register Map button creates an explanation for
registers and bit fields of the register map in PDF or XML file that can be used as a
reference for development.

Basic Tab

The Basic tab defines the high-level Component configuration. Use this tab to add Proximity
widgets for the design.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 7 of 64

Name Description

Widget type A widget is an interface that perform a specific user-interface functionality.

▪ Encoder Dial is a widget consisting of two sensors. Each sensor detects the presence
or absence of metal, and based on the pattern of sensors compared to the pattern of
metal on a dial, detects rotation.

▪ Button is a widget consisting of one sensor. Each widget can detect the presence or
absence (i.e. only two states) of a metal object on the sensor.

▪ Proximity Sensor is a widget consisting of one sensor. Each sensor in the widget can
detect the proximity of conductive objects such as metals. The proximity sensor has two
thresholds:

o Proximity threshold: To detect an approaching target

o Touch threshold: To detect a target touch on the sensor.

Widget name A widget name can be defined to aid in referring to a specific widget in the design. A widget
name does not have any effect on functionality or performance and a widget name is used
throughout the source code to generate macro values and data structure variables. A maximum
of 16 alphanumeric characters (the first letter must be an alphabetic character) is acceptable for
a widget name.

Sensing mode Information: ISX sensing method is a Cypress patented method of performing inductive sensing
measurements.

Widget
Sensing
element(s)

Information: The sensing element refers to Component terminals assigned to port pins to
connect to physical sensors on the user-interface panel. Each ISX widgets uses a pair of
electrodes, one Lx and one Rx.

Move up /
Move down

Moves the selected widget up or down by one on the list. It defines the widget scanning order.

Note Widget deleting may break a pin assignment and you will need to repair the assignment in
the Pin Editor.

Delete Deletes the selected widget from the list.

Note Widget deleting may break a pin assignment and you will need to repair the assignment in
the Pin Editor.

ISX electrodes Information: Indicates the total number of electrodes (port pins) used by the ISX widgets,
including the CintA and CintB capacitors.

Pins required Information: Indicates the total number of port pins required for the design. This does not include
port pins used by other Components in the project or SWD pins in the debug mode.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 8 of 64 Document Number: 002-24878 Rev.**

Advanced Tab

This tab provides advanced configuration parameters. Use this tab to configure parameters
required for an extensive level of manual tuning.

The parameters in the Advanced tab are systematically arranged in the four sub-tabs.

▪ General – Contains all the parameters common for all widgets.

▪ ISX Settings – Contains all hardware parameters common for all widgets.

▪ Widget Details – Contains the parameters specific to widgets and/or sensors.

▪ Scan Order – Provides information scan time.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 9 of 64

General Sub-tab

Contains parameters common for all widgets. The table below provides descriptions of
parameters in this tab:

Name Description

Enable IIR filter
(First order)

Enables the infinite-impulse response filter (See equation below) with a step response
similar to an RC low-pass filter, thereby passing the low-frequency signals (finger touch
responses).

 
Outputprevious

K

NK
input

K

N
Output 




Where:

K is always 256,

N is the IIR filter raw count coefficient selectable from 1 to 128 in the customizer.

A lower N (set in IIR filter raw count coefficient parameter) results in lower noise, but slows
down the response. This filter eliminates the high-frequency noise.

Consumes 2 bytes of RAM per each sensor to store a previous raw count (filter history).

IIR filter raw count
coefficient

The coefficient (N) of IIR filter for raw counts as explained in the Enable IIR filter (First
order) parameter.

The range of valid values: 1-128

Enable median filter
(3-sample)

Enables a non-linear filter that takes three of most recent samples and computes the
median value. This filter eliminates the spikes noise typically caused by motors and
switching power supplies.

Consumes 4 bytes of RAM per each sensor to store a previous raw count (filter history).

Enable average
filter (4-sample)

The finite impulse response filter (no feedback) with equally weighted coefficients. It takes
four of most recent samples and computes their average. Eliminates the periodic noise
(e.g. noise from AC mains).

Consumes 6 bytes of RAM per each sensor to store a previous raw count (filter history).

Note If multiple filters are enabled, the execution order is the following:

▪ Median filter

▪ IIR filter

▪ Average filter

However, the Component provides the ability to change the order using a low-level processing
API. Refer to Application Programming Interface for details.

The filter algorithm is executed when any processing API is called by the application layer. When
enabled, each filter consumes RAM to store a previous raw count (filter history). If multiple filters
are enabled, the total filter history is correspondingly increased so that the size of the total filter
history is equal to a sum of all enabled filter histories.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 10 of 64 Document Number: 002-24878 Rev.**

Proximity widget raw count filter type

The proximity widget raw count filter applies to raw counts of sensors belonging to the proximity
widgets, so these parameters can be enabled only when one or more proximity widgets are
added on the Basic Tab

Baseline filter settings

The baseline filter settings are applied to all sensors baselines. However, the filter coefficients for
the proximity and regulator widgets can be controlled independently from each other.

The design of baseline IIR filter is the same as the raw count IIR filter, but the filter coefficients
are different for baseline and raw count filters to produce a different roll-off. The baseline filter is
applied to the filtered raw count (if the widget raw count filters are enabled).

Name Description

Proximity widget
baseline coefficient

Baseline IIR filter coefficient selection for sensors of proximity widgets. The valid range
is: 1-255.

General settings

The general settings are applicable to the whole Component behavior.

Name Description

Enable sensor auto-
reset

When enabled, the baseline is always updated and when disabled, the baseline is
updated only when the difference between the baseline and raw count is less than the
noise threshold.

When enabled, this feature prevents the sensors from permanently turning on when the
raw count accidentally rises above the threshold due spurious conditions.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 11 of 64

ISX Settings Sub-tab

The parameters specific ISX sensing hardware is provided in this tab.

Name Description

Modulator clock
frequency

Selects the modulator clock frequency for the ISX sensing method. The minimum value is 1000
kHz and maximum value is 48000 kHz or HFCLK, whichever is lower.

Enter any value between the min and max limits, based on the availability of the clock divider, the
closest valid lower value shall be selected by the Component, and the actual frequency is shown
in the read-only label below the drop-down list.

A higher modulator clock-frequency reduces the sensor scan time, therefore results in lower
average power consumption, so it is recommended to use the highest possible frequency.

Enable auto-
calibration

When enabled, values of the IDACs for ISX widgets are automatically set by the Component, and
finds the optimal Lx frequency. It is recommended to select the Enable auto-calibration for easy
tuning experience and robust operation.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 12 of 64 Document Number: 002-24878 Rev.**

Widget Details Sub-tab

This sub-tab contains parameters specific to each widget and sensor in the design.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 13 of 64

Name Description

Widget Hardware Parameters

Lx clock
frequency

Sets the ISX Lx clock frequency. The minimum value is 45 kHz and maximum value is
3000 kHz. The LX clock frequency should be set to the resonant frequency of the LC tank.
Determine the resonant frequency using the following equation:

𝐿𝑥𝐶𝑙𝑘 = 𝑓0 =
1

2𝜋
√

1

(𝐿𝐶)
− (

𝑅

𝐿
)

2

Where:

▪ L = Coil Inductance

▪ C = Parallel Capacitance of the LC tank

▪ R = AC series resistance of the coil at resonance.

In cases where the AC resistance of the coil is unknown use the simplified expression:

𝐿𝑥𝐶𝑙𝑘 = 𝑓0 =
1

2𝜋√(𝐿𝐶)

Enter Lx clock frequency value between minimum and maximum limits which matches the
resonant frequency of LC tank, based on availability of the clock divider, the next valid lower
value is selected by the Component, and the actual frequency is shown in the read-only label
below the drop-down list.

Note If the HFCLK or Modulator clock frequency is changed, the Component automatically
recalculates the next closest Lx clock frequency.

The Lx electrode is digital output, Refer to Electrical Characteristics section for Lx voltage
levels details.

Number of sub-
conversions

Selects the number of sub-conversions sensor. The number of sub-conversion should meet
the following equation:

𝑁𝑆𝑢𝑏 <
216×𝐿𝑥𝐶𝑙𝑘

𝑀𝑜𝑑𝐶𝑙𝑘

where,

ModClk = ISX Modulator clock frequency

LxClk = Lx clock frequency

NSub = the value of this parameter.

Note If auto-calibration is enabled, the Component will vary the LxClk to try and find the best
frequency within 10% of its current setting. It does not adjust NSub, so it is recommended
to choose NSub that is no larger than 90% of its maximum value.

IDAC Value Set the IDAC value such that raw count is at about 70% of full scale value. The value of this
parameter is automatically set when Enable auto-calibration is selected in the ISX Settings
tab.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 14 of 64 Document Number: 002-24878 Rev.**

Name Description

Widget Threshold Parameters

Finger threshold This parameter is available only for button widget. The finger threshold parameter is used
along with the hysteresis parameter to determine the sensor state as follows:

▪ ON: Signal > (Finger Threshold + Hysteresis)

▪ OFF: Signal ≤ (Finger Threshold – Hysteresis).

Note that “Signal” in the above equations refers to:

Difference Count = Raw Count – Baseline.

It is recommended to set a Finger threshold parameter value to be equal to the 80% of the
touch signal.

The Finger threshold parameter is not available for the Proximity widget. Instead, Proximity
has two thresholds:

▪ Proximity threshold

▪ Touch threshold

Proximity
threshold

The finger threshold parameter is used along with the hysteresis parameter to determine the
sensor state as follows:

▪ ON – Signal > (Proximity Threshold + Hysteresis)

▪ OFF – Signal ≤ (Proximity Threshold – Hysteresis).

Note that “Signal” in the above equations refers to:

Difference Count = Raw Count – Baseline.

The proximity sensor supports two levels of detection:

▪ The proximity threshold to detect an approaching of a hand or finger

▪ The touch threshold to detect a finger touch on the sensor similarly to other Widget
type sensors

Note that for valid operation, the Proximity threshold should be higher than the Touch
threshold.

The threshold parameters such as Hysteresis and ON debounce are applicable to both
detection levels.

Touch threshold

Noise threshold The noise threshold parameter sets the raw count limit. Raw count below the limit is
considered as noise, when the raw count is above the Noise Threshold difference count is
produced and the baseline is updated only if Enable sensor auto-reset is selected (In other
words, the baseline remains constant as long as the raw count is above the baseline + noise
threshold. This prevents the baseline from following the raw counts during a finger touch
detection event). It is recommended to set the noise threshold parameter value to be equal to
2x noise in the raw count or the 40% of signal.

Negative noise
threshold

The negative noise threshold parameter sets the raw count limit below which the baseline is
not updated for the number of samples specified by the Low baseline reset parameter.

The negative noise threshold ensures that the baseline does not fall low because of any high-
amplitude repeated negative noise spikes on the raw count caused by different noise sources
such as ESD events.

It is recommended to set the negative noise threshold parameter value to be equal to the
Noise threshold parameter value.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 15 of 64

Name Description

Low baseline
reset

This parameter is used along with the Negative noise threshold parameter. It counts the
number of abnormally low raw counts required to reset the baseline.

If a finger is placed on the sensor during a device startup, the baseline gets initialized to the
high raw count value at a startup. When the finger is removed, raw counts fall to a lower
value. In this case, the baseline should track the low raw counts. The Low Baseline Reset
parameter helps to handle this event. It resets the baseline to the low raw count value when
the number of low samples reaches the low baseline-reset number. Note that in this case,
once a finger is removed from the sensor, the sensor will not respond to finger touches for
low baseline-reset time.

The recommended value is 30 which works for most designs.

Hysteresis The hysteresis parameter is used along with the Proximity threshold and Touch threshold to
determine the sensor state. The hysteresis provides immunity against noisy transitions of the
sensor state.

See the description of Proximity threshold and Touch threshold parameter for details.

The recommend value for the hysteresis is the 10% Proximity threshold and Touch threshold.

ON debounce This parameter selects a number of consecutive MagSense scans during which a sensor
must be active to generate an ON state from the Component. Debounce ensures that high-
frequency, high-amplitude noise does not cause false detection. An ON status is reported
only when the sensor is touched for a consecutive debounce number of samples.

The recommended value for the Debounce parameter is 3 for reliable sensor status
detection.

Scan Order Sub-tab

This tab provides total time required to scan all the sensors (does not include the data
processing execution time) and scan time for each sensor.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 16 of 64 Document Number: 002-24878 Rev.**

Application Programming Interface

The Application Programming Interface (API) routines allow controlling and executing specific
tasks using the Component firmware. The following sections list and describe each function and
dependency.

