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About this document
Scope and purpose

iMOTION ™ is a family of integrated products for the control of permanent magnet (PM) motors that combine
industry proven hardware and ready to use sovware.

These devices are capable of performing sensorless or sensor-based Field-Oriented Control (FOC) across the
entire speed range of the motor, ensuring stable control even at deep field weakening speeds. The iMOTION ™

sovware, deployed onto the hardware devices, is referred to as Motion Control Engine (MCE). A PC tool called
the iMOTION ™ Solution Designer (iSD) is available for the configuration, validation, deployment and user script
code development. In addition to motor control, the MCE provides a Power Factor Correction Control (PFC)
option. Furthermore, the MCE supports a scripting function that allows users to implement system-level
functionalities beyond motor control and PFC, thereby expanding the capabilities of the MCE.

This reference manual provides a comprehensive description of the features, protections, and configuration
options of the MCE. However, it should be noted that an actual product may only incorporate a subset of these
functionalities. For instance, power factor correction is exclusively available in dedicated devices. For detailed
information, please consult the relevant data sheet for each specific device.

The electrical, mechanical, timing, and quality parameters of the iMOTION ™ products are outlined in their
respective data sheets. These data sheets also specify the specific IO pins for the aforementioned
functionalities.

Reference to Parameter Reference Manual (PRM) for parameters details.

Additional documentation on using specific features, application examples or code implementations is made
available on the iMOTION ™ web pages.

Intended audience

This document is intended for users of iMOTION ™ devices
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1 Introduction
This document describes the motor control, power factor correction, and additional functions available in the
iMOTION ™ Motor Control Engine (MCE). The key features of the MCE are:

• Sensorless FOC control: Achieve high-performance sensorless Field Oriented Control (FOC) of Permanent
Magnet Synchronous Motors, including surface mounted and interior mount magnet motors. This is
accomplished by utilizing fast ADC, integrated op-amps, comparators, and motion peripherals of
iMOTION ™ devices

• Hall sensor-based FOC control: Support 2/3 digital Hall sensor and 2 analog Hall sensor configurations.

• Angle sensing for initial rotor angle detection: In combination with direct closed-loop start, the use of angle
sensing enhances motor start performance

• Single shunt or leg shunt motor current sensing: Ofer unique single shunt and leg shunt current
reconstruction capabilities. Integrated op-amps with configurable gain and A/D converter enable direct
shunt resistor interface to the iMOTION ™ device, eliminating the need for additional analog/digital
circuitry. The single shunt option can utilize either the minimum pulse method or the phase shiv method.
Phase Shiv PWM provides improved startup and low-speed performance in a single shunt configuration

• Support for 3-phase and 2-phase PWM modulation: Enable 2-phase SVPWM (Type-3) to reduce switching
losses compared to 3-phase SVPWM, due to symmetrical placement of zero vectors

• Enhanced flux-based control algorithm for quick and smooth start: Attain direct closed-loop control of
both torque and stator flux (field weakening) using proportional-integral controllers and space vector
modulation with over modulation strategy

• Supports Boost Mode Power Factor Correction (PFC)

• Networking capability with user mode UART: Available in both master and slave modes, supporting up to
15 nodes. Each node possesses its own address, and a broadcast feature is available to update all the
slaves simultaneously

• 15 re-programmable parameter blocks: Users can program 15 configuration blocks to save control
parameters. Each parameter block has a size of 256 bytes and can be programmed individually or all at
once using the Solution Designer

• Multiple motor parameter support: Each parameter block can be assigned to diferent motors or hardware
platforms

• Scripting support to enable users to write system level functionalities above the motor control and PFC

2 Motor Control

The MCE provides an advanced sensorless or Hall sensor based Field Oriented Control (FOC) algorithm to drive
Permanent Magnet Synchronous Motor (PMSM) loads, including constant air-gap surface mounted permanent
magnet (SPM) motors and interior permanent magnet (IPM) motors with variable-reluctance. A top-level
sensorless/Hall sensor based FOC algorithm structure is depicted in Figure 1. The implementation follows the
well-established cascaded control structure with an outer speed loop and inner current control loops that
adjust the motor winding voltages to drive the motor to the target speed. The field weakening block extends
the speed range of the drive.
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Figure 1 Top Level Diagram of Speed Control Loop and Sensorless FOC

The speed controller calculates the motor torque required to follow the target speed. While the current loops
drive the motor currents needed to generate this torque. The proportional plus integral (PI) speed loop
compensator acts on the error between the target speed and the actual (estimated) speed. The integral term
forces the steady state error to zero while the proportional term improves the high frequency response. The PI
compensator gains are adjusted depending on the motor and load characteristics to meet the target dynamic
performance. The limiting function on the output of the PI compensator prevents integral windup and
maintains the motor currents within the motor and drive capability.

The current loops calculate the inverter voltages to drive the motor currents needed to generate the desired
torque. Field oriented control (FOC) uses the Clarke transform and a vector rotation to transform the motor
winding currents into two quasi dc components, an Id component that reinforces or weakens the rotor field and
an Iq component that generates motor torque.

Two separate regulators control the Id and Iq currents and a forward vector rotation transforms the current loop
output voltages Vd and Vq into the two phase ac components (V³ and V´). A DC bus compensation function
adjusts the modulation index as a function of the dc bus voltage to reject dc bus ripple and improve current
loop stability. The Space Vector Pulse Width Modulator (SVPWM) generates the three phase power inverter
switching signals based on the V³ and V´ voltage inputs.

Typically, the Iq controller input is the torque reference from the speed controller and the Id reference current is
set to zero. However, above a certain speed, known as the base speed, the inverter output voltage becomes
limited by the dc bus voltage. In this situation, the field weakening controller generates a negative Id to oppose
the rotor magnet field that reduces the winding back EMF. This enables operation at higher speeds but at a
lower torque output. The controller includes a compensator that adjusts the Id current to maintain the motor
voltage magnitude within the bus voltage limit.

The rotor magnet position estimator consists of a flux estimator and PLL. Flux is calculated based on feedback
current, estimated voltages (based on dc bus feedback voltage and modulation index) and motor parameters
(inductance and resistance). The output of the flux estimator represents rotor magnet flux in the Alpha-Beta
(stationary orthogonal frame, u-phase aligned with Alpha) two-phase components. The angle and frequency
phase locked loop (PLL) estimates the flux angle and speed from the rotor magnet flux vector in Alpha-Beta
components. The vector rotation calculates the error between the rotor flux angle and the estimated angle. The
PI compensator and integrator in the closed loop path force angle and frequency estimate to track the angle
and frequency of the rotor flux. The motor speed is derived from the rotor frequency according to the number
of rotor poles.
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When driving an interior permanent magnet (IPM) motor the rotor saliency can generate a reluctance torque
component to augment the torque produced by the rotor magnet. When driving a surface magnet motor, there
is zero saliency (Ld = Lq) and Id is set to zero for maximum eficiency. In the case of IPM motor which has saliency
(Ld < Lq) a negative Id will produce positive reluctance torque. The most eficient operating point is when the
total torque is maximized for a given current magnitude.

2.1 State Handling

The control sovware has a number of diferent operating states to support the various transient operating
conditions between drive power-up and stable running of the motor under closed loop sensorless control.
These include preparation of the drive for starting, running the motor before the flux estimator reaches stable
operation, starting a motor that is already running and handling fault conditions. The Motion Control Engine
includes a built-in state machine that takes care of all state-handling for starting, stopping and performing
start-up. A state machine function is executed periodically (by default, every 1 ms). In total there are 12 states;
each state has a value between 0-12, the current state of the sequencer is stored in <Motor_SequencerState=
variable.

Table 1 State Description and Transition

State No Sequence State State Functionality Transition Event Next Sequence

State

0 IDLE Aver the controller power up,
control enters into this state.
If there is no valid parameter
block, sequencer stays in this
state

Parameters are loaded
successfully

STOP

1 STOP Wait for start command. Current
and voltage measurement are
done for protection

Current Amplifier ofset
calculation is not done

OFFSETCAL

Start Command BTSCHARGE

2 OFFSETCAL Ofset calculation for motor
current sensing input

Current ofset calculation
completed

STOP

3 BTSCHARGE Boot strap capacitor pre-
charge. Current and voltage
measurement are done for
protection

Bootstrap capacitor
charge completed

CATCHSPIN

ANGLESENSE

PARKING

OPENLOOP
MOTOR_RUN
(Flux/Hall/
Hybrid/

Openloop)

4/

10/

11/
12

MOTOR_RUN
(Flux/Hall/
Hybrid/

Openloop)

Normal motor run mode in flux/
hall/hybrid based rotor angle
estimation

Stop Command STOP

5 FAULT If any fault detected, motor will
be stopped (if it was previously
running) and enter FAULT state
from any other state

In UART control mode,
Fault clear command
by writing 1 to
<FaultClear=variable

STOP

(table continues...)
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Table 1 (continued) State Description and Transition

State No Sequence State State Functionality Transition Event Next Sequence

State

In Frequency/Duty/VSP
input control modes, aver
configured time

STOP

6 CATCHSPIN Flux estimator and flux PLL are
running in order to detect the
rotor position and measure the
motor speed of free running
motor. Speed regulator is
disabled and the Id & Iq current
commands are set to 0

Measured absolute motor
speed is above threshold
(<DirectStartThr=
parameter)

MOTOR_RUN
(Flux)

Measured absolute
motor speed is
less than threshold
(<DirectStartThr=
parameter)

ANGLESENSE

PARKING

OPENLOOP
MOTOR_RUN
(Flux)

7 PARKING Parking state is to align the rotor
to a known position by injecting
a linearly increased current.
The final current amplitude is
decided by low speed current
limit. Total time duration of
this state is configured by
<ParkTime= register

Parking completed OPENLOOP
MOTOR_RUN
(Flux)

8 OPENLOOP Move the rotor and accelerate
from speed zero to MinSpd
by using open loop angle.
Flux estimator and flux PLL
are executed in this state
in order to provide smooth
transition to MOTOR_RUN state.
Speed acceleration of the open
loop angle is configured by
<OpenLoopRamp= register

Speed reaches <MinSpd=
register value

MOTOR_RUN
(Flux/Hall/
Hybrid)

9 ANGLESENSE Measure the initial rotor angle.
The length of each sensing pulse
is configured by <IS_Pulses= (in
PWM cycles) register

Angle Sensing completed MOTOR_RUN
(Flux)

13 STAND-BY The MCE lowers standby power
consumption by reducing the
CPU clock and switching
of some of the controller
peripherals.

System is in a stopped
state, there are no faults
and a configured delay
time has expired. When
fault occurs it goes to
FAULT.

STOP

FAULT
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Figure 2 State Handling and Start Control Flow Chart

2.2 Variable Scaling

The MCE implements the control algorithms on a fixed point CPU core where physical voltage and current
signals are represented by fixed point integers. The MCE algorithm uses appropriate scaling for control
parameters and variables to optimize the precision of the motor and PFC control calculations. While all control
parameters and variables are stored as integers the MCE Ecosystem tools support display of control variables
and parameter settings as real numbers scaled to physical values.

The Figure 3 below describes the scaling used in diferent domains. In the hardware reference frame, current
and voltage measurements are scaled according to the input circuit scaling and the resolution of the ADC. The
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³-´ and d-q quasi-dc voltages are defined by the PWM modulator resolution and inverter DC bus voltage
capability. There is diferent motor current scaling in the AC and control reference frames. The ³-´ current
scaling is defined by the measurement scaling while the d-q scaling is defined by the motor current ratings. The
motor speed scaling is defined by the application requirements. There are three diferent time scales, the
Hardware timing is defined by the IC peripheral clock; the sampling and control timing is set by the PWM
frequency while the Application reference frame timing is fixed. All control parameter scaling is derived from
the control variable and time scaling for the relevant reference frame.

Reference to iMOTION ™ Solution Designer dashboard parameter tree section Global->Scaling for scaling factor
value details.

Figure 3 Scaling Domains for Control Variables and Parameters

2.3 Bootstrap Capacitor Charge

Bootstrap capacitors are charged by turning on all three low side switches. The charging current is limited by
the built-in pre-charge control function.

Instead of charging all low side devices simultaneously, the gate pre-charge control will schedule an alternating
(U, V, W phase) charging sequence. Each phase charges the bootstrap capacitor for a duration of 1/3rd of the
PWM cycle so each capacitor charge time is 1/3rd of the total pre-charge time.

Figure 4 illustrates the PWM signal during bootstrap capacitor charge state.

Figure 4 Bootstrap Capacitor Pre-charge

Total pre-charge time for each phase can be calculated from: TCℎarge =
BtsCℎargeTime

3 × FPWM
 where the parameter

8BtsChargeTime9 is the number of pre-charge PWM cycles.
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For example, if PWM frequency is 10 kHz, and BtsChargeTime is 100, then the pre-charge time of each phase will

be: 
100

3 × 10000
= 3.333 ms  .

2.4 Voltage measurement

The measurement of the DC bus voltage of the inverter board is required for voltage protection and DC bus
voltage compensation. The voltage is measured at every PWM cycle. DC bus voltage of the inverter is
measurement via a voltage divider circuit using 12-bit ADC. Measured DC bus voltage is internally represented
in 12 bit format.

Figure 5 DC Bus voltage feedback signal path

Example: R1 = 2 MΩ, R2 = 13.3 kΩ , Vadcref= 3.3 V and Vdc = 320 V; Measured DC bus voltage = 2623 counts

Attention: In Solution Designer R1 and R2 values shall be configured as per actual hardware used. Wrong

configuration may lead to wrong under voltage/over voltage/Critical over voltage fault or over

voltage/under voltage/critical over voltage conditions may not be detected correctly.

2.5 Current Sensing O�set Measurement

The current sensing ofset is measured by the MCE in the OFFSETCAL state. This is achieved by calculating the
average of the configured samples when the inverter is not switching (all six PWM outputs are set to the
configured passive level) and when there is no motor phase current flowing through the shunt resistor(s). The
number of current input ofset samples is determined by the value of the "FB_MEASURE.OfsetSample"
parameter. ADC sampling is performed during every base rate period, which is triggered by the PWM unit and
occurs at the rate of the PWM period multiplied by the fast control rate.

The number of ADC samples = 2 FB_MEASURE.OfsetSample ; By Default, FB_MEASURE.OfsetSample = 13, so number
of samples is 8192

In the event of a single shunt configuration (where "APP_MOTOR0.HwConfig.ShuntType" equals 0), the MCE
measures the current sensing ofset value at the Iss pin. The current input ofset value is sampled
independently for both the negative and positive current input ADC channels, and the average value is then
stored in the variables "FB_MEASURE.IOfset0" and "FB_MEASURE.IOfset1" respectively.

In the event of a 2-phase leg shunt configuration ("APP_MOTOR0.HwConfig.ShuntType" = 1 and
"APP_MOTOR0.HwConfig.LegShuntType" = 0), the MCE (Motor Control Electronics) measures the current
sensing ofset value at the Iu pin for phase U and at the Iv pin for phase V. These values are then averaged and
saved into the variables "FB_MEASURE.IOfset0" and "FB_MEASURE.IOfset1" respectively.

In the event of a 3-phase leg shunt configuration ("APP_MOTOR0.HwConfig.ShuntType" = 1 and
"APP_MOTOR0.HwConfig.LegShuntType" = 1), the MCE measures the current sensing ofset value at the Iu pin
for phase U, at the Iv pin for phase V, and at the Iw pin for phase W. The measured values are then averaged and
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saved into the variables "FB_MEASURE.IOfset0," "FB_MEASURE.IOfset1," and "FB_MEASURE.IOfset2,"
respectively.

The duration of OFFSETCAL state time can be estimated using the following equation:

TOffset_Cal =
Fast_Control_Rate × 2FB_MESURE.OffsetSample

FPWM
 ; By Default, FB_MEASURE.OfsetSample =13, so the

number of sameples is 8192

Users have the option to enable or disable current ofset calculations aver a fault is cleared. If enabled, the
system will perform current ofset calculations again when a fault occurs. If the value of the
"APP_MOTOR0.HwConfig.CurrentofSetComp" bitfield is set to 1, the current ofset calculation will no longer
take place and will remain as the initial value. Ofset Calibration can be triggered by setting the bit 1 of the
"APP_MOTOR0.Command" variable while the system is in a stopped state.

2.6 Current Measurement

In order to implement field oriented control, it is crucial to measure the motor winding currents precisely.
Motor phase current values are used for the current control and flux estimator. Current is measured at every
PWM cycle. The following Table 2 summarizes all the current measurement configurations supported by the
MCE. The details of each configuration and its relevant PWM schemes will be described in the following
sections.

Table 2 Current Measurement Configurations&PWM Schemes

Current Measurement Configurations Needed Number

of Shunt

Resistors

PWM Schemes

Leg shunt - 2 Phase current measurement 2 Center aligned symmetrical
PWM3 Phase current measurment 3

Single shunt 1 Center aligned
asymmetrical PWM

• Phase shiv PMW

• Low noise phase shiv
PMW

The internal amplifiers are used for current measurement, so no external op-amp is required. The gain of the
internal amplifier can be configured using the Solution Designer.

The following Figure 6 shows the details of the motor phase current feedback signal path.

Figure 6 Motor current feedback signal path (TminPhaseShi� ≠ 0)
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Attention: In the Solution Designer current input value shall be configured as per actual hardware used.

Wrong configuration may lead to wrong over current fault or over current conditions may not be

detected correctly.

2.6.1 Leg Shunt Current Measurement

Leg-shunt current sensing configuration uses 3 shunt resistors to sense the 3 inverter phases as shown in the
following Figure 7. For 2 phase current sensing, the MCE only senses phase U and phase V current, and phase W
current is calculated assuming the sum of the three phase current values is zero. For 3 phase current sensing,
the MCE senses all three phase currents. The motor phase current would flow through the shunt resistor only
when the low-side switch is closed. Accordingly, the MCE chooses to sense the motor phase current values
during the zero vector [000] time in the vicinity of the start of a PWM cycle. Accordingly, a minimum duration of
zero vector [000] (TGB_min) as shown in Figure 8 is needed to ensure proper sampling of motor phase current
values. This minimum duration can be specified by using the parameter 8PwmGuardBand9 following this
equation. TGBmin = PwmGuardBand × 10.417ns. Thanks to this minimum duration of zero vector [000], the ON

time of each phase PWM signal would never be longer than TPWM – TBGmin.

