
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.cypress.com Document Number: 002-20242 Rev. *B 1

AN220242

Flash Rewriting Procedure for Traveo II Family

Author: Hachisu, Kotaro

Associated Part Family: Traveo™ II Family CYT2/CYT3/CYT4 Series

Associated Code Examples: None

Related Application Notes: see Related Documents.

This application note describes flash rewriting procedure and provides examples on how to use this function for Cypress

Traveo II family MCU. The document also explains the feature of eCT40 flash memory, block diagram, sector

configuration, and code flash rewriting examples using the SROM API operation.

Contents

1 Introduction .. 1
2 Overview of Flash Memory .. 2

2.1 Features of Flash Memory 2
2.2 Block Diagram ... 3
2.3 Sector Configuration ... 4

3 Flash Rewriting Procedure .. 6
3.1 Setting Up IRQs for System Calls 7
3.2 Flash Erase All Procedure 8
3.3 Program Row Procedure 11

4 Flash Rewriting Using Dual Bank Approach 14
4.1 Concept .. 14
4.2 Flash Rewriting Procedure using Dual Bank
 Mode and Remap Function 16

5 Glossary .. 18
6 Related Documents ... 18
Document History .. 19
Worldwide Sales and Design Support 20

1 Introduction

This application note describes flash rewriting procedure for Cypress Traveo II family MCU. Traveo II family has code
flash, work flash, and supervisory flash. Code flash is part of flash memory used to store user programs and work flash
is used to store critical nonvolatile data or parameters. Supervisory flash is used to store the flash boot code or public
key for secure boot operation. Flash programing operations such as “Erase All”, “Program Row”, and so on are executed
from the core Arm® Cortex®-M0+ using its IRQ0 interrupt via system calls. This application note describes some use
cases with software configuration flow for operations like erase and program of the flash memory.

To understand the functionality described and terminology used in this application note, see the “Code Flash”, “Work
Flash”, and “Nonvolatile Memory Programming” chapters of the Architecture Technical Reference Manual (TRM).

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 2

2 Overview of Flash Memory

2.1 Features of Flash Memory

Traveo II family of devices use eCT flash memory which is portioned into code, work, and supervisory-flash regions.
This application note targets only code and work flash regions. Table 1 lists the features of both code flash and work
flash for CYT4B series. See the Device Datasheet for the memory size available for each device.

Table 1. Overview of Flash Memory for CYT4B Series

Feature Code Flash Work Flash

Memory size Up to 8384 KB (8128 KB + 256 KB) Up to 256 KB (192 KB + 64 KB)

Program size 64 bit, 256 bit, 4096 bit 32 bit

ECC function

64 bit + 8 bit

Single Error Correction, Double Error
Detection (SECDED)

32 bit + 7 bit

Single Error Correction, Double Error
Detection (SECDED)

Erase sector size
32 KB for large sector and

8 KB for small sector

2 KB for large sector and

128 B for small sector

Security Supported Supported

Single Bank and Dual
Bank modes

Supported Supported

Program execution Supported Not supported

Reading while
programming/erasing

Supported Supported

Program/Erase cycles/

Data retention time
@85ºC

1,000/20 years 250,000/10 years

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 3

2.2 Block Diagram

eCT Flash is a part of the CPU subsystem. The Cortex-M4/-M7_0/-M7_1 and CM0+ CPU cores can access eCT Flash
via Fast/Slow infrastructures respectively, but according to the design of Traveo II family of devices only CM0+ core
can write into code flash and work flash by executing SROM APIs. Thus, user application on CM4/CM7_0/CM7_1
needs to send a command via IPC; then SROM APIs are executed within CM0+ IRQ0 handler.

Figure 1. Block Diagram of Flash Memory I/F

Note: Figure 1 is an example of a few blocks. See the Architecture TRM for details.

Table 2 lists the master identifiers.

Table 2. Arbiter and Bus Master

Master Identifier
Bus Master

CYT2 Series CYT3 Series CYT4B Series CYT4D Series

0 CM0+ CPU CM0+ CPU CM0+ CPU CM0+ CPU

1 CRYPTO Component CRYPTO Component CRYPTO Component CRYPTO Component

2 P-DMA 0 P-DMA 0 P-DMA 0 P-DMA 0

3 P-DMA 1 P-DMA 1 P-DMA 1 P-DMA 1

4 M-DMA M-DMA M-DMA M-DMA

5 - SDHC SDHC -

9 - Ethernet 0 Ethernet 1 Ethernet 1

10 - - Ethernet 0 Ethernet 0

12 - - - Audio Subsystems

13 - CM7_1 CPU CM7_0 CPU CM7_0 CPU

14 CM4 CPU CM7_0 CPU CM7_1 CPU CM7_1 CPU

15 Test Controller DAP Tap Controller Test Controller Test Controller

eCT Flash

Code Flash

Fast infrastructure
(Interface for Fast clock domain)

Slow infrastructure
(Interface for slow clock domain)

Cortex-M4/
M7_0/M7_1

Cortex-
M0+

Crypto
Memory

DMA

Arbiter component

performs priority based

arbitration based on the

master identifier.

