

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 001-79374 Rev. *B Revised July 29, 2015

Features

 Easy user configuration of filters running on the Digital Filter Block
(DFB) available in some PSoC 3, PSoC 5 and PSoC5 LP devices

 Supports two separate filter channels, each one constructed as a
cascade of up to four separately designed stages

 Multiple FIR and IIR (Biquad) filter methods (including user coefficient
entry) give great flexibility

 Final coefficient values can be extracted for further analysis

General Description

The customizer for the Filter component allows you to configure digital filters on one or two data
streams passed to the Digital Filter Block (DFB), using DMA, interrupts, or polling to manage
data flow. The DFB’s 128 data and coefficient locations are shared as needed between the two
filter channels. The customizer reports (but does not set) the minimum bus clock frequency
required to execute the filtering within the user-declared sample interval.

This component supports a huge number of use cases. If you encounter something unusual
when using it, report it (with a good description of what you did to cause it) to
psoc_creator_fb@cypress.com so Cypress can investigate.

Input/Output Connections

This section describes the various input and output connections for the Filter. An asterisk (*) in
the list of I/Os indicates that the I/O may be hidden on the symbol under the conditions listed in
the description of that I/O.

Interrupt – Output *

If either channel is configured to generate an interrupt in response to a data-ready event, the
interrupt output is enabled. Connect the hardware signal to an ISR component to handle the
interrupt routine. This terminal is only visible when a channel selects “Interrupt” as the data ready
signal. The terminal is shared between both channels.

Filter
2.10

mailto:psoc_creator_fb@cypress.com

Filter PSoC® Creator™ Component Datasheet

Page 2 of 26 Document Number: 001-79374 Rev. *B

DMA Request – Output *

If either channel is configured to generate a DMA request in response to a data-ready event, the
DMA Request output is enabled for that channel. Each channel has a separate DMA Request
output. Connect the hardware signal to a DMA component to handle the DMA routine.

The DMA Request output signal stays high until read, and then goes low. It is your responsibility
to ensure that each sample is read from the output before the next one is available because
there is no local buffering. If you do not read out a sample during this period, you won’t get a
fresh DMA request output for the next sample.

Component Parameters

Drag a Filter component onto your design and double click it to open the Configure dialog.
Change the Name field to adjust the instance name of the Filter.

Note You should only place one Filter component (or any other component that uses the DFB) in
a design. There is nothing to prevent you from placing two components, and the customizer will
operate on both of them independently, but the design will not build and work correctly if more
than one is left on the schematic when the project is built.

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 3 of 26

Filter Parameters

There are two groups of parameters:

 Filter parameters, on the left, determine the filter response.

 Display parameters, on the top right, determine which filter response graphs are displayed,
and how they are scaled.

Enable channel

This parameter enables or disables the code generation for the channel. Each channel can only
be enabled if there are enough resources for a filter on that channel. If there are not enough
resources available to support a change in configuration, a warning icon will appear. Because
the tracking of this error state is quite complicated, you may need to click back and forth between
different settings several times to clear all of the error flags. Also, the absence of an error flag
does not guarantee that there is no error.

Custom coefficients

This parameter enables or disables the custom coefficient entry for a channel. If this parameter
is enabled, then custom coefficients can be entered in the Coefficient entry text box. These
custom coefficients are used for calculating the filter response and for generating the DFB
microcode. In Filter 2.10, the custom setting applies to all stages in a filter; that is, it is not
possible to mix stages using custom coefficients with stages designed by the component itself.
When this parameter is disabled, the customizer calculates the filter coefficients from your
requirements, and the Coefficient entry box is blank. The final coefficients that result from this
design process are aggregated across all four stages for that channel, and presented in the box
on the Final coefficients tab. These coefficients can be copied out to the clipboard, and pasted
into a text file or spreadsheet for further processing. They can be pasted back into the coefficient
entry box in custom coefficients mode, enabling internal design filters to be employed in custom
designs.

When this parameter is enabled, Filter stages parameters, except for Filter class and Filter
taps are invalid, so they are disabled. Disabling this parameter re-enables the Filter stage
parameters. In custom FIR mode, the customizer interprets each numerical input on a new line
as a tap value (zero is accepted) and counts the total number of taps. In custom biquad mode,
the customizer expects that the number of entries will be a multiple of five and reports an error if
this is not the case. It will also check for the stability of the denominator coefficients of the
biquad, and will not accept the coefficients if one or more biquads are unstable.

Data ready signal

This block configures whether you are alerted when data is ready through either a DMA request
signal specific to each channel, or through an interrupt request shared between both channels.
You can also poll the status register to check for new data on the DFB output. However, the

Filter PSoC® Creator™ Component Datasheet

Page 4 of 26 Document Number: 001-79374 Rev. *B

interrupt must be enabled in the INT_CTRL register before starting the DFB operation so that it
can be polled here.

See the Registers section for details of INT_CTRL and SR (Status register) registers. The output
holding register is double buffered, but you must be sure to take the data from the output before
it is overwritten.

If you are running the filter at high real sample rates, it is likely that DMA is the only method that
is fast enough to keep up. Because the main CPU is not involved, the DFB can implement
complicated filters at a much greater sample rate than is possible with microcontrollers that have
DSP extensions to their instruction sets.

Min BUS_CLK

This parameter shows the minimum bus clock frequency needed by the underlying DFB
Assembler to meet the desired data rate. Defining the system bus clock frequency that is lower
than this value will result in the filter not working as expected.

Sample rate

The rate entered into the Sample rate box (always in ksps) does not affect the operation of the
hardware, only the design process for the filter coefficients and the scaling of the graphs used to
present the results. It is your responsibility to pump data through the DFB at the desired physical
sample rate. The customizer limits the declared sample rate to the range 1 sps to 10 Msps; this
is only for your reporting convenience, because the maximum bus_clk rate of a PSoC 3,PSoC 5
or a PSoC 5LP device does not exceed 80 MHz.