Figure 7 Typical Circuit Diagram for Leg Shunt Current Measurement Configuration

The current sensing timing for 2-phase leg shunt configuration is shown in the following Figure 8. In each PWM
cycle, Ta and Tb refer to the 2 active vector time respectively, and 2 x T0 refers to the total zero vector ([000],
[111]) time. The duration of zero vector [111] is the same as that of zero vector [000]. The first current sensing

point (CS1) is the time to sense phase U current, and it occurs TSD +
4

fPCLK
= TSD + 41.668ns aver the start of a

PWM cycle. TSD is the needed ADC sampling delay time, and it can be positive or negative as required TSD , can

be configured by using the parameter 8SHDelay9 following this equation TSD = SHDelay × 10.417ns . The ADC

sampling time Tsample is about, and the ADC conversion time Tconversation is about . The second current sensing

point (CS2) is the time to sense phase V current. CS2 occurs right aver the completion of the CS1 sampling and
conversion operation.
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Case A: 3-Phase PWM Modulation Scheme 

Case B: 2-Phase PWM Modulation Scheme 

Figure 8 Leg Shunt Configuration Current Sensing Timing Diagram

The current sensing timing for the 3-phase leg shunt configuration is shown in the following Figure 9. The first
current sensing point (CS1) is the time to sense phase U current. The second current sensing point (CS2) is the
time to sense phase V current. CS2 occurs right aver the completion of the CS1 sampling and conversion
operation. The third current sensing point (CS3) is the time to sense phase W current. CS3 occurs right aver the
completion of the CS2 sampling and conversion operation.
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Case A: 3-Phase PWM Modulation Scheme 

Case B: 2-Phase PWM Modulation Scheme 

Figure 9 Leg Shunt Configuration 3-Phase Current Sensing Timing Diagram

2.6.2 Single Shunt Current Measurement

Single-shunt current sensing configuration uses only one shunt resistor to sense the DC link current as shown in
Figure 10. It is oven used for the sake of cost advantage. With single-shunt configuration, only the DC link
current can be sampled by the MCE. The motor phase currents, needed for control feedback, can be extracted
from DC link current when the active (non-zero) vectors are being applied during each PWM cycle. Two diferent
active vectors are applied during each PWM cycle, and the DC link current during each active vector time
represents some specific motor phase current depending on sector information. The third motor phase current
value can be calculated assuming the sum of the three phase current values is zero.
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Figure 10 Typical Circuit Diagram for Single Shunt Current Measurement Configuration

As mentioned, one phase current can be extracted from the DC-link current during each active vector. With
symmetrical PWM, the PWM signals are mirrored around the center point of the cycle meaning both active
vectors are applied two times during a PWM cycle. This leaves an opportunity to measure the phase currents in
the both the first- and in the second half of the PWM cycle. To minimize control delay, the MCE measures the
currents in the second half of the PWM cycle.

The principle behind single shunt current sensing is shown in Figure 11. Case A shows the conventional 3-phase
scheme and Case B shows the 2-phase PWM scheme. The first current sensing point (CS1) is for sensing phase
current during the first active vector (in the case shown in Figure 11, the sensed current is negative phase W

during the active vector [110] time). CS1 occurs 
Tb
2
+ TSD aver the start of this active vector, where Tb is the

active vector on-time and Tsd is the sample delay time. The second current sensing point (CS2) is for sensing
phase current during the second active vector (in the case shown in Figure 11, the sensed current is phase U

during the active vector [100] time). CS2 occurs 
Ta
2
+ TSD aver the start of this active vector, where Ta is the on-

time of the active vector TSD . is the needed ADC sampling delay time, and it can be either positive or negative

as required. can be configured by using the parameter 8SHDelay9 following the equation
TSD = SHDelay × 10.417ns .Figure 11. Case A shows the conventional 3-phase scheme and Case B shows the 2-

phase PWM scheme. The first current sensing point (CS1) is for sensing phase current during the first active
vector (in the case shown in , the sensed current is negative phase W during the active vector [110] time). CS1
occurs aver the start of this active vector, where Tb is the active vector on-time and Tsd is the sample delay
time. The second current sensing point (CS2) is for sensing phase current during the second active vector (in the
case shown in , the sensed current is phase U during the active vector [100] time). CS2 occurs aver the start of
this active vector, where Ta is the on-time of the active vector. is the needed ADC sampling delay time, and it
can be either positive or negative as required. can be configured by using the parameter 8SHDelay9 following the
equation .

If the desired CS1 or CS2 points are estimated to occur aver the end of the PWM cycle, the actual CS1 or CS2
points are adjusted by the MCE to occur just before the end of this PWM cycle to ensure the latest current
sample values are available at the beginning of the following PWM cycle when the FOC calculation begins to
execute.
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Case A: 3-Phase PWM Scheme              Case B: 2-Phase PWM Scheme 

Figure 11 Principle behind Single Shunt Current Sensing

2.6.2.1 Limitations of Single Shunt Current Reconstruction

With single shunt reconstruction, the current through one of the phases can be sensed across the shunt resistor
during the active vectors. However, when the desired voltage vector is at sector cross-over regions or when the
magnitude of the desired voltage vector is low (low modulation index), the duration of one or both active
vectors is too short to guarantee reliable sampling of phase current. These operating conditions are shaded in
the space vector diagram shown in Figure 12. In the example shown in Figure 12, the active vector [110] time Tb

is not long enough to ensure reliable current sensing.

Figure 12 Narrow pulse limitation of single shunt current sensing

In order to guarantee reliable sampling of the current, the space vector reference voltage must lie outside the
shaded area of the vector diagram. This poses a problem as the motor voltage space vector must rotate
smoothly at any modulation index and any deviation between the ideal target output voltage and the actual
output voltage leads to voltage distortion. This voltage distortion may cause audible noise and degradation of
control performance, especially at lower speed. The shaded regions in the space vector diagram shown in
Figure 12 mark the areas where output voltage distortion is introduced.

To enable single shunt current reconstruction a number of techniques exist. They all modify the modulation
scheme so that the mimimum active vector required to measure the current is preserved. How this mimimum
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measurement time is guaranteed and how much distortion is introduced is highly dependent on the technique
used. The MCE ofers two advanced schemes which enable optimal control performance and reduced the
voltage distortion. The techniques are:

• Phase Shiv PWM

• Low Noise Phase Shiv PWM

2.6.2.2 Phase Shi� PWM

With phase shiv PWM scheme, the output of each PWM cycle is not always center aligned. A minimum active
vector time (TPSmin) is desired to ensure proper sampling of phase current. TPSmin can be specified by using the
parameter 8TminPhaseShiv9 following this equation TPSmin = TminPℎaseSℎift × 10.417ns . If the desired

active vector time (Ta or Tb) is longer than TPSmin, then the PWM patterns remain intact. If the desired active
vector time (Ta or Tb) is less than TPSmin, then the 3 phase PWM patterns are shived accordingly to ensure that
the actual active vector time at the falling edge is no less than the specified minimum active vector time TPSmin.

As shown in Figure 13, the active vector [110] time at the falling edge is Tb2, and the active vector [100] time at
the falling edge is Ta2. Given that the desired minimum active vector time TPSmin = 3 x Ta2, then Ta2 is not long
enough while Tb2 is suficient. Consequently, U phase PWM needs to be shived right and V phase PWM needs to
be shived lev to add enough time for active vector [100] (Ta29 = TPSmin). It can be observed in Figure 13 case 1
that the PWM phase shiv action equivalently adds an additional active vector [010] highlighted in red in Figure
13 that didn9t exist originally. However, the impact of this additional vector is mitigated thanks to the extension
of vector [100] time and the shrinking of vector [110] time.

iMOTION™ Motion Control Engine
Functional Reference Manual

2  Motor Control

Functional Reference Manual 21 V 1.4
2024-10-28



Case A: 3-Phase PWM Modulation Scheme 

Case B: 2-Phase PWM Modulation Scheme 

Figure 13 Single Shunt Configuration with Phase Shi� PWM Scheme Current Sensing Timing

Diagram (Case 1: Ta2 < TPSmin, Tb2 > 2 x TPSmin)
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As shown in Figure 14, given that the desired minimum active vector time TPSmin = 3 x Tb2, then Tb2 is not long
enough while Ta2 is suficient. Consequently, phase W PWM needs to be shived lev to add enough time for
active vector [110] (Tb29 = TPSmin). It can be observed in Figure 14 the PWM phase shiv action equivalently adds
an additional active vector [101] highlighted in red in Figure 14 that did not exist originally. However, the
impact of this additional vector is mitigated thanks to the extension of vector [110] time and the shrinking of
vector [100] time.

Figure 14 Single Shunt Configuration with Phase Shi� PWM Scheme Current Sensing Timing

Diagram (Case 2: Ta2 > 2 x TPSmin, Tb2 < TPSmin)

The current sensing timing for single shunt configuration with phase shiv PWM scheme depends on the
relationship between the active vector time (Ta or Tb) and the desired minimum active vector time TPSmin.

If Ta or Tb is more than 2 times TPSmin, then the corresponding current sensing point occurs at the middle of that
active vector time with a sampling delay time TSD . Examples are Tb2 in Figure 13, and Ta2 in Figure 14. This is

consistent with the current sensing timing described in Figure 11.

If Ta or Tb is within the range from TPSmin to 2 times TPSmin, then the corresponding current sensing point occurs
TTSmin + TSD aver the start of this active vector time. In the example shown in the following Figure 15, both Ta
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and Tb fall between TPSmin and 2 x TPSmin. So, the CS1 occurs TPSmin + TSD aver the start of active vector [110]

time, and the CS2 occurs TPSmin + TSD aver the start of active vector [100] time.

If Ta or Tb is less than TPSmin, then necessary phase shiv is applied to ensure desired minimum active vector
time TPSmin. Accordingly, the corresponding current sensing point TSD occurs aver the end of TPSmin. In Figure

13, Ta2 is less than TPSmin. So, phase shiv is applied to ensure the adjusted Ta29 = TPSmin. The corresponding CS2
occurs TSD aver the end of Ta29. In Figure 14, Tb2 is less than TPSmin. So, phase shiv is applied to ensure the

adjusted Tb29 = TPSmin. The corresponding CS1 occurs TSD aver the end of Tb29.

If the desired CS1 or CS2 point is estimated to occur aver the end of the PWM cycle, then the actual CS1 or CS2
point is adjusted to occur just before the end of this PWM cycle to ensure the latest sampled current values are
available at the beginning of the following PWM cycle when the FOC calculation is executed.

By using phase shiv scheme, the actual output during each PWM cycle will be exactly the same as target
output. Control performance at lower speed can be improved compared to using minimum pulse width PWM
scheme. To achieve optimal control performance in this mode, 8TminPhaseShiv9 and 8SHDelay9 parameters
need to be tuned appropriately.

Figure 15 Single Shunt Configuration with Phase Shi� PWM Scheme Current Sensing Timing

Diagram (Case 3: TPSmin ≤ Ta2 ≤ 2 x TPSmin, TPSmin ≤ Tb2 ≤ 2 x TPSmin)

2.6.2.3 Low Noise Phase Shi� PWM

One of the drawbacks of the above-mentioned phase shiv scheme is that the shiving patterns are diferent in
diferent sectors, and the change in shiving patterns during the sector-crossing time would still cause some
acoustic noise, especially when the motor is running at lower speed.

The MCE provides an alternative option of low noise phase shiv PWM scheme in order to further reduce the
acoustic noise when the motor is running at lower speed. Compared to normal phase shiv PWM scheme, the
low noise phase shiv PWM scheme adopts a fixed shiving pattern in all 6 PWM sectors, so that the acoustic
noise caused by shiving pattern change is eliminated.

As shown in Figure 16, a fixed shiving pattern in the order of W→V→U is chosen with which the available vectors
for single-shunt current sensing are vector [110] and [100]. With these 2 active vectors, motor current on W
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phase and U phase can be sensed consecutively. The duration of these 2 vectors (TPSmin) can be configured by
using the parameter 8TMinPhaseShiv9 following this equation TPSmin = TminPℎaseSℎift × 10.417ns .

Figure 16 shows 5 typical output voltage vector examples (A, B, C, D, E) that fall within the sector-crossing area
(grey area) using low noise phase shiv PWM scheme.

In example A, vector [110] and [100] are already available but vector [100] is too short for sensing phase U
current properly. With low noise phase shiv PWM scheme, V phase PWM and W phase PWM are shived
asymmetrically to extend the period of vector [100] to form an appropriate window for sensing phase U current.

In example B, vector [110] and [100] are already available but vector [110] is too short for sensing phase W
current properly. With low noise phase shiv PWM scheme, V phase PWM and W phase PWM are shived
asymmetrically to extend the period of vector [110] to form an appropriate window for sensing phase W
current.

In example C, vector [100] is already available, but vector [110] is not available. With low noise phase shiv PWM
scheme, an additional vector [110] is added to form an appropriate window for sensing phase W current by
shiving V phase PWM and W phase PWM asymmetrically. The impact of introducing the additional vector [110]
is mitigated thanks to the extension of vector [101] and shrinking of vector [100].

In example D, vector [100] is already available, but vector [110] is not available. With low noise phase shiv PWM
scheme, an additional vector [110] is added to form an appropriate window for sensing phase W current by
shiving V phase PWM and W phase PWM asymmetrically. The impact of adding vector [110] is mitigated thanks
to the addition of vector [001].

In example E, vector [100] is already available, but vector [110] is not available. With low noise phase shiv PWM
scheme, an additional vector [110] is added to form an appropriate window for sensing phase W current by
shiving V phase PWM and W phase PWM asymmetrically. The impact of adding vector [110] is mitigated thanks
to the addition of vector [001].

Figure 16 Low Noise Phase Shi� PWM Scheme

The current sensing timing for single shunt configuration with low noise phase shiv PWM is shown in the
following Figure 17. With low noise phase shiv PWM scheme, no matter if the active vector time Ta2 or Tb2 is
suficient or not compared to the desired minimum active vector time (TPSmin), the phase PWM waveforms are
always shived to include the active vector [110] and [100] time with the duration of TPSmin (Ta29 = TPSmin, Tb29 =
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TPSmin) to satisfy the current sensing requirement. Consequently, the first current sensing point (CS1) occurs
aver the end of the active vector [110] time Tb29. The second current sensing point (CS2) occurs aver the end of
the active vector [100] time Ta29.

If the desired CS1 or CS2 point is estimated to occur aver the end of the PWM cycle, then the actual CS1 or CS2
point is adjusted to occur just before the end of this PWM cycle to ensure the latest sampled current values are
available at the beginning of the following PWM cycle when the FOC calculation is executed.

Figure 17 Single Shunt Configuration with Low Noise Phase Shi� PWM Scheme Current Sensing

Timing Diagram

Since the shiving pattern is fixed, low noise phase shiv PWM is only applicable to 3-phase PWM modulation
type, and the maximum PWM modulation index is limited. When low noise phase shiv PWM scheme is enabled,
the MCE automatically shivs to normal phase shiv PWM scheme if the modulation index increases to more than
50%. If the modulation index is decreased below 35%, the MCE automatically shivs back to low noise phase
shiv PWM scheme.
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With low noise phase shiv PWM scheme, the actual output voltage during each PWM cycle is still exactly the
same as the target output voltage. As a result, acoustic noise level at low speed and start-up performance is
further improved compared to using normal phase shiv PWM scheme. To achieve optimal control performance
in this mode, 8TminPhaseShiv9 and 8SHDelay9 parameters need to be tuned appropriately.

2.6.2.4 Peak Current Tracking with No Phase Shi� Window

Certain AC fan control applications are extremely sensitive to acoustic noise especially in the low speed
operating range. In this case, a modulation control mode without a minimum pulse sampling window
minimizes sinusoidal voltage modulation distortion and the associated acoustic noise. In the single shunt
configuration, the lack of a minimum sampling window restricts inverter current sampling to PWM cycles with
active vectors greater than the required minimum pulse width. This discontinuous current sampling does not
support AC winding current reconstruction and limits the control to open loop modulation/voltage control. This
does not significantly impact drive performance at low speeds but there is a need to limit motor currents in
overload conditions. It is still possible to provide overload protection based on the available current samples
but a sample rate lower than the PWM frequency. The MCE provides an alternative peak current tracking
method to realize peak current limiting function when the phase shiv window is fully closed.

When TminPhaseShiv = 0 with single shunt configuration, the MCE automatically switches to peak current
tracking mode in which it takes 2 consecutive current samplings during each PWM cycle, and the bigger value of
the 2 current sample values is assigned to variable 8Ipeak9. Right aver each sector change, the 8Ipeak9 variable is
reset to zero to prepare for the peak current tracking in the new sector. The 8Ipeak9 value is then directly
assigned to variable 8Iq9 per PWM cycle so that the q axis regulator can limit the current. Meanwhile, the 8Id9
variable is always set to zero in peak current tracking mode.

The motor phase current feedback signal path with TminPhaseShiv = 0 is shown in the following Figure 18. The
scaling factor for 8Ipeak9 is designed in such a way that 8Ipeak9 value is represented in the same way as how the
8Iq9 value is represented. Using this peak current tracking method, one can still use the Iq current control loop
to monitor and limit the peak current when TminPhaseShiv = 0 with single shunt configuration.

When TminPhaseShiv ≠ 0, 8Ipeak9 variable is reset to zero, and the MCE goes back to normal phase current
reconstruction mode with single shunt configuration.

Figure 18 Motor current feedback signal path (TminPhaseShi� = 0, single shunt)

In peak current tracking mode, the motor current sensing timing is adjusted as needed.

For normal phase shiv PWM scheme in peak current tracking mode as shown in the following Figure 19, if both
active vector time (Ta and Tb) are longer than 1 μs (Case 1), then the first current sensing point (CS1) occurs
TDT + TSD aver half of the active vector time Tb. The second current sensing point (CS2) occurs TDT + TSD aver

half of the active vector time Ta.