The MagSense firmware library supports the following compilers:

▪ ARM GCC compiler

▪ ARM MDK compiler

▪ IAR C/C++ compiler

In order to use the IAR Embedded Workbench, refer to:

▪ PSoC Creator menu Help / Documentation / PSoC Creator User Guide

Section: Export a Design to a 3rd Party IDE > Exporting a Design to IAR IDE

Note When using the IAR Embedded Workbench, set the path to the static library. This library is
located in the following PSoC Creator installation directory:

PSoC Creator\psoc\content\CyComponentLibrary\CyComponentLibrary.cylib\CortexM0\IAR

By default, the instance name of the Component is “MagSense_1” for a first instance of the
Component in a given design. It can be renamed to any unique text that follows the syntactic
rules for identifiers and the instance name is prefixed to every API function, variable, and
constant names. For readability, this section assumes “MagSense” as the instance name.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 17 of 64

MagSense High-Level APIs

Description

High-level APIs represent the highest abstraction layer of the component APIs. These APIs perform tasks such as
scanning, data processing, data reporting and tuning interfaces. When performing a task, different initialization is
required based on the sensing method or type of widgets is automatically handled by these APIs, therefore these
APIs are sensing methods, features and widget type agnostics.

All the tasks required to implement a sensing system can be fulfilled by the high-level APIs. But, there is a set of
MagSense Low-Level APIs which provides access to lower level and specific tasks. If a design require access to
low-level tasks, these APIs can be used. The functions related to a given sensing methods are not available if the
corresponding method is disabled.

Functions

• cystatus MagSense_Start(void)

Initializes the Component hardware and firmware modules. This function is called by the application program
prior to calling any other function of the Component.

• cystatus MagSense_Stop(void)

Stops the Component operation.

• cystatus MagSense_Resume(void)

Resumes the Component operation if the MagSense_Stop() function was called previously.

• cystatus MagSense_ProcessAllWidgets(void)

Performs full data processing of all enabled widgets.

• cystatus MagSense_ProcessWidget(uint32 widgetId)

Performs full data processing of the specified widget if it is enabled.

• void MagSense_Sleep(void)

Prepares the Component for deep sleep.

• void MagSense_Wakeup(void)

Resumes the Component after deep sleep power mode.

• cystatus MagSense_SetupWidget(uint32 widgetId)

Performs the initialization required to scan the specified widget.

• cystatus MagSense_Scan(void)

Initiates scanning of all the sensors in the widget initialized by MagSense_SetupWidget(), if no scan is in
progress.

• cystatus MagSense_ScanAllWidgets(void)

Initializes the first enabled widget and scanning of all the sensors in the widget, then the same process is
repeated for all the widgets in the Component, i.e. scanning of all the widgets in the Component.

• uint32 MagSense_IsBusy(void)

Returns the current status of the Component (Scan is completed or Scan is in progress).

• uint32 MagSense_IsAnyWidgetActive(void)

Reports if any widget has detected a touch.

• uint32 MagSense_IsWidgetActive(uint32 widgetId)

Reports if the specified widget detects a touch on any of its sensors.

• uint32 MagSense_IsSensorActive(uint32 widgetId, uint32 sensorId)

Reports if the specified sensor in the widget detects a touch.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 18 of 64 Document Number: 002-24878 Rev.**

• uint32 MagSense_IsProximitySensorActive(uint32 widgetId, uint32 proxId)

Reports the finger detection status of the specified proximity widget/sensor.

• uint32 MagSense_RunTuner(void)

Establishes synchronized communication with the Tuner application.

Function Documentation

cystatus MagSense_Start (void)

This function initializes the Component hardware and firmware modules and is called by the application program
prior to calling any other API of the Component. When this function is called, the following tasks are executed as
part of the initialization process:

1. Initialize the registers of the Data Structure variable MagSense_dsRam based on the user selection in the
Component configuration wizard.

2. Configure the hardware to perform capacitive sensing.
3. Calibrate the sensors and find the optimal values for IDACs of each widget / sensor, if the Enable IDAC

auto-calibration is enabled in the CSD Setting or CSX Setting tabs.
4. Perform scanning for all the sensors and initialize the baseline history.
5. If the firmware filters are enabled in the Advanced General tab, the filter histories are also initialized.

Any next call of this API repeats an initialization process except for data structure initialization. Therefore, it is
possible to change the Component configuration from the application program by writing registers to the data
structure and calling this function again. This is also done inside the MagSense_RunTuner() function when a
restart command is received.

When the Component operation is stopped by the MagSense_Stop() function, the MagSense_Start() function
repeats an initialization process including data structure initialization.

Returns:

Returns the status of the initialization process. If CYRET_SUCCESS is not received, some of the
initialization fails and the Component may not operate as expected.

cystatus MagSense_Stop (void)

This function stops the Component operation, no sensor scanning can be executed when the Component is
stopped. Once stopped, the hardware block may be reconfigured by the application program for any other
special usage. The Component operation can be resumed by calling the MagSense_Resume() function or the
Component can be reset by calling the MagSense_Start() function.

This function is called when no scanning is in progress. I.e. MagSense_IsBusy() returns a non-busy status.

Returns:

Returns the status of the stop process. If CYRET_SUCCESS is not received, the stop process fails and
retries may be required.

cystatus MagSense_Resume (void)

This function resumes the Component operation if the operation is stopped previously by the MagSense_Stop()
function. The following tasks are executed as part of the operation resume process:

1. Reset all the Widgets/Sensors statuses.
2. Configure the hardware to perform capacitive sensing.

Returns:

Returns the status of the resume process. If CYRET_SUCCESS is not received, the resume process fails
and retries may be required.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 19 of 64

cystatus MagSense_ProcessAllWidgets (void)

This function performs all data processes for all enabled widgets in the Component. The following tasks are
executed as part of processing all the widgets:

1. Apply raw count filters to the raw counts, if they are enabled in the customizer.
2. Update the thresholds if the SmartSense Full Auto-Tuning is enabled in the customizer.
3. Update the baselines and difference counts for all the sensors.
4. Update the sensor and widget status (on/off), update the centroid for the sliders and the X/Y position for the

touchpads.

Disabled widgets are not processed. To disable/enable a widget, set the appropriate values in the
MagSense_WDGT_ENABLE<RegisterNumber>_PARAM_ID register using the MagSense_SetParam()
function. This function is called only after all the sensors in the Component are scanned. Calling this function
multiple times without sensor scanning causes unexpected behavior.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
MagSense_CheckBaselineDuplication() for details.

If the ballistic multiplier filter is enabled, make sure the timestamp is updated before calling this function. Use
one of the following functions to update the timestamp:

• MagSense_IncrementGestureTimestamp().

• MagSense_SetGestureTimestamp().

Returns:

Returns the status of the processing operation. If CYRET_SUCCESS is not received, the processing fails
and retries may be required.

cystatus MagSense_ProcessWidget (uint32 widgetId)

This function performs exactly the same tasks as MagSense_ProcessAllWidgets(), but only for a specified
widget. This function can be used along with the MagSense_SetupWidget() and MagSense_Scan() functions to
scan and process data for a specific widget. This function is called only after all the sensors in the widgets are
scanned. A disabled widget is not processed by this function.

The pipeline scan method (i.e. during scanning of a widget perform processing of the previously scanned
widget) can be implemented using this function and it may reduce the total scan/process time, increase the
refresh rate and decrease the power consumption.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
MagSense_CheckBaselineDuplication() for details.

If the specified widget has enabled ballistic multiplier filter, make sure the timestamp is updated before calling
this function. Use one of the following functions to update the timestamp:

• MagSense_IncrementGestureTimestamp().

• MagSense_SetGestureTimestamp().

Parameters:

widgetId Specifies the ID number of the widget to be processed. A macro for the
widget ID can be found in the MagSense Configuration header file defined as
MagSense_<WidgetName>_WDGT_ID

Returns:

Returns the status of the widget processing:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_INVALID_STATE - The specified widget is disabled.

• CYRET_BAD_DATA - The processing is failed.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 20 of 64 Document Number: 002-24878 Rev.**

void MagSense_Sleep (void)

Currently this function is empty and exists as a place for future updates, this function will be used to prepare the
Component to enter deep sleep.

void MagSense_Wakeup (void)

Resumes the Component after deep sleep power mode. This function is used to resume the Component after
exiting deep sleep.

cystatus MagSense_SetupWidget (uint32 widgetId)

This function prepares the Component to scan all the sensors in the specified widget by executing the following
tasks:

1. Re-initialize the hardware if it is not configured to perform the sensing method used by the specified widget,
this happens only if multiple sensing methods are used in the Component.

2. Initialize the hardware with specific sensing configuration (e.g. sensor clock, scan resolution) used by the
widget.

3. Disconnect all previously connected electrodes, if the electrodes connected by the
MagSense_ISXSetupWidgetExt() functions and not disconnected.

This function does not start sensor scanning, the MagSense_Scan() function must be called to start the scan
sensors in the widget. If this function is called more than once, it does not break the Component operation, but
only the last initialized widget is in effect.

Parameters:

widgetId Specifies the ID number of the widget to be initialized for scanning. A macro
for the widget ID can be found in the MagSense Configuration header file
defined as MagSense_<WidgetName>_WDGT_ID.

Returns:

Returns the status of the widget setting up operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The widget is invalid or if the specified widget is disabled

• CYRET_INVALID_STATE - The previous scanning is not completed and the hardware block is busy.

• CYRET_UNKNOWN - An unknown sensing method is used by the widget or any other spurious error
occurred.

cystatus MagSense_Scan (void)

This function is called only after the MagSense_SetupWidget() function is called to start the scanning of the
sensors in the widget. The status of a sensor scan must be checked using the MagSense_IsBusy() API prior to
starting a next scan or setting up another widget.

Returns:

Returns the status of the scan initiation operation:

• CYRET_SUCCESS - Scanning is successfully started.

• CYRET_INVALID_STATE - The previous scanning is not completed and the hardware block is busy.

• CYRET_UNKNOWN - An unknown sensing method is used by the widget.

cystatus MagSense_ScanAllWidgets (void)

This function initializes a widget and scans all the sensors in the widget, and then repeats the same for all the
widgets in the Component. The tasks of the MagSense_SetupWidget() and MagSense_Scan() functions are
executed by these functions. The status of a sensor scan must be checked using the MagSense_IsBusy() API
prior to starting a next scan or setting up another widget.

Returns:

Returns the status of the operation:

• CYRET_SUCCESS - Scanning is successfully started.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 21 of 64

• CYRET_BAD_PARAM - All the widgets are disabled.

• CYRET_INVALID_STATE - The previous scanning is not completed and the HW block is busy.

• CYRET_UNKNOWN - There are unknown errors.

uint32 MagSense_IsBusy (void)

This function returns a status of the hardware block whether a scan is currently in progress or not. If the
Component is busy, no new scan or setup widgets is made. The critical section (i.e. disable global interrupt) is
recommended for the application when the device transitions from the active mode to sleep or deep sleep
modes.

Returns:

Returns the current status of the Component:

• MagSense_NOT_BUSY - No scan is in progress and a next scan can be initiated.

• MagSense_SW_STS_BUSY - The previous scanning is not completed and the hardware block is busy.

uint32 MagSense_IsAnyWidgetActive (void)

This function reports if any widget has detected a touch or not by extracting information from the wdgtStatus
registers (MagSense_WDGT_STATUS<X>_VALUE). This function does not process a widget but extracts
processed results from the Data Structure.

Returns:

Returns the touch detection status of all the widgets:

• Zero - No touch is detected in all the widgets or sensors.

• Non-zero - At least one widget or sensor detected a touch.

uint32 MagSense_IsWidgetActive (uint32 widgetId)

This function reports if the specified widget has detected a touch or not by extracting information from the
wdgtStatus registers (MagSense_WDGT_STATUS<X>_VALUE). This function does not process the widget but
extracts processed results from the Data Structure.

Parameters:

widgetId Specifies the ID number of the widget to get its status. A macro for the widget
ID can be found in the MagSense Configuration header file defined as
MagSense_<WidgetName>_WDGT_ID.

Returns:

Returns the touch detection status of the specified widgets:

• Zero - No touch is detected in the specified widget or a wrong widgetId is specified.

• Non-zero if at least one sensor of the specified widget is active, i.e. a touch is detected.

uint32 MagSense_IsSensorActive (uint32 widgetId, uint32 sensorId)

This function reports if the specified sensor in the widget has detected a touch or not by extracting information
from the wdgtStatus registers (MagSense_WDGT_STATUS<X>_VALUE). This function does not process the
widget or sensor but extracts processed results from the Data Structure.

For proximity sensors, this function returns the proximity detection status. To get the finger touch status of
proximity sensors, use the MagSense_IsProximitySensorActive() function.

Parameters:

widgetId Specifies the ID number of the widget. A macro for the widget ID can be found in the
MagSense Configuration header file defined as MagSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to get its touch detection status. A
macro for the sensor ID within the specified widget can be found in the MagSense
Configuration header file defined as
MagSense_<WidgetName>_SNS<SensorNumber>_ID.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 22 of 64 Document Number: 002-24878 Rev.**

Returns:

Returns the touch detection status of the specified sensor / widget:

• Zero if no touch is detected in the specified sensor / widget or a wrong widget ID / sensor ID is specified.

• Non-zero if the specified sensor is active i.e. touch is detected. If the specific sensor belongs to a
proximity widget, the proximity detection status is returned.

uint32 MagSense_IsProximitySensorActive (uint32 widgetId, uint32 proxId)

This function reports if the specified proximity sensor has detected a touch or not by extracting information from
the wdgtStatus registers (MagSense_SNS_STATUS<WidgetId>_VALUE). This function is used only with
proximity sensor widgets. This function does not process the widget but extracts processed results from the
Data Structure.