Because there is no decimation or interpolation in Filter 2.10, the sample rate is the same for
every stage of a multistage filter. The sample rates for the two channels need not be the same,
but Filter 2.10’s DFB firmware operates most efficiently when the two rates are the same or very
similar.

After you configure your filter design inputs, Filter 2.10 calculates the minimum
PSoC 3/PSoC 5/PSoC 5LP bus_clk frequency that the DFB must run from to ensure that all
samples are processed correctly. The filter cannot be implemented if this value exceeds the
highest available clock rate in your system. No buffering is provided; this means that the Digital
Filter Block code must be able to execute both filters in the period of time between incoming
samples of the faster channel.

If you know the maximum available bus_clk rate in your system, and the count of coefficients
and filter poles you will need for each of the two channels, you can calculate the maximum
sample rate at which the filter will run. If you are using both channels, this is the rate at which the
channel with the higher sample rate will run (or both channels, if they run at the same rate). The
maximum possible sample rate is calculated by dividing the fastest available bus_clk by the
number of DFB cycles that will be required by both filters. So, for each of the two channels,
calculate a cycle count as follows:

FIR only: 10 + number_of_taps

Biquad even total order only: 13 + 5 × order

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 5 of 26

Biquad odd total order only: 18 + 5 × order

Both biquad even total order and FIR: 20 + number_of_taps + 5 × order

Both biquad odd total order and FIR: 25 + number_of_taps + 5 × order

Add together the results calculated for the two channels. This is the total number of bus_clk
cycles that will be required to execute both channels. Dividing this into the bus_clk frequency
that you plan to use will give you the value of the sample rate at which the faster of the two
channels will run.

Filter stages

Each channel can have up to four different cascaded filter stages; the number is selected with
the Filter stage drop-down list. If appropriate resources are not available to support adding
another stage, a warning notice is issued. The filter response graphs update to display the
behavior of the full cascade whenever new parameters are entered. You can access each stage
through its own tab.

You can configure the parameters of each filter stage separately. So, for instance, an FIR
lowpass filter can be cascaded with a biquad notch filter. The customizer aggregates the
coefficients and poles of all four stages in the same way, regardless of the order in which they
are entered. All FIR stages are convolved to give a single FIR filter, and all biquad stages are
implemented as a cascade. A very sophisticated dynamic range management algorithm inspects
the sequence of all the stages and adjusts the order and internal gains in order to produce the
highest-quality signal handling from the filter.

Filter gain

This parameter allows you to provide the DC gain for the resultant filtered signal. This parameter
takes the gain value both in Linear and decibels. The linear gain should be within the range 0.01
to 100; the corresponding limit for dB gain is –40 dB to 40 dB. The customizer flags an error if
you attempt to set a gain outside these limits. You can enter a negative number for the linear
gain to invert the response, if required. This sign is not reflected in the dB display.

Note that to guarantee no overflow of output results, it is good practice to run the filter at a gain
of less than unity, because most filter responses will exhibit overshoot in the time domain on
some signals. The default gain is set to unity, but Cypress recommends that, in a typical design
where input signals may reach digital full scale, you select a gain of 0.25x (– 12.04dB). The filter
design routines in the customizer are set up so that, if this gain is selected, no internal stage of
the filter can overload on any feasible digital input signal.

The Final coefficients Tab

In addition to the tabs for setting up the filter stages, the Final coefficients tab contains a
window that shows the final coefficients that will be used in the filter. This includes all coefficient
rounding, gain scaling, and biquad reordering that the customizer performs to optimize the
performance. You can select and copy the contents by right-clicking in this window. You can
then paste them into a spreadsheet for further analysis. The Filter Stage: Coefficient entry

Filter PSoC® Creator™ Component Datasheet

Page 6 of 26 Document Number: 001-79374 Rev. *B

window section discusses the format used for both input and output of the coefficients for FIR
and IIR filters.

Filter Stage: Filter class

The selectable options are FIR and Biquad. A biquad filter is implemented as a series cascade
of second-order filter sections. The first-order sections that appear in odd order transfer functions
are implemented as second-order biquads with zero coefficients for z-2.

Filter Stage: Filter type (FIR)

For an FIR filter, the available options are Low pass, High pass, Band pass, Band stop,
Sinc^4, and Hilbert filters.

The sinc^4 filter is a special-purpose lowpass filter with a gently rising passband. It is designed to
compensate for the drooping frequency response of a delta-sigma ADC that uses a fourth-order
sinc decimator (such as the ADC in PSoC 3,PSoC 5 and PSoC 5LP when running at resolutions
of 16 bits or lower).

The Hilbert filter is a special case of a highpass filter that has an additional ninety degrees of
phase shift. It is used in some communications signal processing.

For biquad filters, the available options are Low pass, High pass, Band pass, and Band stop.

Filter Stage: Window (FIR)

There are several windowing methods provided when using a FIR filter. The differences between
them should be balanced against your needs. Pass band ripple, transition bandwidth, and stop
band attenuation are affected differently by each of the windowing methods.

 Rectangular: This method represents the absence of a window; the sinc impulse response of
the ideal lowpass filter is truncated to zero outside the number of taps used. These filters
exhibit large pass band ripple, sharp roll off, and poor stopband attenuation. This window is
rarely used because of the large ripple effect from Gibbs Phenomenon.

 Hamming: In Filter 2.10, the window used is actually a slightly modified Hamming window
due to Albrecht. It exhibits a somewhat flatter and more uniform stopband. This is a good
general-purpose FIR filter and is the default choice for a newly placed component.

 Blackman: A modified Blackman window (close to the Blackman-Nuttall window and again
due to Albrecht). It gives greater stopband attenuation than the Hamming class of window,
but has a wider transition band.

Filter Stage: Filter taps (FIR)

This version of the entry box is available for FIR-class filter stages. When using only FIR filters,
the total combined size of all filters can be up to 128 taps. The order of an FIR filter is equal to
one less than the number of taps.

