

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-87851 Rev. ** Revised August 7, 2013

Features
 Adjustable shift register size: 2 to 32 bits

 Simultaneous shift in and shift out

 Right shift or left shift

 Reset input forces shift register to all 0s

 Shift register value readable by CPU or DMA

 Shift register value writable by CPU or DMA

General Description
The Shift Register (ShiftReg) component provides synchronous shifting of data into and out of a
parallel register. The parallel register can be read or written to by the CPU or DMA. The Shift
Register component provides universal functionality similar to standard 74xxx series logic shift
registers including: 74164, 74165, 74166, 74194, 74299, 74595 and 74597. In most applications
the Shift Register component will be used in conjunction with other components and logic to
create higher-level application-specific functionality, such as a counter to count the number of
bits shifted.
In general usage, the Shift Register component functions as a 2- to 32-bit shift register that shifts
data on the rising edge of the clock input. The shift direction is configurable. It can be a right
shift, where the MSB shifts in the input and the LSB shifts out the output, or a left shift, where the
LSB shifts in the input and the MSB shifts out the output.
The Shift Register value can be written by the CPU or DMA at any time. The rising edge of the
component clock transfers pending FIFO data (previously written by the CPU or DMA) to the
Shift Register when the load signal is set. A rising edge of the component clock transfers the
current Shift Register value to the FIFO when a rising edge of the optional store input has been
detected, where it can later be read by the CPU.
The Shift Register component can generate an interrupt signal on any combination of the load,
store or reset signals.

Shift Register (ShiftReg)
2.30

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 2 of 19 Document Number: 001-87851 Rev. **

When to Use a Shift Register
One of the most common uses of a shift register is to convert between serial and parallel
interfaces. This is useful because many circuits work on groups of bits in parallel, but serial
interfaces are simpler to construct.
The shift register can also be used as a simple delay circuit. In most cases, the shift register
requires additional application-specific circuitry to function the way your application requires. An
example is a counter or state machine to store the shifted data after several events have
occurred.
A common use of shift registers is to shift in or out eight bits of data based on a clock, as is done
in the SPI protocol. If you are building a communication protocol, check to see if there is an
existing higher-level component for that communication protocol already.

Input/Output Connections
This section describes the various input and output connections for the Shift Register. An
asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol under the
conditions listed in the description of that I/O.

shift_in – Input *
Serial data input to the Shift Register MSB or LSB depending on shift direction. This terminal is
displayed if the Use Shift In check box is selected.

load – Input *
The load input signal triggers the transfer of pending input FIFO data (previously written to the
FIFO by CPU or DMA) to the Shift Register. A transfer occurs on the rising edge of the
component clock after the load rising edge has been detected. This terminal is displayed if the
Use Load check box is selected. Note that a duty cycle of the load pulse is arbitrary; however, it
must be at least one component clock cycle in width. The load signal must be low for at least one
cycle before another positive edge is detected.

store – Input *
The store input signal triggers the transfer of the current shift register value into the output FIFO.
A transfer occurs on the first rising edge of the component clock after the store signal rising edge
has been detected. Note that a duty cycle of the store pulse is arbitrary; however, it must be at
least one component clock cycle in width. The store signal should be low for at least one
component clock period before the next store event. The ShiftReg_ReadData() API routine can
then be used to read the data from the FIFO. This terminal is displayed if the Use Store check
box is selected.

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 3 of 19

reset – Input
The reset input (active high) causes the entire Shift Register to be set to zeros. This input does
not affect the contents of the FIFOs. The reset input is synchronous to the clock input. The reset
input may be left floating with no external connection. If nothing is connected to the reset line, the
component will assign it a constant logic 0.

clock – Input
Clock source for the component. In some configurations this signal acts as an enable rather than
a clock.

shift_out – Output *
Outputs serial data from the Shift Register MSB or LSB based on shift direction. This terminal is
displayed if the Use Shift Out check box is selected.

interrupt – Output *
Interrupt signal generated by the shift register component. Interrupts are generated based on the
specified parameters. This terminal is displayed if the Use Interrupt check box is selected.

Component Parameters
Drag a Shift Register component onto your design and double-click it to open the Configure
dialog.

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 4 of 19 Document Number: 001-87851 Rev. **

Length (bits)
This parameter determines the length of the shift register in bits. Valid values are 2 through 32
bits. The default is 8.

Shift Direction
This parameter determines the shift direction, Right or Left. The default is Right (LSB first).