If the active vector time Ta is shorter than 1 μs (Case 2, Case 4), then CS2 point is relocated to 0.5 μs before the
end of the current PWM cycle to avoid getting invalid current sensing value.

If the active vector time Tb is shorter than 1 μs (Case 3, Case 4), then CS1 point is relocated to 0.5 μs aver the
start of the current PWM cycle to avoid getting invalid current sensing value
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Figure 19 Single Shunt Configuration with Phase Shi� PWM Scheme in Peak Current Tracking

Mode Current Sensing Timing Diagram

For low noise phase shiv PWM scheme in peak current tracking mode as shown in the following Figure 20,
assuming the total active vector time is 2 x Ta and 2 x Tb respectively, if both Ta and Tb are longer than 1 μs
(Case 1), then the first current sensing point (CS1) occurs Ta + TDT + TSD + 1μs aver the start of the active

vector time 2 x Ta. The second current sensing point (CS2) occurs Ta + TDT + TSD + 1μs aver the start of the

active vector time 2 x Tb.

If Ta is shorter than 1 μs (Case 2, Case 4), then CS1 point is relocated to 1 μs before the start of the active vector
time 2 x Ta to avoid getting invalid current sensing value. If the desired CS1 point is estimated to occur before
the start of the PWM cycle, then the actual CS1 point is adjusted to occur just aver the start of this PWM cycle to
avoid getting invalid current sensing value.
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If Tb is shorter than 1 μs (Case 3, Case 4), then CS2 point is relocated to 4 μs aver the start of the zero vector
[111] time T0 to avoid getting invalid current sensing value.

Figure 20 Single Shunt Configuration with Low Noise Phase Shi� PWM Scheme in Peak Current

Tracking Mode Current Sensing Timing Diagram

2.7 Initial Angle Sensing

Some fan applications requires starting up motors in the right direction reliably without reverse motion. Using
the traditional parking + open-loop method would cause undesired reverse motion in some cases. Using direct
start method sometimes might fail due to insuficient Back-EMF at low motor speed range.

MCE ofers a patented initial angle sensing function that estimates the rotor angle by injecting six current
pulses at diferent angles for a duration of a few milliseconds before starting. The initial angle is then calculated
based on the current amplitude of those sensing pulses. Aver ANGLE_SENSING state is completed, the motor
state machine would shiv to MOTOR_RUN state to run the closed loop FOC control directly.
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Figure 21 shows the inject current pulses sequence of phase A. Two injection signals will generate two opposite
magnetic fields.

Figure 21 Inject current pulses

Every two opposite injection signals will generate two current signals. The current signal with a higher peak
value represents the direction of the magnetic field closer to the direction of the injected signal. Inject the
remaining 4 sets of current pulse signals in the same way. All the 6 pulse signals sequence is
0°,180°,60°,240°,120°,300°.Measured and compared all the current and the direction of the magnetic field will
be limited to a range of 60 degrees finally. Figure 22 shows the current measured and the final calculated
magnetic field direction.

Figure 22 Current pulses and rotor position

Using the initial angle sensing function can always starts the motor in the right direction and avoids potential
reverse motion during parking when used in sensorless FOC control. The initial angle estimation relies on rotor
magnetic saliency and performs better when the motor Ld to Lq ratio is less than 95% and the average
inductance is greater than 0.1 mH.

The relevant control parameters (IS_Pulses, IS_Duty, IS_IqInit) are automatically calculated by Solution
Designer based on the Ld and Lq motor parameters entered. Due to the calculation of Ton also involves the
rated current of the motor, accurate Irated parameters are also necessary.

This method only takes care of the initial angle measurement so tuning the flux estimator may be required
when driving high inertia loads. If the motor speed is not zero at the start-up, then the detected angle might not
be accurate. It is then recommended to use catch-spin function in that scenario.

When speed area between 0 ~5%, user still needs some tuning before flux PLL can work properly. When speed is
above ~10%, this method is not accurate.
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2.8 Hall Sensor Interface

The MCE Hall angle extraction algorithm estimates rotor angle and velocity signals per motor PWM cycle from
the four times (2 Hall sensors) or six times (3 Hall sensors) per electrical cycle digital Hall input transition
events. The optional Atan angle algorithm extracts rotor angle and velocity signals per motor PWM cycle from
the two analog Hall sensor signals.

The MCE Hall sensor interface supports the following Hall sensor configurations as shown in Table 3.

Table 3 Supported Hall Sensor Configurations

Interface Type Supported Configuration Sensor Displacement (Electrical

Angle)

Digital 2/3 digital Hall sensors 120°

Analog 2 analog Hall sensors 120°

2.8.1 Interface Structure

As shown in the following Figure 23, the analog Hall sensor positive and negative outputs are connected to non-
inverting and inverting inputs of the internal comparators with configurable hysteresis (bit field [7:6] of
parameter 8HallConfig9) respectively. During every Hall zero-crossing event between AHALLx+ and AHALLx- (x =
1, 2), the relevant comparator output toggles accordingly. The internal comparator outputs are connected via a
multiplexer to H1 and H2 inputs of the Hall Event Capture block. The analog Hall sensor outputs are also
connected to the four internal ADC channels through an equivalent gain stage of 1 for the purpose of sampling
analog Hall sensor output voltage values, which are used to calculate Atan angle when Hall Atan angle
calculation method is enabled.

The digital Hall sensor outputs are directly connected via the multiplexer to the corresponding H1, H2, and H3
inputs of the Hall Event Capture block, whose outputs are Hall event timing information and the Hall pattern
that are used by Hall PLL block to estimate Hall angle and Hall speed.

Figure 23 Hall Sensor Interface High-Level Structure Overview
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2.8.2 Hall Sample De-Bounce Filter

A hardware noise filter is included in the Hall event capture block to provide de-bounce check mechanism
before sampling Hall inputs. The noise filter timing mechanism is shown in the following Figure 24 . Whenever
there comes a transition detected at H1, H2 or H3 input, its status is not sampled until aver a configurable de-
bounce time (TDB) has elapsed. If there comes another transition before TDB has elapsed, then the scheduled
following sampling operation is cancelled and the de-bounce time counting starts over. This de-bounce time
can be configured by using the parameter 8SampleFilter9 following this equation
TDB = SampleFilter × 10.417ns .

Figure 24 Hall Sensor Noise Filter Timing Diagram

2.8.3 Hall Angle Estimation

Digital Hall sensors or comparator based analog Hall sensor interface provide discrete angle inputs at each Hall
transition event. For 3 digital Hall sensor configuration, a Hall transition event occurs every 60° electrical angle.

For 2 digital Hall sensor configuration, a Hall input transition event occurs every 60° electrical angle (normal
sector) or 120° electrical angle (wide sector) alternately. For 2 analog Hall sensor configuration, the two internal
comparators are used to detect zero-crossing events, and the corresponding Hall transition event occurs the
same way as in the case of 2 digital Hall sensor configuration.

The MCE9s Hall angle estimation algorithm estimates Hall angle between sequential hall transition events by
integrating a Hall frequency estimate. It takes advantage of a PLL loop to keep track of the actual Hall
frequency and correct angle estimation error by subtracting a compensation term to the Hall frequency
integrator over the next Hall transition event cycle.

The status of the digital inputs of the Hall Event Capture block is sampled by the MCE9s hardware peripheral
when a Hall transition event occurs. The sampled Hall inputs form certain Hall pattern as described in Chapter
2.8.3.1.

The MCE9s Hall angle estimation routine is executed during each motor PWM cycle. Details of the Hall angle
estimation process is described in the following two sub-sections.

2.8.3.1 Hall Angle Estimation with PLL

When Hall PLL is enabled (KpHallPLL > 0), the Hall angle estimation algorithm is depicted in the following
Figure 25.
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Figure 25 Hall Angle Estimation Algorithm Diagram (Hall PLL Enabled)

During each motor PWM cycle, the MCE9s Hall angle estimation routine integrates the diference ωest_adj

between the low-pass filtered Hall frequency estimate ωest (variable 8HallFreq9) and a compensation term ωadj

to generate the estimated Hall angle θest as shown in the blue block in Figure 25. If the estimated Hall angle
increment is accumulated up to 75° (normal sector) or 150° (wide sector) since last Hall transition event, no
further integration is performed and θest stays flat until next Hall transition event occurs.

The MCE also checks if there occurs a new Hall transition event since last check during each motor PWM cycle. If
there exists a new Hall transition event, the following steps are performed as shown in the orange block in
Figure 25.

The newly sampled Hall pattern is first validated against an expected pattern based on rotating direction.

If it is validated successfully, then a corresponding new sector number is calculated based on a mapping
relationship between Hall patterns and sector numbers as shown in Figure 27.

Next, raw Hall frequency estimate ωest_raw, which represents the amount of angle change per PWM cycle, is
calculated as the result of the division of angle diference between the two sequential Hall transition events
ΔθHall and the time interval ΔtHall_event between the two sequential Hall transition events

( ωest raw =
ΔθHall

ΔtHall event
 ). If the time interval between the two sequential Hall transition events ΔtHall_event is

longer than 4096 PWM cycles, then it is considered timed out and ωest_raw is rest to zero. The updated raw Hall
frequency estimate is low-pass filtered with a configurable time constant Tdecay. To achieve a desired

bandwidth ωc =
1

Tdecay
 for this low-pass filter, please follow this equation to calculate the value for the variable

8FrequencyBW9: FrequencyBW = 216 × 1 − e
ωc × Fast_Control_Rate

FPWM  . The filtered Hall frequency estimate ωes

(variable 8HallFreq9) is available to be used for Hall angle estimation.

Next, the actual Hall angle θHall is calculated based on the updated sector number and the rotating direction
and wide sector flag. The estimated Hall angle θest is not adjusted immediately at each Hall transition event.
The Hall angle estimation error εθest is corrected by adding a compensation term ωadj to the Hall frequency
integrator ove the next Hall transition event cycle. The frequency compensation term ωadj is calculated as the
product of a proportional factor (parameter 8KpHallPLL9) and the division of the angle estimation error εθest by

the time interval between the two sequential Hall transiton events ( ωadj = KpHallPLL ×
ϵθest

ΔtHall event
 ). If the

angle estimation error εθest is greater than 15° (normal sector) or 30° (wide sector), then the estimated Hall
angle θest is reset to the value of the actual Hall angle θHall, and the compensation term ωadj is reset to 0.

Finally, the variable 8HallAngle9 is updated following this equation: HallAngle = θest + HallAngleOffset . The

configuration of the parameter 8HallAngleOfset9 is described in Chapter 2.8.6. The parameter 8HallSpeed9 is
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updated from the product of the low-pass filtered Hall frequency estimate ωest with coresponding scaling
factors.

With Hall PLL enabled, the angle estimation error εθest is corrected over the following Hall event cycles, so that
the estimated Hall angle θest would not jump abruptly at each Hall transition event. Thus, the motor is
expected to run relatively more smoothly when it is accelerating or decelerating. It is recommended to take
advantage of Hall PLL by selecting a value for parameter 8KpHallPLL9 between 0 and 4096 for better
performance when using Hall sensors.

Users are advised to select the value of the parameter 8KpHallPLL9 with the consideration of the trade-ofs
between torque/speed dynamics and operational smoothness depending on diferent application
requirements. For example, door opener applications may prefer higher dynamics of torque, while fan
applications may favor operational smoothness over torque dynamics. Higher 8KpHallPLL9 value provides
quicker speed/torque response with the compromise of operational smoothness due to sudden change of
estimated Hall speed and angle. Lower 8KpHallPLL9 value provides smoother torque/speed change while
sacrificing dynamics.

2.8.3.2 Hall Angle Estimation without PLL

When Hall PLL is disabled (KpHallPLL = 0), the Hall angle estimation algorithm is depicted in the following
Figure 26.

Figure 26 Hall Angle Estimation Algorithm Diagram (Hall PLL Disabled)

During each motor PWM cycle, the MCE9s Hall angle estimation routine integrates the low-pass filtered Hall
frequency estimate ωest to generate the estimated Hall angle θest as shown in the blue block in Figure 26. If the
estimated Hall angle increment is accumulated up to 60° (normal sector) or 120° (wide sector) since last Hall
transition event, no further integration is performed and θest stays flat until next Hall transition event occurs.

The MCE also checks if there occurs a new Hall transition event since last check during each motor PWM cycle. If
there exists a new Hall transition event, the MCE performs a similar set of steps compared to the scenario with
PLL enabled as shown in the orange block in Figure 26 .

Hall pattern validation, sector number calculation, Hall frequency estimate calculation, actual Hall angle
calculation, the variable 8HallAngle9, and 8HallSpeed9 update steps are the same as those in the scenario with
PLL enabled.

The step that difers is the angle estimation error correction. The angle estimation error εθest is corrected by
adding the latest angle estimation error εθest to the estimated Hall angle θest at each Hall transition event. In
other words, the estimated Hall angle θest is reset to the actual Hall angle θest at each Hall transition event.

With Hall PLL disabled, when the motor is accelerating or decelerating, the estimated Hall angle θest would
jump abruptly at each Hall transition event.
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2.8.4 Hall Zero-Speed Check

When the motor control state machine is in 8MOTORRUN9 state, if the time interval between the two sequential
Hall transition events is longer than a threshold Tzf, then it is considered as a Hall zero frequency fault. The
threshold Tzf is calculated following this equation Tzf = 4096 × TPWM . Once the time interval between the two

sequential Hall transition events is shorter than the threshold Tzf, this fault is automatically cleared.

The equivalent motor speed that would trigger Hall zero frequency fault consistently with 2 or 3 digital Hall
sensor configurations can be calculated as follows:

ωzf_3Hall rpm = 1
4096 × TPWM

× 1
6
× 60
pole_pair

If this Hall zero frequency fault lasts as long as THallTimeOut, then a 8Hall Timeout9 Fault is confirmed. The
threshold THallTimeOut can be configured using the parameter 8HallTimeoutPeriod9 following this equation:
THallTimeOut = HallTimeOutPeriod × 16ms .

This fault is to detect rotor lock condition when Hall sensors are being used.

2.8.5 Hall Pattern Validation

Hall pattern is formed as a binary number ([H3, H2, H1]b) by using the 3 digital inputs, H1, H2 and H3 of Hall
Event Capture block, and assumes that H3 is bit 2, H2 is bit 1, and H1 is bit 0 as shown in the following Figure
27. For example, if H3 is logic high, H2 is logic low, and H3 is logic high, then the Hall pattern is recognized as
[101]b = 5.
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Case 1: 3 Digital Hall Sensors 

Case 2: 2 Digital Hall Sensors 

Figure 27 Calculation of Hall Pattern, Sector Number, Wide Sector Flag, and Sector Angle from

Hall Inputs

Hall pattern validation starts by comparing the newly sampled Hall pattern with an expected Hall pattern from
a pre-determined Hall pattern sequence based on motor rotating direction.

If the newly sampled Hall pattern is [111] or [000], then it is considered as an invalid pattern fault. If two
consecutive occurrences of the invalid pattern fault are detected, then 8Hall Invalid9 fault is confirmed and the
15th bit of variable 8FaultFlags9 is set. Notice this invalid pattern check is only applicable to 3 digital Hall
configuration.

If the newly sampled Hall pattern is valid but doesn9t match either the expected Hall pattern from the CW
rotating Hall pattern sequence or from the CCW rotating Hall pattern sequence, then it is considered as an
unexpected pattern fault. If three consecutive occurrences of the unexpected pattern fault are detected, then
8Hall Invalid9 fault is confirmed and the 15th bit of variable 8FaultFlags9 is set.

If the newly sampled Hall pattern is validated successfully, then a new sector number (0~5) is extracted based
on a mapping relationship between Hall patterns and sector numbers as shown in Figure 27.

2.8.6 Hall Angle O�set

For 2 analog Hall sensor configuration, assume that the angle diference between the zero-crossing of UV line to
line back-EMF voltage waveform and the zero-crossing of analog Hall 1 diferential waveform is defined as θofset
as shown in the following Figure 28.
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Figure 28 Angle O�set Definition Diagram for 2 Analog Hall Sensor Configuration

For 2 or 3 digital Hall sensor configuration, assumes that the angle diference between the zero-crossing of UV
line to line back-EMF voltage waveform and the zero-crossing of analog Hall 1 diferential waveform is defined
as θofset as shown in the following Figure 29.

Figure 29 Angle O�set Definition Diagram for 2 or 3 Digital Hall Sensor Configuration

The parameter 8HallAngleOfset9 shall be calculated following this equation:

HallAngleOffset = θoffset − 90° × 16384
90°
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This parameter is used in the final calculation of variable 8HallAngle9 during each motor PWM cycle to
compensate for the angle diference between the rotor position and the Hall sensor (DHALL1 or AHALL1)
mounting position.

2.8.7 Atan Angle Calculation

The above-mentioned Hall angle calculation method based on Hall zero-crossing events using comparators
renders a variable estimated angle error correction rate. The lower the motor speed is, the longer it takes for a
Hall input transition event to occur, and the lower the estimated angle error correction rate becomes. As a
result, when the motor is starting up using this Hall angle calculation method, it is inevitable that the estimated
Hall angle would not accumulate smoothly during the first a few sectors due to the nature of lower Hall input
transition event occurrence rate. This would sometimes cause undesirable acoustic noise and unsmooth motor
start-up performance.

The MCE provides an Atan angle calculation method to complement the estimated Hall angle calculation
during start-up for 2 analog Hall sensor configuration. The Atan angle calculation method can be enabled or
disabled by using the 5th bit of the parameter 8HallConfig9. When Atan angle calculation method is enabled and
Hall angle or hybrid angle is selected by the parameter 8AngleSelect9. Parameter HallATanPeriod specifies the
number of sectors for which Hall Atan angle, represented by the parameter 8Atan_Angle9, is being used as rotor
angle during start-up.

The Atan angle calculation process is shown in the following Figure 30. The analog Hall sensor input (AHALL1+,
AHALL1-, AHALL2+, and AHALL2-) voltage levels are sampled during each motor PWM cycle, and the voltage
diferential of each analog Hall sensor is calculated as HallU = AHALL1+ - AHALL1-, and HallV = AHALL2+ -
AHALL2-. The MCE performs Clarke transformation to convert HallU and HallV components in UVW reference

frame to Hall³ and Hall´ components in a stationary ³´ reference frame. Then Atan
Hallβ
Hallα

 calculation is

performed to generate Atan angle represented by the variable 8Atan_Angle9 with the addition of Hall angle
ofset specified by the parameter 8HallAngleOfset9.