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 7 of 26

Filter Stage: Shape (Biquad)

The shapes available when using the biquad filter class in Filter 2.10 are Butterworth, Bessel,
and Chebyshev. Note that the Bessel implementation in Filter 2.10 uses a bilinear transform of
the classical linear version, and this does not preserve the flat group delay behavior for cutoff
frequencies that are a significant fraction of the sampling rate.

Filter Stage: Order (Biquad)

This version of the entry box is available for biquad-class filter stages. Lowpass and highpass
filters can be either even or odd, though the implementation is always rounded up to the nearest
even number because single poles are implemented with the same biquad topology within the
DFB. Bandpass and bandstop filters can only be even order, and an error will be issued if you
enter an odd number in this case. Chebyshev and Butterworth filters can have a maximum order
of 50. At very high orders, and narrow bandpass or bandstop bandwidths, numerical restrictions
in the customizer may produce unexpected results.

You can design Bessel lowpass and highpass filters up to order 25.

The number of memory locations required by a biquad cascade filter of order N is 2.5N if N is
even, and 2.5(N + 1) if N is odd. The biquad filter requires three internal memory locations for
additional variables, so when using biquad or biquad+FIR, the total combined size of all filters
cannot exceed 125 memory locations.

Filter Stage: Cutoff

Enter the edge of the pass band frequencies for Sinc^4, Low Pass, High Pass, and Hilbert filters.
The anticipated gain of the filter at this frequency depends on the filter class and type. For FIR
lowpass, highpass and Hilbert filters, the response is nominally –6 dB at the entered cutoff
frequency. For biquad Bessel and Butterworth filters, the response is –3 dB. For Chebychev
filters, the response equals the entered ripple value, with respect to the highest gain in the
passband.

The gain response for FIR sinc^4 filters is best assessed through experiment.

Filter Stage: Center Frequency and Bandwidth (Band Pass and Band Stop)

The bandwidth of a bandpass filter is the frequency difference between the upper and lower
frequencies that meet the cutoff criterion given earlier for the filter class and type. The center
frequency lies between the upper and lower frequencies, but its exact relationship to these
frequencies depends on the filter type and class.

For FIR-class filters, the center frequency of either bandpass or bandstop filters is the arithmetic
mean of the upper and lower cutoff frequencies. In other words, the response created by the
customer is arithmetically symmetrical around the center frequency. An FIR bandpass or
bandstop filter with center frequency of 10 kHz and bandwidth of 10 kHz will have –6-dB points
at 5 kHz and 15 kHz.

Filter PSoC® Creator™ Component Datasheet

Page 8 of 26 Document Number: 001-79374 Rev. *B

The type of bandpass and bandstop transformations used in Filter 2.10 give a geometrically
symmetrical frequency response. Biquad-class bandpass filters are defined by their upper and
lower cutoff frequencies, and these are positioned to be arithmetically symmetric around the
user-entered center frequency, to be consistent with the FIR case. So, if you enter a center
frequency of 10 kHz and bandwidth of 10 kHz for a Butterworth biquad bandpass filter, you will
get –3-dB points at 5 kHz and 15 kHz. The ‘true’ center frequency of such a filter is not at
10 kHz; in this case it is at SQRT(5 kHz × 15 kHz) = 8.66 kHz.

Biquad-class bandstop filters are designed to have their maximum attenuation at the entered
center frequency. This means that the passband cutoff frequencies cannot be positioned to
match the FIR case. To calculate the cutoff frequencies you actually get requires a little
calculation:

Flower = SQRT(0.25 × BW2 + Fcenter
2) – 0.5 × BW

and of course Fupper = Flower + BW

In the example with center frequency of 10 kHz and bandwidth of 10k Hz, this calculates to
Flower = 6.18 kHz and Fupper = 16.18 kHz.

Filter Stage: Ripple (IIR Chebyshev)

This parameter is only valid for a biquad-class Chebyshev filter. It determines the theoretical
passband ripple of the filter. The allowable range is 0.00001 dB to 3 dB.

Filter Stage: Coefficient entry window

Use this text box to enter the custom coefficients into the selected filter stage when the Custom
Coefficients check box is selected; see Custom coefficients.

Enter the coefficients as floating point values on sequential lines. White space is ignored, but
zero is a valid entry. Nonnumeric entries are not accepted in Filter 2.10.

For a biquad filter, enter three numerator coefficients first (for z0, z-1, and z-2) followed by two
denominator coefficients (it is assumed that the z0 denominator coefficient is unity). The entered
coefficients are validated and if any coefficients are found to be invalid (or the total number is not
divisible by five), an error indicator is displayed. The entered denominator coefficients are also
tested for stability. If any biquad is found to be unstable, a warning is displayed. The biquad
coefficients are applied to the same gain adjustment and sequencing algorithm that is used on
internally generated coefficients, so the implementation order may not be the same as entered.
Also, the peak gain of the filter in the passband will be adjusted to be the value entered in the
user gain box. You can enter arbitrary values of numerator scaling and the algorithm will scale
them appropriately. If you are using Filter 2.10 to implement PID or other control loops, you will
need to calculate your own gain value to put in the gain box to ensure that the overall gain is
what you need.

For an FIR filter, the first value entered is treated as the coefficient of z0, the undelayed tap. For
FIR-only filters, no separate gain adjustment algorithm is applied. In the FIR case, the maximum
allowable range of coefficient value is–1 to 1-(2^-23).. You can put in values outside of that range

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 9 of 26

but to do that you must have a Filter Gain value that will scale those numbers down so that they
are within that range. This gain value is given if you enter an invalid coefficient.

When FIR and biquad filters are combined, gain scaling is automatically applied to the FIR
portion, which is implemented before the biquads are executed. You can view the scaled results
of the entire cascade viewed in the Final coefficients tab. From there, you can paste them into
another application for further analysis if required.