Use Load
When this option is selected, the load input terminal is shown on the Shift Register symbol. The
load signal is internally routed to the control logic. As a result, a word from the input FIFO is
transferred to the Shift Register on a rising edge of the component clock after the positive edge
of load signal has been detected.
If Use Load is selected, the ShiftReg_WriteData() and ShiftReg_GetIntStatus() APIs are
generated to work with the input FIFO. The component.h file has the necessary API prototypes
and #define constants.
If Use Load is not selected, the load terminal is not shown on the component symbol and the
associated API routines are not generated.

Use Store
When this option is selected, the store input terminal is shown on the Shift Register symbol. The
store signal is internally routed to the control logic. On a rising edge of the component clock,
after the store signal rising edge has been detected, the current word in the Shift Register is
transferred to the output FIFO.
If Use Store is selected, the ShiftReg_WriteRegValue(), ShiftReg_ReadRegValue(), and
ShiftReg_GetIntStatus() APIs are generated for working with the output FIFO. The component.h
file has the necessary API prototypes and #define constants.

Caution
Be careful when using the ShiftReg_ReadRegValue() API routine in conjunction with the Use
Store output FIFO functionality. The ShiftReg_ReadRegValue() API implementation transfers
the current Shift Register ALU value into the output FIFO and then reads this data from the
FIFO. Any data previously captured in the output FIFO using the Store signal, but not yet read by
the application, will be lost.

If Use Store is not selected, the store terminal is not shown on the component symbol and the
associated API routines are not generated.

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 5 of 19

Use Shift Out
This parameter determines if the shift_out output of the Shift Register symbol is provided. It is
selected by default.

Use Shift In
This parameter determines if the shift_in input of the Shift Register symbol is provided. It is
selected by default.

Default Shift Value
This parameter allows you to define a default value for the input to the Shift Register. This
parameter is only used if the Use Shift In parameter is not checked. The valid values for the
Default Shift Value parameter are 0 and 1.

Use Interrupt
If this parameter is selected, the interrupt output terminal displays on the symbol. This enables
the use of interrupts generated by the Shift Register.
If Use Interrupt is not selected, the interrupt terminal is not shown on the symbol and the
associated API routines are generated.

Interrupt Sources
This parameter becomes enabled if you select Use Interrupt. The interrupt signal is used to
indicate that one of the specified conditions has occurred. You can enable or disable interrupt
generation and specify the events that will trigger an interrupt: On Load, On Store or On Reset.

Clock Selection
There is no internal clock in this component. You must attach a clock source. This component
operates from a single clock connected to the component.

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.
By default, PSoC Creator assigns the instance name “ShiftReg_1” to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“ShiftReg.”

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 6 of 19 Document Number: 001-87851 Rev. **

Function Description

ShiftReg_Start() Starts the Shift Register and enables all selected interrupts

ShiftReg_Stop() Disables the Shift Register

ShiftReg_EnableInt() Enables the Shift Register interrupt

ShiftReg_DisableInt() Disables the Shift Register interrupt

ShiftReg_SetIntMode() Sets the interrupt source for the interrupt

ShiftReg_GetIntStatus() Gets the Shift Register interrupt status

ShiftReg_WriteRegValue() Writes a value directly to the shift register

ShiftReg_ReadRegValue() Reads the current value from the shift register

ShiftReg_WriteData() Writes data to the shift register input FIFO

ShiftReg_ReadData() Reads data from the shift register output FIFO

ShiftReg_GetFIFOStatus () Returns current status of input or output FIFO

ShiftReg_Sleep() Stops the component and saves all nonretention registers

ShiftReg_Wakeup() Restores all nonretention registers and starts component

ShiftReg_Init() Initializes or restores default Shift Register configuration

ShiftReg_Enable() Enables the Shift Register

ShiftReg_SaveConfig() Saves configuration of Shift Register

ShiftReg_RestoreConfig() Restores configuration of Shift Register

Global Variables
Variable Description

ShiftReg_initVar Indicates whether the Shift Register has been initialized. The variable is initialized to 0 and set
to 1 the first time ShiftReg_Start() is called. This allows the component to restart without
reinitialization after the first call to the ShiftReg_Start() routine.
If reinitialization is required, then the ShiftReg_Init() function can be called before the
ShiftReg_Start() or ShiftReg_Enable() function.