Using the complementary Atan angle calculation method, the rotor angle using Atan angle is expected to
accumulate more smoothly with minimal acoustic noise during motor start-up compared to using the above-
mentioned Hall angle estimation method. The analog Hall sensor signals bear higher order harmonics in some
cases. As a result, the Atan angle calculation would yield undesired fluctuation that is not a true reflection of
the rotor speed variation. Consequently, it is recommended to limit the usage of Hall Atan angle calculation
method to a short duration during start-up for just several number of sectors as needed by configuring the
parameter 8HallATanPeriod.
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Figure 30 Atan Angle Calculation Based on 2 Analog Hall Sensor Inputs (AHall1+, AHall1-,

AHall2+, AHall2-)

2.8.8 Hall Initial Position Estimation

For digital 2 or 3 Hall configurations, as well as analog 2 Hall configuration without using Atan angle calculation
method, the initial rotor position at the start-up is estimated by the MCE based on the initial Hall inputs. The
MCE assumes that the rotor starts in the middle of the angle range which is interpreted from the initial Hall
pattern. The following Table 4 and Table 5 show the initial angle estimation details for 3 Hall and 2 Hall
configurations.

Table 4 Hall Initial Position Estimation (3 Hall, HallAngleO�set = 0)

Hall pattern
[H3, H2, H1]

1 (001b) 3 (011b) 2 (010b) 6 (110b) 4 (100b) 5 (101b)

Angle range -60° to 0° 0° to 60° 60° to 120° 120° to 180° 180° to 240° 240° to 300°

Initial angle -30° 30° 90° 150° 210° 270°
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Table 5 Hall Initial Position Estimation (2 Hall, HallAngleO�set = 0)

Hall pattern [H3, H2,
H1] (H3 = 0)

1 (001b) 3 (011b) 2 (010b) 0 (000b)

Angle range -120° to 0° 0° to 60° 60° to 180° 180° to 240°

Initial angle -60° 30° 120° 210°

2.8.9 Hall Sensor/Sensorless Hybrid Operation

The MCE supports a hybrid mode where both the Hall sensor interface driver and the flux estimator and flux
PLL are active. As shown in the following Figure 31, the rotor angle uses estimated Hall angle from the Hall
sensor interface driver during the start-up. As the motor speed increases to more than the Hall-to-Flux speed
threshold configured by the parameter 8Hall2FluxThr9, the rotor angle switches over to using estimated flux
angle from the flux estimator and flux PLL. While the rotor angle is fed from flux angle, if the motor speed
decreases to below the Flux-to-Hall speed threshold configured by the parameter 8Flux2HallThr9, the rotor angle
switched back to using estimated Hall angle from the Hall sensor interface driver. In hybrid mode, both the Hall
sensor interface driver and the flux estimator and flux PLL are running concurrently although only one out of
the two outputs is being used as rotor angle to close the angle loop.

While the MCE ofers an advanced sensorless algorithm with excellent performance, some applications require
better performance at start-up and/or very low speed operations. In this case, using Hall sensors can
complement the sensorless option in providing superior start-up and low speed performance. Thus, it is
recommended to select hybrid mode to take advantage of both the sensorless mode and the Hall sensor mode
to ensure a consistent high performance of a drive system across a wide speed range including start-up.

Figure 31 Hall Sensor/Sensorless Hybrid Mode Diagram

2.9 DC Bus Compensation

DC bus voltage typically has high frequency ripple as well as 2 times AC input line frequency (Fline) ripple. The
low frequency ripple is dominant due to limited size of DC bus capacitors. The instantaneous DC bus voltage is
part of the motor current control loop gain. Thus, if the current loop bandwidth is not high enough, then there
is not enough loop gain at 2 x Fline frequency. As a result, the current loop won9t be able to adjust the
Modulation Index (MI) accordingly to ensure stable inverter output voltage. The resulting motor phase current
would inevitably be modulated by 2 x Fline frequency DC bus voltage ripple.

The MCE provides a DC bus voltage feedforwarding function to compensate for the efect of the DC bus voltage
variation on the current control loop gain, so that the actual MI is not afected by the DC bus voltage ripple.

As shown in the following Figure 6, if the DC bus compensation is enabled, Valpha and Vbeta, that are the 2
orthogonal components of the desired inverter output voltage, are adjusted by a factor of the ratio between
50% of the DC bus full range voltage to the instantaneous DC bus voltage. The adjusted results, Malpha and
Mbeta, are the 2 orthogonal components of the desired output voltage vector, based on which the SVPWM
block generates the three phase PWM switching signals. Additionally, the vector voltage limit (parameter
8VdqLim9) is also adjusted inversely by the DC bus compensation factor to make full inverter voltage available. If
DC bus compensation is disabled, Valpha and Vbeta are directly coupled with Malpha and Mbeta without any
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additional adjustment. Flux estimator parameters are scaled based on 50% of the DC bus full range voltage. So,
If the DC bus compensation is disabled, it is required to compensate Voltage alpha (ValphaComp) and Voltage
beta (VbetaComp) components used in flux estimator based on the DC bus voltage. If the DC bus compensation
is enabled, no compensation required in voltage alpha and voltage beta components used in flux estimator.
Motor voltage (Vdq) is calcuated based on Vd and Vq values. Calculation is done every 1 ms.

DC Bus Compensation Enabled: 

DC Bus Compensation Disabled: 

Figure 32 DC Bus Compensation Functional Diagram
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The DC bus full range voltage is the maximum DC bus voltage that the ADC can sample up to given a specified
voltage divider for DC bus voltage sensing. Referring to Figure 5, it can be calculated using the following
equation.

VDCFullRange = VADC_REF ×
R1 + R2
R2

DC bus compensation function can be enabled by setting bit [0] of 8SysConfig9 parameter.

With the DC bus compensation function disabled, the actual MI can be estimated using the variable
8MotorVoltage9 following this equation:

MI =
MotorVoltage

4974

With the DC bus compensation function enabled, the actual MI can be estimated using the variables
8MotorVoltage9 and 8VdcRaw9 following this equation:

MI =
MotorVoltage × 2048

VdcRaw

4974
× 100%

2.10 Motor Current Limit Profile

Some applications (such as a fan) don9t require a high current at low speed. In other words, full torque is only
required above a certain speed. The MCE provides a configurable dynamic motor current limit feature which
reduces the current limit in the low speed region for a smooth startup. This feature provides smooth and quiet
start up, and it also can reduce the rotor lock current.

Figure 33 depicts that the motor current limit changes dynamically as a function of motor speed. The MCE
enables the motor load to work in both motoring mode (1st and 3rd quadrants in Figure 33) and regenerating
mode (2nd and 4th quadrants Figure 33).

In motoring mode, when the absolute value of the motor speed is below the minimum speed specified by the
parameter 8MinSpd9 ( MotorSpeed ≤ MinSpd ), the maximum motor current is limited to a threshold
configured by parameter 8LowSpeedLim9. When the absolute value of the motor speed is between the minimum
speed and the low speed threshold, the motor current limit increases linearly as the speed increases following
the relationship as below.

MotorCurrentLimit = LowSpeedLim + MotorSpeed −MinSpd × LowSpeedGain

When the motor speed goes beyond the low speed threshold, the maximum motor current is limited to the
upper boundary specified by the parameter 8MotorLim9.

In regenerating mode, when the absolute value of motor speed is below a threshold specified by the parameter
8RegenSpdThr9, the motor current limit follows the above-mentioned linear relationship. When the absolute
value of motor speed goes beyond the threshold specified by the parameter 8RegenSpdThr9, the maximum
motor current is limited to a threshold specified by the parameter 8RegenLim9.

Having the freedom to adjust the motor current limit in motoring mode and regenerating mode independently
allows users to tailor the acceleration torque as well as the regenerative braking torque separately to achieve
optimal drive performance. If further customization of motor current limit is required, users can take advantage
of script code to program the motor current limit (8MotorLim9 parameter) to any arbitrary profile.
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Figure 33 Motor Current Limit Profile

2.11 Over-Modulation

As shown in the following Figure 34, the linear modulation range is defined by the disk that fits within the

hexagonal active voltage vector (a, b) timing limit boundary. The modulation index can be up to 
3
2
= 0.866 if

the modulation stays within linear range. If maximizing output power is the priority and non-linear modulation
is acceptable, then the modulation index can go up to 1 so that the active voltage vector goes outside the disk
into the grey area to make full use of the DC bus voltage.
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Figure 34 SVPWM Vector Timing Limit Diagram

The MCE ofers the parameter 8VdqLim9 to configure the desired modulation index limit. 100% modulation
corresponds to 4974 counts for parameter 8VdqLim9. If users need to limit the modulation to only linear range,
the parameter 8VdqLim9 shall be set up to 4974 x 0.866 = 4307. If users need to take advantage of over-
modulation, then the parameter 8VdqLim9 shall be set up to 4974.

Although utilizing over-modulation helps maximize DC bus voltage utilization, it would introduce acoustic noise
associated with the additional harmonics, and compromise the flux PLL operation and result in errors in RMS
current and voltage based power or torque calculations.

2.12 2-Phase Modulation

MCE supports 2-phase type 3 (low-side clamping) space vector PWM modulation with a configurable switch-
over threshold. As shown in the following Figure 35, 2-phase type 3 modulation clamps one motor winding to
the negative inverter rail. Thus, it eliminates switching of one of the 3 inverter legs in each sector to reduce
switching loss while keeping the output line voltage the same as compared to the case of 3-phase modulation.
This is done by not using zero vector [111] and allocating all the zero vector time to the zero vector [000].
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3-Phase Modulation 

2-Phase Modulation 

Figure 35 3-Phase/2-Phase Type 3 SV PWM Modulation Diagram

2-phase type 3 PWM modulation cannot be used at low speeds when the high side gate driver uses a bootstrap
diode to charge up the voltage rail. The bootstrap capacitor must be sized suficiently to hold enough charge to
drive the high side gate for the full duration of a SV PWM Modulation sector.

Bit field [4:3] of the parameter 8HwConfig9 is used to enable 2-phase type 3 PWM modulation. As shown in the
following Figure 36, if 2-phase type 3 SVM is enabled, at start-up 3-phase PWM modulation is used. When the
motor absolute speed (variable 8Abs_MotorSpeed9) goes above a configurable threshold (parameter
8Pwm2PhThr9), MCE would switch to using 2-phase type 3 PWM modulation. When the absolute motor speed
goes below the configurable threshold (parameter 8Pwm2PhThr9) with a hysteresis of 256 counts (1.6% of motor
maximum RPM), MCE would switch back to 3-phase PWM modulation.

If the value of the parameter 8Pwm2PhThr9 is 256 or lower (≤ 1.6% of motor maximum RPM), and 2-phase PWM
modulation is enabled, aver MCE has switched to 2-phase PWM modulation, it would not switch back to 3-
phase PWM modulation automatically until motor is stopped and then is restarted.

Figure 36 3-Phase SVM and 2-Phase SVM State Transition Diagram
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2.13 Torque Compensation

For single rotary compressor based air-conditioners or refrigerator applications, big variation in the torque
demand exists within a mechanical cycle from absorption stage and compression stage. Because of the limited
speed loop bandwidth, the motor speed would vary due to the varying torque demand within one mechanical
cycle, causing noticeable mechanical vibration and undesirable noise. To solve this problem, the MCE provides
a torque compensation function that is able to detect and synchronize with the mechanical cycle and uses a
feed forwarding loop to modulate torque reference following a sinusoidal compensation curve per mechanical
cycle to minimize speed variation and so reduce vibration. This function uses the torque reference and flux
angle (rotor electrical angle in sensorless mode) as inputs. It has two primary operating modes over a
configurable speed range. In one mode it synchronizes with the peak load torque within a mechanical cycle,
while in the other mode it calculates the feedforward compensation torque. The MCE9s torque compensation
function supports 4-pole or 6-pole compressor motor types.

The torque compensation function can be enabled or disabled by using bit [1] of the parameter 8SysConfig9.

Figure 37 depicts the state transitions for the MCE9s torque compensation function.

When torque compensation is disabled by resetting bit [1] of the parameter 8SysConfig9, it stays in TC_Disabled
state and goes through an initialization process (TorqueComp_init()) where relevant variables including
8TrqCompBaseAngle9, 8TrqCompStatus9 and 8TrqCompOutput9 are reset.

When torque compensation is enabled, by setting bit [1] of the parameter 8SysConfig9, it shivs to TC_Enabled
state.

Figure 37 Torque Compensation State Transition Diagram

As shown in Figure 37 and Figure 38, there are 2 sub-states within TC_Speed_Valid state. When entering
TC_Speed_Valid state, it starts from TM Synchronization sub-state where it samples the torque reference
(variable 8SpeedPIOutput9) once every electrical cycle when flux angle θFlux = 180°. If the torque reference
samples at the kth sample time match the following criteria: SpeedPIOutput [k] > SpeedPIOutput [k-1],
SpeedPIOutput [k] > SpeedPIOutput [k-2], SpeedPIOutput [k-3] > SpeedPIOutput [k-1], SpeedPIOutput [k-3] >
SpeedPIOutput [k-2] for 10 consecutive mechanical cycles TM, then it is considered as having synchronized with
peak load torque within a mechanical cycle TM, and that moment marks the zero point of torque compensation
base angle θbase (variable 8TrqCompBaseAngle9). Then it shivs to TrqCompOutput Calculation sub-state.

There are two sub-states inside TrqCompOutput Calculation sub-state. If the motor speed reference (variable
8SpeedRef) is lower than the turn-on threshold configured by the parameter 8TrqCompOnSpeed9, then it shivs to
TC_Speed_Valid sub-state where torque compensation function becomes active. While it is in TC_Speed_Valid
sub-state, if the motor speed reference becomes higher than the turn-of threshold configured by the
parameter 8TrqCompOfSpeed9, then it shivs back to TC_Speed_Invalid sub-state where torque compensation
fuction becomes inactive with TrqCompOutPut and GTC being reset to zero.
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It shall be pointed out that once the torque compensation function achieves synchronization with mechanical
cycle TM, it does not lose synchronization with mechanical cycle TM whether the motor speed reference is
within the valid speed range (active) or not (inactive).

The active status of torque compensation function is reflected in bit [0] of variable 8TrqCompStatus9.

When torque compensation fuction is active, the desired sinusoidal compensation torque reference (variable
8TrqCompOutput9) is synthesized following this equation:

TrqCompOutPut = GTC × TrqRefFilt × cos
θFlux − 180°
pole_pair

+ θbase + θos × kCORDIC

GTC represents the gain factor for the desired compensation torque reference 8TrqCompOutput9.

TrqRefFilt represents the averaged value of the desired torque reference from speed PI regulator output. It is the
low-pass filtered result from variable 8SpeedPIOutput9 with upper limit. As shown in Figure 38, if TrqRefFilt is
greater than the value of the parameter 8TrqCompLim9, then it is limited to the value of 8TrqCompLim9.

kCOR is an internal fixed gain factor ( kCOR = 1.647 ).

The amplitude of the desired sinusoidal compensation torque reference is GTC × TrqRefFilt × kCORDIC . GTC

starts from zero and ramps up at a rate of 8 counts per electrical cycle till it reaches the value of parameter
8TrqCompGain9.

The torque compensation base angle θbase increments by 120° (6-pole) or 180° (4-pole) every electrical cycle.

The torque compensation angle ofset θTCos (parameter 8TrqCompAngOfst9) specifies the angle diference
between the peak load torque within a mechanical cycle and the peak of the synthesized sinusoidal
compensation torque reference.

The status of synchronization with mechanical cycle TM is reflected in bit [1] of variable 8TrqCompStatus9.

As shown in Figure 38, the synthesized compensation torque reference 8TrqCompOutput9 is summed up with
8SpeedPIOutput9 to form total torque reference (variable 8TrqRef9), which is used in the following IPM (Interior
Permanent Magnet) control block to generate current references for d and q axis current loops.

If it is needed to restart the synchronization with the mechanical cycle TM, the torque compensation function
shall be disabled and enabled again by toggling bit [1] of the parameter 8SysConfig9.
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Figure 38 Torque Compensation Top-Level Algorithm Diagram

The following steps are recommended to tune the torque compensation related parameters.

1. Set initial parameter values: GTC (TrqCompGain = 128) and 50% compensation torque limit (TrqCompLim
= 2048)

2. Set the speed rising threshold (TrqCompOfSpeed) above which torque compensation function shall be
inactive. Set the speed falling threshold (TrqCompOnSpeed) below which torque compensation function
shall be active. These two parameters shall have about 2% hysteresis to avoid oscillation

3. Set bit [1] of the parameter 8SysConfig9 to enable torque conpensation function

4. Use tracing function in Solution Designer to plot variable 8SpeedError9

5. Adjust 8TrqCompAngOfst9 value to a value with which the amplitude of 8SpeedError9 as well as
compressor vibration is minimized

6. Increase 8TrqCompGain9 value to further reduce the compressor vibration if needed

2.14 Zero-Vector Braking

In some application there is a need to slow down the motor quickly and bring it to a full stop. The MCE ofers
zero-vector braking on request which can be initiated by setting an MCE parameter. When zero-vector braking is
applied, the MCE clamps all the low-side switches of the inverter. This shorts the motor phases and the BEMF of
the motor drives phase currents through the windings as shown in Figure 39. The kinetic energy stored in the
motor/load is then dissipated as an electric loss in the motor windings.
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Figure 39 Zero-Vector Braking by Clamping of Low-Side Switches (IGBT Case)

During zero-vector braking the MCE firmware handles all required state transitions and continues to service all
applicable protection functions. Note that the MCE also utilizes zero-vector clamp in case of the fault Critical
Over Voltage.

2.14.1 Parameters

Zero-vector braking is applied when the parameter APP_MOTOR0.ZeroVectorBrake is set to 819. Similar, zero-
vector braking is canceled by setting the parameter APP_MOTOR0.ZeroVectorBrake to 809.