Parameters:

widgetId Specifies the ID number of the proximity widget. A macro for the widget ID
can be found in the MagSense Configuration header file defined as
MagSense_<WidgetName>_WDGT_ID

proxId Specifies the ID number of the proximity sensor within the proximity widget to
get its touch detection status. A macro for the proximity ID within a specified
widget can be found in the MagSense Configuration header file defined as
MagSense_<WidgetName>_SNS<SensorNumber>_ID

Returns:

Returns the status of the specified sensor of the proximity widget. Zero indicates that no touch is detected in
the specified sensor / widget or a wrong widgetId / proxId is specified.

• Bits [31..2] are reserved.

• Bit [1] indicates that a touch is detected.

• Bit [0] indicates that a proximity is detected.

uint32 MagSense_RunTuner (void)

This function is used to establish synchronized communication between the MagSense Component and Tuner
application (or other host controllers). This function is called periodically in the application program loop to serve
the Tuner application (or host controller) requests and commands. In most cases, the best place to call this
function is after processing and before next scanning.

If this function is absent in the application program, then communication is asynchronous and the following
disadvantages are applicable:

• The raw counts displayed in the tuner may be filtered and/or unfiltered. As a result, noise and SNR
measurements will not be accurate.

• The Tuner tool may read the sensor data such as raw counts from a scan multiple times, as a result, noise
and SNR measurement will not be accurate.

• The Tuner tool and host controller should not change the Component parameters via the tuner interface.
Changing the Component parameters via the tuner interface in the async mode will result in Component
abnormal behavior.

Note that calling this function is not mandatory for the application, but required only to synchronize the
communication with the host controller or tuner application.

Returns:

In some cases, the application program may need to know if the Component was re-initialized. The return
indicates if a restart command was executed or not:

• MagSense_STATUS_RESTART_DONE - Based on a received command, the Component was
restarted.

• MagSense_STATUS_RESTART_NONE - No restart was executed by this function.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 23 of 64

MagSense Low-Level APIs

Description

The low-level APIs represent the lower layer of abstraction in support of high-level APIs. These APIs also enable
implementation of special case designs requiring performance optimization and non-typical functionalities.

The functions which contain ISX in the name are specified for that sensing method appropriately and should be used
only with dedicated widgets having that mode. All other functions are general to all sensing methods, some of the
APIs detect the sensing method used by the widget and executes tasks as appropriate.

Functions

• cystatus MagSense_ProcessWidgetExt(uint32 widgetId, uint32 mode)

Performs customized data processing on the selected widget.

• cystatus MagSense_ProcessSensorExt(uint32 widgetId, uint32 sensorId, uint32 mode)

Performs customized data processing on the selected widget's sensor.

• cystatus MagSense_UpdateAllBaselines(void)

Updates the baseline for all the sensors in all the widgets.

• cystatus MagSense_UpdateWidgetBaseline(uint32 widgetId)

Updates the baselines for all the sensors in a widget specified by the input parameter.

• cystatus MagSense_UpdateSensorBaseline(uint32 widgetId, uint32 sensorId)

Updates the baseline for a sensor in a widget specified by the input parameters.

• void MagSense_InitializeAllBaselines(void)

Initializes (or re-initializes) the baselines of all the sensors of all the widgets.

• void MagSense_InitializeWidgetBaseline(uint32 widgetId)

Initializes (or re-initializes) the baselines of all the sensors in a widget specified by the input parameter.

• void MagSense_InitializeSensorBaseline(uint32 widgetId, uint32 sensorId)

Initializes (or re-initializes) the baseline of a sensor in a widget specified by the input parameters.

• void MagSense_InitializeAllFilters(void)

Initializes (or re-initializes) the raw count filter history of all the sensors of all the widgets.

• void MagSense_InitializeWidgetFilter(uint32 widgetId)

Initializes (or re-initializes) the raw count filter history of all the sensors in a widget specified by the input
parameter.

• void MagSense_SetPinState(uint32 widgetId, uint32 sensorElement, uint32 state)

Sets the state (drive mode and output state) of the port pin used by a sensor. The possible states are GND,
Shield, High-Z, Tx or Rx, Sensor. If the sensor specified in the input parameter is a ganged sensor, then the
state of all pins associated with the ganged sensor is updated.

• cystatus MagSense_CalibrateWidget(uint32 widgetId)

Calibrates the IDACs for all the sensors in the specified widget to the default target, this function detects the
sensing method used by the widget prior to calibration.

• cystatus MagSense_CalibrateAllWidgets(void)

Calibrates the IDACs for all the widgets in the Component to the default target, this function detects the sensing
method used by the widgets prior to calibration.

• void MagSense_ISXSetupWidget(uint32 widgetId)

Performs hardware and firmware initialization required for scanning sensors in a specific widget using the ISX
sensing method. The MagSense_ISXScan() function should be used to start scanning when using this function.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 24 of 64 Document Number: 002-24878 Rev.**

• void MagSense_ISXSetupWidgetExt(uint32 widgetId, uint32 snsIndex)

Performs extended initialization for the ISX widget and also performs initialization required for a specific sensor
in the widget. The MagSense_ISXScanExt() function should be called to initiate the scan when using this
function.

• void MagSense_ISXScan(void)

This function initiates the scan for sensors of the widget initialized by the MagSense_ISXSetupWidget() function.

• void MagSense_ISXScanExt(void)

Starts the ISX conversion on the preconfigured sensor. The MagSense_ISXSetupWidgetExt() function should
be used to setup a widget when using this function.

• void MagSense_ISXCalibrateWidget(uint32 widgetId, uint16 idacTarget)

Calibrates the raw count values of all the sensors/nodes in an ISX widget.

• void MagSense_ISXConnectLx (MagSense_FLASH_IO_STRUCTconst *lxPtr)

Connects a LX electrode to the ISX scanning hardware.

• void MagSense_ISXConnectRx (MagSense_FLASH_IO_STRUCTconst *rxPtr)

Connects an RX electrode to the ISX scanning hardware.

• void MagSense_ISXDisconnectLx (MagSense_FLASH_IO_STRUCTconst *lxPtr)

Disconnects a LX electrode from the ISX scanning hardware.

• void MagSense_ISXDisconnectRx (MagSense_FLASH_IO_STRUCTconst *rxPtr)

Disconnects an RX electrode from the ISX scanning hardware.

• cystatus MagSense_GetParam(uint32 paramId, uint32 *value)

Gets the specified parameter value from the Data Structure.

• cystatus MagSense_SetParam(uint32 paramId, uint32 value)

Sets a new value for the specified parameter in the Data Structure.

Function Documentation

cystatus MagSense_ProcessWidgetExt (uint32 widgetId, uint32 mode)

This function performs data processes for the specified widget specified by the mode parameter. The execution
order of the requested operations is from LSB to MSB of the mode parameter. For a different order, this API can
be called multiple times with the required mode parameter.

This function can be used with any of the available scan functions. This function is called only after all the
sensors in the specified widget are scanned. Calling this function multiple times with the same mode without
sensor scanning causes unexpected behavior. This function ignores the value of the wdgtEnable register. The
pipeline scan method (i.e. during scanning of a widget, processing of a previously scanned widget is performed)
can be implemented using this function and it may reduce the total scan/process time, increase the refresh rate
and decrease the power consumption.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
MagSense_CheckBaselineDuplication() for details.

If the specified widget has enabled ballistic multiplier filter, make sure the timestamp is updated before calling
this function. Use one of the following functions to update the timestamp:

• MagSense_IncrementGestureTimestamp().

• MagSense_SetGestureTimestamp().

Parameters:

widgetId Specifies the ID number of the widget to be processed. A macro for the
widget ID can be found in the MagSense Configuration header file defined as
MagSense_<WidgetName>_WDGT_ID.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 25 of 64

mode Specifies the type of widget processing to be executed for the specified
widget:

1. Bits [31..6] - Reserved.
2. Bits [5..0] - MagSense_PROCESS_ALL - Execute all the tasks.
3. Bit [5] - MagSense_PROCESS_STATUS - Update the status (on/off,

centroid position).
4. Bit [2] - MagSense_PROCESS_DIFFCOUNTS - Update the

difference counts.
5. Bit [1] - MagSense_PROCESS_BASELINE - Update the baselines.
6. Bit [0] - MagSense_PROCESS_FILTER - Run the firmware filters.

Returns:

Returns the status of the widget processing operation:

• CYRET_SUCCESS - The processing is successfully performed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_BAD_DATA - The processing is failed.

cystatus MagSense_ProcessSensorExt (uint32 widgetId, uint32 sensorId, uint32 mode)

This function performs data processes for the specified sensor specified by the mode parameter. The execution
order of the requested operations is from LSB to MSB of the mode parameter. For a different order, this function
can be called multiple times with the required mode parameter.

This function can be used with any of the available scan functions. This function is called only after a specified
sensor in the widget is scanned. Calling this function multiple times with the same mode without sensor
scanning causes unexpected behavior. This function ignores the value of the wdgtEnable register.

The pipeline scan method (i.e. during scanning of a sensor, processing of a previously scanned sensor is
performed) can be implemented using this function and it may reduce the total scan/process time, increase the
refresh rate and decrease the power consumption.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
MagSense_CheckBaselineDuplication() for details.

Parameters:

widgetId Specifies the ID number of the widget to process one of its sensors. A macro
for the widget ID can be found in the MagSense Configuration header file
defined as MagSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to process it. A macro
for the sensor ID within a specified widget can be found in the MagSense
Configuration header file defined as
MagSense_<WidgetName>_SNS<SensorNumber>_ID.

mode Specifies the type of the sensor processing that needs to be executed for the
specified sensor:

1. Bits [31..5] - Reserved.
2. Bits [4..0] - MagSense_PROCESS_ALL - Executes all the tasks.
3. Bit [2] - MagSense_PROCESS_DIFFCOUNTS - Updates the

difference count.
4. Bit [1] - MagSense_PROCESS_BASELINE - Updates the baseline.
5. Bit [0] - MagSense_PROCESS_FILTER - Runs the firmware filters.

Returns:

Returns the status of the sensor process operation:

• CYRET_SUCCESS - The processing is successfully performed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_BAD_DATA - The processing is failed.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 26 of 64 Document Number: 002-24878 Rev.**

cystatus MagSense_UpdateAllBaselines (void)

Updates the baseline for all the sensors in all the widgets. Baseline updating is a part of data processing
performed by the process functions. So, no need to call this function except a specific process flow is
implemented.

This function ignores the value of the wdgtEnable register. Multiple calling of this function (or any other function
with a baseline updating task) without scanning leads to unexpected behavior.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
MagSense_CheckBaselineDuplication() for details.

Returns:

Returns the status of the update baseline operation of all the widgets:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_DATA - The baseline processing failed.

cystatus MagSense_UpdateWidgetBaseline (uint32 widgetId)

This function performs exactly the same tasks as MagSense_UpdateAllBaselines() but only for a specified
widget.

This function ignores the value of the wdgtEnable register. Multiple calling of this function (or any other function
with a baseline updating task) without scanning leads to unexpected behavior.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
MagSense_CheckBaselineDuplication() for details.

Parameters:

widgetId Specifies the ID number of the widget to update the baseline of all the
sensors in the widget. A macro for the widget ID can be found in the
MagSense Configuration header file defined as
MagSense_<WidgetName>_WDGT_ID.

Returns:

Returns the status of the specified widget update baseline operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_DATA - The baseline processing is failed.

cystatus MagSense_UpdateSensorBaseline (uint32 widgetId, uint32 sensorId)

This function performs exactly the same tasks as MagSense_UpdateAllBaselines() and
MagSense_UpdateWidgetBaseline() but only for a specified sensor.

This function ignores the value of the wdgtEnable register. Multiple calling of this function (or any other function
with a baseline updating task) without scanning leads to unexpected behavior.

If the Self-test library is enabled, this function executes the baseline duplication test. Refer to
MagSense_CheckBaselineDuplication() for details.

Parameters:

widgetId Specifies the ID number of the widget to update the baseline of the sensor
specified by the sensorId argument. A macro for the widget ID can be found
in the MagSense Configuration header file defined as
MagSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to update its
baseline. A macro for the sensor ID within a specified widget can be found in
the MagSense Configuration header file defined as
MagSense_<WidgetName>_SNS<SensorNumber>_ID.

Returns:

Returns the status of the specified sensor update baseline operation:

• CYRET_SUCCESS - The operation is successfully completed.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 27 of 64

• CYRET_BAD_DATA - The baseline processing failed.

void MagSense_InitializeAllBaselines (void)

Initializes the baseline for all the sensors of all the widgets. Also, this function can be used to re-initialize
baselines. MagSense_Start() calls this API as part of MagSense operation initialization.

If any raw count filter is enabled, make sure the raw count filter history is initialized as well using one of these
functions:

• MagSense_InitializeAllFilters().

• MagSense_InitializeWidgetFilter().

void MagSense_InitializeWidgetBaseline (uint32 widgetId)

Initializes (or re-initializes) the baseline for all the sensors of the specified widget.