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 7 of 19

void ShiftReg_Start(void)
Description: This is the preferred method to begin component operation. ShiftReg_Start() sets the initVar

variable, calls the ShiftReg_Init() function, and then calls the ShiftReg_Enable() function.
Note that one component clock pulse is required to start the component logic after this
function is called.

Parameters: None

Return Value: None

Side Effects: If the initVar variable is already set, this function only calls the ShiftReg_Enable() function.

 void ShiftReg_Stop(void)
Description: Disables the Shift Register.

Parameters: None

Return Value: None

Side Effects: None

void ShiftReg_EnableInt(void)
Description: Enables the Shift Register interrupts.

Parameters: None

Return Value: None

Side Effects: None

void ShiftReg_DisableInt(void)
Description: Disables the Shift Register interrupts.

Parameters: None

Return Value: None

Side Effects: None

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 8 of 19 Document Number: 001-87851 Rev. **

void ShiftReg_SetIntMode(uint8 interruptSource)
Description: Sets the interrupt source for the interrupt. Multiple sources may be ORed together.

Parameters: uint8 InterruptSource: Bit field containing the constant for the selected interrupt sources.
Multiple sources can be ORed together to select multiple interrupts.

Interrupt Source Description

ShiftReg_LOAD_INT_EN Enables the Load interrupt

ShiftReg_STORE_INT_EN Enables the Store interrupt

ShiftReg_RESET_INT_EN Enables the Reset interrupt

Return Value: None

Side Effects: None

uint8 ShiftReg_GetIntStatus(void)
Description: Gets the interrupt status for the Shift Register interrupts.

Parameters: None

Return Value: Bit field containing the status for the selected interrupt sources.

Return Value Description

ShiftReg_LOAD Load interrupt occurred

ShiftReg_STORE Store interrupt occurred

ShiftReg_RESET Reset interrupt occurred

Side Effects: Clears the Interrupt Status register.

void ShiftReg_WriteRegValue(uint8/16/32 shiftData)
Description: Writes a value directly to the Shift Register.

Parameters: uint8/16/32 shiftData: Data to be written. Data type is determined by the Shift Register Length
parameter.

Return Value: None

Side Effects: The component must be stopped to use this API function.
Note The written value is available for reading after one component clock period.

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 9 of 19

uint8/16/32 ShiftReg_ReadRegValue(void)
Description: Returns the current value from the shift register.

Parameters: None

Return Value: uint8/16/32 Shift Register value. Data type is determined by the Length parameter

Side Effects: Clears the shift register output FIFO. Wait at least one component clock period after calling
ShiftReg_WriteRegValue() before calling this function.

Caution
Be careful when using the ShiftReg_ReadRegValue() API routine in conjunction with the Use
Store output FIFO functionality. The ShiftReg_ReadRegValue() API implementation transfers
the current Shift Register ALU value into the output FIFO and then reads this data from the
FIFO. Any data previously captured in the output FIFO using the Store signal, but not yet read
by the application, will be lost.

cystatus ShiftReg_WriteData(uint8/16/32 shiftData)
Description: Writes data to the shift register input FIFO. A data word is transferred to the shift register on a

rising edge of the load input

Parameters: uint8/16/32 shiftData: Data to be written. Data type is determined by the Shift Register Length
parameter.

Return Value: cystatus: Returns an error if the FIFO is full or CYRET_SUCCESS on successful operation. If
the input FIFO is full then the data will not be written to the FIFO.

Return Value Description

CYRET_SUCCESS Successful operation

CYRET_INVALID_STATE Input FIFO is full

Side Effects: None

uint8/16/32 ShiftReg_ReadData(void)
Description: Reads data from the shift register output FIFO. A data word is transferred to the output FIFO

on a rising edge of the store input.

Parameters: None

Return Value: uint8/16/32: next available data word. Data type is determined by the Shift Register Length
parameter.

Side Effects: None

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 10 of 19 Document Number: 001-87851 Rev. **

uint8 ShiftReg_GetFIFOStatus(uint8 fifoId)
Description: Returns the current status of the input or output FIFO.

Parameters: uint8 fifoId: identifies which FIFO status is read.

FifoID Value Description

ShiftReg_IN_FIFO Used to read status of the input FIFO

ShiftReg_OUT_FIFO Used to read status of the output FIFO

Return Value: uint8: FIFO Status of one of defined values.