.
Flash controller

AHB Lite bus interface

Arbiter

ROM controller

ECC ECC
Supervisory ROM

Work Flash

DataWire 0 Peripheral
DMA

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 4

2.3 Sector Configuration

2.3.1 Sector Conf igurat ion

Figure 2 shows the flash sector configuration for CYT4B series. The CYT4B series has 8128 KB (32 KB large sectors)
and 256 KB (8 KB small sectors) of code flash with an additional work flash. Work flash has been optimized to be able
to reprogram the data several times more than code flash. Supervisory region stores trim parameters for hard IP,
system configuration parameters, protection and security setting, boot script, and so on. Density of flash memory size
and sector configuration depends on product specification. For more details, see the Device Datasheet and Architecture
TRM.

Figure 2. Sector Configuration of CYT4B Series

2.3.2 Bank Mode and Remap Functional i ty

2.3.2.1 Single Bank Mode

The entire code/work and supervisory logical regions are mapped as single contiguous address regions.

2.3.2.2 Dual Bank Mode

Flash mapping is split into two halves, and each half is presented as a separate address region. In this mode, program
execution can be swapped to support same-location firmware updates.

Figure 3 shows the code flash memory mapping for CYT4B series. Code flash and work flash support both single bank
mode and dual bank mode. Dual bank mode and read-while-write operation (RWW) can be used for firmware update
operation. Density of flash memory size and memory mapping depends on product specification. For more details, see
the Device Datasheet and Architecture TRM.

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 5

Figure 3. Memory Mapping in Single/Dual Bank Mode for CYT4B Series

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 6

3 Flash Rewriting Procedure

This section shows an example of flash erase of all operation and program row operation that programs the 64-bit data
to code flash.

In Traveo II family, there is no automatic algorithm and command sequencer embedded as in Traveo family, but flash
operations are implemented as system calls. System calls are executed inside CM0+ IRQ0. You do not have access
to modify the SROM code. The CM4/CM7_0/CM7_1 user code requests the system call by acquiring the Inter-
processor communication (IPC) and writing the SROM function opcode and parameters to IPC DATA register. As a
result, an IRQ0 interrupt is invoked and the requested SROM API is executed.

Figure 4 shows the system call interface using IPC in CYT2B Series. System calls can be performed by CM0+, CM4,
or DAP. Each of them has a reserved IPC structure through which they can request CM0+ to perform a system call.
When CM4 invokes a system call via CM0+ for erasing/programming the flash memory by user software, IPC structure
1 and IPC interrupt structure 0 are required to be used. See the Device Datasheet and Architecture TRM for supported
number of IPC channel structure available for each device.

Figure 4. System Call Interface Using IPC in CYT2B Series

Control

Data (32 bytes)

IPC Channel Structure 0

Control

Data (32 bytes)

IPC Channel Structure 1

Control

Data (32 bytes)

IPC Channel Structure 2

Reserved for CM0+

Access

Reserved for CM4 Access

Reserved for DAP Access

Control

Data (32 bytes)

IPC Interrupt Structure 0

CM0+ IRQ0

Note: Bus error might occur when any IDE, which supports the option to view live memory, reads flash memory through
DAP access during RWW operation. If the error occurs, close the debugger memory view windows or disable the
debugger live memory

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 7

3.1 Setting Up IRQs for System Calls

The user software is responsible for o correctly setting up CM0+ IRQ0 and IRQ1 interrupts for system call management.
The boot code automatically sets CPUSS_CM0_SYSTEM_INT_CTL0. CPU_INT_VALID bit to 1 and
CPUSS_CM0_SYSTEM_INT_CTL0. CPU_INT_IDX [2:0] bits to b’000. Hence, the mapping of System Interrupt 0 (IPC
Interrupt Structure 0 interrupt) to CM0+ IRQ0 for system calls is done by boot code and CM0+ IRQ0 is triggered by IPC
Interrupt Structure 0 interrupt.

However, the software needs to ensure that CM0+ IRQ0 and IRQ1 are enabled and configured with the correct priorities
as this is not automatically done by the boot code. Also, the software must ensure that IRQ0 and IRQ1 vector entries
in the user CM0+ vector table are identical to the vector entries in the default SROM vector table (addresses
0x00000040 and 0x00000044 respectively). This can be achieved by copying values from the SROM vector table to
the user vector table during runtime if it is in RAM, otherwise hard-coded values need to be used and reconfirmed if
target MCU or revision changes.

When the CPU is executing code in Thread mode, the CONTROL register can be configured to use Process Stack
Pointer (PSP) or Main Stack Pointer (MSP). In Handler mode, MSP is always used. Note that the CPU enters Thread
mode and uses MSP when it comes out of reset. Additionally, the software must take special care while setting up the
system call interrupts as this depends on the CPU mode (Thread or Handler) of CM0+ and the stack pointer (MSP or
PSP) used when the system call was triggered.

Case 1

If the software triggers system calls only when CM0+ is in handler mode, then ensure that the software sets CM0+
IRQ1 with a higher priority than IRQ0. This can be done by setting IRQ0 priority to ‘1’. By default, IRQ1 priority will be
set to ‘0’.