Display Parameters

Display parameters only affect the way the filter response is presented to you in the configuration
window. They have no effect on the code generation or filter settings.

The setup parameter selections can be shown or hidden with the graph configurations button at
the top of this section; this can make the graphs easier to read. Note than when many panes are
shown in the graph area, the plot axes may not be numbered as expected because of limitations
in the automatic plot routines.

The plots are divided into two subplot areas, for frequency and time parameters. Right-clicking
on either subplot copies that side to the clipboard in bitmap format so that you can paste it into
your own reports.

Filter response graphs

Gain – When enabled, displays the amplitude of the overall filter response over frequency.

Phase – When enabled, displays the phase shift of the overall filter response over frequency.

Group delay – When enabled, displays the group delay of the overall filter response over
frequency.

Tone input – When enabled, displays a sinewave signal at the center or cutoff frequency of the
filter, to be used as the input to the filter. If multiple filter stages are used, the tone is equal to the
average center or cutoff frequency. In Filter 2.10, the frequency of this sinewave cannot be
separately set.

Tone response – When enabled, displays the filter’s response to the predetermined Tone Input
Wave (see Tone input).

Impulse – When enabled, displays the filter’s response to a positive-going single-sample
impulse.

Step – When enabled, displays the filter’s response to a positive-going unit step function.

Filter response scaling: Zoom

The available options are Log, Linear, and Custom.

The log zoom option provides a view of the filter’s responses with a logarithmic frequency scale
from DC to the Nyquist frequency.

Filter PSoC® Creator™ Component Datasheet

Page 10 of 26 Document Number: 001-79374 Rev. *B

The linear option provides a linear frequency scale of the pass band frequency from DC to the
Nyquist frequency.

Selecting the custom option enables the settings for inputting the maximum and minimum limits
of gain and frequency. In the Custom view, you can define your own limits to the frequency and
gain axis. In this mode, the frequency and gain axis can be set in both linear mode and
logarithmic mode.

Filter response scaling: Gain

Selecting dB gain displays the gain values in decibels for gain response. Selecting Linear
displays the gain values in linear scale.

Filter response scaling: Phase

This parameter allows you to select whether you will view wrapped or unwrapped phase
expressed in radians or degrees. The available options are Unwrapped in degrees, Wrapped
in degrees, Unwrapped in radians, and Wrapped in radians. Note that some filters with
transmission zeroes (for example, bandstop filters) will have discontinuous phase response plots
even when you select an unwrapped phase.

Filter response scaling: Group delay

This parameter allows you to select Group Delay response as a time in microseconds or as a
number of samples.

Filter response scaling: Frequency

This parameter allows you to select Frequency response x-axis as a value in kHz or a number of
samples.

Filter response scaling: Time base

This parameter allows you to select Time response x-axis as a value in milliseconds or in sample
counts.

Frequency axis scaling: Log/Linear selection

This option is valid only when Custom zoom is selected. Selecting Log sets the Frequency
response x-axis in log scale. Selecting Linear sets the x-axis in linear scale.

Frequency axis scaling: Upper limit

This option is valid only when Custom zoom is selected. This sets the upper limit for the x-axis
of the frequency response graph. The maximum upper limit should be less than or equal to half
of the sample rate.

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 11 of 26

Frequency axis scaling: Lower limit

This option is valid only when Custom zoom is selected. This sets the lower limit for the x-axis of
the frequency response graph. The lower limit should be less than the upper limit value and
should not be less than zero.

Gain axis scaling: Log/Linear selection

This option is valid only when Custom zoom is selected. Selecting Log sets the Gain axis in log
scale. Selecting Linear sets the gain axis in linear scale.

Gain axis scaling: Upper limit

This option is valid only when Custom zoom is selected. It sets the upper limit for gain response
in either dB or linear scale based on whether you selected the Log or Linear button.

Gain axis scaling: Lower limit

This option is valid only when Custom zoom is selected. It sets the lower limit for gain response
in either dB or linear scale based on whether you selected the Log or Linear button. The lower
limit should be less than the upper limit value.

Application Programming Interface

Application Programming Interface (API) routines allow you to interact with the component using
software. The following table lists and describes the interface to each function together with
related constants provided by the “include” files. The subsequent sections cover each function in
more detail.

By default, PSoC Creator assigns the instance name “Filter_1” to the first instance of a
component in a given project. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“Filter.”

Functions Description

Filter_Start() Configures and enables the Filter component’s hardware for interrupt, DMA
and filter settings.

Filter_Stop() Stops the filters from running and powers down the hardware.

Filter_Read8() Reads the current value on the Filter’s output holding register. Byte read of the
most significant byte.

Filter_Read16() Reads the current value on the Filter’s output holding register. Two-byte read
of the most significant bytes.

Filter_Read24() Reads the current value on the Filter’s output holding register. Three-byte read

Filter PSoC® Creator™ Component Datasheet

Page 12 of 26 Document Number: 001-79374 Rev. *B

Functions Description

of the data output holding register.

Filter_Write8() Writes a new 8-bit sample to the Filter’s input staging register.

Filter_Write16() Writes a new 16-bit sample to the Filter’s input staging register.

Filter_Write24() Writes a new 24-bit sample to the Filter’s input staging register.

Filter_ClearInterruptSource() Writes the Filter_ALL_INTR mask to the status register to clear any active
interrupts.

Filter_IsInterruptChannelA() Identifies whether Channel A has triggered a data-ready interrupt.

Filter_IsInterruptChannelB() Identifies whether Channel B has triggered a data-ready interrupt.

Filter_Sleep() Stops and saves the user configuration.

Filter_Wakeup() Restores and enables the user configuration.

Filter_Init() Initializes or restores default Filter configuration.

Filter_Enable() Enables the Filter.

Filter_SaveConfig() Saves the configuration of Filter nonretention registers.

Filter_RestoreConfig() Restores the configuration of Filter nonretention registers.

Filter_SetCoherency() Sets the key coherency byte in the coherency register.