Return Value Description

ShiftReg_RET_FIFO_FULL FIFO is full

ShiftReg_RET_FIFO_PARTIAL FIFO is neither full or empty

ShiftReg_RET_FIFO_EMPTY FIFO is empty

ShiftReg_RET_FIFO_NOT_DEFINED Wrong FIFO ID is provided (attempt to check
the status of a FIFO that is not present in a
design)

Side Effects: None

void ShiftReg_Sleep(void)
Description: This is the preferred routine to prepare the component for sleep. The ShiftReg_Sleep()

routine saves the current component state. Then it calls the ShiftReg_Stop() function and
calls ShiftReg_SaveConfig() to save the hardware configuration.
Call the ShiftReg_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power management functions.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 11 of 19

void ShiftReg_Wakeup(void)
Description: This is the preferred routine to restore the component to the state when ShiftReg_Sleep()

was called. The ShiftReg_Wakeup() function calls the ShiftReg_RestoreConfig() function to
restore the configuration. If the component was enabled before the ShiftReg_Sleep()
function was called, the ShiftReg_Wakeup() function will also re-enable the component.
Note that one component clock pulse is required to return to normal operation after this
function is called.

Parameters: None

Return Value: None

Side Effects: Calling the ShiftReg_Wakeup() function without first calling the ShiftReg_Sleep() or
ShiftReg_SaveConfig() function may produce unexpected behavior.

void ShiftReg_Init(void)
Description: Initializes or restores the component according to the customizer Configure dialog settings.

It is not necessary to call ShiftReg_Init() because the ShiftReg_Start() routine calls this
function and is the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be set to values according to the Configure dialog.

void ShiftReg_Enable(void)
Description: Activates the hardware and begins component operation. It is not necessary to call

ShiftReg_Enable() because the ShiftReg_Start() routine calls this function, which is the
preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: None

void ShiftReg_SaveConfig(void)
Description: This function saves the component configuration and nonretention registers. This function

also saves the current component parameter values, as defined in the Configure dialog or as
modified by appropriate APIs. This function is called by the ShiftReg_Sleep() function.

Parameters: None

Return Value: None

Side Effects: None

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 12 of 19 Document Number: 001-87851 Rev. **

void ShiftReg_RestoreConfig(void)
Description: This function restores the component configuration and nonretention registers. This

function also restores the component parameter values to what they were prior to calling
the ShiftReg_Sleep() function

Parameters: None

Return Value: None

Side Effects: Call this routine only after calling the ShiftReg_SaveConfig() function. Calling it
independently of the ShiftReg_SaveConfig() function overwrites the current settings with
the initial settings.

Defines
 ShiftReg_SR_SIZE – Defines Shift Register length in bits.

 ShiftReg_USE_INPUT_FIFO – Indicates that an input FIFO is defined in the project.
Note The output FIFO is always defined because it is used for Software Capture.

 ShiftReg_FIFOSize – Defines the size of the Input FIFO in Shift Register words. The Shift
Register word size is determined by the Length (in bytes) parameter value.

 ShiftReg_DIRECTION – Defines the direction of the shift (0 = Left Shift, 1 = Right Shift).

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:
 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component
This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.
The Shift Register component does not have any specific deviations.

Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 13 of 19

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Functional Description
The Shift Register parameters allow for considerable flexibility in the configuration of the
component. This section provides additional explanation of the Shift Register operation and how
the parameters can be used to customize the component for your application. The Shift Register
can be used standalone, or in conjunction with other components to create application-specific
functionality.

Default Configuration
The default configuration of the Shift Register component provides basic parallel shift register
functionality similar to standard 7400 series logic shift registers. This functionality includes
synchronous shifting of data into and out off a parallel register on the rising edge of the clock
input. Serial bit stream data is shifted into the shift_in terminal and shifted from the shift_out
output terminal.

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 14 of 19 Document Number: 001-87851 Rev. **

Block Diagram and Configuration

Figure 1. Shift Register Block Diagram

FIFO

FIFO

Shift In
Shift Out

Load

Shift Register

Status Register

Status Register

Reset

Clock

8

CPU
8

8

Store

Control Register
Interrupt

8

8

FIFO status

Control Logic

3

Status Register
To CPU

FIFO
clock

FIFO
clock

FIFO status

The Shift Register is a UDB-based component that consists of an input FIFO (F0), a direct shift
register (A0 and A1 with duplicated value for providing the software capture), an output FIFO
(F1), and control and status registers.
The input FIFO F0 is configured to input mode. This means that this FIFO can be written by the
CPU (using the ShiftReg_WriteData() API function) and this value can be loaded into the A0
register for shifting. This function checks the current FIFO status before each cycle using the
ShiftReg_GetFIFOStatus() function.
The value to be shifted can be also written directly to the A0 register by calling
ShiftReg_WriteRegValue(). Because of internal hardware implementation it is strongly
recommended to stop component operation (by using ShiftReg_Stop() function or stopping input
clock) when using ShiftReg_WriteRegValue(). Otherwise, writing the A0 register during the shift
operation will lead to incorrect data being written.
The Load operation has the hardware restriction that the load event can be provided only when
input FIFO is not empty.