Case 2

If the software triggers system calls with any other CPU states (for instance Thread Mode and PSP) for CM0+, then
the software additionally needs to use another CM0+ interrupt (such as IRQ2) which acts as a manager for system
calls. This approach in principle can also be used for any CPU state (including handler mode). So, this is a more generic
approach to manage system calls under all CPU states.

This approach to set up CM0+ IRQ includes the following steps:

1. Set up the system call manager function (for example, “Sys_Call_Manager”) as IRQ handler for CM0+ IRQ2 in the

user vector table.

2. Map the IPC Interrupt Structure 0 interrupt to CM0+ IRQ2.

3. Set the lowest priority to IRQ2 with respect to IRQ0 and IRQ1. Set the same highest priority for IRQ0 and IRQ1.

For instance, set the priority of IRQ2 to 1; by default, the priority of IRQ0 and IRQ1 will 0.

4. IRQ2 handler triggers IRQ0 in software.

5. IRQ2 handler clears the Pending Bit of IRQ0.

Thus, the CM0+ vector table will have entries for the first three interrupts as shown in Table 3.

Table 3. Interrupt Handler

Interrupt Number Handler

… …

IRQ0 Contents of address (0x00000040)

IRQ1 Contents of address (0x00000044)

IRQ2 Sys_Call_Manager

… …

Also note that instead of directly assigning “Sys_Call_Manager” as CM0+ IRQ2 handler, it can also be combined with

multiple other system interrupts when using a dispatcher implementation.

Here is the pseudo code for the interrupt configuration needed for system call for case 2.

/* IRQ2 handler function for IPC Interrupt structure 0 interrupt. This is the system

call manager function */

void Sys_Call_Manager()

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 8

{

/* Trigger IRQ0 in Software by writing to ISPR register */

CM0P_SCS_ISPR = 1;

/* Read back the register to ensure that the write has happened */

CM0P_SCS_ISPR;

/* Clear the NVIC Pending bit of IRQ0. This is done as a fallback in case the system

call was suppressed (e.g., by disabled interrupts) */

CM0P_SCS_ICPR = 1;

/* Read back the register to ensure that the write has happened */

CM0P_SCS_ICPR;

}

/* Application function for interrupt configurations */

 void interrupt_configure()

{

/* Enable CM0+ IRQ0, IRQ1 and IRQ2 */

CM0P_SCS_ISER = 7;

/* Set Priority 0 for IRQ0, IRQ1 and Priority 1 for IRQ2 */

CM0P_SCS_IPR0 = 0x00400000;

/* Connect IPC Interrupt Structure 0 Interrupt (System Interrupt 0) to

IRQ2. The interrupt triggers Sys_Call_Manager */

CPUSS_CM0_SYSTEM_INT_CTL0.CPU_INT_IDX = 2;

/* Clear the PRIMASK register to enable the interrupts. This could also

be done by the application at a later point in time */

__ASM("cpsie i");

}

3.2 Flash Erase All Procedure

Figure 5 shows flash “erase all” procedure from CM4/7 CPU core with the usage of IPC and CM0+ IRQ0 handler.
This example shows the erase operation for the entire code flash, but does not include supervisory region and work
flash. CM4/7 code is assumed to be placed in or executed from SRAM. The opcode for the “erase all” API is 0x0A. See
the chapter “Nonvolatile Memory Programming” of the Architecture TRM for more details of parameters used in the
following operation.

Note: The following sections assume IRQ0 triggers system calls which means system calls are triggered when CM0+
is in handler mode. For all other CM0+ CPU states, ensure to set up the interrupts as explained in Setting Up
IRQs for System Calls.

3.2.1 Pre-configurat ion

A. Enable main flash embedded operations

(FLASHC_FM_CTL_ECT_MAIN_FLASH_SAFETY_MainFlashWriteEnable = 1) [By CM4/7 user code].

B. Allocate four words as SRAM scratch region (uint32_t SramScratch[4];) [By CM4/7 user code].

Note: If you are using the CYT4B series which supports both of CM7_0 and CM7_1, you should consider cache
coherence. SRAM area pointed by "SramScrach"/"data" is shared by multiple cores, thus, the area should not
be cacheable.

3.2.2 Request ing the “Erase Al l” API via CM0+ IRQ0 Handler

A. Acquire lock for IPC1 channel structure [By CM4/7 user code].

B. Update the API parameter to SRAM scratch memory [By CM4/7 user code].

a) Write the opcode of “erase all” (0x0A) to SramScratch[0] (SramScratch[0] = 0x0A000000;).

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 9

- Bits [31:24]: Erase All opcode = 0x0A

- Bits [23:00]: 0x00 (Not used)

C. Assign the SRAM scratch memory to IPC1_DATA0 [By CM4/7 user code].

D. Generate notification event via IPC_NOTIFY register [By CM4/7 user code], subsequently API notification event
to CM0+ through IPC0 interrupt structure.