Current state of the zero-vector can be checked be reading the bitfield ZeroVecBrake of parameter
APP_MOTOR0.MotorStatus where 819 indicates that zero-vector is applied and 809 indicates that zero-vector is
not applied. The parameter APP_MOTOR0.MotorStatus reflects the state of zero-vector which is not necessarily
the same as APP_MOTOR0.ZeroVectorBrake = 1.

2.14.2 State Dependencies

When the parameter APP_MOTOR0.ZeroVectorBrake is set to 819 the system automatically switches to STOP
state. Zero-vector-braking is applied until one of the flowing events happens:

1. Zero-vector braking is canceled by setting APP_MOTOR0.ZeroVectorBrake = 0

2. A motor start command is received from Solution Designer, scripting or a control interface. A start
command automatically clears APP_MOTOR0.ZeroVectorBrake to 809

3. A gate-kill fault. If APP_MOTOR0.ZeroVectorBrake = 1 prior to the gate-kill the parameter remains set and
zero-vector braking is re-applied when the gate-kill fault is cleared

Zero-vector braking can only be applied when the system is in one the following states: RUN (4), RUN_HALL
(10), RUN_HYBID (11), RUN_OPENLOOP (12), FAULT (5) and STOP (1).

Zero-vector braking cannot be applied when the system is in the flowing states: CATCHSPIN (6), ANGLESENSE
(9), PARKING (7), OPENLOOP (8), IDLE (0), OFFSETCAL (2) and STANDBY (13).

The number in parenthesis refers to the value of MCEOS.Motor_SequencerState in the respective states. Refer
to Chapter 2.1 for information on the state machine.

If zero-vector braking is requested while the system is in a state where zero-vector braking is not supported, the
request will be temporarily ignored but remembered. When the system reaches a state where zero-vector
braking is supported, the zero-vector will be applied. For example, if zero-vector braking is requested during the
state PARKING, it will be ignored and the system will continue through OPENLOOP and into RUN where the
zero-vector braking then takes efect.

While zero-vector braking is applied, the motor current measurements are updated. However, the currents are
only observable with leg-shut current sensors. With single-shunt current sensor, the phase currents are
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updated but, since the motor currents are not flowing through the single shunt current sensor, they are not
observable.

2.14.3 Zero-Vector Braking During Faults

Should a critical overvoltage fault or gate-kill fault occur during zero-vector-braking, the fault takes priority. In
the case of critical overvoltage, the system applies zero-vector to protect the inverter. If zero-vector braking is
canceled during the critical overvoltage, the zero-vector continues to be applied due to the fault.

In case of a gate-kill fault when zero-vector braking is applied, all gate signals are put in the inactive state which
efectively cancels zero-vector braking. Once the gate-kill fault is cleared, the system resumes zero-vector
braking.

The bitfield ZeroVecBrake of parameter APP_MOTOR0.MotorStatus will always indicate whether zero-vector is
applied or not.

All other faults have no efect on zero-vector braking.

2.15 Catch Spin

Before turning on the inverter, due to some external force, for example wind air flow in fan applications, the
motor may be already spinning. The MCE ofers 8Catch Spin9 feature which is designed to synchronize the flux
estimator and flux PLL with the actual motor speed before providing the torque to drive the motor. Catch spin
cannot be done if the motor back EMF voltage is higher than the DC bus voltage, which usually occurs when the
motor is running above rated speed. Hence, the catch spin is generally efective up to the rated speed of the
motor. The catch spin starting process is part of the motor state machine and is executed at start-up if catch
spin function is enabled.

In catch spin, the controller tracks the back EMF in order to determine if the motor is turning, and if so, in which
direction. Catch spin sequence begins aver the bootstrap capacitor charging stage is completed. During catch
spin, both IqRef and IdRef are set to 0 (Speed regulator is disabled), meanwhile flux PLL attempts to lock to the
actual motor speed (variable 8MotorSpeed9) and rotor angle (variable 8RotorAngle9). Catch spin time, defined by
TCatchSpin parameter. Once catch spin time is elapsed, calculated motor speed check with <DirectStartThr=
parameter value. If motor speed is more than or equal to <DirectStartThr= parameter value, normal speed
control starts, current motor speed will become the initial speed reference and also set as the speed ramp
starting point. Depending on the set target speed, motor will decelerate (via regenerative braking) or accelerate
to reach the desired speed. If motor speed is less than <DirectStartThr= parameter value, motor state changes
to <ANGLESENSING= state.

Depending upon the direction of rotation, there are 3 types of catch spin scenarios

• Zero Speed Catch Spin

• Forward Catch Spin

• Reverse Catch Spin

2.15.1 Zero Speed Catch Spin

If the motor is stationary, then the catch spin sequence is termed as 8Zero Speed Catch Spin9. Figure 40 (A)
shows an example for 8Zero Speed Catch Spin9. In this example, at the start command, the motor is stationary.
Aver the start command, 8Zero Speed Catch Spin9 sequence begins. During the catch spin sequence, no
motoring current is injected. Aver the catch spin time has elapsed, the motor speed at that instance (which is 0
RPM) becomes initial speed reference and starting point for speed ramp reference. The motor continues to
accelerate, following the speed ramp reference to reach the set target speed.

If catch spin is disabled, normal speed control starts immediately aver the start command, without waiting for
PLL to be locked. As shown in Figure 41 (B), aver the start command, motoring current is injected directly as
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there is no catch spin sequence. The motor starts accelerating, following the speed ramp reference to reach the
set target speed.

Figure 40 Zero Speed Catch Spin - Motor start with/without catch spin

Figure 41 Motor Phase Current - Zero Speed Catch Spin - Motor start with/without catch spin

2.15.2 Forward Catch Spin

If the motor is spinning in the same direction as desired, then the catch spin sequence is termed as 8Forward
Catch Spin9. Figure 42 (A) shows an example for 8Forward Catch Spin9. In this example, at the start command the
motor is already spinning (in the desired direction). During the catch spin sequence, no motoring current is
injected. Aver the catch spin time has elapsed, assuming the flux PLL locks to the actual motor speed, the
motor speed at that instance becomes initial speed reference and starting point for speed ramp reference. The
motor continues to accelerate or decelerate, following the speed ramp reference to reach the set target speed.
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If catch spin is disabled, normal speed control starts immediately aver the start command, without waiting for
PLL to be locked. Usually the control would still be able to start a spinning motor, but motor speed may not
increase/decrease seamlessly. As shown in Figure 42 (B), aver the start command, the actual motor speed is
higher than speed reference (variable 8SpeedRef). Hence, the motor is decelerated (using regenerative braking)
to force the motor to follow the speed reference (variable 8SpeedRef). As the speed of the motor is higher than
Regen Speed Threshold (variable 8RegenSpdThr9), the negative torque injected in the motor to achieve
deceleration is limited by the value in RegenLim parameter. Once the motor speed matches the speed
reference, the motor starts accelerating, following the speed ramp reference to reach the set target speed.

Figure 42 Forward Catch Spin - Motor start with/without catch spin

Figure 43 Motor Phase Current Waveform - Forward Catch Spin - Motor start with/without catch
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2.15.3 Reverse Catch Spin

If the motor is spinning in the opposite direction as desired, then the catch spin sequence is termed as 8Reverse
Catch Spin9. Figure 44 (A) shows an example of 8Reverse Catch Spin9. In this example, at the start command, the
motor is already spinning (in the opposite direction). During the catch spin sequence, no motoring current is
injected. Aver the TCatchSpin time has elapsed, the motor is still spinning in opposite direction at a speed
higher than Regen Speed Threshold (RegenSpdThr), so an injected torque, limited by the value defined in
RegenLim parameter, forces the motor to decelerate via regenerative braking. Once the speed of the reverse
spinning motor falls below Regen Speed Threshold (RegenSpdThr), the injected torque is limited by MotorLim
(RegenLim < = MotorLim). The injected torque forces the motor to come to a stop and start accelerating in the
desired spin direction, following the speed ramp reference to reach the set target speed.

If catch spin is disabled, normal speed control starts immediately aver the start command, without waiting for
PLL to be locked. Usually, the control would still be able to start a spinning motor, but motor speed may not
increase/decrease seamlessly. As shown in Figure 44 (B), aver the start command, the motor is still spinning at
a speed higher than Regen Speed Threshold (RegenSpdThr), hence the injected torque limited by the value
defined in RegenLim parameter, forces the reverse spinning motor to decelerate via regenerative braking. Once
the speed of the reverse spinning motor falls below Regen Speed Threshold (RegenSpdThr), the injected torque
is limited by MotorLim (RegenLim < = MotorLim). The injected torque forces the motor to come to a stop and
start accelerating in the desired spin direction, following the speed ramp reference to reach the set target
speed.

Figure 44 Reverse Catch Spin - Motor start with/without catch spin
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Figure 45 Motor Phase Current Waveform - Reverse Catch Spin - Motor start with/without catch

spin

2.16 Control Input

MCE is able to control the motor from 4 types of inputs. Type of control input can be configured using Solution
Designer.

• UART control

• Vsp analog input

• Frequency input

• Duty cycle input

2.16.1 UART control

In UART control mode, motor start, stop and speed change are controlled by UART commands. Target speed
can be positive or negative; motor will spin in reverse direction if Target Speed is negative. If any fault condition
happens, motor will stop and stay in fault status. It is up to master controller when to clear the fault and restart
the motor.

2.16.2 Vsp Analog Input

In Vsp Analog Input control mode, the motor operations like motor start, motor stop and speed change are
controlled by applying an analog voltage signal. Direction of the motor is controlled by a separate pin. If the
direction pin is LOW, target speed will be set as positive and if the direction pin is HIGH, target speed will be set
as negative value; motor will spin in reverse direction if target speed is negative. MCE uses <VSP= pin as the Vsp
Analog input and uses <DIR= pin as motor direction input. The relationship between Vsp voltage and motor
target speed is shown in Figure 46.
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Figure 46 Vsp Analog Input

There are three input thresholds used to define the relationship between input voltage and target Speed.

• T1 (Input threshold for motor start): if the Vsp analog voltage is above this threshold, motor will start

• T2 (Input threshold for motor stop): if the Vsp analog voltage is below this threshold, motor will stop

• T3 (Input threshold for maximum RPM): if the Vsp analog voltage is higher or equal to this threshold,
<TargetSpeed= variable will be 16383 which is maximum speed

Solution Designer uses these three input thresholds to calculate the value of three parameters: <CmdStart=,
<CmdStop= and <CmdGain=

CmdStop = Integer T2 × 2
Vadcref

× 2048 + 0.5

Where T2 = Analog Vsp Motor Stop Voltage in V.

CmdStop = Integer T1 × 2
Vadcref

× 2048 + 0.5

Where T1 = Analog Vsp Motor Start Voltage in V.

CmdGain = Integer
SpeedMax − SpeedMin

SpeedMax
× 212 × 214

4096 × 32 × T3
Vadcref

− CmdStart × 32
+ 0.5

Where:

• T3 = Analog Vsp Motor Max RPM Voltage in V

• SpeedMax = Maximum motor speed in RPM

• SpeedMin = Minimum motor speed in RPM

Table 6 Specification for Analog Input Voltage

Recommended input range Vsp Analog input (0.1 V to Vadcref)

T1 < 50% of Vadcref

T2* < 50% of Vadcref

T3** < Vadcref

Note: * T2 must be < T1 and **T3 must be > T2
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Refer data sheet for input range for specific devices and pin details. This feature is not available in UART control
mode.

2.16.3 Frequency input

In Frequency Input control mode, the motor operations like motor start, motor stop and speed change are
controlled by applying a square wave frequency signal on digital IO pin. Direction of the motor is controlled by
a separate pin. If the direction pin is LOW, target speed will be set as positive and if the direction pin is HIGH,
target speed will be set as negative value; motor will spin in reverse direction if target speed is negative. MCE
uses <DUTYFREQ= pin as the frequency input and uses <DIR= pin as motor direction input. The relationship
between Frequency and motor target speed is shown in Figure 47

Figure 47 Frequency Input

There are three input thresholds used to define the relationship between frequency input and target Speed.

• T1 (Input threshold for motor start): if the frequency input is above this threshold, motor will start

• T2 (Input threshold for motor stop): if the frequency input is below this threshold, motor will stop

• T3 (Input threshold for maximum RPM): if the frequency input is higher or equal to this threshold, target
Speed will be 16383 which is maximum speed

Solution Designer uses these three input thresholds to calculate the value of three parameters: <CmdStart=,
<CmdStop= and <CmdGain=

CmdStop = Integer T2 × 10 + 0.5

Where T2 = Motor Stop Speed Frequency in Hz.

CmdStop = Integer T1 × 10 + 0.5

Where T1 = Motor Start Speed Frequency in Hz.

CmdGain = Integer 212 ×
16384 −

SpeedMin
SpeedMax

× 16384

T3 − T1 × 32 × 10
+ 0.5

Where:

• T1 = Motor Start Speed Frequency in Hz

• T3 = Motor Maximum Speed Frequency in Hz

• SpeedMax = Maximum motor speed in RPM

• SpeedMin = Minimum motor speed in RPM

iMOTION™ Motion Control Engine
Functional Reference Manual

2  Motor Control

Functional Reference Manual 57 V 1.4
2024-10-28



Table 7 Specification of Frequency Input

Recommended input range Frequency input (5 Hz – 1000 Hz , 10% – 90% duty

cycle)

T1 ≤ 255 Hz

T2* ≤ 255 Hz

T3** ≤ 1000 Hz

Note: T2 must be < T1 and **T3 must be >T2

Refer data sheet for input range for specific devices and pin details. This feature is not available in UART control
mode.

2.16.4 Duty Cycle Input Control

In Duty Cycle Input control mode, the motor operations like motor start, motor stop and speed change are
controlled by varying the duty cycle of a rectangular wave signal on digital IO pin. Direction of the motor is
controlled by a separate pin. If the direction pin is LOW, target speed will be set as positive and if the direction
pin is HIGH, target speed will be set as negative value; motor will spin in reverse direction if target speed is
negative. MCE uses <DUTYFREQ= pin as the duty input and uses <DIR= pin as motor direction input. The
relationship between duty cycle and motor target speed is shown in Figure 48.

In duty cycle control mode, the pre-scaler of capture timer has much wider range than frequency control mode.
This allows higher input frequency in duty cycle control mode; the recommended input frequency range is 5 Hz
to 20 kHz. Please note that any external R/C low pass filter on the input pin may afect the duty cycle
measurement especially when the input frequency is above 1 kHz.

Figure 48 Duty Cycle Input

There are three input thresholds used to define the relationship between duty cycle input and target Speed.

• T1 (Input threshold for motor start): if the duty cycle input is above this threshold, motor will start

• T2 (Input threshold for motor stop): if the duty cycle input is below this threshold, motor will stop

• T3 (Input threshold for maximum RPM): if the input reaches or above this threshold, <TargetSpeed=
variable will be 16383 which is maximum speed

Solution Designer uses these three input thresholds to calculate the value of three parameters: <CmdStart=,
<CmdStop= and <CmdGain=

CmdStop = Integer T2 × 10 + 0.5
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Where T2 = Motor Stop Speed Duty Cycle in %.

CmdStop = Integer T1 × 10 + 0.5

Where T1 = Motor Start Speed Duty Cycle in %.

CmdGain = Integer
SpeedMax − SpeedMin

SpeedMax
× 212 × 214

T3 × 10 − CmdStart × 32
+ 0.5

Where:

• T1 = Motor Start Speed Duty Cycle in %

• T3 = Motor Maximum Speed Duty Cycle in %

• SpeedMax = Maximum motor speed in RPM

• SpeedMin = Minimum motor speed in RPM

Solution Designer uses these three input thresholds to calculate the value of three parameters: <CmdStart=,
<CmdStop= and <CmdGain=

Table 8 Specification of Duty Cycle Input

Recommended input range Duty cycle input (5 Hz – 20 kHz, 1% – 99% duty cycle)

T1 < 50%

T2* < 50%

T3** ≤ 99%

Note: * T2 must be < T1 and **T3 must be > T2

Refer data sheet for input range for specific devices and pin details. This feature is not available in UART control
mode.

2.16.5 Automatic Restart

In Vsp, frequency or duty cycle control input mode, users have an option to specify retry times and intervals to
restart the motor aver any fault occurs and stops the motor. 8FaultRetryNumber9 parameter configures the
number of retry times aver fault. A non-zero value of 8FaultRetryNumber9 enables retry aver fault.
8FaultRetryPeriod9 parameter configures the retry interval.

This feature is not available in UART control mode.

2.16.6 Forced control input change

If required by some debug purpose, it is possible to change the control inputs by sending UART command from
master controller (or PC), and then a new mode will be efective immediately. If the control input is switched to
UART control from the other three inputs, motor status (run/stop and <TargetSpeed= variable) will be
unchanged until it receives a new motor control command.

2.16.7 PG output

The MCE can output a pulse train (PG output) that represents the rotor postion. In case of Hall sensor/Hybrid
mode, PG output will be enabled always irrespective of the motor state. In case of Sensorless mode, PG output
will be enabled only in RUN state by default.
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The 8PGDeltaAngle9 parameter configures the PG output according to PGDeltaAngle = 256*(Motor poles)/PPR,
where PPR is Pulses Per Revolution. For example, 4 PPR for an 8 poles motor (1 pulse per electrical cycle), then:
PGDeltaAngle = 256 * 8/4 = 512. Writing 0 to PGDeltaAngle will disable the PG output.

PG output is updated every PWM cycle, so the maximum PG output frequency is ½ Fpwm. The maximum value
for PGDeltaAngle is 16383, which means 1 PG pulse take 32 electrical cycle (16384/512 = 32), on an 8 poles
motor, the PG output will be 0.125PPR.

If PGDeltaAngle is 2n (2,4,8,16….8192,16384), PG pulse will be synchronized with rotor angle. For example, if
PGDeltaAngle=512 for an 8 poles motor (4PPR). There are 4 PG pulses every 4 electrical cycles and the PG
transition (high to low or low to high) will happen at 0 and 180 electrical degree.

Figure 49 PG Output

2.16.8 Control Input Customization

By default, the relationship between the control input (VSP analog input/frequency input/duty cycle input) and
the motor target speed is linear as shown in Figure 46, Figure 47, and Figure 48. If an application requires
implementation of an arbitrary mapping relationship between the control input and the motor target speed,
then one can choose to disable the default linear control input method and use script language to realize
control input customization.