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 15 of 19

To provide the shift functionality, the UDB datapaths are used in the following configuration:
 State == 100 (4) Shift Operation (Left or Right)
 State == 101 (5) Reset (XOR A0 A0)
 State == 110 (6) Load A0 <=F0
 State == 111 (7) Reset (XOR A0 A0)
All operations except store are controlled from the datapath control store. Shift is a default
operation (cs_addr = “000”). The load input is connected to the cs_addr[1] line and the reset
input to cs_addr[0]. If some of these lines change their level it causes the control store address
to change immediately. On the positive edge of the datapath clock (component clock in this
case), the corresponding operation will be executed. The load causes the loading value to
change from F0 to A0. The reset command causes the clearing of A0. In this case, the load
value is ignored.
Two mechanisms are used to read the shifted value: hardware and software capture. The
hardware capture event happens on each positive edge on the store input. It causes the Shift
Register value to be written to the output FIFO. This value can be read by the
ShiftReg_ReadData() API function. The store input has a hardware restriction that the store input
will be active only if output FIFO is not full.
Software capture happens each time the ShiftReg_ReadRegValue() function is called. This
function reads the A1 value where it duplicates the value of A0. This operation reduces the A1
value to be automatically written to the output FIFO F1 (because F1 is configured to software
capture from A1). Before providing the software capture, the ShiftReg_ReadRegData() function
clears the output FIFO. Therefore, you should be careful when using it.
Note Using this function, the actual value in the A1 will be available in the next clock cycle after
writing the Shift Register.
The interrupt generation mechanism is implemented using the status register. It has three bits,
which represent three interrupt sources: Load, Store, and Reset. When one of these bits
changes its value from 0 to 1, the interrupt pulse on the appropriate status register output is
automatically generated. These three bits are in “clear-on-read” mode.
The second status register is used for storing the current input and output FIFO's status. All
status bits are in “sticky” mode (are not cleared after reading).
When the Shift Register size is more than 8, the datapath's chaining connectivity is provided to
connect 2, 3, or 4 datapaths together to implement a component size 16, 24, or 32. To
implement a Shift Register size that does not coincide with the datapath’s measures, a Verilog-
controlled MSB is used with the datapath’s configurations.
The component is started and stopped using the CLK_EN bit of the control register.

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 16 of 19 Document Number: 001-87851 Rev. **

Registers

ShiftReg_SR_CONTROL
Bits 7 6 5 4 3 2 1 0

Value Reserved clk_en

 clk_en : Enables Shift Register operation

ShiftReg_SR_STATUS
Bits 7 6 5 4 3 2 1 0

Value F1_partial F1_full F0_partial F0_empty reset store load

 load: Load status bit

 store: Store status bit

 reset: Reset status bit

 F0_empty: Input FIFO is empty

 F0_partial: Input FIFO is neither full nor empty

 F1_full: Output FIFO full

 F1_partial: Output FIFO is neither full nor empty

Resources
The Shift Register component is placed throughout the UDB array. The component utilizes the
following resources.

Configuration
Resource Type

Datapath
Cells Macrocells Status

Cells
Control

Cells
DMA

Channels Interrupts

8-bit 1 2 1 1 – –

16-bit 2 2 1 1 – –

24-bit 3 2 1 1 – –

32-bit 4 2 1 1 – –

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 17 of 19

API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration
PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

8-bit 341 4 476 4 472 4

16-bit 423 6 476 7 472 7

24-bit 409 10 508 13 500 13

32-bit 409 10 476 13 472 13

DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics
Parameter Description Min Typ[1] Max Units

IDD Component current consumption

8-bit – 13 – µA/MHz

16-bit – 20 – µA/MHz

24-bit – 27 – µA/MHz

32-bit – 34 – µA/MHz

1. Device IO and clock distribution current not included. The values are at 25 °C.

Shift Register (ShiftReg) PSoC® Creator™ Component Datasheet

Page 18 of 19 Document Number: 001-87851 Rev. **

AC Characteristics
Parameter Description Min Typ Max[2] Units

fCLOCK Component clock frequency

8-bit 52 MHz

16-bit 52 MHz

24-bit 50 MHz

32-bit 50 MHz

Component Changes
This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.30 Added RET_FIFO_PARTIAL define

2.20.b Datasheet update to fix typos.