3.2.3 Executing “Erase Al l” API f rom CM0+ IRQ0 Handler

A. Detect API notification event via IPC0 interrupt structure [By CM0+ user code].

B. Read the SRAM_SCRACH_ADDR (&SramScratch[0]) from IPC1_DATA0 [By CM0+ IRQ0 handler].

C. Read opcode (0x0A) from SRAM_SCRATCH_ADDR (&SramScratch[0]) [By CM0+ IRQ0 handler].

D. If opcode is unknown, write the failure code to SRAM_SCRATCH_ADDR (&SramScratch[0]) [By CM0+ IRQ0
handler].

E. Execute erase all [By CM0+ IRQ0 Handler].

F. Write the success code to SRAM_SCRATCH_ADDR (&SramScratch[0]) [By CM0+ IRQ0 handler].

G. If result fails, write the failure code to SRAM_SCRATCH_ADDR (&SramScratch[0]) [By CM0+ IRQ0 handler].

H. Generate release event via IPC_RELEASE register, subsequently API notification event to CM0+ through IPC2
interrupt structure [By CM0+ IRQ0 handler].

3.2.4 Assessing the Result of “Erase Al l” Operat ion from CM0+

A. Detect release interrupt from IPC2 interrupt structure [By CM4/7 user code].

B. Read the status from SRAM_SCRATCH_ADDR (&SramScratch[0]), to get the API operation result [By CM4/7 user
code].

C. If status is OK, Erase All operation is completed [By CM4/7 user code].

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 10

Figure 5. Flash Erase All Procedure Example

Start of Erase All operation

Allocate 4 word as SRAM Scratch region

(uint32_t SramScratch[4];)

End of Erase All

CM4/7

Acquire a lock of IPC1
(Read IPC_STRUCT_ACQUIRE:SUCCESS)

Check a lock is acquired

IPC_STRUCT_ACQUIRE:SUCCESS

==1?

Invalidates the flash cache and buffer

(FLASHC_FLASH_CMD:INV=1)

YesYes

NoNo

Write Data to API Parameter “Erase All

opcode” to SramScratch[0]

(SramScratch[0] = 0x0A000000;)

Write SRAM_SCRATCH_ADDR to

IPC_DATA0 register

(IPC_STRUCT_DATA0:DATA=

&SramScratch[0])

Generate notify event to CM0+

(IPC_STRUCT_NOTIFY:INTR_NOTIFY=

1;)

IPC1 Channel Structure

ACQUIREACQUIRE

NOTIFYNOTIFY

RELEASERELEASE

DATA0DATA0

DATA1DATA1

LOCK_STATUSLOCK_STATUS

SRAM

&SramScratch[0]&SramScratch[0]
Opcode/Status

CM0+

Start

Detect API notification event as IRQ0

Read SRAM_SCRATCH_ADDR

(&SramScratch[0]) from IPC1 DATA0

Read Opcode (0x0A) from

SRAM_SCRATCH_ADDR

(&SramScratch[0])

IPC0 Interrupt Structure

INTR_NOT_15INTR_NOT_15

INTR_NOT 14INTR_NOT 14

INTR_NOT 1INTR_NOT 1

INTR_NOT 0INTR_NOT 0

INTR_REL 15INTR_REL 15

INTR_REL 14INTR_REL 14

INTR_REL_1INTR_REL_1

INTR_REL_0INTR_REL_0

....
....

Check Opcode

Write the failure code to

SRAM_SCRATCH_ADD

R (&SramScratch[0])

Execute Erase All

Write the success code to

SRAM_SCRATCH_ADDR

(&SramScratch[0])

Result of execusion

Write the failure code to

SRAM_SCRATCH_ADD

R (&SramScratch[0])

Generate Release Event for all IPC

Interrupt Structures (besides 0)

CM0+ System Call

Handler

Detect Interrupt from IPC2 Interrupt

Structure

Read the status from

SRAM_SCRATCH_ADDR

Success Code

Fail Operation

Return API notification event

NG

OK

Fail

Success

SuccessSuccess

FailFail

Enable Main flash embedded operations

(FLASHC_FM_CTL_ECT->

unMAIN_FLASH_SAFETY.stcField.u1MA

INFLASHWRITEENABLE=1)

IPC2 Interrupt Structure

INTR_NOT_15INTR_NOT_15

INTR_NOT 14INTR_NOT 14

INTR_NOT 1INTR_NOT 1

INTR_NOT 0INTR_NOT 0

INTR_REL 15INTR_REL 15

INTR_REL_1INTR_REL_1

INTR_REL_0INTR_REL_0

....
....

IPC1 Channel Structure

ACQUIREACQUIRE

NOTIFYNOTIFY

RELEASERELEASE

DATA0DATA0

DATA1DATA1

LOCK_STATUSLOCK_STATUS

INTR_REL_2INTR_REL_2

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 11

3.3 Program Row Procedure

Figure 6 shows setting example of flash program row operation by CM4/7 and behavior of IPC and CM0+ IRQ0 handler.
This example shows the write operation with 64-bit test data into code flash. The address of code flash to be written is
0x1000_0000. The test data is 0x55AA55AA x 2. Program Row API whose opcode is 0x06 is used as system call. See
the chapter “Nonvolatile Memory Programming” of the Architecture TRM for more details of parameter used in the
following overall operation.

Note: The following sections assume IRQ0 triggers system calls which means system calls are triggered when CM0+
is in handler mode. For all other CM0+ CPU states, make sure to set up the interrupts as explained in Setting
Up IRQs for System Calls.