If any raw count filter is enabled, make sure the raw count filter history is initialized as well using one of these
functions:

• MagSense_InitializeAllFilters().

• MagSense_InitializeWidgetFilter().

Parameters:

widgetId Specifies the ID number of a widget to initialize the baseline of all the sensors
in the widget. A macro for the widget ID can be found in the MagSense
Configuration header file defined as MagSense_<WidgetName>_WDGT_ID.

void MagSense_InitializeSensorBaseline (uint32 widgetId, uint32 sensorId)

Initializes (or re-initializes) the baseline for a specified sensor within a specified widget.

Parameters:

widgetId Specifies the ID number of a widget to initialize the baseline of the sensor in
the widget. A macro for the widget ID can be found in the MagSense
Configuration header file defined as MagSense_<WidgetName>_WDGT_ID.

sensorId Specifies the ID number of the sensor within the widget to initialize its
baseline. A macro for the sensor ID within a specified widget can be found in
the MagSense Configuration header file defined as
MagSense_<WidgetName>_SNS<SensorNumber>_ID.

void MagSense_InitializeAllFilters (void)

Initializes the raw count filter history for all the sensors of all the widgets. Also, this function can be used to re-
initialize baselines. MagSense_Start() calls this API as part of MagSense operation initialization.

void MagSense_InitializeWidgetFilter (uint32 widgetId)

Initializes (or re-initializes) the raw count filter history of all the sensors in a widget specified by the input
parameter.

Parameters:

widgetId Specifies the ID number of a widget to initialize the filter history of all the
sensors in the widget. A macro for the widget ID can be found in the
MagSense Configuration header file defined as
MagSense_<WidgetName>_WDGT_ID.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 28 of 64 Document Number: 002-24878 Rev.**

void MagSense_SetPinState (uint32 widgetId, uint32 sensorElement, uint32 state)

This function sets a specified state for a specified sensor element. For the CSD widgets, sensor element is a
sensor number, for the CSX widgets, it is either an RX or TX. If the sensor element is a ganged sensor, then the
specified state is also set for all ganged pins of this sensor. Scanning must be completed before calling this API.

The MagSense_TX_PIN and MagSense_RX_PIN states are not allowed if there are no CSX nor ISX widgets
configured in the user's project.

Calling this function directly from the application layer is not recommended. This function is used to implement
only the user's specific use cases. Functions that perform a setup and scan of a sensor/widget automatically set
the required pin states. They ignore changes in the design made by the MagSense_SetPinState() function. This
function neither check wdgtIndex nor sensorElement for the correctness.

Parameters:

widgetId Specifies the ID number of the widget to change the pin state of the specified
sensor. A macro for the widget ID can be found in the MagSense
Configuration header file defined as MagSense_<WidgetName>_WDGT_ID.

sensorElement Specifies the ID number of the sensor element within the widget to change its
pin state. Macros for Rx and Tx IDs can be found in the MagSense
Configuration header file defined as:

• MagSense_<WidgetName>_RX<RXNumber>_ID

• MagSense_<WidgetName>_TX<TXNumber>_ID.

state Specifies the state of the sensor to be set:
1. MagSense_GROUND - The pin is connected to the ground.
2. MagSense_HIGHZ - The drive mode of the pin is set to High-Z

Analog.
3. MagSense_TX_PIN - The TX or LX signal is routed to the sensor

(only in CSX or ISX sensing method).
4. MagSense_RX_PIN - The pin is connected to the scanning bus (only

in CSX or ISX sensing method).

cystatus MagSense_CalibrateWidget (uint32 widgetId)

This function performs exactly the same tasks as MagSense_CalibrateAllWidgets, but only for a specified
widget. This function detects the sensing method used by the widgets and uses the Enable compensation IDAC
parameter. For ISX mode, the frequency is also calibrated.

This function is available when the ISX Enable auto-calibration parameter is enabled.

Parameters:

widgetId Specifies the ID number of the widget to calibrate its raw count. A macro for
the widget ID can be found in the MagSense Configuration header file
defined as MagSense_<WidgetName>_WDGT_ID.

Returns:

Returns the status of the specified widget calibration:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

• CYRET_BAD_DATA - The calibration failed and the Component may not operate as expected.

cystatus MagSense_CalibrateAllWidgets (void)

Calibrates the IDACs for all the widgets in the Component to the default target value. This function detects the
sensing method used by the widgets and regards the Enable compensation IDAC parameter. For ISX mode, the
frequency is also calibrated. This function is available when the ISX Enable Auto-calibration parameter is
enabled.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 29 of 64

Returns:

Returns the status of the calibration process:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_DATA - The calibration failed and the Component may not operate as expected.

void MagSense_ISXSetupWidget (uint32 widgetId)

This function initializes the widgets specific common parameters to perform the ISX scanning. The initialization
includes the following:

1. The CSD_CONFIG register.
2. The IDAC register.
3. The Sense clock frequency
4. The phase alignment of the sense and modulator clocks.

This function does not connect any specific sensors to the scanning hardware and also does not start a
scanning process. The MagSense_ISXScan() function must be called after initializing the widget to start
scanning.

This function should be called when no scanning is in progress. I.e., MagSense_IsBusy() returns a non-busy
status.

This function is called by the MagSense_SetupWidget() API if the given widget uses the ISX sensing method.

It is recommended to not call this function directly from the application. layer. This function should be used to
implement only the user's specific use cases (for faster execution time or pipeline scanning for example).

Parameters:

widgetId Specifies the ID number of the widget to perform hardware and firmware
initialization required for scanning sensors in the specific widget. A macro for
the widget ID can be found in the MagSense Configuration header file
defined as MagSense_<WidgetName>_WDGT_ID.

void MagSense_ISXSetupWidgetExt (uint32 widgetId, uint32 snsIndex)

This function does the same tasks as MagSense_ISXSetupWidget() and also connects a sensor in the widget
for scanning. Once this function is called to initialize a widget and a sensor, the MagSense_ISXScanExt()
function should be called to scan the sensor.

This function should be called when no scanning in progress. I.e. MagSense_IsBusy() returns a non-busy
status.

It is not recommended to call this function directly from the application layer. This function should be used to
implement only the user's specific use cases (for faster execution time or pipeline scanning for example).

Parameters:

widgetId Specifies the ID number of the widget to perform hardware and firmware
initialization required for scanning a specific sensor in a specific widget. A
macro for the widget ID can be found in the MagSense Configuration header
file defined as MagSense_<WidgetName>_WDGT_ID.

snsIndex Specifies the ID number of the sensor within the widget to perform hardware
and firmware initialization required for scanning a specific sensor in a specific
widget. A macro for the sensor ID within a specified widget can be found in
the MagSense Configuration header file defined as
MagSense_<WidgetName>_SNS<SensorNumber>_ID.

void MagSense_ISXScan (void)

This function performs scanning of all the sensors in the widget configured by the MagSense_ISXSetupWidget()
function. It does the following tasks:

1. Connects the first sensor of the widget.
2. Initializes an interrupt callback function to initialize a scan of the next sensors in a widget.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 30 of 64 Document Number: 002-24878 Rev.**

3. Starts scanning for the first sensor in the widget.

This function is called by the MagSense_Scan() API if the given widget uses the ISX sensing method.

It is not recommended to call this function directly from the application layer. This function should be used to
implement only the user's specific use cases (for faster execution time or pipeline scanning for example).

This function should be called when no scanning in progress. I.e. MagSense_IsBusy() returns a non-busy
status. The widget must be preconfigured by the MagSense_ISXSetupWidget() function if other widget was
previously scanned or other type of scan functions were used.

void MagSense_ISXScanExt (void)

This function performs single scanning of one sensor in the widget configured by
MagSense_ISXSetupWidgetExt() function. It does the following tasks:

1. Sets a busy flag in the MagSense_dsRam structure.
2. Configures the Lx clock frequency.
3. Configures the Modulator clock frequency.
4. Configures the IDAC value.
5. Starts single scanning.

It is not recommended to call this function directly from the application layer. This function should be used to
implement only the user's specific use cases (for faster execution time or pipeline scanning for example). This
function should be called when no scanning in progress. I.e. MagSense_IsBusy() returns a non-busy status.

The sensor must be preconfigured by using the MagSense_ISXSetupWidgetExt() API prior to calling this
function. The sensor remains ready for the next scan if a previous scan was triggered by using the
MagSense_ISXScanExt() function. In this case, calling MagSense_ISXSetupWidgetExt() is not required every
time before the MagSense_ISXScanExt() function. If a previous scan was triggered in any other way:
MagSense_Scan(), MagSense_ScanAllWidgets() or MagSense_RunTuner() (see the MagSense_RunTuner()
function description for more details), the sensor must be preconfigured again by using the
MagSense_ISXSetupWidgetExt() API prior to calling the MagSense_ISXScanExt() function.

If disconnection of the sensors is required after calling MagSense_ISXScanExt(), the
MagSense_ISXDisconnectLx() and MagSense_ISXDisconnectRx() APIs can be used.

void MagSense_ISXCalibrateWidget (uint32 widgetId, uint16 idacTarget)

Performs a rough calibration of IDAC values, then incrementally searches a small range of frequencies around
the widget's Lx frequency to find the optimal Lx frequency. Then performs a search algorithm to find appropriate
IDAC values for sensors in the specified widget that provides a raw count to the level specified by the target
parameter.

This function is available when the ISX Enable auto-calibration parameter is enabled.

Parameters:

widgetId Specifies the ID number of the ISX widget to calibrate its raw count. A macro
for the widget ID can be found in the MagSense Configuration header file
defined as MagSense_<WidgetName>_WDGT_ID.

idacTarget Specifies the calibration target in percentages of the maximum raw count.

void MagSense_ISXConnectLx (MagSense_FLASH_IO_STRUCTconst * lxPtr)

This function connects a port pin (Lx electrode) to the forcing signal. It is assumed that the drive mode of the
port pin is already set to STRONG in the HSIOM_PORT_SELx register.

It is not recommended to call this function directly from the application layer. This function should be used to
implement only the user's specific use cases (for faster execution time when there is only one port pin for an
electrode for example).

Parameters:

lxPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a sensor
which should be connected to the sensing block as Lx pin.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 31 of 64

void MagSense_ISXConnectRx (MagSense_FLASH_IO_STRUCTconst * rxPtr)

This function connects a port pin (Rx electrode)to AMUXBUS-A and sets the drive mode of the port pin to High-
Z in the GPIO_PRT_PCx register.

It is not recommended to call this function directly from the application layer. This function should be used to
implement only the user's specific use cases (for faster execution time when there is only one port pin for an
electrode for example).

Parameters:

rxPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a sensor
which should be connected to the sensing block as Rx pin.

void MagSense_ISXDisconnectLx (MagSense_FLASH_IO_STRUCTconst * lxPtr)

This function disconnects a port pin (Lx electrode) from the forcing signal.

It is not recommended to call this function directly from the application layer. This function should be used to
implement only the user's specific use cases (for faster execution time when there is only one port pin for an
electrode for example).

Parameters:

lxPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a Lx pin
sensor which should be disconnected from the sensing block.

void MagSense_ISXDisconnectRx (MagSense_FLASH_IO_STRUCTconst * rxPtr)

This function disconnects a port pin (Rx electrode) from AMUXBUS_A and configures the port pin to the strong
drive mode. It is assumed that the data register (GPIO_PRTx_DR) of the port pin is already 0.

It is not recommended to call this function directly from the application layer. This function should be used to
implement only the user's specific use cases (for faster execution time when there is only one port pin for an
electrode for example).

Parameters:

rxPtr Specifies the pointer to the FLASH_IO_STRUCT object belonging to a Rx pin
sensor which should be disconnected from the sensing block.

cystatus MagSense_GetParam (uint32 paramId, uint32 * value)

This function gets the value of the specified parameter by the paramId argument. The paramId for each register
is available in the MagSense RegisterMap header file as MagSense_<ParameterName>_PARAM_ID. The
paramId is a special enumerated value generated by the customizer. The format of paramId is as follows:

1. [byte 3 byte 2 byte 1 byte 0]
2. [TTWFCCCC UIIIIIII MMMMMMMM LLLLLLLL]
3. T - encodes the parameter type:

• 01b: uint8

• 10b: uint16

• 11b: uint32
4. W - indicates whether the parameter is writable:

• 0: ReadOnly

• 1: Read/Write
5. C - 4 bit CRC (X^3 + 1) of the whole paramId word, the C bits are filled with 0s when the CRC is calculated.
6. U - indicates if the parameter affects the RAM Widget Object CRC.
7. I - specifies that the widgetId parameter belongs to
8. M,L - the parameter offset MSB and LSB accordingly in:

• Flash Data Structure if W bit is 0.

• RAM Data Structure if W bit is 1.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 32 of 64 Document Number: 002-24878 Rev.**

Refer to the Data Structure section for details of the data structure organization and examples of its register
access.

Parameters:

paramId Specifies the ID of parameter to get its value. A macro for the parameter ID
can be found in the MagSense RegisterMap header file defined as
MagSense_<ParameterName>_PARAM_ID.

value The pointer to a variable to be updated with the obtained value.