For VSP analog input control method, the analog input voltage can be read from8 8adc_result09 variable using
script.

To enable frequency or duty input control customization, one needs to set the 6th bit of 8AppConfig9 variable, so
that the 8FrequencyInput9 and 8DutyInput9 variables get updated with the relevant frequency and duty cycle
measurement results every 10 ms. Supported input frequency range: 5 Hz – 5000 Hz. Supported input duty
cycle range: 1% - 99%.

For frequency input control method, the measured input frequency can be read from 8FrequencyInput9 variable
using script.

For duty cycle input control method, the measured input duty cycle can be read from 8DutyInput9 variable using
script.

2.17 Protection

Table 9 List of Motor Control and Common Protection

Type of Protection Description UL60730-1 Certification

Over Current (Gate kill) This fault is set when there is over current and shutdown
the PWM. This fault cannot be masked

Yes

(table continues...)
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Table 9 (continued) List of Motor Control and Common Protection

Type of Protection Description UL60730-1 Certification

Critical Over Voltage This fault is set when the DC voltage is above a
threshold; all low side switches are clamped (zero-
vector-braking) to protect the drive and brake the motor.
The zero-vector is held until fault is cleared. This fault
cannot be masked

No

DC Over Voltage This fault is set when the DC Bus voltage is above a
threshold

No

DC Under Voltage This fault is set when the DC Bus voltage is below a
threshold

No

Flux PLL Out of Control This fault is set when motor flux PLL is not locked which
could be due to wrong parameter configuration

Yes

Over Temperature This fault is set when the temperature is above a
threshold

No

Rotor Lock This fault is set when the rotor is locked Yes

Execution This fault occurs if the CPU load is more than 95% or if
background tasks are not executed at least once every
60s

Yes

Phase Loss This fault is set if one or more motor phases are not
connected

Yes

Parameter Load This fault occurs when parameter block in flash is faulty Yes

Link Break This fault is set when there is no UART communication
for a defined time limit

Yes

Hall Invalid This fault is set when hall interface receives invalid Hall
pattern

Yes

Hall Timeout This fault is set when no Hall input transition is detected
for a defined period of time. This fault is to detect rotor
lock condition in Hall sensor/hybrid mode

Yes

Current Ofset Calibration This fault is checked in current OFFSET calibration
state aver ofset measurement is completed. When this
protection happens, system enters into fault state

No

2.17.1 Flux PLL Out-of-Control Protection

When the Flux PLL is locked to the correct rotor angle, Pll_M, which represent the flux of the permanent magnet
of the motor, should be a DC value normalized at 2048 counts. Instead, if the PLL is not locked to correct rotor
angle, Pll_M becomes either unstable or its value is far of from 2048 counts. Flux PLL out-of-control protection
is the mechanism designed to detect this fault condition.
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Figure 50 Simplified block diagram of a Flux PLL

The MCE keeps monitoring Pll_M, within certain time slot (configured by 8FluxFaultTime9 parameter), if Pll_M
value is below 512 or above 8192, and if this happens in 8 continuous time slots (each slot time is equal to
FluxFaultTime/8), flux PLL is considered <out-of-control=. See Figure 51 for details.

Figure 51 Flux PLL Out-of-Control Protection

If the Flux PLL out-of-control fault is confirmed, then it will be reported by setting the bit 4 in FaultFlags motor
variable, and the motor speed loop gets reset. If the bit 4 in 8FaultEnable9 motor dynamic parameter is set, then
this fault will be reflected in 8SwFaults9 motor variable and the motor state machine will shiv to FAULT state
causing the motor to stop running. If this bit is not set, then the corresponding bit in 8SwFaults9 variable will be
masked by 8FaultEnable9 parameter, so that this fault will not be reflected in 8SwFaults9 variable, and the motor
state machine will not shiv to FAULT state. This protection is also able to detect phase loss condition.

The PLL out-of-control fault response time can be configured by setting motor parameter 8FluxFaultTime9. The
valid range of its value is from 0 to 65535. The value of 1 corresponds to 0.016 seconds. The default value is set
to 500, which corresponds to a response time of 8 seconds.

2.17.2 Rotor Lock Protection

As shown in the following Figure 52, rotor lock fault is detected if the speed PI regulator output (variable
8TrqRef9) is being saturated for a defined amount of time TRotor Lock. The rock lock detection time TRotor Lock can
be configured by using parameter 8RotorLocktime9 following this equation
TRotor Lock = RotorLockTime × 16ms . Rotor lock protection is active when the motor speed ranges from min

motor speed to 25% of maximum speed. Rotor lock protection becomes inactive when the motor speed goes
beyond 25% of maximum speed to avoid erroneous fault reporting.

iMOTION™ Motion Control Engine
Functional Reference Manual

2  Motor Control

Functional Reference Manual 62 V 1.4
2024-10-28



Figure 52 Rotor Rock Protection Mechanism Diagram

If the rotor lock fault is confirmed, then it will be reported by setting the bit 7 in FaultFlags motor variable. If the
bit 7 in FaultEnable motor dynamic parameter is set, then this fault will be reflected in SwFaults motor variable,
and the motor state machine will shiv to FAULT state causing the motor to stop running. If this bit is not set,
then the corresponding bit in SwFaults variable will be masked by FaultEnable parameter, so that this fault will
not be reflected in SwFaults variable, and the motor state machine will not shiv to FAULT state and the motor
will keep running.

Please note if rotor lock detect time TRotor Lock is set too short, it might trigger the fault during acceleration or
momentary high load conditions.

Rotor lock detection is not 100% guaranteed to report the fault especially when the motor is running at low
speed. The reason is, in rotor lock condition, the PLL might be locked at a false speed which may not cause
speed PI output to be saturated.

2.17.3 Motor Over Current Protection (OCP)

Motor gatekill fault is set during over current condition. This over current condition can be detected by the
following two input sources.

1. Direct GK pin: gatekill fault is set if input is LOW

2. Internal comparators

It is possible to select either both or any one of the two sources for over current detection logic. Over current
detection source can be selected by Solution Designer. Bit 0 in FaultFlag will be set in case of over current
condition detected via any of the two sources. In case over current condition is detected via direct gate kill pin,
bit 5 of FaultFlags will also set apart from bit 0 of FaultFlags.
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(1) Single Shunt Configuration 

(2) Leg Shunt Configuration 

Figure 53 Typical Motor OCP Implementation Using Internal Comparators

User can select using either the dedicated GK pin or the internal comparators to realize the over-current
protection function. In the case of using the GK pin, it is configured to be active LOW. In the case of using the
internal comparators, the exact tripping voltage level can be specified by setting the 8CompRef9 motor
parameter. The current tripping level for the internal comparator can be configured using Solution Designer, the
8CompRef9 parameter holds the current trip level value. As shown in Figure 53, for single shunt current
measurement configuration, only one internal comparator is used. For leg shunt current measurement
configuration, three internal comparators are used to detect over current condition as shown in Figure 53.
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Figure 54 Digital Filter Timing Diagram for Motor Gatekill Fault

An internal configurable digital filter is used to de-bounce the input signal to prevent high frequency noise from
mis-triggering a gate kill fault. <GatekillfilterTime= parameter holds the gate kill filter time value in clock cycles.
Input signal needs to remain stable for the duration of the specified gate kill filter time to trigger the fault
condition.

Gatekill filter timer is configured to be level triggered by the external GK pin or the internal comparator output.
As shown in Figure 54, if the phase current goes beyond the specified OCP threshold, a timer in the digital filter
starts counting up. If the digital filter input goes to logic LOW (external GK pin goes logic HIGH or the internal
comparator output voltage level changes to logic LOW), then the timer gets reset. If the over-current condition
is persistent when the timer counts up to 8GateKillFilterTime9 value, then the digital filter output immediately
goes to logic HIGH which forces entering Trap State upon which the PWM outputs all go to the programmed
passive levels. The motor gatekill fault can only be cleared by writing 1 to the 8FaultClear9 motor variable. This
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fault cannot be masked, so that it will be reflected in SwFaults motor variable, and the motor state machine will
shiv to FAULT state, causing the motor to stop running.

GateKillFilterTime is a type of static motor parameter that specifies the gatekill response time for over-current
fault detection. The valid range of its value is from 4 to 960 in clock cycles. The value of 1 corresponds to 1/96
MHz = 10.4167ns. The default value is 96, which is 1μs.

2.17.4 Over Temperature Protection

As shown in the following Figure 55, MCE provides an over-temperature protection (OTP) function with the help
of an external NTC thermistor. Typically, the NTC thermistor and a pull-up resistor form a voltage divider. The
MCE senses the output of the voltage divider and compares with a configurable OTP shutdown threshold
VShutdown that corresponds to the desired temperature TShutdown where the system shall be shut down. If the
output of the thermistor voltage divider is below VShutdown, then an OTP fault would be reported. The OTP
shutdown threshold VShutdown can be configured using the parameter 8Tshutdown9.

Figure 55 Over-Temperature Protection Mechanism Diagram

The action corresponding to the occurrence of over-temperature fault can be configured by use of the bit 6 in
FaultEnable dynamic motor parameter. If this bit is set, then the motor state machine will go to FAULT state and
the motor will stop running. If this bit is not set, then the motor state machine will not go to FAULT state and the
motor will keep running.

2.17.5 DC Bus Over/Under Voltage Protection

Over/under voltage fault is detected when DC bus voltage goes above or below the relevant protection voltage
threshold values.

DC bus voltage is being sampled every motor PWM cycle. The sampled DC bus voltage goes through a Low-Pass
Filter to attenuate high-frequency noise, which can be read from the variable 8VdcFilt9. The time constant of the
LPF depends on the motor control PWM frequency, and it can be calculated using the following equation:

Tdecay =
Fast_Control_Rate

FPWM × Ln 216

216 − 211

For example, if the motor control PWM frequency is 15 kHz, then the DC bus voltage sampling rate is 15 kHz. In
that case, the time constant Tdecay is about 2.1ms, and the cut-of frequency is about 76 Hz.
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Figure 56 DC Bus Over/Under Voltage Protection Threshold Diagram

As shown in Figure 56, if the 8VdcFilt9 value is greater than Vdc_OV (configured by the variable 8DcBusOvLevel9),
then a corresponding bit 2 in FaultFlags motor variable is set. If the bit 2 in FaultEnable motor dynamic
parameter is set, then this fault will be reflected in SwFaults motor variable, and the motor state machine will
shiv to FAULT state causing the motor to stop running. If this bit is not set, then the corresponding bit in
SwFaults variable will be masked by FaultEnable parameter, so that this fault will not be reflected in SwFaults
variable, and the motor state machine will not shiv to FAULT state and the motor will keep running.

If the 8VdcFilt9 value is lower than Vdc_UV (configured by the variable 8DcBusLvLevel9), then a corresponding bit 3
in FaultFlags motor variable is set. If the bit 3 in FaultEnable motor dynamic parameter is set, then this fault will
be reflected in SwFaults motor variable, and the motor state machine will shiv to FAULT state causing the
motor to stop running. If this bit is not set, then the corresponding bit in SwFaults variable will be masked by
FaultEnable parameter, so that this fault will not be reflected in SwFaults variable, and the motor state machine
will not shiv to FAULT state and the motor will keep running.

If the 8VdcFilt9 value is above Vdc_COV (configured by the variable 8CriticalVdcOvLevel9), motor will be stopped
immediately and zero vector [000] is applied until the fault is cleared, during which time 8critical over voltage9
fault would be reported. This 8critical over voltage9 fault cannot be disabled.

2.17.6 Phase Loss Protection

The MCE is capable of detecting motor phase loss fault. If one of the motor phases is disconnected, or the
motor windings are shorted together, the parking currents will not have the correct value. If any of the phase
current value is less than Ιphase_loss at the end of PARKING state, then phase loss fault is confirmed.

The Ιphase_loss can be configured by using the parameter 9PhaseLossLevel9. The default value of 8PhaseLossLevel9
is automatically calculated by Solution Designer following this equation:

PℎaseLossLevel = 25% ×
LowSpeedLim

4096
× Irated_rms × 2 × Rs × Gext × Gint ×

4096
Vref_ADC

When phase loss fault is confirmed, if bit [8] of the parameter 8FaultEnable9 is set, then this fault will be reflected
in the variable 8SwFaults9, and the motor state machine will shiv to FAULT state causing the motor to stop
running. If this bit is not set, then the corresponding bit in SwFaults variable will be masked by 8FaultEnable9
parameter, so that this fault will not be reflected in 8SwFaults9 variable, and the motor state machine will not
shiv to FAULT state and the motor will keep running.

2.17.7 Current O�set Calibration Protection

This protection function is executed in the OFFSET calibration state aver the ofset measurement is completed.

If any of measured current input ofset values are not within specified limits, the currentofset fault will be
triggered and the system enters into fault state. The fault will be reported by setting bit 9 of FaultFlags
parameter. The status flag is cleared when FaultClear is requested.
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If bit [9] of the FaultEnable parameter is set, the fault will be reflected in SwFaults parameter and the motor
state machine will change to FAULT state. If bit [9] of FaultEnable is not set, the corresponding bit of SwFaults
will be masked and the fault will not be reflected in SwFaults. With the fault masked, the motor state machine
will not change to FAULT state and move to STOP state regardless of the measured current ofset.

The configurable limits CurrentOfsetMax and CurrentOfsetMin define the maximum and minimum levels of
the measurmed current ofset. The level is defined in ADC counts with 4095 representing the full ADC voltage
reference value.

2.17.8 Staus LED

The MCE support a visual indication of motor- and PFC fault status through the LED pin. The fault status is
encoded as shown in the table below. It is assumed the LED is lit when the LED pin is logic 8low9.

Table 10 Status LED

Fault Status LED pin encoding Description

No Motor Fault and no PFC
Fault

Logic 8low9 LED is lit

Motor Fault Toggle between logic 8low9 and logic 8high9
every 100 ms

LED is blinking fast

PFC Fault Toggle between logic 8low9 and logic 8high9
every 1000 ms

LED is blinking slow

Motor Fault and PFC Fault 1 sec of toggle between logic 8low9 and logic
8high9 every 100 ms followed by 1 sec logic
8low9.

LED is blinking fast for 1 sec
followed by 1 sec lit

2.17.9 Execution Fault

Two conditions lead the MCE to detecting an Execution Fault. Firstly, the MCE monitors CPU execution load and
if it exceeds 95%, Execution Fault becomes active. Secondly, if any of the background tasks (UART interface,
Control input and script Task1) are not executed at least once every 60s, Execution Fault becomes active.

The MCE always reports Execution Fault by setting bit[10] of the parameter 8FaultFlags9. Furthermore, if bit[10]
of the parameter 8FaultEnable9 is set, Execution Fault will be reflected in the parameter 8SwFaults9 and the
motor state machine will shiv to FAULT state causing the motor to stop running when the fault is detected. If
bit[10] of 8FaultEnable9 is not set, the corresponding bit of 8SwFaults9 will be masked and and the motor state
machine will not shiv to FAULT state.

The user can configure the controller to reset when any of the background tasks are not executed for 60s. To
enable reset, set bit[8] (enable background task monitor reset) of the <SysTaskConfig= parameter.

The MCE supports Scripting based controller reset which makes it possible to reset the controller with timing
diferent from 60s. Reset from scripting is performed by setting <Script_command = 0xAE51=. The reset
command can be issued from both Task0 and Task1. However, since Task1 background function itself, it cannot
be relied on to monitor execution background task. The reset command must be issued from Task0.

If Class B is enabled (MCEOS.SafetyFunctions = 52020), the evaluation period of background task execution
interval is reduced to 1 second and if any of background tasks are not executed for 1s, the MCE enters to failsafe
mode. If Class B is disabled (MCEOS.SafetyFunctions = 255) and BG monitoring is enabled (MCEOS.
SysTaskConfig.BGtask_Monitoring_EN = 1, i.e bit 6 of <SysTaskConfig=), sovware reset is performed in case any
of the background task is not executed at least once 60s period.
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3 Power Factor Correction

Power Factor Correction (PFC) is a technique used to match the input current waveform to the input voltage, as
required by government regulation in certain applications. The power factor, which varies from 0 to 1, is the
ratio between the real power and apparent power in a load. A high power factor can reduce transmission losses
and improve voltage regulation. The MCE supports full digital control and protection of a Continuous
Conduction Mode (CCM) boost PFC using average current control scheme.

Figure 57 Boost PFC topology

Starting from the lev-hand side of Figure 57, an AC-voltage (VAC) is rectified by a full bridge rectifier. The boost
converter itself consists of an inductor (L), a diode (D), and a switch (SW). The output is filtered by a DC-
capacitor (Cout) that smooths the output voltage (Vout). To measure the inductor current (IL), a resistive shunt
(Rs) is placed typically in the return path of the input current. There are several other options for measuring
current but, by putting the sensor in the return path, both the sensing circuit and the gate of the switch can be
referenced to the same potential as the output voltage. The boost converter requires a controller to regulate
the inductor current as well and the output voltage. As feedback the controller relies on the measurements of
the inductor current, the output voltage, and the AC voltage.

3.1 PFC Algorithm

Closed-loop control ensures that the output voltage is kept at its desired value and that the AC current is
sinusoidal and in phase with the AC voltage. The PFC control algorithm of the MCE is a multiplier-based average
current control scheme, which means there are two control loops: an inner current loop and an outer voltage
loop. In addition, there are feedforward terms which enhances dynamic response. The output of the voltage
controller is multiplied by the instantaneous rectified AC voltage value and then divided by the square of AC
voltage Root-Mean-Square (RMS) value to produce a reference for the current controller which in turn generates
the duty-cycle command. This PFC control scheme requires sensing of the inductor current, AC line voltage and
DC-bus voltage. With Figure 58 as reference, each of the main element of the MCE control algorithm will be
described.
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Figure 58 Control system for the Boost PFC

3.1.1 ADC Measurement

As feedback, the system in Figure 58 requires three measurements for close loop control:

1. The DC-bus voltage, Vout, to ensure that it is maintained at the reference level Vout_Ref

2. The AC voltage, VAC, to provide a sinusoidal shaped reference for the input current

3. The inductor current, IL, to ensure that it tracks the reference IL_Ref

These three signals are also used for over- and under voltage protection and for over current protection.