3.3.1 Pre-configurat ion of Parameter

A. Enable main flash embedded operations

(FLASHC_FM_CTL_ECT_MAIN_FLASH_SAFETY_MainFlashWriteEnable = 1) [By CM4/7 user code].

B. Allocate four word as SRAM scratch region (uint32_t SramScratch[4];) [By CM4/7 user code].

C. Allocate double word as data buffer to be written into the code flash (uint32_t data[2];) [By CM4/7 user code].

Note: If you are using the CYT4B series which supports both of CM7_0 and CM7_1, you should consider cache
coherence. SRAM area pointed by "SramScrach"/"data" is shared by multiple cores, thus, the area should not
be cacheable.

3.3.2 Request ing the “Program Row” API to CM0+ IRQ0

A. Acquire a lock of IPC1 channel structure [By CM4/7 user code]

B. Update the API parameter to SRAM [By CM47 user code].

a) Write the opcode of Program Row (0x06) to SramScratch[0] (SramScratch[0] = 0x06000000).

- Bits [31:24]: Program Row opcode = 0x06

- Bits [23:16]: Skip blank check= 0x00 (Perform blank check)

- Bits [15:08]: Blocking mode=0x00 (non-blocking)

- Bits [08:00]: 0x00 (Not used)

b) Write the data size to SramScratch[1] (SramScratch[1] = 0x00000003;).

- Bits [31:24]: Interrupt mask, only applicable when non-blocking=0x00(FM interrupt mask not set)

- Bits [23:16]: 0x00 (Not used)

- Bits [15:08]: Data location=0x00 (Page latch)

- Bits [08:00]: Data size for code flash=0x03 (64 bits)

c) Write the flash address to be programmed to SramScratch[2] (SramScratch[2] = 0x10000000).

- Bits [31:0]: Flash address to be programmed = 0x10000000

d) Write the SRAM_SCRATCH_DATA_ADDR to SramScratch[3] (SramScratch[3] = &data[0]).

e) Write the 32-bit program data to data[0] (data[0] = 0x55AA55AA).

f) Write the 32-bit program data to data[1] (data[1] = 0x55AA55AA).

C. Assign the SRAM scratch memory to IPC1_DATA0.

D. Generate notification event by writing IPC1_NOTIFY register [By CM4/7 user code], then API notification event to
CM0+ through IPC0 interrupt structure.

3.3.3 Executing “Program Row” API in CM0+ IRQ0

A. Detect API notification event via IPC0 interrupt structure [By CM0+ user code].

B. Read the SRAM_SCRATCH_ADDR (&SramScratch[0]) from IPC1_DATA0 [By CM0+ IRQ0 handler].

C. Read Opcode(0x06), program data size, target address to be programmed, program data from SRAM [By CM0+
IRQ0 handler].

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 12

D. If opcode is unknown, write the failure code to SRAM_SCRATCH_ADDR (&SramScratch[0]) [By CM0+ IRQ0
handler].

E. Execute program row operation [By CM0+ IRQ0].

F. If result is successful, write the success code to SRAM_SCRATCH_ADDR (&SramScratch[0]) [By CM0+ IRQ0
handler].

G. If result fails, write the failure code to SRAM_SCRATCH_ADDR (&SramScratch[0]) [By CM0+ IRQ0 handler].

3.3.4 Assessing the Result of “Program Row” Operat ion from CM0+

A. Detect release interrupt from IPC2 interrupt structure [By CM4/7 user code].

B. If status is OK, Program Row operation is completed [By CM4/7 user code].

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 13

Figure 6. Flash Program Row Setting Example

Start of program row operation

Allocate 4 word as SRAM scratch region

(uint32_t SramScratch[4];)

Allocate 2 word as data buffer to be

written into the code flash

(uint32_t data[2];)

End of Program raw

CM4/7

Acquire a lock of IPC1

(Read

IPC_STRUCT_ACQUIRE:SUCCESS)

Check a lock is acquired

IPC_STRUCT_ACQUIRE:SUCCESS

==1?

Invalidates the flash cache and buffer

(FLASHC_FLASH_CMD:INV=1)

YesYes

NoNo

Write parameters “Program row opcode”
 to SramScratch[0]

 (SramScratch[0] = 0x06000000;)

Write SRAM_SCRATCH_ADDR to

 IPC1_DATA0 register

(IPC_STRUCT_DATA0:DATA=&SramScratch[0])

Generate notify event to CM0+

(IPC_STRUCT_NOTIFY:INTR_NOTIFY= 1;)

IPC1 Channel Structure

ACQUIREACQUIRE

NOTIFYNOTIFY

RELEASERELEASE

DATA0DATA0

DATA1DATA1

LOCK_STATUSLOCK_STATUS

SRAM

&SramScratch[0]&SramScratch[0] Opcode/Status

CM0+

Start

Detect API notification event as IRQ0

Read SRAM_SCRATCH_ADDR

(&SramScratch[0])

from IPC1 DATA0

Read Opcode/Program data size/Target

address to be programmed/Program data

from SRAM

IPC0 Interrupt Structure

INTR_NOT_15INTR_NOT_15

INTR_NOT 14INTR_NOT 14

INTR_NOT 1INTR_NOT 1

INTR_NOT 0INTR_NOT 0

INTR_REL 15INTR_REL 15

INTR_REL 14INTR_REL 14

INTR_REL_1INTR_REL_1

INTR_REL_0INTR_REL_0

....
....