2.20.a Updated datasheet with memory usage for PSoC 4.

2.20 Added MISRA Compliance section. The component does not have any specific
deviations.

2.10 Added all APIs with the CYREENTRANT keyword
when they are included in the .cyre file.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which
functions are candidates.
This change is required to eliminate compiler
warnings for functions that are not reentrant used
in a safe way: protected from concurrent calls by
flags or Critical Sections.

Added PSoC 5LP support.

Updated characterization data.

Minor datasheet edits. Improve readability.

2.0 Changed load logic implementation to edge
sensitive instead of level sensitive.

Load implementation is changed according to the
requirements. Applications where level-sensitive
load is used are not compatible with this version
of the component.

2. The values provide a maximum safe operating frequency of the component. The component may run at higher clock

frequencies, at which point you will need to validate the timing requirements with STA results.

PSoC® Creator™ Component Datasheet Shift Register (ShiftReg)

Document Number: 001-87851 Rev. ** Page 19 of 19

Version Description of Changes Reason for Changes / Impact

Datasheet changes:
 Updated resource usage table.

 Corrected description of the load and store
signals.

 Updated description of the ShiftReg_Start() and
ShiftReg_Wakeup() API functions.

1.60.a Datasheet corrections

1.60 Resampled FIFO block status signals to DP clock. Allows component to function with the same
timing results for all PSoC 3 and PSoC 5 silicons.

Added characterization data to datasheet

Minor datasheet edits and updates

1.50 Added Sleep/Wakeup and Init/Enable APIs. To support low power modes, as well as to
provide common interfaces to separate control of
initialization and enabling of most components.

Update the Configure dialog. Changed locations of ‘Use Shift Out’ and ‘Use
Shift' and changed default value of ‘Use interrupt’
check box to improve functionality.

Changed the ShiftReg_ReadRegValue()
implementation.

This provides faster Software Capture execution.

1.20 Option of selecting FIFO size is disabled when load
and store are not used.
Updated the Configure dialog.
Removed generated code for unused parameters.

Various changes were made to fix issues with
version 1.10, which was not fully functional.

© Cypress Semiconductor Corporation, 2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks and of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use a Shift Register

	Input/Output Connections
	shift_in – Input *
	load – Input *
	store – Input *
	reset – Input
	clock – Input
	shift_out – Output *
	interrupt – Output *

	Component Parameters
	Length (bits)
	Shift Direction
	Use Load
	Use Store
	Use Shift Out
	Use Shift In
	Default Shift Value
	Use Interrupt
	Interrupt Sources

	Clock Selection
	Application Programming Interface
	Global Variables
	void ShiftReg_Start(void)
	void ShiftReg_Stop(void)
	void ShiftReg_EnableInt(void)
	void ShiftReg_DisableInt(void)
	void ShiftReg_SetIntMode(uint8 interruptSource)
	uint8 ShiftReg_GetIntStatus(void)
	void ShiftReg_WriteRegValue(uint8/16/32 shiftData)
	uint8/16/32 ShiftReg_ReadRegValue(void)
	cystatus ShiftReg_WriteData(uint8/16/32 shiftData)
	uint8/16/32 ShiftReg_ReadData(void)
	uint8 ShiftReg_GetFIFOStatus(uint8 fifoId)
	void ShiftReg_Sleep(void)
	void ShiftReg_Wakeup(void)
	void ShiftReg_Init(void)
	void ShiftReg_Enable(void)
	void ShiftReg_SaveConfig(void)
	void ShiftReg_RestoreConfig(void)
	Defines

	MISRA Compliance
	Sample Firmware Source Code
	Functional Description
	Default Configuration

	Block Diagram and Configuration
	Registers
	ShiftReg_SR_CONTROL
	ShiftReg_SR_STATUS

	Resources
	API Memory Usage
	DC and AC Electrical Characteristics
	DC Characteristics
	AC Characteristics

	Component Changes