Global Variables

Variable Description

Filter_initVar Indicates whether the Filter has been initialized. The variable is initialized to 0 and set to 1 the
first time Filter_Start() is called. This allows the component to restart without reinitialization after
the first call to the Filter_Start() routine.

If reinitialization of the component is required, then the Filter_Init() function can be called before
the Filter_Start() or Filter_Enable() functions.

Defines

 Filter_CHANNEL_x – Filter_CHANNEL_A or Filter_CHANNEL_B. Use when specifying
which channel an operation occurs on for function calls.

 Filter_CHANNEL_x_INTR – Mask for the CHANNEL_A or CHANNEL_B interrupt of the
Status Register.

 Filter_ALL_INTR – Mask for the possible interrupts of the Status Register.

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 13 of 26

void Filter_Start(void)

Description: This is the preferred method to begin component operation. Configures and enables the
Filter component’s hardware for interrupt, DMA, and filter settings.

Parameters: None

Return Value: None

Side Effects: None

void Filter_Stop(void)

Description: Stops the Filter hardware from running and powers it down.

Parameters: None

Return Value: None

Side Effects: None

uint8 Filter_Read8(uint8 channel)

Description: Reads the highest order byte of Channel A’s or Channel B’s output holding register.

Parameters: uint8 channel: Which filter channel should be read. Options are Filter_CHANNEL_A and
Filter_CHANNEL_B.

Return Value: 8-bit filter output value represented in 2’s complement.

Side Effects: None

uint16 Filter_Read16(uint8 channel)

Description: Reads the two highest-order bytes of Channel A’s or Channel B’s output holding register.

Parameters: uint8 channel: Which filter channel should be read. Options are Filter_CHANNEL_A and
Filter_CHANNEL_B.

Return Value: 16-bit filter output value represented in 2’s complement.

Side Effects: None

Filter PSoC® Creator™ Component Datasheet

Page 14 of 26 Document Number: 001-79374 Rev. *B

uint32 Filter_Read24(uint8 channel)

Description: Reads all three bytes of Channel A’s or Channel B’s output holding register.

Parameters: uint8 channel: Which filter channel should be read. Options are Filter_CHANNEL_A and
Filter_CHANNEL_B.

Return Value: 24-bit output value represented in 2’s complement returned as uint32.

Side Effects: None

void Filter_Write8(uint8 channel, uint8 sample)

Description: Writes to the highest-order byte of Channel A’s or Channel B’s input staging register.

Parameters: uint8 channel: Which filter channel should be written. Options are Filter_CHANNEL_A and
Filter_CHANNEL_B.

uint8 sample: Value to be written to the input register represented in 2’s complement.

Return Value: None

Side Effects: This function writes only the most significant byte. This could result in noise being added to
the input samples if the lowest-order bytes have not been set to zero.

void Filter_Write16(uint8 channel, uint16 sample)

Description: Writes to the two highest-order bytes of Channel A’s or Channel B’s input staging register.

Parameters: uint8 channel: Which filter channel should be written. Options are Filter_CHANNEL_A and
Filter_CHANNEL_B.

 uint16 sample: Value to be written to the input register represented in 2’s complement.

Return Value: None

Side Effects: None

void Filter_Write24(uint8 channel, uint32 sample)

Description: Writes to all three bytes of Channel A’s or Channel B’s input staging register.

Parameters: uint8 channel: Which filter channel should be written. Options are Filter_CHANNEL_A and
Filter_CHANNEL_B.

 uint32 sample: Value to be written to the input register represented in 2’s complement.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 15 of 26

void Filter_ClearInterruptSource(void)

Description: Writes the Filter_ALL_INTR mask to the status register to clear any active interrupt. See the
earlier Defines section for the definition of this mask.

Parameters: None

Return Value: None

Side Effects: None

uint8 Filter_IsInterruptChannelA(void)

Description: Identifies whether Channel A has triggered a data-ready interrupt.

Parameters: None

Return Value: 0 if no interrupt on Channel A; Positive value otherwise.

Side Effects: None

uint8 Filter_IsInterruptChannelB(void)

Description: Identifies whether Channel B has triggered a data-ready interrupt.

Parameters: None

Return Value: 0 if no interrupt on Channel B; positive value otherwise.

Side Effects: None

void Filter_SetCoherency(uint8 channel, unit8 byte_select)

Description: Sets the value in the DFB coherency register. This value determines the key coherency byte.
The key coherency byte is the software’s way of telling the hardware which byte of the field
will be written or read last when an update to the field is desired.

Parameters: uint8 channel: The options are Filter_Channel_A and Filter_Channel_B.

uint8 byte_select: Determines which of the three bytes to be set as key coherency byte.
Options are High byte, Med byte and Low byte.

Return Value: None.

Side Effects: By default, High byte is the key coherency byte. Using this API to change the default
behavior, and then using the Filter_Read() and Filter_Write() APIs mentioned earlier, may
cause unexpected behavior.

Filter PSoC® Creator™ Component Datasheet

Page 16 of 26 Document Number: 001-79374 Rev. *B

void Filter_Sleep(void)

Description: Stops the DFB operation. Saves the configuration registers and the component enable state.
Should be called just before entering sleep.

Parameters: None

Return Value: None

Side Effects: Filter output registers are nonretention and they will not be saved while going to sleep. So
before going to sleep, make sure that there are no pending conversions.

void Filter_Wakeup(void)

Description: This is the preferred API to restore the component to the state when Filter_Sleep() was
called. The Filter_Wakeup() function calls the Filter_RestoreConfig() function to restore the
configuration. If the component was enabled before the Filter_Sleep() function was called,
the Filter_Wakeup() function will also re-enable the component.