Check Opcode

Write the failure code to

SRAM_SCRATCH_ADDR

(&SramScratch[0])

Execute Program row

Write the success code to

SRAM_SCRATCH_ADDR

(&SramScratch[0])

Result of execusion

Write the failure code to

SRAM_SCRATCH_ADDR

(&SramScratch[0])

CM0+ System Call Handler

Poll for IPC lock to be released or release

interrupt to be triggered

Fail Operation

NG

OK

Fail

Success

Write parameter “Data size”
to SramScratch[1]

(SramScratch[1] = 0x00000003;)

Write data size for code flash

Write parameter “flash address to be

programmed” to SramScratch[2]

(SramScratch[2] = 0x10000000)

Flash address to be programmed

Write parameter

“SRAM_SCRATCH_DATA_ADDR”
 to SramScratch[3]

(SramScratch[3] = &data[0])
SRAM_SCRATCH_DATA_ADDR

Program data&data[0]&data[0]

..
...
.

Program data&data[1]&data[1]

Write the 32bit program data to data[0]

(data[0] = 0x55AA55AA)

Write the 32bit program data to data[1]

(data[1] = 0x55AA55AA)

&SramScratch[1]&SramScratch[1]

&SramScratch[2]&SramScratch[2]
&SramScratch[3]&SramScratch[3]

End

Check status code?

Status is 0xA0000000

(=Success)

Status is 0xA0000000

(=Success)

Status is 0xFxxxxxxx

(=Not success and Not

command in progress)

Status is 0xFxxxxxxx

(=Not success and Not

command in progress)

Enable Main flash embedded operations

(FLASHC_FM_CTL_ECT->

unMAIN_FLASH_SAFETY.stcField.u1MA

INFLASHWRITEENABLE=1)

IPC2 Interrupt Structure

INTR_NOT_15INTR_NOT_15

INTR_NOT 14INTR_NOT 14

INTR_NOT 1INTR_NOT 1

INTR_NOT 0INTR_NOT 0

INTR_REL 15INTR_REL 15

INTR_REL_1INTR_REL_1

INTR_REL_0INTR_REL_0

....
....

IPC1 Channel Structure

ACQUIREACQUIRE

NOTIFYNOTIFY

RELEASERELEASE

DATA0DATA0

DATA1DATA1

LOCK_STATUSLOCK_STATUS

INTR_REL_2INTR_REL_2

Generate Release Event for all IPC

Interrupt Structures (besides 0)

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 14

4 Flash Rewriting Using Dual Bank Approach

This chapter shows an example of flash rewriting using flash dual bank approach to enable OTA functionality.

4.1 Concept

In Traveo II family MCUs, OTA functionality is handled by two separate registers. Flash Main Bank Mode Register is to
configure flash bank mode between “Single” and “Dual banks”. The Flash Main Remap register is to configure flash
region between “Mapping A and B”. Both Flash Main Bank Mode and Flash Main Remap registers are cleared by reset.
ROM and Flash boot will not touch these configurations. In other words, Traveo II family MCU always boots up in single
bank mode before CM0+ program starts; then you need to configure dual bank and remap function in your respective
program. In this example, remap parameter is stored in work flash and CM0+ program configures the remap after
reading from the work flash. Unintended bank switching may cause serious system failure. It is recommended to
implement appropriate protection mechanism for system, such as duplicating of switching data or adding check code to
prevent unintended bank switching. For safeguard the remap parameter that we store in the work flash, Memory
Protection Units (MPU) and Shared Memory Protection units (SMPU) provide the memory protection for work flash.
For more detail, see chapter: Protection Unit in Architecture TRM.

4.1.1 Start ing First Appl icat ion

This section explains how flash memory and related functions perform while starting the first application. Figure 7 shows
entire process.

1. After reset, CM4/7 and CM0+ start ROM boot. CM4/7 loops by WFI in ROM boot until activation by CM0+.

2. After the completion of ROM boot and Flash boot, CM0+ executes its user program code in the code flash.

3. CM0+ user program code configures the Flash Main Bank Mode to Dual Bank Mode. Flash mapping is split into two
halves, and each half is presented as a separate address region.

4. CM0+ user program code checks the remap parameter from certain known work flash area. If the data read from
work flash is as expected, CM0+ user program changes the remap control. At the initial state, when no firmware
update request is received, no remap control is being executed because the remap parameter will be pointing to
the original code.

5. CM0+ use program sets the program counter of CM4/7 user program, then CM4/7 user program in Bank 0 starts.

Figure 7. Starting First Application

(1) After Reset

Remap ParameterWork Flash

Code Flash (SMS)

Code Flash (ES)

Code Flash (SMS)

Code Flash (ES)

ROM

SRAM

User Program

for CM4/7
User Program

for CM0+

CM4/7
 CM0+

Remap Parameter

User Program

for CM4/7
User Program

for CM0+
CM0+

Remap Parameter

User Program

for CM4/7
User Program

for CM0+

Blank

Blank

(2) CM0+ User Program

Operation after Boot Up

(3) Dual Bank Configuration

in CM0+ User Program

Blank

Blank

Blank

(4) Work Flash Check

in CM0+ User Program

Remap Parameter

User Program

for CM4/7
User Program

for CM0+

Blank

Blank

(5) CM4/7 User

Program Operation

Remap Parameter

User Program

for CM4/7
User Program

for CM0+

Blank

Blank

CM4/7

CM0+

CM4/7

CM0+

CM4/7

CM0+

CM4/7

Blank

: Bank 1

: Bank 0

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 15

4.1.2 Flash Reprogramming

This section explains firmware update using flash dual bank modes. Figure 8 shows the entire process.