Returns:

Returns the status of the operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

cystatus MagSense_SetParam (uint32 paramId, uint32 value)

This function sets the value of the specified parameter by the paramId argument. The paramId for each register
is available in the MagSense RegisterMap header file as MagSense_<ParameterName>_PARAM_ID. The
paramId is a special enumerated value generated by the customizer. The format of paramId is as follows:

1. [byte 3 byte 2 byte 1 byte 0]
2. [TTWFCCCC UIIIIIII MMMMMMMM LLLLLLLL]
3. T - encodes the parameter type:

• 01b: uint8

• 10b: uint16

• 11b: uint32
4. W - indicates whether the parameter is writable:

• 0: ReadOnly

• 1: Read/Write
5. C - 4 bit CRC (X^3 + 1) of the whole paramId word, the C bits are filled with 0s when the CRC is calculated.
6. U - indicates if the parameter affects the RAM Widget Object CRC.
7. I - specifies that the widgetId parameter belongs to
8. M,L - the parameter offset MSB and LSB accordingly in:

• Flash Data Structure if W bit is 0.

• RAM Data Structure if W bit is 1.

Refer to the Data Structure section for details of the data structure organization and examples of its register
access.

Some of the Data Structure registers is interdependent. This function just writes specified value into the desired
register without other dependent registers update. A user is responsible for the dependent registers update.
Repeated call of MagSense_Start() function performs register alignment.

Parameters:

paramId Specifies the ID of parameter to set its value. A macro for the parameter ID
can be found in the MagSense RegisterMap header file defined as
MagSense_<ParameterName>_PARAM_ID.

value Specifies the new parameter's value.

Returns:

Returns the status of the operation:

• CYRET_SUCCESS - The operation is successfully completed.

• CYRET_BAD_PARAM - The input parameter is invalid.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 33 of 64

Macro Callbacks
Macro callbacks allow the user to execute the code from the API files automatically generated by PSoC Creator.
Refer to the PSoC Creator Help and Component Author Guide for more details.

In order to add the code to the macro callback present in the component’s generated source files, perform the
following:

• Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will “uncomment” the function call
from the component’s source code.

• Write the function declaration (in cyapicallbacks.h) using the name provided in the table. This will make this
function visible to all the project files.

• Write the function implementation (in any user file).

MagSense Macro Callbacks

Macro Callback Function
Name

Associated Macro Description

MagSense_EntryCallback MagSense_ENTRY_CALLBACK Used at the beginning of the
MagSense interrupt handler to
perform additional application-
specific actions

MagSense_ExitCallback MagSense_EXIT_CALLBACK Used at the end of the
MagSense interrupt handler to
perform additional application-
specific actions

MagSense_StartSampleCallback
(uint8 MagSense_widgetId, uint8
MagSense_sensorId)

MagSense_START_SAMPLE_C
ALLBACK

Used before each sensor scan
triggering and deliver the current
widget / sensor Id

Global Variables

Description

The section documents the MagSense component related global Variables.

The MagSense component stores the component configuration and scanning data in the data structure. Refer to the
Data Structure section for details of organization of the data structure.

Variables

• MagSense_RAM_STRUCT MagSense_dsRam

Variable Documentation

MagSense_RAM_STRUCTMagSense_dsRam

The variable that contains the MagSense configuration, settings and scanning results. MagSense_dsRam
represents RAM Data Structure.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 34 of 64 Document Number: 002-24878 Rev.**

API Constants

Description

The section documents the MagSense component related API Constants.

Variables

• const MagSense_FLASH_STRUCT MagSense_dsFlash

• const MagSense_FLASH_IO_STRUCT MagSense_ioList[MagSense_TOTAL_ELECTRODES]

Variable Documentation

const MagSense_FLASH_STRUCTMagSense_dsFlash

Constant for the FLASH Data Structure

const MagSense_FLASH_IO_STRUCTMagSense_ioList[MagSense_TOTAL_ELECTRODES]

The array of the pointers to the electrode specific register.

Data Structure

Description

This section provides the list of structures/registers available in the component.

The key responsibilities of Data Structure are as follows:

• The Data Structure is the only data container in the component.

• It serves as storage for the configuration and the output data.

• All other component FW part as well as an application layer and Tuner SW use the data structure for the
communication and data exchange.

The MagSense Data Structure organizes configuration parameters, input and output data shared among different
FW IP modules within the component. It also organizes input and output data presented at the Tuner interface (the
tuner register map) into a globally accessible data structure. MagSense Data Structure is only a data container.

The Data Structure is a composite of several smaller structures (for global data, widget data, sensor data, and pin
data). Furthermore, the data is split between RAM and Flash to achieve a reasonable balance between resources
consumption and configuration / tuning flexibility at runtime and compile time. A graphical representation of
MagSense Data Structure is shown below:

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 35 of 64

Note that figure above shows a sample representation and documents the high-level design of the data structure, it
may not include all the parameters and elements in each object.

MagSense Data Structure does not perform error checking on the data written to MagSense Data Structure. It is the
responsibility of application layer to ensure register map rule are not violated while modifying the value of data field
in MagSense Data Structure.

The MagSense Data Structure parameter fields and their offset address is specific to an application, and it is based
on component configuration used for the project. A user readable representation of the Data Structure specific to the
component configuration is the component register map. The Register map file available from the Customizer GUI
and it describes offsets and data/bit fields for each static (Flash) and dynamic (RAM) parameters of the component.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 36 of 64 Document Number: 002-24878 Rev.**

The embedded MagSense_RegisterMap header file list all registers of data structure with the following:

#define MagSense_<RegisterName>_VALUE (<Direct Register Access Macro>)
#define MagSense_<RegisterName>_OFFSET (<Register Offset Within Data Structure (RAM or Flash)>)
#define MagSense_<RegisterName>_SIZE (<Register Size in Bytes>)
#define MagSense_<RegisterName>_PARAM_ID (<ParamId for Getter/Setter functions>)

To access MagSense Data Structure registers you have the following options:

1. Direct Access
The access to registers is performed through the Data Structure variable MagSense_dsRam and constants

MagSense_dsFlash from application program.
Example of access to the Raw Count register of third sensor of Button0 widget:

rawCount = MagSense_dsRam.snsList.button0[MagSense_BUTTON0_SNS2_ID].raw[0];

Corresponding macro to access register value is defined in the MagSense_RegisterMap header file:

rawCount = MagSense_BUTTON0_SNS2_RAW0_VALUE;

2. Getter/Setter Access
The access to registers from application program is performed by using two functions:

cystatus MagSense_GetParam(uint32 paramId, uint32 *value)
cystatus MagSense_SetParam(uint32 paramId, uint32 value)

The value of paramId argument for each register can be found in MagSense_RegisterMap header file.
Example of access to the Raw Count register of third sensor of Button0 widget:

MagSense_GetParam(MagSense_BUTTON0_SNS2_RAW0_PARAM_ID, &rawCount);

You can also write to a register if it is writable (writing new finger threshold value to Button0 widget):

MagSense_SetParam(MagSense_BUTTON0_FINGER_TH_PARAM_ID, fingerThreshold);

3. Offset Access
The access to registers is performed by host through the I2C communication by reading / writing registers based on

their offset.
Example of access to the Raw Count register of third sensor of Button0 widget: Setting up communication data

buffer to MagSense data structure to be exposed to I2C master at primary slave address request once at
initialization an application program:
EZI2C_Start();
EZI2C_EzI2CSetBuffer1(sizeof(MagSense_dsRam), sizeof(MagSense_dsRam),
 (uint8 *)&MagSense_dsRam);

Now host can read (write) the whole MagSense Data Structure and get the specified register value by register offset

macro available in MagSense_RegisterMap header file:
rawCount = *(uint16 *)(I2C_buffer1Ptr + MagSense_BUTTON0_SNS2_RAW0_OFFSET);

The current example is applicable to 2-byte registers only. Depends on register size defined

MagSense_RegisterMap header file by corresponding macros (MagSense_BUTTON0_SNS2_RAW0_SIZE)
specific logic should be added to read 4-byte, 2-byte and 1-byte registers.

Data Structures

• struct ADAPTIVE_FILTER_CONFIG_STRUCT

Declares Adaptive Filter configuration parameters.

• struct ADVANCED_CENTROID_POSITION_STRUCT

Declares Advanced Centroid position structure.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 37 of 64

• struct ADVANCED_CENTROID_TOUCH_STRUCT

Declares Advanced Centroid touch structure.

• struct SMARTSENSE_CSD_NOISE_ENVELOPE_STRUCT

Declares Noise envelope data structure for CSD widgets when SmartSense is enabled.

• struct MagSense_RAM_WD_BASE_STRUCT

Declares common widget RAM parameters.

• struct MagSense_RAM_WD_PROXIMITY_STRUCT

Declares RAM parameters for the ISX Proximity.

• struct MagSense_RAM_WD_LIST_STRUCT

Declares RAM structure with all defined widgets.

• struct MagSense_RAM_SNS_STRUCT

Declares RAM structure for sensors.

• struct MagSense_RAM_SNS_LIST_STRUCT

Declares RAM structure with all defined sensors.

• struct MagSense_RAM_STRUCT

Declares the top-level RAM Data Structure.

• struct MagSense_FLASH_IO_STRUCT

Declares the Flash IO object.

• struct MagSense_FLASH_SNS_STRUCT

Declares the Flash Electrode object.

• struct MagSense_FLASH_SNS_LIST_STRUCT

Declares the structure with all Flash electrode objects.

• struct MagSense_FLASH_WD_STRUCT

Declares Flash widget object.

• struct MagSense_FLASH_STRUCT

Declares top-level Flash Data Structure.

• struct MagSense_BSLN_RAW_RANGE_STRUCT

Defines the structure for test of baseline and raw count limits which will be determined by user for every sensor
grounding on the manufacturing specific data.

Data Structure Documentation

struct ADAPTIVE_FILTER_CONFIG_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint8 maxK Maximum filter coefficient

uint8 minK Minimum filter coefficient

uint8 noMovTh No-movement threshold

uint8 littleMovTh Little movement threshold

uint8 largeMovTh Large movement threshold

uint8 divVal Divisor value

struct ADVANCED_CENTROID_POSITION_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 x X position

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 38 of 64 Document Number: 002-24878 Rev.**

uint16 y Y position

uint16 zX Z value of X axis

uint16 zY Z value of Y axis

struct ADVANCED_CENTROID_TOUCH_STRUCT

Go to the top of the Data Structures section.

Data Fields:

ADVANCED_CENTROI
D_POSITION_STRUCT

pos[ADVANCED_CENT
ROID_MAX_TOUCHES
]

Array of position structure

uint8 touchNum Number of touches

struct SMARTSENSE_CSD_NOISE_ENVELOPE_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 param0 Parameter 0 configuration

uint16 param1 Parameter 1 configuration

uint16 param2 Parameter 2 configuration

uint16 param3 Parameter 3 configuration

uint16 param4 Parameter 4 configuration

uint8 param5 Parameter 5 configuration

uint8 param6 Parameter 6 configuration

struct MagSense_RAM_WD_BASE_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 resolution Provides scan resolution or number of sub-
conversions.

MagSense_THRESHO
LD_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing finger or
touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the finger or
touch/proximity threshold. OFF to ON.

MagSense_LOW_BSL
N_RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies the
number of samples the sensor has to be below the
Negative Noise Threshold to trigger a baseline
reset.

uint8 idacMod[MagSense_N
UM_SCAN_FREQS]

Sets the current of the modulation IDAC for the
widget.

uint16 snsClk Sets Lx clock divider for ISX Widgets.

uint8 snsClkSource Register for internal use

struct MagSense_RAM_WD_PROXIMITY_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 resolution Provides scan resolution or number of sub-
conversions.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 39 of 64

MagSense_THRESHO
LD_TYPE

fingerTh Widget Finger Threshold.

uint8 noiseTh Widget Noise Threshold.

uint8 nNoiseTh Widget Negative Noise Threshold.

uint8 hysteresis Widget Hysteresis for the signal crossing finger or
touch/proximity threshold.

uint8 onDebounce Widget Debounce for the signal above the finger or
touch/proximity threshold. OFF to ON.

MagSense_LOW_BSL
N_RST_TYPE

lowBslnRst The widget low baseline reset count. Specifies the
number of samples the sensor has to be below the
Negative Noise Threshold to trigger a baseline
reset.

uint8 idacMod[MagSense_N
UM_SCAN_FREQS]

Sets the current of the modulation IDAC for the
widget.

uint16 snsClk Sets Lx clock divider for ISX Widgets.

uint8 snsClkSource Register for internal use

MagSense_THRESHO
LD_TYPE

proxTouchTh The proximity touch threshold.

struct MagSense_RAM_WD_LIST_STRUCT

Go to the top of the Data Structures section.

Data Fields:

MagSense_RAM_WD_
PROXIMITY_STRUCT

proximity0 Proximity0 widget RAM structure

struct MagSense_RAM_SNS_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 raw[MagSense_NUM_S
CAN_FREQS]

The sensor raw counts.

uint16 bsln[MagSense_NUM_
SCAN_FREQS]

The sensor baseline.

uint8 bslnExt[MagSense_NU
M_SCAN_FREQS]

For the bucket baseline algorithm holds the bucket
state, For the IIR baseline keeps LSB of the
baseline value.