Parameters: None

Return Value: None

Side Effects: Calling the Filter_Wakeup() function without first calling the Filter_Sleep() or
Filter_SaveConfig() function may produce unexpected behavior.

void Filter_Init(void)

Description: Initializes or restores the component according to the customizer Configure dialog settings. It
is not necessary to call Filter_Init() because the Filter_Start() API calls this function and is the
preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be reset to their initial values. This reinitializes the component.

void Filter_Enable(void)

Description: Activates the hardware and begins component operation. It is not necessary to call
Filter_Enable() because the Filter_Start() API calls this function, which is the preferred
method to begin component operation.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 17 of 26

void Filter_SaveConfig(void)

Description: This function saves the component configuration and nonretention registers. It also saves the
current component parameter values, as defined in the Configure dialog or as modified by
appropriate APIs. This function is called by the Filter_Sleep() function.

Parameters: None

Return Value: None

Side Effects: None

void Filter_RestoreConfig(void)

Description: This function restores the component configuration and nonretention registers. It also
restores the component parameter values to what they were before calling the Filter_Sleep()
function.

Parameters: None

Return Value: None

Side Effects: Calling this function without previously calling Filter_SaveConfig() or Filter_Sleep() produces
unexpected behavior

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Functional Description

The Filter component generates the necessary code for the DFB’s coprocessor and configures
the filter component. Multistage filters are mathematically combined into a single filter through
convolution, resulting in one larger filter for each channel. Future modes will include support for
IIR-FIR streams through each channel.

DMA

The DMA component can be used to transfer converted results from Filter output registers to the
RAM. The DMA component can also be used to transfer input sample values to Filter input
registers. The Filter data ready signal should be connected to the data request signal of the
DMA. The DMA Wizard can be used to configure DMA operation as shown in the following table.

Filter PSoC® Creator™ Component Datasheet

Page 18 of 26 Document Number: 001-79374 Rev. *B

Filter
Resolution

Name of DMA
Source/Destination in

DMA Wizard Direction
DMA Req

Signal

DMA
Req
Type Description

8-bit Filter_HOLDBH_PTR source DMA_Req_B Level Receives 8-bit filtered output values
from the filter output register
Filter_HOLDB

Filter_HOLDAH_PTR source DMA_Req_A Level Receives 8-bit filtered output values
from the filter output register
Filter_HOLDA

Filter_STAGEAH_PTR destination DMA_Rea_A
or N/A

Level
or N/A

Receives 8-bit input sample values
from RAM to filter input register
Filter_STAGEA

Filter_STAGEBH_PTR destination DMA_Req_B
or N/A

Level
or N/A

Receives 8-bit input sample values
from RAM to filter input register
Filter_STAGEB

16-bit Filter_HOLDB_PTR source DMA_Req_B Level Receives 16-bit filtered output
values from the filter output register
Filter_HOLDB

Filter_HOLDA_PTR source DMA_Req_A Level Receives 16-bit filtered output
values from the filter output register
Filter_HOLDA

Filter_STAGEA_PTR destination DMA_Rea_A
or N/A

Level
or N/A

Receives 16-bit input sample values
from RAM to filter input register
Filter_STAGEA.

Filter_STAGEB_PTR destination DMA_Req_B
or N/A

Level
or N/A

Receives 16-bit input sample values
from RAM to filter input register
Filter_STAGEB

24-bit Filter_HOLDB_PTR source DMA_Req_B Level Receives 24-bit filtered output
values from the filter output register
Filter_HOLDB

Filter_HOLDA_PTR source DMA_Req_A Level Receives 24-bit filtered output
values from the filter output register
Filter_HOLDA

Filter_STAGEA_PTR destination DMA_Rea_A
or N/A

Level
or N/A

Receives 24-bit input sample values
from RAM to filter input register
Filter_STAGEA

Filter_STAGEB_PTR destination DMA_Req_B
or N/A

Level
or
N/Aw

Receives 24-bit input sample values
from RAM to filter input register
Filter_STAGEB

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 19 of 26

Registers

Staging

Each of the Filter component’s two channels has a 24-bit dedicated input staging register. When
not processing data, the Filter enters a wait state where it waits for one of these to registers to be
written before starting a new pass through the filter design.

Holding

After processing input data, the latest output sample is placed in the 24-bit output holding
register. There are three options regarding system notification of a ready output sample:
Interrupt, DMA request, or Polling.

Data Align (Filter_DALIGN) Register

The DFB requires that input data is MSB aligned, and the delivered output results are also MSB
aligned. The DFB hardware provides a data alignment feature in the input Staging registers and
in the output Holding registers for convenience to the system software.

Both Staging and both Holding registers support byte accesses, which addresses alignment
issues for input and output samples of eights bits or less. Likewise, all four of these registers are
mapped as 32-bit registers (only three of the four bytes are used) so there are no alignment
issues for samples between 17 and 24 bits. However, for sample sizes between 9 and 16 it is
convenient to be able to read/write these samples on bus bits 15:0 while they source and sink on
bits 23:8 of the Holding/Staging registers.

The bits for the Data Align register provide an alignment feature that allows System bus bits 15:0
to either be source from Holding register bits 23:8 or sink to Staging register bits 23:8. Each
Staging and Holding register can be configured individually with a bit in the DALIGN register. If
the bit is set high, the effective byte shift occurs.

Example If an output sample from the delta-sigma ADC is 12 bits wide and aligned to bit 23 of
the ADC’s Output Sample register, and you want to stream this value to the DFB, the data
alignment feature of the ADC can be enabled. This allows the 16 bits of the ADC’s Output
Sample register to be read on bus bits 15:0. Setting the alignment feature in the DFB for the
Staging A input register, this 16 bits can be written on bus bits 15:0, but can also be written into
bits 23:8 of the Staging A register when required.

Coherency (Filter_COHER) Register

Coherency refers to the hardware included in the DFB to protect against malfunctions of the
block in cases where register fields are wider than the bus access. This case can leave intervals
in time when fields are partially written/read (incoherent).

Coherency checking is an option that is enabled in the COHER register. The hardware provides
coherency checking on both Staging and Holding registers.