Vout is measured across the DC-link and with reference to power ground. VAC is measured in front of the
rectifier and therefore not referenced to power ground. However, by measuring both the phase voltage, VAC1,
and neutral voltage, VAC2, (see Figure 57) the actual AC voltage, VAC, is reconstructed as:

VAC = VAC1 − VAC2

All three signals are measured at the update rate of the current control loop (base rate). Scheduling and sample
rates will be discussed in more detail in Chapter 3.3.

3.1.2 Current Control

The inner control loop ensures that the inductor current tracks the current reference, IL_Ref. The central
element of the loop is a Current Error Amplifier (CEA) which calculates the duty-cycle command for the boost
converter switch. As feedback, the loop relies on the inductor current averaged over a PWM switching period,
IL_avg. The output of the CEA is fed to limiter that ensures minimum on/of times are observed.

The bandwidth of the current controller is determined by tuning but typically falls in the range of 3-9 kHz.
Solution Designer calculates parameters for the current controller for optimized performance.

3.1.3 Average Current Calculation

Continuous Conduction Mode (CCM) is preferred for higher power boost PFC converters due to EMC and power
component utilization. However, at low load the inductor current can become discontinuous during a portion
of each half-line cycle and the boost converter enters what referred to as Discontinuous Conduction Mode
(DCM). From a control point of view the two conduction modes are quite diferent and require separate
handling. The algorithm in the MCE is optimized for CCM but it has additional features that enhances input
current waveform during DCM (low load).
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Figure 59 (A) shows the gate signal and corresponding inductor current during CCM. During the ON-time of the
gate, TON, the inductor is charged by the input voltage and during the OFF-time, TOFF, the charge is released to
the DC-link. The PWM period, TPWM, equals TPWM = TON + TOFF. At no point during the PWM period does the
inductor current drop to 0A and a continuous current flows through the inductor.

Figure 59 (B) shows the gate signal and corresponding inductor current during DCM. As with CCM, the ON-time
of the gate, TON, charges the inductor and during the OFF-time, TOFF, the charge is released to the DC-link. The
diference is that the inductor current drops all the way to 0 during the OFF-time, meaning there is period, TDIS,
where no current flows through the inductor. In other words, the current flow is discontinuous. TDIS depends on
a number of factors, such as input voltage, output voltage, duty-cycle, inductor size and switching frequency.

Figure 59 (A) Continuous Conduction Mode. (B) Discontinuous Conduction Mode

The digital PFC control algorithm requires a measurement of average inductor current once per control period.
With CCM, the average current is easily obtained by sampling at the center of the ON-time, that is at TON/2. In
Figure 59 this measurement is shown as the dot labeled IL. With DCM, extraction of the average current is more
complicated as the duration of the non-conducting interval, TDIS, has to be considered. The average inductor
current can be expressed as a function of TON, TOFF and TDIS.

IL_Avg =
IL × TON + TOFF
TON + TOFF + TDIS

Where IL is the inductor current measured at the center of the ON-time. With Continuous Conduction Mode, TDIS

= 0 and IL_Avg = IL. With Discontinuous Conduction Mode TDIS > 0, and IL_Avg ≠ IL.

Using IL as feedback in DCM will result in phase current distortion and reduced control performance. To
properly control the current regardless of conduction mode, the average must be used as feedback for the loop.
Measuring the average current is dificult in a digital system but estimation through calculation is possible.

The PFC algorithm in the MCE is capable determining the average current regardless of conduction mode. An
estimator takes IL as input and, given operating conditions, calculates TDIS. Based on TDIS the average inductor
current is estimated and then used a feedback for the current control loop.
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It should be noted that the PFC algorithm in the MCE is optimized for CCM and should be used together with a
converter designed for CCM. The purpose of the average estimator is to enhance performance during low load
conditions where the converter enters DCM.

3.1.4 Voltage Control

The Voltage Error Amplifier (VEA) calculates the input current amplitude required to maintain the DC-bus
voltage at the reference, Vout_Ref, under varying load and input voltage conditions. Feedback for the loop is a
notch filtered version of the actual DC-bus voltage. Output from the compensator, VEAout, expresses the
desired magnitude of the input current and is passed on to the multiplier where it is shaped according to the
input voltage waveform, Chapter 3.1.5.

The outer loop is much slower than the inner loop with a typically the bandwidth of a few 10s-of-Hertz. Update
rate of the loop is configurable but the loop runs at a sub-rate (Primary Rate) of the inner current loop (Base
Rate)

3.1.5 Multiplier with Voltage Feed-Forward

The Multiplier has two purposes. First, it has to shape the current reference so it resembles the waveform of the
input voltage. Second, it has to ensure constant voltage control loop gain during all operating conditions,
commonly referred to as voltage feed-forward or VFF. The multiplier used in the MCE algorithm is shown in
Figure 60.

Figure 60 Reference Multiplier with Voltage Feed-Forward

The inputs to the multiplier are the absolute value of instantaneous input voltage, |VAC|, and a 2nd ordered low-
pass filtered version of the squared input voltage, VAC_FILT2. |VAC| shapes the current reference to be
proportional to the input voltage aver the rectifier, hence ensuring unity power factor. VAC_FILT2 is
representing the squared RMS of the input voltage.

The overall gain of the voltage loop is proportional to the square of the input RMS voltage. That means the loop
has a higher gain at high AC input voltages than it does at low AC input voltages. Since a boost PFC typically
operates over a wide AC input voltage range, it is impossible to design one controller that operates well under
all conditions. If the controller is optimized for high voltage operation it becomes sluggish at low voltage. Even
worse, if the controller is optimized for operation at low voltage, it could become unstable at high voltage.

The MCE algorithm ensures constant voltage loop gain by normalizing the output of the voltage controller,
VEAout, with the inverse of the RMS input voltage squared, see Figure 60. This make the control loop
independent of the input voltage throughout the universal input range. The factor KM is calculated by Solution
Designer to ensure the current reference can reach the peak current needed to deliver the specified maximum
power at minimum AC input voltage when the VEAout reaches maximum limit.

iMOTION™ Motion Control Engine
Functional Reference Manual

3  Power Factor Correction

Functional Reference Manual 72 V 1.4
2024-10-28



The multiplier uses a lowpass filtered version of the squared AC line voltage to represent the squared RMS value
of the AC line voltage. The filter is designed to attenuate the component at twice the AC line frequency.
However, with a finite attenuation some AC content will remain at twice the AC line frequency and this ripple
couples through multiplier and ends up modulating onto the current reference as a 2nd order harmonic
distortion. The current controller can easily track a 2nd order component so the distortion ends up in the actual
input current as a 3rd order harmonic. Solution Designer helps the user designing the filter based on acceptable
3rd harmonic input current requirement.

VAC_FILT2 gets limited if it falls outside the configurable parameters VAC_SQ_Filt_VFF_Min and
VAC_SQ_Filt_VFF_Max. This efectively disables voltage feedforward when operating beyond these limits.

The output of the Multiplier represents the unlimited inductor current reference. The unlimited reference is
passed on to a limiter that ensures the current reference never exceeds IL_Ref_Lim.

3.1.6 Notch Filter

With both the input voltage and current being sinusoidal, the power drawn from the grid has a squared
sinusoidal waveform pulsating at twice the grid frequency. For example, at 50 Hz supply the power will pulsate
at 100 Hz. The job of the DC-link capacitor is to filter out this pulsating component so the load sees an output
voltage close to an ideal DC. However, due to cost and physical size constraints it is not possible to fully
eliminate the DC-bus voltage ripple. The result is that any one-phase boost PFC will have a DC-bus voltage
ripple alternating at twice the grid frequency.

Typically, the DC-bus ripple does not have major negative efect on the load. However, voltage ripple couples
through the outer voltage control loop and ends up modulating the current reference amplitude as a second
order harmonic distortion. The current controller can easily track a second order component, so the distortion
ends up in the actual input current.

The two feedback loops of the PFC boost have somewhat conflicting objectives. A fast outer loop gives good
performance in terms of disturbance rejection and stabilizes the output voltage under all operating conditions.
However, a strongly tuned voltage loop will deteriorate the power factor by commanding an input current that
ensures a fixed output voltage rather than the desired sinusoidal-shaped current. To limit the distortion of the
input current reference, the traditional approach is to reduce the control loop gain at the second harmonic
frequency. This approach attenuates the voltage ripple coupled through the loop, but it is undesirable in terms
of dynamic control performance.

The PFC algorithm in the MCE, solves the problem of second harmonic distortion caused by the voltage control
loop by introducing a second order notch-filter in the feedback path of the voltage loop, see Figure 58. The filter
is tuned to have high attenuation (notch) at twice the grid frequency, and therefore removes the voltage ripple
from the feedback signal, while leaving all other frequencies unaltered. With the voltage ripple removed from
the feedback, detuning of the voltage loop gain/bandwidth to avoid current distortion, is no longer needed.

Figure 61 shows the magnitude plot of the notch filter implemented in the MCE when tuned for a 100 Hz center
frequency (notch) which is suitable for a 50 Hz input supply. The bandwidth and the attenuation of the notch
filter are configurable. In this example, the filter was designed for a 20 Hz width of notch (-3 dB to -3 dB) and the
attenuation at the notch is designed for -100 dB. The filter is updated at the primary rate, which in this example
is 2500 Hz. The notch filter is fully tuned and parametrized by Solution Designer.
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Figure 61 2nd order Notch Filter tuned to remove 100 Hz ripple

3.1.7 Zero-Cross Detection

The PFC algorithm relies on information about the line frequency and half line cycle period, THLC. Both of these
values are determined by measuring the time between zero-crossings of the line voltage as illustrated in Figure
62. The top part of the figure shows the line voltage, VAC, along with an AC Polarity signal. The AC Polarity signal
indicates whether VAC is in a positive- or negative half cycle of the voltage and it changes state at every zero-
crossing. The period of the half line cycle, THLC, is time between zero-crossings of the line voltage.

In Figure 62, a positive-to-negative and a negative-to-positive going zero-crossing are highlighted by dashed
eclipses and close-up views are shown in the bottom half of the figure. Stating with the positive-to-negative
zero-cross detection (bottom lev), the first step is to determine when VAC is less than the threshold
ZCD_Step1_Thr but greater than 0V. If the voltage stays within this range for a deglitch time of
ZCD_Step1_Deglitch_Time, the detection proceeds to the second step. If the voltage fails to stay within the
thresholds throughout the deglitch window, the detection starts over from the beginning.

Second step of the detection is to validate the zero-crossing from first step. For a successful completion of the
second step, VAC must stay below the threshold -ZCD_Step2_Thr for a deglitch window with a duration of
ZCD_Step2_Deglitch_Time. When that happens, a new-zero crossing has been detected and the half line cycle
time gets updated based on the elapsed time since last zero-crossing. If the voltage fails to stay below the
threshold throughout the deglitch window, the detection goes back to the beginning of the first step.

Similarly, with the negative-to-positive zero-cross detection, the first step is to determine when VAC is greater
than the threshold -ZCD_Step1_Thr but less than 0V. If the voltage stays within this range for a deglitch time of
ZCD_Step1_Deglitch_Time, the detection proceeds to the second step. If the voltage fails to stay within the
thresholds throughout the deglitch window, the detection starts over from the beginning.

For a successful completion of the second step, VAC must stay above the threshold ZCD_Step2_Thr for a
deglitch window with a duration of ZCD_Step2_Deglitch_Time. If the voltage fails to stay above the threshold
throughout the deglitch window, the detection goes back to the beginning of the first step.
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Figure 62 Zero-cross detection of the line voltage

In addition to the described thresholds and deglitch windows, there is a timeout on step 2. Aver completion of
step 1, the voltage must drop below -ZCD_Step2_Thr within a time of ZCD_Step2_Check_Time to avoid time-
out. In case of a time-out, the detection starts over from the beginningZCD_Step2_Check_Time.

If the detection algorithm fails to find a valid zero-cross within the configurable time ZCDTimeout_Thr, the
parameter ZCDTimeoutFlag is set to 1 to indicate the system is supplied by a DC source. If a zero-cross is
detected within ZCDTimeout_Thr, the parameter ZCDTimeoutFlag is set to 0 to indicate the system is supplied
by an AC source.

3.1.8 So� Start

At startup, there is typically a big diference between the actual DC-bus voltage and the requested voltage,
Vout_Ref. That results in a large control error which can lead to DC-bus overshoot when starting up with no load
or light load thanks to low bandwidth of the voltage control loop. To avoid this the MCE has a Sov Start feature
that gently charges the DC-bus capacitor by gradually increasing a scaling factor, KSS, for the inductor current
limit, IL_Ref_Lim. Sov start is complete when the current reference reaches 100%.

Sov Start ramps the DC-bus voltage up at every start of the PFC, including when PFC operation has been
interrupted by a fault. The actually state of the sov start sequence can be read from bitfield SSStatus in
parameter PFCStatus.

3.1.9 Vout Ready Monitor

The MCE has Vout Ready monitor function that checks the DC-bus voltage against a configurable threshold. One
possible use case for this check is during sequencing of PFC- and motor startup where the monitor function can
be used to determine a safe time to start the motor.
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The working principle of the Vout Ready monitor function is illustrated in Figure 63 . When the DC-bus voltage
exceeds Vout_Ready_Thr, and remains higher than the threshold during a deglitch window of length
Vout_Ready_Deglitch_Time, bit 8 of PFCStatus is set. If the voltage drops below the threshold during the
deglitch window, the status bit is not set. The status bit is cleared if voltage drops below Vout_Ready_Thr minus
a hysteresis, Vout_Ready_Hyst, and stays below the threshold during a deglitch window with a length of
Vout_Norm_Deglitch_Time.

Figure 63 Vout Ready Check

3.1.10 Control Modes

The PFC system ofers manual control modes that let the user overwrite parts of the closed-loop control
system. In Figure 58 the control modes are symbolized by switches whose positions are determined by setting
of the bitfield CtrlMode of parameter SysConfig. The supported modes are:

Table 11 Control Modes

Control Mode Function

0 Open loop current control and open loop voltage control. External input, Duty_Ext, sets the
PFC duty cycle

1 Closed loop current control and open loop voltage control. External input, IL_Ref_Ext, sets
the PFC current reference

2 Closed loop current control and open loop voltage control but with multiplier enabled.
External input, VEAout_Ext, sets the PFC voltage error amplifier output

3 Closed loop current control and closed loop voltage control with multiplier enabled

Normal PFC operation happens with ControlMode = 3. When ControlMode = 0-2 is selected, it is the user9s
responsibility to set appropriate external references.

3.2 State Handling

The Motion Control Engine includes a built-in state machine which manages sequencing of the PFC. The state
machine is updated at the Sequencer Rate (1kHz). Current state of sequencer is stored in PFC_SequencerState
parameter. The states and transitions are listed inTable 12 and illustrated in Figure 64.
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Table 12 State Description and Transition

Sequence State PFC_SeqeuncerState State Functionality Condition for Next State

PFC_IDLE 0 Aver power-up, a PFC reset
(Command=2) or end of
PFC Standby, the control
enters this state. Setup and
configuration of the PFC

Valid parameter set

PFC_OFFSETCAL 1 Ofset calculation for the
PFC current measurement
channel. This state takes
2OfsetCalTotalTime

PWM cycles to complete

If the ofset falls within
min/max levels, proceed
to a RUN_CTRLMODEx
state. If not, proceed to
PFC_FAULT

PFC_FAULT 5 Fault state if current
measurement ofset check
failed or if execution fault is
detected

Once entered, the PFC
stays in this state until
PFC is reset either through
power cycling or by
setting Command = 2

RUN_CTRLMODE0 2 Run mode with external
duty-cycle reference.

Control is either waiting for
an enable command
(Command = 1), applying
PWM or shut down by a fault

Once entered, the PFC can
only leave this state in
case of an execution fault
or a

PFC reset (Command = 2)

RUN_CTRLMODE1 3 Run mode with external
current reference.
Control is either waiting
for an enable command
(Command=1), applying
PWM or shut down by a fault

Once entered, the PFC can
only leave this state in
case of an execution fault
or a PFC reset (Command
= 2)

RUN_CTRLMODE2 4 Run mode with external
multiplier reference.
Control is either waiting
for an enable command
(Command = 1), applying
PWM or shut down by a fault

Once entered, the PFC can
only leave this state in
case of an execution fault
or a PFC reset (Command
= 2)

RUN_CTRLMODE3 6 Normal PFC run mode with
full close loop control.
Control is either waiting
for an enable command
(Command = 1), applying
PWM or shut-down by a fault

Once entered, the PFC can
only leave this state in
case of an execution fault
or a PFC reset (Command
= 2)

(table continues...)
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Table 12 (continued) State Description and Transition

Sequence State PFC_SeqeuncerState State Functionality Condition for Next State

PFC_STANDBY 7 The MCE lowers standby
power consumption by
reducing the CPU clock and
by switching of some of the
controller9s peripherals. To
enter STANDBY the PFC must
be in RUN_CTRLMODE3, no
PFC fault is present, and
PFC PWM disabled. Motor
is in STOP state with Zero-
Vector-Braking disabled. In
addition, a configured delay
time must expire before
entering STANDBY

A motor- or PFC start
command or a fault
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Figure 64 State handling of the PFC

Once a RUN_CTRLMODEx (x = 0, 1, 2 or 3) state has been entered, the system stays in that state unless one of 3
exceptions occur. (1) If an execution fault is detected, and fault is enabled, the system enters PFC_FAULT. (2) If in
RUN_CTRLMODE3 and the conditions for low-power standby are met, the system enters PFC_STANDBY. (3) If
the system is reset (Command=2) the system transitions to PFC_IDLE. PFC operation can be enabled/disabled
by setting of the Command parameter but the system stays in the RUN_CTRLMODEx state regardless of the
command. In case of a fault (excluding current ofset fault and execution fault), the PFC gate operation is shut
down until the fault clears but the system remains in the RUN_CTRLMODEx state throughout the fault
condition. In case of current ofset fault or execution fault, the PFC enters PFC_FAULT state and stays in that
state until the power cycles or the PFC is reset (Command = 2).