MagSense_THRESHO
LD_TYPE

diff Sensor differences.

MagSense_LOW_BSL
N_RST_TYPE

negBslnRstCnt[MagSen
se_NUM_SCAN_FREQ
S]

The baseline reset counter for the low baseline
reset function.

uint8 idacComp[MagSense_
NUM_SCAN_FREQS]

The compensation IDAC value or the balancing
IDAC value.

struct MagSense_RAM_SNS_LIST_STRUCT

Go to the top of the Data Structures section.

Data Fields:

MagSense_RAM_SNS_
STRUCT

proximity0[MagSense_
PROXIMITY0_NUM_R
X]

Proximity0 sensors RAM structures array

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 40 of 64 Document Number: 002-24878 Rev.**

struct MagSense_RAM_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 configId 16-bit CRC calculated by the customizer for the
component configuration. Used by the Tuner
application to identify if the FW corresponds to the
specific user configuration.

uint16 deviceId Used by the Tuner application to identify device-
specific configuration.

uint16 hwClock Used by the Tuner application to identify the
system clock frequency.

uint16 tunerCmd Tuner Command Register. Used for the
communication between the Tuner GUI and the
component.

uint16 scanCounter This counter gets incremented after each scan.

volatile uint32 status Status information: Current Widget, Scan active,
Error code.

uint32 wdgtEnable[MagSense
_WDGT_STATUS_WO
RDS]

The bitmask that sets which Widgets are enabled
and scanned, each bit corresponds to one widget.

uint32 wdgtStatus[MagSense_
WDGT_STATUS_WOR
DS]

The bitmask that reports activated Widgets
(widgets that detect a touch signal above the
threshold), each bit corresponds to one widget.

MagSense_SNS_STS_
TYPE

snsStatus[MagSense_T
OTAL_WIDGETS]

For the Proximity widget, each sensor uses two
bits with the following meaning: 00 - Not active; 01
- Proximity detected (signal above finger
threshold); 11 - A finger touch detected (signal
above the touch threshold); The array size is equal
to the total number of widgets. The size of the
array element depends on the max number of
sensors per widget used in the current design. It
could be 1, 2 or 4 bytes.

uint16 csd0Config The configuration register for global parameters of
the SENSE_HW0 block.

uint8 modIsxClk

MagSense_RAM_WD_
LIST_STRUCT

wdgtList RAM Widget Objects.

MagSense_RAM_SNS_
LIST_STRUCT

snsList RAM Sensor Objects.

uint8 snrTestWidgetId The selected widget ID.

uint8 snrTestSensorId The selected sensor ID.

uint16 snrTestScanCounter The scan counter.

uint16 snrTestRawCount[Mag
Sense_NUM_SCAN_F
REQS]

The sensor raw counts.

struct MagSense_FLASH_IO_STRUCT

Go to the top of the Data Structures section.

Data Fields:

reg32 * hsiomPtr Pointer to the HSIOM configuration register of the
IO.

reg32 * pcPtr Pointer to the port configuration register of the IO.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 41 of 64

reg32 * drPtr Pointer to the port data register of the IO.

reg32 * psPtr Pointer to the pin state data register of the IO.

uint32 hsiomMask IO mask in the HSIOM configuration register.

uint32 mask IO mask in the DR and PS registers.

uint8 hsiomShift Position of the IO configuration bits in the HSIOM
register.

uint8 drShift Position of the IO configuration bits in the DR and
PS registers.

uint8 shift Position of the IO configuration bits in the PC
register.

struct MagSense_FLASH_SNS_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 firstPinId Index of the first IO in the Flash IO Object Array.

uint8 numPins Total number of IOs in this sensor.

uint8 type Sensor type:

struct MagSense_FLASH_SNS_LIST_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint8 notUsed No ganged sensors available

struct MagSense_FLASH_WD_STRUCT

Go to the top of the Data Structures section.

Data Fields:

void const * ptr2SnsFlash Points to the array of the FLASH Sensor Objects
or FLASH IO Objects that belong to this widget.
Sensing block uses this pointer to access and
configure IOs for the scanning. Bit #2 in
WD_STATIC_CONFIG field indicates the type of
array: 1 - Sensor Object; 0 - IO Object.

void * ptr2WdgtRam Points to the Widget Object in RAM. Sensing block
uses it to access scan parameters. Processing
uses it to access threshold and widget specific
data.

MagSense_RAM_SNS_
STRUCT*

ptr2SnsRam Points to the array of Sensor Objects in RAM. The
sensing and processing blocks use it to access the
scan data.

void * ptr2FltrHistory Points to the array of the Filter History Objects in
RAM that belongs to this widget.

uint8 * ptr2DebounceArr Points to the array of the debounce counters. The
size of the debounce counter is 8 bits. These
arrays are not part of the data structure.

uint32 staticConfig Miscellaneous configuration flags.

uint16 totalNumSns The total number of sensors. For CSD widgets:
WD_NUM_ROWS + WD_NUM_COLS. For CSX
widgets: WD_NUM_ROWS * WD_NUM_COLS.

uint8 wdgtType Specifies one of the following widget types:
WD_BUTTON_E, WD_LINEAR_SLIDER_E,
WD_RADIAL_SLIDER_E,

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 42 of 64 Document Number: 002-24878 Rev.**

WD_MATRIX_BUTTON_E, WD_TOUCHPAD_E,
WD_PROXIMITY_E

uint8 numCols For ISX Proximity Widgets, the number of sensors.

uint8 numRows Unused.

struct MagSense_FLASH_STRUCT

Go to the top of the Data Structures section.

Data Fields:

MagSense_FLASH_W
D_STRUCT

wdgtArray[MagSense_T
OTAL_WIDGETS]

Array of flash widget objects

struct MagSense_BSLN_RAW_RANGE_STRUCT

Go to the top of the Data Structures section.

Data Fields:

uint16 bslnHiLim Upper limit of a sensor baseline.

uint16 bslnLoLim Lower limit of a sensor baseline.

uint16 rawHiLim Upper limit of a sensor raw count.

uint16 rawLoLim Lower limit of a sensor raw count.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 43 of 64

Memory Usage

The Component Flash and RAM memory usage varies significantly depending on the compiler,
device, number of APIs called by the application program and Component configuration. The
table below provides the total memory usage of firmware for a given Component configuration.

The measurements were done with an associated compiler configured in the Release mode with
optimization set for Size. For a specific design, the map file generated by the compiler can be
analyzed to determine the memory usage.

PSoC 4 (GCC)

The following Component configuration is used to represent the memory usage:

Configuration Memory Consumption

Flash (bytes) SRAM (bytes)

ISX Component base configuration (1 sensor) 4430 120

Memory consumption for each additional sensor +288 +32

Note The configurations consist of the default customizer configuration except where noted. The
default customizer configuration includes:

▪ All filters disabled. The Enable IIR filter (First order), Enable average filter (4-sample) and
Enable median filter (3-sample) parameters are disabled.

▪ The Enable auto-calibration parameter is enabled.

MagSense Tuner

The MagSense Component provides a graphical-based Tuner application for debugging and
tuning the inductive sensing based system.

To make the tuner application work, a communication Component should be added to the project
and the Component register map should be exposed to the tuner application.

It is possible to edit the parameters using the Tuner application and apply the new settings to the
device using the To Device button.

The To Device button is available when the Synchronized control in the Graph Setup Pane is
enabled and any parameter in the Tuner is changed. The Synchronized control can be enabled
when the FW flow regularly calls the MagSense_RunTuner() function. If this function is not
present in the application code, then Synchronized communication mode is disabled.

This section describes the parameters used in the Tuner UI interface. For details of the tuning
and system design guidelines, refer to MagSense Design guide.

http://www.cypress.com/documentation/application-notes/an85951-psoc-4-capsense-design-guide

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 44 of 64 Document Number: 002-24878 Rev.**

Tuner Quick Start

This section show how to set up MagSense tuner via an I2C interface.

This section is continuation of application Quick Start section and assumes procedure
documented in application Quick Start section is already followed.

Step-1: Place and Configure an EZI2C Component

Drag and drop the EZI2C Slave (SCB Mode) Component from the Component Catalog onto the
schematic to add an I2C communication interface to the project. This I2C slave interface is
required for transfer data from DUT to Tuner GUI to monitor Component parameters in real time.

Double-click on the EZI2C Component. On the EZI2C Basic tab, set the following parameters.

▪ Set a Component name (in this case: EZI2C).

▪ Set the Data rate (kbps) to 400

▪ Set the Primary slave address (7-bits) to 0x08

▪ Set the Sub-address size (bits) to 16

Press OK to save changes and close.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 45 of 64

Step-2: Assign I2C Pins in Pin Editor

Double-click the Design-Wide Resources Pin Editor (in the Workspace Explorer) and assign
physical pins for the I2C SCL and SDA pins.

If you are using a Cypress kit, refer to the kit user guide for the USB-I2C bridge pin selections.
The I2C-USB Bridge enables I2C communication between the PSoC and the tuner application
via USB. Alternatively, you can also use a MiniProg3 debugger/programmer kit as the I2C-USB
bridge.

Step-3: Modify Application Code

Replace the main.c from the Step-3 in the Quick Start section with the following code:

#include <project.h>

int main()

{

 CyGlobalIntEnable; /* Enable global interrupts */

 EZI2C_Start(); /* Start EZI2C Component */

 /*

 * Set up communication and initialize data buffer to MagSense data structure

 * to use Tuner application

 */

 EZI2C_EzI2CSetBuffer1(sizeof(MagSense_dsRam), sizeof(MagSense_dsRam),

 (uint8 *)&MagSense_dsRam);

 MagSense_Start(); /* Initialize Component */

 MagSense_ScanAllWidgets(); /* Scan all widgets */

 for(;;)

 {

 /* Do this only when a scan is done */

 if(MagSense_NOT_BUSY == MagSense_IsBusy())

 {

 MagSense_ProcessAllWidgets(); /* Process all widgets */

 MagSense_RunTuner(); /* To sync with Tuner application */

 if (MagSense_IsAnyWidgetActive()) /* Scan result verification */

 {

 /* add custom tasks to execute when touch detected */

 }

 MagSense_ScanAllWidgets(); /* Start next scan */

 }

 }

}

Step-4: Build Design and Program the device

Select Build <project name> from the Build menu and see the project build without errors.

Select Program from the Debug menu and program the device.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 46 of 64 Document Number: 002-24878 Rev.**

Step-5: Launch the Tuner Application

Right-click on the MagSense Component in the schematic and select Launch Tuner from the
context menu.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 47 of 64

The MagSense Tuner application opens as shown below.

Note that the proximity sensor widget, called Proximity0, is automatically shown in the Widget
View panel.

Step-6: Configure Communication Parameters

In order to establish communication between the tuner and target device you must configure the
tuner communication parameters to match that of the I2C Component.

Open the Tuner Communication Setup dialog by selecting Tools > Tuner Communication
Setup… in the menu or clicking Tuner Communication Setup button.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 48 of 64 Document Number: 002-24878 Rev.**

Select the appropriate I2C communication device KitProg (or MiniProg3) and set the following
parameters:

▪ I2C Address: 8 (or the address set in EzI2C Component configuration wizard).

▪ Sub-address: 2 bytes.

▪ I2C Speed: 400 kHz (or speed set in Component configuration wizard).

Note The I2C address, Sub-address, and I2C speed fields in the Tuner communication setup
must be identical to the Primary slave address, Sub-address size, and Data rate parameters
in the EZI2C Component Configure dialog (see Step-3: Place and Configure an EZI2C
Component). Sub-address must be set to 2-Bytes in both places.

Step-7: Start Communication

Click Connect to establish connection and then Start buttons to extract data.

Check the Synchronized control in Graph Setup Pane. This ensures that the Tuner only collects
the data when MagSense is not scanning. Refer to Graph Setup Pane for details of synchronized
operation.

The Status bar shows the communication bridge connection status and data refresh rate. You
can see the status of the Proximity0 widget in in the Widget View and signals for the sensor in
the Graph View. Touch the sensors on the kit to observe MagSense operation.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 49 of 64

General Interface

The application consists of the following tabs:

▪ Widget View – Displays the widgets, their touch status and the touch signal bar graph.

▪ Graph View – Displays the sensor data charts.

▪ SNR Measurement – Provides the SNR measurement functionality.

Menus

The main menu provides the following commands to help control and navigate the Tuner:

▪ File > Apply to Device (Ctrl + D) – Commits the current values of the widget / sensor
parameters to the device. This menu item becomes active if a value of any configuration
parameter is changed from the Tuner UI (i.e. if the parameter values in the Tuner and the
device are different). This is an indication that the changed parameter values need to be
applied to the device.

▪ File > Apply to Project (Ctrl + S) – Commits the current values of widget / sensor
parameters to the MagSense Component instance. The changes are applied after the
Tuner is closed and the Customizer is opened. Refer to the Procedure to Save Tuner
Parameters section for details of merging parameters to a project.