Filter PSoC® Creator™ Component Datasheet

Page 20 of 26 Document Number: 001-79374 Rev. *B

The Staging registers are protected on writes so that the underlying hardware does not use the
field when it is only partially updated by the system software. The Holding registers are protected
on reads so that the underlying hardware does not update the field when it is partially read by the
system software or DMA. Depending on the configuration of the block, not all bytes of the
Staging and Holding registers may be needed. The coherency method allows for any size output
field and handles it properly.

The bit fields of this register are used to select which of the three bytes of the Staging and
Holding registers will be used as the Key Coherency byte. In the COHER register, coherency is
enabled and a Key Coherency Byte is selected. The Key Coherency Byte is the user (software)
telling the hardware which byte of the field will be written or read last when an update to the field
is desired.

Filter Register and DMA Wizard Settings

Typical configuration using a DMA to transfer from an ADC to the Filter component is as follows.
The instance name of the Filter component is ‘Filter’.

Filter_SR_REG

Filter Status Register. Read this to get the sources of the interrupt. Use the
Filter_ClearInterruptSource() macro to clear it.

Bits 7 6 5 4 3 2 1 0

Value INTR
SEM2

INTR
SEM1

INTR
SEM0

INTR
HOLDING
REG B

INTR
HOLDING
REG A

RND
MODE

SAT
MODE

RAM SEL

This register contains five bits indicating the status of block-generated interrupts and three bits of
status from the Datapath unit.

Filter
Resolution

Filter_SetCoherency(uint8 channel,
unit8 byte_select)

CyDmaTdSetConfiguration(uint8 tdHandle, uint16
transferCount, uint8 nextTd, uint8 configuration)

transferCount nextTD configuration

8-bit channel = Filter_CHANNEL_A (or B)

byte_select = Filter_KEY_LOW

1 tdHandle 0

16-bit channel = Filter_CHANNEL_A (or B)

byte_select = Filter_KEY_MID

2 tdHandle 0

24-bit channel = Filter_CHANNEL_A (or B)

byte_select = Filter_KEY_HIGH

4 tdHandle 0

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 21 of 26

Note If the system software wants to poll for an event and not have an interrupt generated, the
interrupt must be enabled in the INT_CTRL register so that it can be polled here.

 Bit 7: Semaphore 2 Interrupt – If this bit is high, semaphore register bit 2 is the source of the
current interrupt. Write a ‘1’ to this bit to clear it.

 Bit 6: Semaphore 1 Interrupt – If this bit is high, semaphore register bit 1 is the source of the
current interrupt. Write a ‘1’ to this bit to clear it.

 Bit 5: Semaphore 0 Interrupt – If this bit is high, semaphore register bit 0 is the source of the
current interrupt. Write a ‘1’ to this bit to clear it.

 Bit 4: Holding Register B Interrupt – If this bit is high, Holding register B is the source of the
current interrupt. Write a ‘1’ to this bit to clear it. Reading the Holding register B also clears
this bit.

 Bit 3: Holding Register A Interrupt – If this bit is high, Holding register A is the source of the
current interrupt. Write a ‘1’ to this bit to clear it. Reading the Holding register A also clears
this bit.

 Bit 2: Round Mode – Indicates that the DP is in Round mode. This means that any result
passing out of the DP unit is being rounded to a 16-bit value.

 Bit 1: Saturation Mode – Indicates that the DP unit is in Saturation mode. This means that
executing any mathematic operation that produces a number outside the range of a 24-bit 2’s
complement number is clamped to the mode positive or negative number allowed. Saturation
mode is set or unset under Assembly control in the DFB Controller.

 Bit 0: RAM Select – Shows which CS RAM is in use.

Filter_INT_CTRL_REG

This register controls which events generate an interrupt. The events enabled by the bits in this
register are ORed together to produce the dfb_intr signal.

Bits 7 6 5 4 3 2 1 0

Value resvd resvd resvd EN SEM2 EN SEM1 EN SEM0 EN
HOLDING
REG B

EN
HOLDING
REG A

If you want to use the polling method, enable either bit 0 or 1 of this register, based on the Filter
channel selected. This generates an interrupt when data is ready in Filter output registers.
Corresponding status bits are set in the Status register. Firmware can poll the corresponding bits
in the status register to read the Filter output data.

 Bit 7 to 5: Reserved

Filter PSoC® Creator™ Component Datasheet

Page 22 of 26 Document Number: 001-79374 Rev. *B

 Bit 4: ENABLE Semaphore 2 – If this bit is set high, an interrupt is generated each time a ‘1’
is written into the semaphore register bit 2.

 Bit 3: ENABLE Semaphore 1 – If this bit is set high, an interrupt is generated each time a ‘1’
is written into the semaphore register bit 1.

 Bit 2: ENABLE Semaphore 0 – If this bit is set high, an interrupt is generated each time a ‘1’
is written into the semaphore register bit 0.

 Bit 1: ENABLE HOLDING Register B – If this bit is set high, an interrupt is generated each
time new valid data is written into the output Holding register B.

 Bit 0: ENABLE HOLDING Register A – If this bit is set high, an interrupt is generated each
time new valid data is written into the output Holding register A.

Resources

The Filter component consumes the DFB Fixed block. To achieve maximum throughput, you will
probably need to use DMA for data management.

The component uses the entire DFB, so a working project can contain only one placed Filter (or
any other component that requires the DFB). If you place multiple Filter components, each can
be set up with its own customizer and the properties will be saved. This allows initial schematics
to contain multiple filters as a way of saving setups, before you build the project.

API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 5 (GCC) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Default Configuration 2524 5 2384 5 2384 5

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 23 of 26

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The Filter component has not been verified for MISRA-C:2004 coding guidelines compliance.