1. CM4/7 user program code in Bank 0 receives the firmware update request and data via vehicle LAN such as CAN
FD or Ethernet and so on.

2. CM0+ user program starts erasing entire area of code flash Bank 1 and certain work flash area, which contains
remap parameter. After the completion of flash erasing, CM0+ user program copies the same CM0+ user program
code to code flash Bank 1 and programs the new user program code for CM4/7. Finally, CM0+ updates remap
parameter in work flash, which is used to perform switching of the application code at the next reset. Remap
parameter would be any key code or start address of user program code and so on depending on the application
use case.

Note: In case of enabling cache on CYT4B series, you should set the MPU as non-cacheable for the following
memory.

 - SRAM Scratch area which used by IPC

 - Work Flash area

Figure 8. Flash Reprogramming

Erase and

Program

Remap ParameterWork Flash

Code Flash (SMS)

Code Flash (ES)

Code Flash (SMS)

Code Flash (ES)

ROM

SRAM

User Program for

CM4/7

User Program for

CM0+

Blank

Blank

Firmware Update

 Request and Data

(1) Reception of Firmware Update Request (2) Firmware Update Operation

Clone

Remap Parameter

User Program for

CM4/7

User Program for

CM0+

User Program 2 for

CM4/7

User Program for

CM0+

CM4/7

 CM0+ CM0+

CM4/7

: Bank 1

: Bank 0

Update

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 16

4.1.3 Start ing New CM4/7 User Program Code

This section explains the example how new CM4/7 user program code starts after switching the code flash bank.
Figure 9 shows entire process.

1. Once new user code is programmed and the remap parameter is updated, user code resets the MCU. After reset,
CM4/7 and CM0+ execute the boot code in ROM.

2. CM0+ user program configures the Flash Main Bank Mode to Dual Bank Mode. Flash mapping is split into two
halves, and each half is presented as a separate address region. After that, CM0+ user program reads the remap
parameter from work flash.

3. If the data read from work flash is an expected value, CM0+ jumps to the SRAM code, then changes the flash region
to “Mapping B” by setting the Flash Main Remap register.

4. After the completion of switching operation, address of code flash bank 0 will be swapped with code flash bank 1.
CM4/7 and CM0+ can read the flash memory of bank 1 by using the same address.

5. CM0+ jumps back to flash code. At this time, completely same CM0+ user program should be there. CM0+ sets the
program counter of CM4/7 to the new user program code, from where its execution is started.

Figure 9. Starting New CM4/7 User Program Code

CM4/7
CM0+

Remap ParameterWork Flash

Code Flash (SMS)

Code Flash (ES)

Code Flash (SMS)

Code Flash (ES)

ROM

SRAM

User Program for

CM4/7

User Program for

CM0+

User Program 2

for CM4/7

User Program for

CM0+

Remap Parameter

User Program for

CM4/7

User Program for

CM0+

User Program 2

for CM4/7

User Program for

CM0+

CM4/7

CM0+

Remap Parameter

User Program for

CM4/7

User Program for

CM0+

User Program 2

for CM4/7

User Program for

CM0+

Remap Parameter

User Program 2

for CM4/7

User Program for

CM0+

User Program for

CM4/7

User Program for

CM0+

Remap Parameter

User Program 2

for CM4/7

User Program for

CM0+

User Program for

CM4/7

User Program for

CM0+

CM0+

CM4/7

(1) After Reset
(2) Dual Bank Configuration

and Read from Work flash
(3) Jump to RAM code

(4) Remap and Switching

Code Flash Bank in RAM code

(5) Starting New CM4/7 user

program

CM4/7

CM0+

CM4/7

CM0+

: Bank 1

: Bank 0

4.2 Flash Rewriting Procedure using Dual Bank Mode and Remap Function

This section shows the example of flash rewriting procedure using dual bank mode and remap function. In this example,
User LED ON/OFF program is updated by the firmware update request. Work flash SA0 sector is used for storing the
remap parameters, then CM0+ code reads the data from work flash and configures the mapping. If the data read from
work flash is “0xAAAA_AAAA”, mapping A is performed. If the data read is “0xBBBB_BBBB”, mapping B is performed.
User application code is swapped and depends on the remap parameter in work flash.

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 17

Figure 10. Starting New CM4/7 User Program Code

Start

Set Write Enable for CodeFlash/WorkFLASH

Set CodeFLASH Bank Mode to Dual Bank Mode

Disable CM0+ Flash Cache

Invalidate Flash Cache Buffer

Erase Invalidate Flash Cache Buffer

Initialization

Read Remap parameter

from WorkFLASH SA0

and

Change Remap Operation

Is

WorkFLASH SA0= 0xAAAA_AAAA?