▪ File > Save Graph… (Ctrl+Shift+S) – Opens the dialog to save the current graph as a
PNG image. The saved graph that is actually saved depends on the currently selected

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 50 of 64 Document Number: 002-24878 Rev.**

view: it is Touch Signal Graph for Widget View (only when shown), a combined graph with
Sensor Data, Sensor Signal and Status for Graph View, and SNR Raw counts graph for
SNR Measurement View.

▪ File > Exit (Alt+F4) – Asks to save changes if there are any, and closes the Tuner.
Changes are saved to the PSoC Creator project (merged back by the customizer).

▪ Communication > Connect (F4) – Connects to the device via a communication channel
selected in the Tuner Communication Setup dialog. When the channel was not previously
selected, dialog is to configure communication is shown.

▪ Communication > Disconnect (Shift+F4) – Closes the communication channel with the
connected device.

▪ Communication > Start (F5) – Starts reading data from the device.

If communication does not starts and the dialog “Checksum mismatch for the data
stored…” or “There was an error reading data…” appears the following reasons are
possible:

□ The invalid configuration of the communication channel (Slave address / Data rate /
Sub-address size)

□ The invalid data buffer exposed via EZI2C (not MagSense_dsRam)

□ The latest customizer parameters modification was not programmed into device.

□ Edit performed in the customizer during tuning session: the Tuner needs to be
closed and opened again after the customizer update.

□ The Tuner opened for the wrong project.

▪ Communication > Stop (Shift+F5) – Stops reading data from the device.

▪ Tools > Tuner Communication Setup… (F10) – Opens the configuration dialog to set
up a communication channel with the device.

▪ Tools > Options – Opens the configuration dialog to setup different tuner preferences.

▪ Help > Help Contents (F1) – Opens the MagSense Component datasheet.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 51 of 64

Toolbar

Contains frequently used buttons that duplicate the main menu items:

▪ – Duplicates the Tools > Tuner Communication Setup menu item.

▪ – Duplicates the Communication > Connect menu item.

▪ – Duplicates the Communication > Disconnect menu item.

▪ – Duplicates the Communication > Start menu item.

▪ – Duplicates the Communication > Stop menu item

▪ – Duplicates the File > Apply to Device menu item.

▪ – Duplicates the File > Apply to Project menu item.

▪ – Starts data logging into a specified file

▪ – Stops data logging

▪ – Clears the Tuner graphs.

Status bar

The status bar displays various information related to the communication state between the
Tuner and the device. This includes:

▪ Current operation mode of tuner – Either Reading (when tuner is reading from the
device), Writing (when the write operation is in progress), or empty (idle – no operation
performed).

▪ Refresh rate – Count of read samples performed per second. The count depends on
multiple factors: the selected communication channel, communication speed, and amount
of time needed to perform a single scan.

▪ Bridge status – Either Connected, when the communication channel is active, or
disconnected otherwise.

▪ Slave address [I2C specific] – The address of the I2C slave configured for the current
communication channel.

▪ I2C clock [I2C specific] – The data rate used by the I2C communication channel.

▪ Supply voltage – The supply voltage.

▪ Logging – Either ON (when the data logging to a file in progress) or OFF otherwise.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 52 of 64 Document Number: 002-24878 Rev.**

Widget Explorer Pane

The Widget explorer pane contains a tree of widgets and sensors used in the MagSense project.
The Widget nodes can be expanded/collapsed to show/hide widget’s sensor nodes. It is possible
to check/uncheck individual widgets and sensors. The Widget checked status affects its visibility
on the Widget View, while the sensor checked status controls the visibility of the sensor raw
count / baseline / signal / status graph series on the Graph View and signals on the Touch Signal
Graph on the Widget View.

Selection of widget or sensor in the Widget Explorer Pane updates the selection in the
Widget/Sensor Parameters Pane. It is possible to select multiple widget or sensor nodes to edit
multiple parameters at once. For example, you can edit the Finger Threshold parameter for all
widgets at once.

Note For the ISX widgets, the sensor tree displays individual nodes (Rx0_Lx0, Rx0_Lx1 …) as
contrary to the customizer where the ISX electrodes are displayed (Rx0, Rx1 … Lx0, Lx1 ...).

The toolbar at the top of the widget explorer provides easy access to commonly used functions:

buttons can be used to expand/collapse all sensor nodes at once, and to
check/uncheck all widgets and sensors.

Widget/Sensor Parameters Pane

The widget/sensor parameters pane displays the parameters of the widget or sensor selected in
the Widget Explorer tree. The grid is similar to the grid on the Widget Details tab in the
MagSense customizer. The main difference is that some parameters are available for
modification in the customizer, but not in the tuner. This includes:

▪ Widget Hardware Parameters – Any change to Widget Hardware Parameters requires
hardware re-initialization, which can be performed only if the Tuner communicates with
the device in the Synchronized mode.

▪ Widget Threshold Parameters – The threshold parameters are always writable
(synchronized mode is not required). The exception is the ON debounce parameter that
also requires a Component restart (in the same way as the hardware parameters).

▪ Sensor Parameters – Sensor-specific parameters. When the Enable auto-calibration is
enabled, the IDAC Value parameter is Read-only and displays the IDAC value as
calibrated by the Component firmware. When auto-calibration is disabled, the IDAC value
entered in the customizer is shown. If the Tuner operates in the Synchronized mode, it is
possible to edit the value and apply it to the device.

Graph Setup Pane

The graph Setup pane provides quick access to different Tuner configuration options that affect
the Tuner graphs display.

▪ Number of samples – Defines the total amount of data samples shown on a single
graph.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 53 of 64

▪ Show Touch Signal Graph – Displays the graph window when checked.

▪ Show legend – Displays the sensor series descriptions (with names and colors) on
graphs when checked (Sensor Data/Sensor Signal/Status graphs on a Graph View and
Touch Signal Graph on a Widget View).

▪ Show marks – When checked, the sensor names are shown as marks over the signal
bars on Touch Signal Graph.

▪ Thresholds – A drop-down menu with checkboxes to enable the threshold visualization in
the Touch Signal Graph and a Sensor Signal graph in the Graph View tab.

▪ Communication mode – Selects Tuner communication mode with a device. Two options
are available (when the EZI2C Component is used):

□ Synchronized – This communication mode is available when a FW loop
periodically calls a corresponding Tuner function: MagSense_RunTuner(). When
Synchronized Communication mode is selected, the MagSense Tuner manages an
execution flow by suspending scanning during the Read operation. Before starting
data reading, the Tuner sends a OneScan command to the device. The device
performs one cycle of scanning and the second call of MagSense_RunTuner()
hangs the FW flow until a new command is received. The Tuner reads all the
needed data and sends a OneScan command again.

□ Asynchronized – When selected, the Tuner reads data asynchronously to sensor
scanning. Because reading data by the MagSense Tuner and data processing
happen asynchronously, the MagSense Tuner may read the updated data only
partially. For example, the device updates only the first sensor data and the second
sensor is not updated yet. At this moment, the MagSense Tuner is reading the
data. As a result, the second sensor data is not processed.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 54 of 64 Document Number: 002-24878 Rev.**

Widget View

Provides a visual representation of all widgets that are selected in the Widget Explorer Pane. If a
widget is composed of more than one sensor, individual sensors may be selected to be
highlighted in the Widget Explorer Pane and Widget/Sensor Parameters Pane.

The widget sensors are highlighted red when the device reports their touch status as active.

Some additional features are available depending on the widget type:

Touch Signal Graph

The widget view also displays Touch Signal Graph when the “Show Touch Signal graph”
checkbox is checked in the Graph Setup Pane. This graph contains a touch signal level for each
sensor that is selected in the Widget Explorer Pane.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 55 of 64

Graph View

Displays graphs for selected sensors in the Widget Explorer Pane. The three charts are
available:

▪ Sensor Data graph – Displays raw counts and baseline.

It is possible to select which series should be displayed with the checkboxes on the right:

□ Raw counts and baseline series

□ Raw counts only

□ Baseline only

▪ Sensor Signal graph – Displays a signal difference.

▪ Status graph – Displays the sensor status (Touch/No Touch). For proximity sensors, it
also shows the proximity status (at 50% of the status axis) along with the touch status (at
100% of the axis).

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 56 of 64 Document Number: 002-24878 Rev.**

SNR Measurement

The SNR Measurement tab allows measuring a SNR (Signal-to-Noise Ratio) for individual
sensors.

The Tab provides UI to acquire noise and signal samples separately and then calculates a SNR
based on the captured data. The obtained value is then validated by a comparison with the
required minimum (5 by default, can be configured in the Tuner Configuration Options).

Typical flow of SNR measurement

1. Connect to the device and start communication (by pressing the Connect, then Start buttons
on the toolbar).

2. Switch to the SNR Measurement tab.

3. Select a sensor in the Widget Explorer Pane located at the left of the SNR Measurement tab.

4. Make sure no touch is present on the selected sensor.

5. Press the Acquire Noise button and wait for the required count of noise samples to be
collected.

6. Observe the Noise label is updated with the calculated noise average value.

7. Put a finger on the selected sensor.

8. Press the Acquire Signal button and wait for required count of signal samples to be
collected.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 57 of 64

9. Observe the Signal label is updated with the calculated signal average value

10. Observe the SNR label is updated with the signal to noise ratio.

Description of SNR measurement GUI

At the top of the SNR measurement tab, there is a bar with the status labels. Each label status
is defined by its background color:

▪ Select sensor is green when there is a sensor selected; gray otherwise.

▪ Acquire noise is green when noise samples are already collected for the selected
sensor; gray otherwise.

▪ Acquire signal is green when signal samples are already collected for the selected
sensor; gray otherwise.

▪ Validate SNR is green when both noise and signal samples are collected, and the SNR is
above the valid limit; red when the SNR is below the valid limit, and gray when either
noise or signal are not yet collected.

▪ Below the top bar, there are the following controls:

▪ Sensor name label (as selected in the Widget Explorer Pane) or None (if no sensor
selected).

▪ Acquire Noise is a button disabled when the sensor is not selected or communication is
not started. When the acquiring noise is in progress, the button can be used to abort the
operation.

▪ Acquire Signal is a button disabled when the sensor is not selected, communication is
not started, or noise samples are not yet collected for the selected sensor. When the
acquiring signal is in progress, the button can be used to abort the operation.

▪ Result is a label that shows either “N/A” (when the SNR cannot be calculated due to
noise/signal samples not yet collected), “PASS” (when SNR is above the required limit), or
“FAIL” (when the SNR is below the required limit).

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 58 of 64 Document Number: 002-24878 Rev.**

Below, there is a status label displaying the current status message and the progress bar
displaying progress of the current operation.

At the bottom of the control area, there are the following controls:

▪ Noise is a label which shows the noise average value calculated during the last noise
measurement for the selected sensor, or “N/A” if no noise measurement is performed yet.

▪ Signal is a label that shows the signal average value calculated during the last signal
measurement for the selected sensor, or “N/A” if no signal measurement was performed
yet.

▪ SNR is a label that shows a calculated SNR value. This is the result of Signal/Noise
division rounded up to 2 decimal points. When a SNR cannot be calculated, “N/A” is
displayed instead.

Procedure to Save Tuner Parameters

Changes to widget/sensor parameters made during the tuning session and not automatically
applied to the PSoC Creator project. Follow these steps to merge parameters modified by the
tuner back to the Component instance:

1. If any parameter is changed during the tuning process in the Tuner GUI, the Apply to
Project button is active. Click this button to apply the new parameters to the project and
follow the instructions.

2. Close the Tuner GUI.

3. Open the Component Configure dialog.

The following dialog asks to merge the Tuner configuration updates back to the customizer:

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 59 of 64

4. Click the Merge all or Merge selected buttons to apply the Tuner’s changed parameters to
the project. Click Cancel to leave the Component parameters unchanged.

Note Some parameters can be changed by the device at run-time when Enable auto-
calibration feature is enabled.

The Tuner automatically picks up the changed parameters from a device. Clicking To Project
merges these parameters to the Component and later they can be used as a starting point for
manual calibration or tuning.

5. Save the new Component settings and build the project.

Tuner Configuration Options

The Tuner application allows setting different configuration options with the Options dialog.
Settings are applied on a project basis and divided into groups:

SNR Options

▪ Noise sample count – The count of samples to acquire during the noise measurement
operation.

▪ Signal sample count – The count of samples to acquire during the signal measurement
operation.

▪ SNR pass value – The minimal acceptable value of the SNR.

▪ Ignore spike limit – Ignores a specified number of the highest and the lowest spikes at
noise / signal calculation. I.e if you specify number 3, then three upper and three lower
raw counts are ignored separately for the noise calculation and for the signal calculation.

▪ Noise calculation method – Allows selecting the method to calculate the noise average.
The two methods are available for selection:

□ Peak-to-peak (by default) – Calculates noise as a difference between the
maximum and minimum value collected during the noise measurement.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 60 of 64 Document Number: 002-24878 Rev.**

□ RMS – Calculates noise as a root mean-square of all samples collected during the
noise measurement.

Graph options

▪ Series thickness – Allows specifying the thickness of lines drawn on the graphs.