DC and AC Electrical Characteristics for PSoC 3

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Specifications

Parameter Description Conditions Min Typ Max Units

 DFB operating current 64-tap FIR at FDFB

100 kHz (1.3 ksps) – 0.03 0.05 mA

500 kHz (6.7 ksps) – 0.16 0.27 mA

1 MHz (13.4 ksps) – 0.33 0.53 mA

10 MHz (134 ksps) – 3.3 5.3 mA

48 MHz (644 ksps) – 15.7 25.5 mA

67 MHz (900 ksps) – 21.8 35.6 mA

AC Specifications

Parameter Description Conditions Min Typ Max Units

FDFB DFB operating frequency DC – 67.01 MHz

Filter PSoC® Creator™ Component Datasheet

Page 24 of 26 Document Number: 001-79374 Rev. *B

DC and AC Electrical Characteristics for PSoC 5

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 2.7 V to 5.5 V, except where noted.

DC Specifications

Parameter Description Conditions Min Typ Max Units

 DFB operating current 64-tap FIR at FDFB

100 kHz (1.3 ksps) – 0.03 0.075 mA

500 kHz (6.7 ksps) – 0.16 0.3 mA

1 MHz (13.4 ksps) – 0.33 0.57 mA

10 MHz (134 ksps) – 3.3 5.5 mA

48 MHz (644 ksps) – 15.7 26 mA

67 MHz (900 ksps) – 21.8 35.6 mA

AC Specifications

Parameter Description Conditions Min Typ Max Units

FDFB DFB operating frequency DC – 67.01 MHz

PSoC® Creator™ Component Datasheet Filter

Document Number: 001-79374 Rev. *B Page 25 of 26

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.10.b Minor datasheet edit.

2.10.a Updated Filter Register and DMA
Wizard settings section.

 Incorrect settings were shown

Minor datasheet edits and updates

Added MISRA Compliance section.
This component was not verified
for MISRA-C:2004 coding
guidelines compliance.

2.10 Filter configure window related
updates

To fix issues with error providers

Added all APIs with the
CYREENTRANT keyword when
they are included in the .cyre file.

This change is required to eliminate compiler warnings for
functions that are not reentrant used in a safe way: protected
from concurrent calls by flags or Critical Sections.

Added PSoC 5 LP support.

Minor datasheet edits and updates

2.0 Support for IIR filter IIR filter was not supported in older version

Redesign of FIR filter. There were issues with windowed version of FIR filter in the old
version.

Filter DMA wizard related updates Filter can be set as destination for data transfer using DMA
without setting the DMA as the data ready signal.

Added a display field in the
configure window to display the
required bus clock frequency
based on the filter parameter
settings

To know the bus clock requirement based on the parameter
selection.

Filter configure window updates To provide an option for entering custom coefficients and also
improvements for good look and feel.

1.50.a Added characterization data to the
datasheet

Minor datasheet edits and updates

1.50 Added Sleep/Wakeup and
Init/Enable APIs.

To support low power modes, as well as to provide common
interfaces to separate control of initialization and enabling of
most components.

Added DMA capabilities file to the
component.

This file allows the Filter to be supported by the DMA Wizard
tool in PSoC Creator.

Filter PSoC® Creator™ Component Datasheet

Page 26 of 26 Document Number: 001-79374 Rev. *B

© Cypress Semiconductor Corporation, 2012-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	Input/Output Connections
	Interrupt – Output *
	DMA Request – Output *

	Component Parameters
	Filter Parameters
	Enable channel
	Custom coefficients
	Data ready signal
	Min BUS_CLK
	Sample rate
	Filter stages
	Filter gain
	The Final coefficients Tab
	Filter Stage: Filter class
	Filter Stage: Filter type (FIR)
	Filter Stage: Window (FIR)
	Filter Stage: Filter taps (FIR)
	Filter Stage: Shape (Biquad)
	Filter Stage: Order (Biquad)
	Filter Stage: Cutoff
	Filter Stage: Center Frequency and Bandwidth (Band Pass and Band Stop)
	Filter Stage: Ripple (IIR Chebyshev)
	Filter Stage: Coefficient entry window

	Display Parameters
	Filter response graphs
	Filter response scaling: Zoom
	Filter response scaling: Gain
	Filter response scaling: Phase
	Filter response scaling: Group delay
	Filter response scaling: Frequency
	Filter response scaling: Time base
	Frequency axis scaling: Log/Linear selection
	Frequency axis scaling: Upper limit
	Frequency axis scaling: Lower limit
	Gain axis scaling: Log/Linear selection
	Gain axis scaling: Upper limit
	Gain axis scaling: Lower limit

	Application Programming Interface
	Global Variables
	Defines
	void Filter_Start(void)
	void Filter_Stop(void)
	uint8 Filter_Read8(uint8 channel)
	uint16 Filter_Read16(uint8 channel)
	uint32 Filter_Read24(uint8 channel)
	void Filter_Write8(uint8 channel, uint8 sample)
	void Filter_Write16(uint8 channel, uint16 sample)
	void Filter_Write24(uint8 channel, uint32 sample)
	void Filter_ClearInterruptSource(void)
	uint8 Filter_IsInterruptChannelA(void)
	uint8 Filter_IsInterruptChannelB(void)
	void Filter_SetCoherency(uint8 channel, unit8 byte_select)
	void Filter_Sleep(void)
	void Filter_Wakeup(void)
	void Filter_Init(void)
	void Filter_Enable(void)
	void Filter_SaveConfig(void)
	void Filter_RestoreConfig(void)

	Sample Firmware Source Code
	Functional Description
	DMA

	Registers
	Staging
	Holding
	Data Align (Filter_DALIGN) Register
	Coherency (Filter_COHER) Register
	Filter Register and DMA Wizard Settings
	Filter_SR_REG
	Filter_INT_CTRL_REG

	Resources
	API Memory Usage
	MISRA Compliance
	DC and AC Electrical Characteristics for PSoC 3
	DC Specifications
	AC Specifications

	DC and AC Electrical Characteristics for PSoC 5
	DC Specifications
	AC Specifications

	Component Changes