Switch to Map B by RAM Opearation

Is WorkFLASH SA0=

0xBBBB_BBBB?

Switch to Map A by RAM Operation

Yes　

No

Yes

CM0+

Activate CM4

 User Application Code

(LED 3 Blinking)

Original CM4/7 User Application Code

(Remap A, Logical Bank 0)

New CM4/7 User Application Code

(Remap B, Logical Bank 1)

User Application Code

for CM0+

and

Firmware Update

User Application Code

for CM4/7

Received Firmware Update

Request and Data?

Read Remap Parameter

from Work Flash SA0

Yes　

No

Erase Code Region of Logical Bank1

(0x1200 0000 ~ 0x1207 8000)

Clone CM0+ Code and

Program New CM4/7 User Code to Logical Bank1

Erase Code Region of Logical Bank0

(0x1000 0000 ~ 0x1007 8000)

Clone CM0+ Code and

Program New CM4/7 User Code to Logical Bank0

0xAAAA_AAAA

0xBBBB_BBBB

CM4/7

Start

CM4/7

Initialization (Clock etc)

Port Output Setting

User Application Code

(LED4-7 Blinking)

Start

Initialization (Clock etc)

Port Output Setting

New User Application Code

(LED0-1 & LED6-7 Blinking)

Program Remap Parameter (0xAAAA_AAAA)

for Work Flash SA0

Program Remap Parameter (0xBBBB_BBBB)

for Work Flash SA0

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 18

5 Glossary

Terms Description

eCT Embedded Charge-Trap

ECC Error correcting code

OTA Over-the-air

RAM Random access memory

SRAM Static random-access memory

P-DMA Peripheral DMA

M-DMA Memory DMA

IPC Inter-processer communication

IRQ Interrupt request

DAP Debug Access port

RWW Read-while-write

6 Related Documents

The following are the Traveo II family series datasheets and Technical Reference Manuals. Contact Technical Support
to obtain these documents.

▪ Device datasheet

 CYT2B7 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo II Family

 CYT2B9 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo II Family

 CYT4BF Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo II Family

 CYT4DN Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo II Family

 CYT3BB/4BB Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo II Family

▪ Body Controller Entry Family

 Traveo™ II Automotive Body Controller Entry Family Architecture Technical Reference Manual (TRM)

 Traveo™ II Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B7

 Traveo™ II Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B9

▪ Body Controller High Family

 Traveo™ II Automotive Body Controller High Family Architecture Technical Reference Manual (TRM) for

CYT4BF

 Traveo™ II Automotive Body Controller High Registers Technical Reference Manual (TRM) for CYT3BB/4BB

▪ Cluster 2D Family

 Traveo™ II Automotive Cluster 2D Family Architecture Technical Reference Manual (TRM)

 Traveo™ II Automotive Cluster 2D Registers Technical Reference Manual (TRM)

http://www.cypress.com/
http://www.cypress.com/support

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 19

Document History

Document Title: AN220242 - Flash Rewriting Procedure for Traveo II Family

Document Number: 002-20242

Revision ECN Submission
Date

Description of Change

** 6083636 03/09/2018 New Application Note.

*A 6398000 06/26/2019 Changed target parts number (CYT2B/CYT4B series)

Added Flash Rewriting Procedure using Dual Bank and Remap Function

*B 6740578 03/04/2020 Added a part number CYT2/CYT3/CYT4 series.

http://www.cypress.com/

Flash Rewriting Procedure for Traveo II Family

www.cypress.com Document Number: 002-20242 Rev. *B 20

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs |

Training | Components

Technical Support

cypress.com/support

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2018-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and
treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in
this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license
agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-
exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary
code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under
those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/cypressgithub
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 Overview of Flash Memory
	2.1 Features of Flash Memory
	2.2 Block Diagram
	2.3 Sector Configuration
	2.3.1 Sector Configuration
	2.3.2 Bank Mode and Remap Functionality
	2.3.2.1 Single Bank Mode
	2.3.2.2 Dual Bank Mode

	3 Flash Rewriting Procedure
	3.1 Setting Up IRQs for System Calls
	3.2 Flash Erase All Procedure
	3.2.1 Pre-configuration
	3.2.2 Requesting the “Erase All” API via CM0+ IRQ0 Handler
	3.2.3 Executing “Erase All” API from CM0+ IRQ0 Handler
	3.2.4 Assessing the Result of “Erase All” Operation from CM0+

	3.3 Program Row Procedure
	3.3.1 Pre-configuration of Parameter
	3.3.2 Requesting the “Program Row” API to CM0+ IRQ0
	3.3.3 Executing “Program Row” API in CM0+ IRQ0
	3.3.4 Assessing the Result of “Program Row” Operation from CM0+

	4 Flash Rewriting Using Dual Bank Approach
	4.1 Concept
	4.1.1 Starting First Application
	4.1.2 Flash Reprogramming
	4.1.3 Starting New CM4/7 User Program Code

	4.2 Flash Rewriting Procedure using Dual Bank Mode and Remap Function

	5 Glossary
	6 Related Documents
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