Data Log Options

▪ Log File – Selects the file for information to be stored and its location.

▪ Append log to an existing file – When checked, the selected file is never over-written
and defined file is expanded with new data, otherwise it is overwritten.

▪ Number of samples – Defines a log session duration in samples.

▪ Data configuration checkbox table – Defines data that to be collected into a log file.

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 61 of 64

MISRA Compliance Report

This section describes the MISRA-C: 2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – applicable for all PSoC Creator Components

▪ specific deviations – applicable only for this Component

This section provides information on Component-specific deviations. The project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The MagSense Component has the following specific deviations:

MISRA-
C:2004

Rule

Rule Class
(Required/
Advisory)

Rule Description Description of Deviation(s)

8.8 R An external object or function
shall be declared in only one
file.

Some arrays are generated based on the Component
configuration and these arrays are declared locally in the
.c source files where they are used instead of in .h
include files.

11.4 A A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

Pointers are used to allow many types of widgets and
sensors. The architecture is designed to allow indexing a
specific pointer.

12.13 A The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression.

These violations are reported for the GCC ARM
optimized form of the “for” loop that have the following
syntax:

for(index = COUNT; index --> 0u;)

It is used to improve performance.

14.2 R All non-null statements shall
either have at least one side
effect however executed, or
cause the control flow to
change.

These violations are caused by expressions suppressing
the C-compiler warnings about the unused function
parameters. The MagSense Component has many
different configurations. Some of them do not use
specific function parameters. To avoid the complier's
warning, the following code is used: (void)paramName.

16.7 A A pointer parameter in a
function prototype should be
declared as the pointer to
const if the pointer is not used
to modify the addressed
object.

Mostly all data processing for variety configuration,
widgets and data types is required to pass the pointers
as an argument. The architecture and design are
intended for this casting.

17.4 R Array indexing shall be the
only allowed form of pointer
arithmetic.

Pointers are used to allow many types of widgets and
sensors. The architecture is designed to allow indexing a
specific pointer.

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 62 of 64 Document Number: 002-24878 Rev.**

MISRA-
C:2004

Rule

Rule Class
(Required/
Advisory)

Rule Description Description of Deviation(s)

18.4 R Unions shall not be used. There are two general cases in the code where this rule
is violated.

1. MagSense_PTR_FILTER_VARIANT definition and
usage. This union is used to simplify the pointer
arithmetic with the Filter History Objects. Widgets
may have two kinds of Filter History: Regular
History Object and Proximity History Object. The
mentioned union defines three different pointers:
void, RegularObjPtr, and ProximityObjPtr.

2. APIs use unions to simplify operation with pointers
on the parameters. The union defines four pointers:
void*, uint8*, uint16*, and uint32*.

In all cases, the pointers are verified for proper alignment
before usage.

19.7 A A function should be used in
preference to a function-like
macro.

Simple function-like macros are used to decrease
execution time in time critical functions.

This Component has the following embedded Components: PSoC 4 Current Digital to Analog
Converter (IDAC_P4 v1_10).

Refer to the corresponding Component datasheet for information on their MISRA compliance
and specific deviations.

Electrical Characteristics

Specifications are valid for +25° C, VDD 3.3 V, Cc = 10pF, CintA = CintB = 470 pF except where
noted.

Performance Characteristics (Preliminary)

Parameter Condition / Details Min Typ Max Units

Maximum sample rate 10 ksps

Calibration time

SysClk = 48MHz, ModClk = 48MHz,
LxClk = 1MHz, Sub Conversion = 50,
Widget/Sensors scanned = 1,
Firmware filters = Disabled,

Auto-Calibration = Enabled.
All other components parameter =
default.

 33 ms

Sensor frequency
Supported LC resonant frequency.
ISX parameters = tuned per CY
design guide.

45 3,000 kHz

http://www.cypress.com/?rID=78752

PSoC® Creator™ Component Datasheet PSoC 4 MagSense™ Inductive Sensing

Document Number: 002-24878 Rev.** Page 63 of 64

Parameter Condition / Details Min Typ Max Units

Inductance (L) range
Supported Inductance range.
ISX parameter = tuned per CY design
guide.

1 10,000 uH

Resolution Hardware resolution 16 bits

Maximum detectable distance

SysClk/MkdClk= 48MHz,
Firmware filters = Disabled,

Auto-Calibration = Enabled
Coil =10 mm, Target Aluminium

 4.5 mm

Maximum detectable distance

SysClk/MkdClk= 48MHz,
Firmware filters = Disabled,

Auto-Calibration = Enabled
Coil =30 mm, Target Aluminium

 19.5 mm

Average power consumption

LX Frequency= 3MHz, Coil diameter
= 10 mm, Signal variation = 0.2%
(Minimum detectable change), Report
rate <= 100ms.

All other components parameter =
default.

 0.61* mA

Active power consumption
At maximum sample rate, no periodic
deepsleep/sleep.

 10.01* mA

*Total chip current

IDAC Characteristic

Parameter Description Min Typ Max Units Conditions

IDAC1DNL DNL -1 – 1 LSB

IDAC1INL INL -2 – 2 LSB INL is ±5.5 LSB for VDDA < 2 V

IDAC2DNL DNL -1 – 1 LSB

IDAC2INL INL -2 – 2 LSB INL is ±5.5 LSB for VDDA < 2 V

DC/AC Specifications

Refer to device-specific datasheet PSoC 4 Device datasheets for more details.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749

PSoC 4 MagSense™ Inductive Sensing PSoC® Creator™ Component Datasheet

Page 64 of 64 Document Number: 002-24878 Rev.**

Component Errata
Cypress

ID
Component

Version
Problem Workaround

311170 6.0 When auto-calibration is enabled and a
Sensor is configured to use maximum or
nearly maximum Number of
Subconversions, the calibration
algorithm can overflow the results
register.

When using auto-calibration, configure
Sensors to use at most 90% of the maximum
Number of Subconversions.

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

6.0 New Component implementation.

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, ModusToolbox, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered
trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their
respective owners.

	Features
	General Description
	When to Use a MagSense Component

	Quick Start
	Step-1: Create a Design in PSoC Creator
	Step-2: Place and Configure the MagSense Component
	Basic Tab
	Advanced Tab

	Step-3: Write Application Code
	Step-4: Assign Pins in Pin Editor
	Step-5: Build Design

	Input / Output Connections
	Component Configuration Parameters
	Common Controls
	Basic Tab
	Advanced Tab
	General Sub-tab
	Proximity widget raw count filter type
	Baseline filter settings
	General settings

	ISX Settings Sub-tab
	Widget Details Sub-tab
	Scan Order Sub-tab

	Application Programming Interface
	MagSense High-Level APIs
	Description
	Functions
	Function Documentation
	cystatus MagSense_Start (void)
	Returns:

	cystatus MagSense_Stop (void)
	Returns:

	cystatus MagSense_Resume (void)
	Returns:

	cystatus MagSense_ProcessAllWidgets (void)
	Returns:

	cystatus MagSense_ProcessWidget (uint32 widgetId)
	Parameters:
	Returns:

	void MagSense_Sleep (void)
	void MagSense_Wakeup (void)
	cystatus MagSense_SetupWidget (uint32 widgetId)
	Parameters:
	Returns:

	cystatus MagSense_Scan (void)
	Returns:

	cystatus MagSense_ScanAllWidgets (void)
	Returns:

	uint32 MagSense_IsBusy (void)
	Returns:

	uint32 MagSense_IsAnyWidgetActive (void)
	Returns:

	uint32 MagSense_IsWidgetActive (uint32 widgetId)
	Parameters:
	Returns:

	uint32 MagSense_IsSensorActive (uint32 widgetId, uint32 sensorId)
	Parameters:
	Returns:

	uint32 MagSense_IsProximitySensorActive (uint32 widgetId, uint32 proxId)
	Parameters:
	Returns:

	uint32 MagSense_RunTuner (void)
	Returns:

	MagSense Low-Level APIs
	Description
	Functions
	Function Documentation
	cystatus MagSense_ProcessWidgetExt (uint32 widgetId, uint32 mode)
	Parameters:
	Returns:

	cystatus MagSense_ProcessSensorExt (uint32 widgetId, uint32 sensorId, uint32 mode)
	Parameters:
	Returns:

	cystatus MagSense_UpdateAllBaselines (void)
	Returns:

	cystatus MagSense_UpdateWidgetBaseline (uint32 widgetId)
	Parameters:
	Returns:

	cystatus MagSense_UpdateSensorBaseline (uint32 widgetId, uint32 sensorId)
	Parameters:
	Returns:

	void MagSense_InitializeAllBaselines (void)
	void MagSense_InitializeWidgetBaseline (uint32 widgetId)
	Parameters:

	void MagSense_InitializeSensorBaseline (uint32 widgetId, uint32 sensorId)
	Parameters:

	void MagSense_InitializeAllFilters (void)
	void MagSense_InitializeWidgetFilter (uint32 widgetId)
	Parameters:

	void MagSense_SetPinState (uint32 widgetId, uint32 sensorElement, uint32 state)
	Parameters:

	cystatus MagSense_CalibrateWidget (uint32 widgetId)
	Parameters:
	Returns:

	cystatus MagSense_CalibrateAllWidgets (void)
	Returns:

	void MagSense_ISXSetupWidget (uint32 widgetId)
	Parameters:

	void MagSense_ISXSetupWidgetExt (uint32 widgetId, uint32 snsIndex)
	Parameters:

	void MagSense_ISXScan (void)
	void MagSense_ISXScanExt (void)
	void MagSense_ISXCalibrateWidget (uint32 widgetId, uint16 idacTarget)
	Parameters:

	void MagSense_ISXConnectLx (MagSense_FLASH_IO_STRUCTconst * lxPtr)
	Parameters:

	void MagSense_ISXConnectRx (MagSense_FLASH_IO_STRUCTconst * rxPtr)
	Parameters:

	void MagSense_ISXDisconnectLx (MagSense_FLASH_IO_STRUCTconst * lxPtr)
	Parameters:

	void MagSense_ISXDisconnectRx (MagSense_FLASH_IO_STRUCTconst * rxPtr)
	Parameters:

	cystatus MagSense_GetParam (uint32 paramId, uint32 * value)
	Parameters:
	Returns:

	cystatus MagSense_SetParam (uint32 paramId, uint32 value)
	Parameters:
	Returns:

	Macro Callbacks
	Global Variables
	Description
	Variables
	Variable Documentation
	MagSense_RAM_STRUCTMagSense_dsRam

	API Constants
	Description
	Variables
	Variable Documentation
	const MagSense_FLASH_STRUCTMagSense_dsFlash
	const MagSense_FLASH_IO_STRUCTMagSense_ioList[MagSense_TOTAL_ELECTRODES]

	Data Structure
	Description
	Data Structures
	Data Structure Documentation
	struct ADAPTIVE_FILTER_CONFIG_STRUCT
	Data Fields:

	struct ADVANCED_CENTROID_POSITION_STRUCT
	Data Fields:

	struct ADVANCED_CENTROID_TOUCH_STRUCT
	Data Fields:

	struct SMARTSENSE_CSD_NOISE_ENVELOPE_STRUCT
	Data Fields:

	struct MagSense_RAM_WD_BASE_STRUCT
	Data Fields:

	struct MagSense_RAM_WD_PROXIMITY_STRUCT
	Data Fields:

	struct MagSense_RAM_WD_LIST_STRUCT
	Data Fields:

	struct MagSense_RAM_SNS_STRUCT
	Data Fields:

	struct MagSense_RAM_SNS_LIST_STRUCT
	Data Fields:

	struct MagSense_RAM_STRUCT
	Data Fields:

	struct MagSense_FLASH_IO_STRUCT
	Data Fields:

	struct MagSense_FLASH_SNS_STRUCT
	Data Fields:

	struct MagSense_FLASH_SNS_LIST_STRUCT
	Data Fields:

	struct MagSense_FLASH_WD_STRUCT
	Data Fields:

	struct MagSense_FLASH_STRUCT
	Data Fields:

	struct MagSense_BSLN_RAW_RANGE_STRUCT
	Data Fields:

	Memory Usage
	PSoC 4 (GCC)

	MagSense Tuner
	Tuner Quick Start
	Step-1: Place and Configure an EZI2C Component
	Step-2: Assign I2C Pins in Pin Editor
	Step-3: Modify Application Code

	Step-4: Build Design and Program the device
	Step-5: Launch the Tuner Application
	Step-6: Configure Communication Parameters
	Step-7: Start Communication

	General Interface
	Menus
	Toolbar
	Status bar
	Widget Explorer Pane
	Widget/Sensor Parameters Pane
	Graph Setup Pane

	Widget View
	Touch Signal Graph

	Graph View
	SNR Measurement
	Typical flow of SNR measurement
	Description of SNR measurement GUI

	Procedure to Save Tuner Parameters
	Tuner Configuration Options
	SNR Options
	Graph options
	Data Log Options

	MISRA Compliance Report
	Electrical Characteristics
	Performance Characteristics (Preliminary)
	IDAC Characteristic
	DC/AC Specifications

	Component Errata
	Component Changes