In state RUN_CTRLMODE3 the system can transition to PFC_STANDBY if the PFC is disabled and a configured
delay time has expired. In standby the MCE lowers power consumption by reducing the CPU clock and by
switching of some of the controller9s peripherals. PFC_STANDBY is terminated when a motor start (Command
=1) or PFC reset (Command=2) is received, or a motor fault occurs. PFC_STANDBY is lev through the PFC_IDLE
state and followed by an ofset calibration before normal PFC operation is resumed.
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3.3 Scheduling and Timing

The time constants involved in the control of a Boost PFC varies greatly. For best control performance, and to
minimize execution load, it is beneficial to split the algorithm into sub systems based on time constants and
execute those subsystems at diferent rates. The PFC algorithm in the MCE is updated at 4 diferent rates as
listed in the table below:

Table 13 Execution Rates

Rate Name Execution Events Update Rate

PWM Switching frequency of PFC gate Configurable. Typical 20-100 kHz

Base Measurement System

Reference Multiplier

Current Controller

PWM duty-cycle update
VAC zero-cross detection

Configurable. Sub-rate of PWM Rate.

Possible ratios are 1:1, 1:2 and 1:3
Typical 20-60 kHz

Primary Voltage Controller

Current Reference Limiter

Notch filter

Sov Start

Feed-Forward voltage calculation

Vout UV/OV update
PFC Status update

Configurable. Sub-rate of Base Rate.
Typical 1-10 kHz

Sequencer Preparation of Power calculation

Preparation of VAC RMS calculation

Preparation of IAC RMS calculation

VAC Drop-out update

VAC UV/OV update

AC Frequency validation

Vout Ready update
Overcurrent trip status update

Fixed at 1 kHz

The current control loop is executed at the Base Rate and it is the most time critical part of the system. As
mentioned, the Base Rate is derived as a sub rate of the PWM rate. When the processor load allows, it is
preferred to use a 1:1 ratio between the PWM- and Base Rate, meaning the PWM duty-cycle is updated every
PWM cycle. In systems where a high PWM rate is required, say 100 kHz, a 1:1 ratio is not allowed due to the
execution load of the MCE. For these high PWM rate systems, the MCE supports a 1:2 as well as a 1:3 ratio
between the PWM rate and Base Rate.

Base- and primary rate are set by parameters FastControlRate and PrimaryControlLoop.

3.3.1 1:1 Base Rate

If the PWM rate allows the current controller to be updated every PWM cycle, a 1:1 ratio between the PWM rate
and Base rate is preferred. In this case TBaseRate = TPWM. A timing diagram of this operating mode is shown in
Figure 65.

From the top down, the figure shows the PFC Gate signal which is defined by its on-time, TON, its of-time, TOFF,

and its PWM switching period, TPWM= TON+TOFF. During the on-time the Inductor Current, IL, increases and
during the of-time it decreases as the stored energy is release to the DC-link. Assuming Continuous Conduction
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Mode, the Inductor Current assumes its average value at the center of the on-time. Under ideal conditions, the
center of the on-time is the correct instant to sample the current but the system has delays, such as gate driver
propagation delay and measurement channel delay. To compensate for the delays, the ADC Trigger is ofset by
TSHDelay. In addition to the inductor current IL, the AC voltages, VAC1/VAC2, and the DC-bus voltage, Vout are
also measured by the ADC. The inductor current is sampled during the gate on-time and the 3 voltages are
sequentially sampled during the gate of-time. Each measurement consists of a sample-and-hold stage and a
conversion state. The sample-and-hold stage takes TSH= 333 ns to complete and the conversion takes Tconv= 767
ns to complete.

When the ADC is finished converting IL, the current loop is updated based on the newly acquired feedback. The
result is a new duty-cycle which is applied at beginning of the next PWM cycle.

Figure 65 Timing diagram when the Base rate to PWM rate is 1:1

3.3.2 1:2 Base Rate

At higher PWM rates the execution load of the PFC algorithm does not leave enough room for the motor control
algorithm. For these cases, the MCE ofers a 1:2 base rate, meaning the current controller is only updated every
second PWM cycle. In this case TBaseRate = 2 x TPWM. The timing diagram in Figure 66, illustrates operation with a
1:2 Base Rate. Note how the Inductor Current sampling and execution of the control algorithm are skipped
every second PWM cycle.

Figure 66 Timing diagram when the Base rate to PWM rate is 1:2
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3.3.3 1:3 Base Rate

For highest possible PWM rate the MCE supports a 1:3 base rate, meaning the current controller is only updated
every third PWM cycle. In this case TBaseRate = 3 x TPWM. The timing diagram in Figure 67, illustrates operation
with a 1:3 Base Rate. Note how the Inductor Current sampling and execution of the control algorithm are
skipped every third PWM cycle.

Figure 67 Timing diagram when the Base rate to PWM rate is 1:3

3.3.4 Co-existence of PFC and Motor Control Algorithm

Both the PFC and the Motor Control are real-time control system that must be executed in a time consistent
manner. This requires special attention when both algorithms are running on the same single core device. The
PFC algorithm typically executes at a higher rate than the motor control algorithm but the PFC execution time is
only a fraction of motor execution time. On the MCE, execution of the PFC algorithm is given highest possible
priority and it can preempt execution of the motor algorithm. This ensures both PFC- and motor algorithms can
coexist on the same device. Neither phase nor rate of PFC PWM are synchronized to Motor PWM.

3.4 Protection

The MCE has a total of 9 PFC protection functions as summarized in the table below. The functions have been
designed to protect the PFC from operating under potentially damaging conditions while at the same time
ensure maximum robustness of the PFC operation.

The parameter FaultEnable can be used to enable/disable maskable protection function. The PFC has 3 non-
maskable protections, Over Current Fault (OCP), Vout Overvoltage Fault and Current Measurement Ofset Fault.
These non-maskable protection functions are always enabled regardless of the setting of FaultEnable and the
system will always take protective action for these functions. All other protection functions can be disabled by
setting the corresponding bit in the parameter FaultEnable.

Fault status is reported in the parameters FaultFlags and SwFaults. Non-maskable faults are always reported in
both FaultFlags and SwFaults. Maskable faults are always reported in FaultFlags but reporting in SwFaults
depends on the setting of the parameter FaultEnable.

If a maskable protection function9s corresponding bit in parameter FaultEnable is set, the fault will be reported
in parameter SwFaults and the system will take protective action for that function. If the protection function9s
corresponding bit in parameter FaultEnable is not set, the fault will not be reflected in parameter SwFaults and
the system will not take protective action for that function.
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Table 14 Protection Functions

Protection

Function

Description Fault Actions UL60730-1

certification
With Fault Enabled With Fault Disabled

Over Current
(OCP)

Fast, HW-based cycle-
by-cycle overcurrent
protection

PFC gate to inactive level.

Automatic recover at the
beginning of the
following PWM cycle
when fault clears.
FaultFlags and SwFaults
status update

PFC gate to inactive level.

Automatic recover at the
beginning of the
following PWM cycle
when fault clears.

FaultFlags and SwFaults
status update.
Non-maskable fault

Yes

VAC Drop-out Low instantaneous
input voltage

PFC operation
uninterrupted.
FaultFlags and SwFaults
status update

PFC operation
uninterrupted.
FaultFlags status update

No

VAC
Overvoltage

High RMS input voltage
protection

Limit PFC gate duty-cycle
to 0.

Automatic recover when
fault clears.
FaultFlags and SwFaults
status update

PFC operation
uninterrupted.
FaultFlags status update

Yes

VAC Brown-
out

Low RMS input
voltage (undervoltage)
protection

Limit PFC gate duty-cycle
to 0.

Automatic recover when
fault clears.
FaultFlags and SwFaults
status update

PFC operation
uninterrupted.
FaultFlags status update

Yes

VAC Frequency Out of range AC line
frequency

Limit PFC gate duty-cycle
to 0.

Automatic recover when
fault clears.
FaultFlags and SwFaults
status update

PFC operation
uninterrupted.
FaultFlags status update

Yes

Vout
Overvoltage

DC-bus overvoltage
protection

Limit PFC gate duty-cycle
to 0.

Automatic recover when
fault clears.
FaultFlags and SwFaults
status update

Limit PFC gate duty-cycle
to 0.

Automatic recover when
fault clears.
FaultFlags and SwFaults
status update. Non-
maskable fault

No

(table continues...)
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Table 14 (continued) Protection Functions

Protection

Function

Description Fault Actions UL60730-1

certification
With Fault Enabled With Fault Disabled

Vout Open-
Loop

DC-bus voltage open-
loop (undervoltage)
protection

Limit PFC gate duty-cycle
to 0.

Automatic recover when
fault clears.
FaultFlags and SwFaults
status update

PFC operation
uninterrupted.
FaultFlags status update

No

Current
Measurement
Ofset

Out of range current
measurement ofset
before start of PFC

Abort start-up of PFC.

Enter PFC_FAULT state
and latch until power is
cycled or set Command =
2.
FaultFlags and SwFaults
status update

Abort start-up of PFC.

Enter PFC_FAULT state
and latch until power is
cycled or set Command =
2.
FaultFlags and SwFaults
status update. Non-
Maskable fault

No

Execution CPU execution load
exceeding 95% or
background tasks are
not executed at least
once every 60s

Enter PFC_FAULT state
and latch until power is
cycled or set Command =
2.
FaultFlags and SwFaults
status update

PFC operation
uninterrupted.
FaultFlags status update

Yes

Except for VAC Drop-out protection, the protection system automatically brings the system into a safe mode
when a fault is detected and enabled. Most protection functions force the PFC duty-cycle to 0 in case of a fault
and, when the fault clears, restores normal operating conditions. The exception to this handling approach is
OCP fault, Current Measurement Ofset fault and Execution fault. In case of OCP fault, the PFC gate is switched
to the inactive state for the remainder of the PWM cycle but by the start of the following PWM cycle the gate is
automatically reenabled if the OCP condition is cleared. A Current Measurement Ofset fault and Execution fault
forces the system into an inactive state (PFC_FAULT) form which there is no recovery until power is cycled or the
PFC is reset.

Bitfield SWStatus of parameter PFCStatus represents the status of the PFC power stage switch. SWStatus will be
set to Disable when either the Command parameter is set to Disable, or the duty-cycle is forced to zero by any
fault conditions. Note that the faults capable of forcing the duty-cycle to zero are VAC Overvoltage-, VAC Brown-
out-, VAC Frequency-, Vout Overvoltage- and Vout Open-Loop fault.

It should be noted that a PFC fault does not shut down operation of the motor. Likewise, a motor fault does not
shut down operation of the PFC. If such an application specific fault synchronization is required, the application
script must take care of the required handling. Fault status is accessible to the script through the parameters
FaultFlags and SwFaults.

3.4.1 Over Current Protection

PFC over-current fault is detected by comparing the instantaneous inductor current against a pre-configured
over current protection (OCP) threshold value. The PWM output is disabled when the inductor current exceeds
the OCP threshold.

The OCP function is fully implemented by hardware and operates independently of the sovware. The over-
current tripping mechanism makes use of an internal comparator that can be configured to both non-inverting
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and inverting topology for inductor current sensing. Below diagram depicts the OCP mechanism for non-
Inverting current sense topology.

Figure 68 Cycle-by-cycle OCP Application Diagram for Non-Inverting current sense

The tripping level is set using external resistors Rh and Rl which set the tripping level at the PFCREF pin.
(inverting input of the comparator). The voltage across the resistive shunt Rs, is scaled and ofset by R1, R2 and
R3 and then fed to the PFCITRIP pin (Non-inverting input of the comparator). If the voltage at the PFCITRIP pin
is below the voltage at the PFCREF pin, the comparator output goes low. Comparator output is connected to an
internal digital filter that is used to de-bounce the input signal to prevent high frequency noise from mis-
triggering of over current fault. User can configure the digital filter value using OCP_BlankingTime parameter.
The comparator signal needs to remain stable (low) for the specified digital filter period to trigger the over-
current fault. As a result, the PWM output immediately goes to configured passive level, and stays until the end
of this PWM cycle, even if the inductor current drops below the PFC OCP threshold. At the beginning of the
following PWM cycle, if the inductor current is below the PFC OCP threshold, then PWM output resumes. If the
inductor current is still higher than the PFC OCP threshold, then the PWM output remains logic LOW. This type
of OCP is commonly referred to as cycle-by-cycle protection.
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Figure 69 OCP Filter Timing Diagram

A timing diagram of cycle-by-cycle OCP is shown below. PWM operates with a switching period of TPWM. During
the on-time the Inductor current, IL, increases and during the of-time the inductor current decreases. When the
inductor current exceeds the Trip Level, PWM is forced to the inactive state to prevent damage to the converter.
At the beginning of the next PWM cycle, the fault is cleared and normal PWM resumes. In below diagram a
second OCP fault is detected the following PWM cycle and the sequence repeats.

Note that PWM reenable is synchronized to the beginning of a new PWM cycle, guaranteeing the PWM switching
frequency remains constant and as configured even during OCP conditions.

Figure 70 Cycle-by-cycle OCP timing diagram

OCP fault notification is illustrated in below diagram. When a fault occurs, an Internal Trap Flag is set. A
configurable update time, OCP_Status_Update_Time, determines how oven the trap flag gets read and copied
to bit 0 of the parameters FaultFlags and SWFaults. Upon latch of the trap flag, and if the OCP fault condition is
no longer present, the flag is cleared. If the fault persists, then the trap flag remains set. Bit 0 of FaultFlags and
SWFaults will be set to 1 for a duration of OCP_Status_Update_Time and then automatically cleared. If the
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application requires system level handling of the OCP fault, it is up to the application script to capture
FaultFlags or SWFaults in a timely manner and take the appropriate action.

In cased of OCP fault, the PFC state machine remains in the 8Run State9 and PWM will be chopped by the OCP
comparator on a cycle-by-cycle basis until user stops the PFC by setting the parameter Command to disable.

Figure 71 OCP fault signaling

OCP mechanism in MCE for inverting and non- Inverting current sense polarity topology is shown below. The
MCE, inverts the output of the internal comparator in case of inverting current sense.

Figure 72 OCP Mechanism for inverting and non-inverting polarity topology

3.4.2 VAC Drop-out Protection

VAC Drop-out fault becomes active when the instantaneous, absolute value of the AC input voltage drops below
a configurable threshold. A hysteresis and a deglitch window are added to prevent rapid toggling between
normal- and fault conditions. VAC Drop-out Fault does not force the PFC duty-cycle to 0 meaning PFC operation
will continue in the event of a fault. It is up to the application script to take the appropriate action in case of VAC
drop-out fault.

The AC input voltage is sampled every PFC base-rate cycle and drop-out detection relies on the absolute value
of this measurement. The protection function is executed at Sequencer Period (1 ms).

VAC Drop-out detection and clear is illustrated in Figure 73. If the instantaneous absolute value of the input
voltage drops below VAC_DO_Thr, and remains lower than the threshold during a deglitch window of length
VAC_DO_Deglitch_Time, bit 6 of FaultFlags is set. If the voltage exceeds the threshold during the deglitch
window, the fault is not set. To clear the drop-out fault, the voltage must exceed VAC_DO_Thr plus a hysteresis,
VAC_DO_Hyst, and stay above this threshold for the duration of a deglitch window with a length of
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VAC_Recov_Deglitch_Time. If the voltage fails to stay above the threshold throughout the deglitch window,
FaultFlags [6] remains set.

Figure 73 VAC drop-out voltage detection can clear

3.4.3 VAC Over Voltage and Brown-out Protection

AC Over Voltage fault becomes active when the AC input voltage RMS value is above a configurable threshold
and AC brown-out (undervoltage) fault becomes active when the AC input voltage RMS value is below a
configurable threshold. A hysteresis and a deglitch window are added to prevent rapid toggling between
normal- and fault conditions.

Both over voltage- and brown-out protection operates on the RMS of the input voltage. The instantaneous AC
input voltage is sampled every PFC base-rate cycle and the RMS value of the AC input voltage is updated every
half-line cycle when AC input voltage zero-crossing is detected.

The VAC over-voltage detection and clear is illustrated in Figure 74 with the absolute value of the instantaneous
AC voltage, VAC, shown on the top, RMS value of the AC voltage, VAC RMS, in the middle and fault reporting
parameter FaultFlags, at the bottom. Note how the VAC RMS voltage is updated at every zero-crossing of VAC. If
the VAC RMS value exceeds VAC_OVP_Thr, and remains higher than the threshold during a deglitch window of
length VAC_OVP_Deglitch_Time, bit 5 of FaultFlags is set. If the voltage drops below the threshold during the
deglitch window, the fault is not set. To clear the overvoltage fault, the voltage must drop below VAC_OVP_Thr
minus a hysteresis, VAC_OVP_Hyst and stay below this threshold for the duration of a deglitch window with a
length of VAC_Norm_Deglitch_Time. If the voltage fails to stay below the threshold throughout the deglitch
window, FaultFlags[5] remains set. The length of the deglitch window is an integer number of half-line-cycle
periods, THLC.
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Figure 74 VAC over voltage detection and clear

The VAC Brown-out (undervoltage) detection and clear is illustrated in Figure 75, with the absolute value of the
instantaneous AC voltage, VAC, shown on the top, RMS value of the AC voltage, VAC RMS, in the middle and fault
reporting parameter FaultFlags, at the bottom. If the calculated VAC RMS drops VAC_BO_Thr, and remains
lower than the threshold during a deglitch window of length VAC_BO_Deglitch_Time, bit 4 of FaultFlags is set. If
the voltage exceeds the threshold during the deglitch window, the fault is not set. To clear the brown-out fault,
the voltage must exceed VAC_BO_Thr plus a hysteresis, VAC_BO_Hyst, and stay above this threshold for the
duration of a deglitch window with a length of VAC_Norm_Deglitch_Time. If the voltage fails to stay above the
threshold throughout the deglitch window, FaultFlags[4] remains set.

Figure 75 VAC brown-out detection and clear
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3.4.4 Input Frequency Protection

The MCE monitors the actual AC line frequency and asserts a fault if it falls outside a configured window. The
user can choose between 50 Hz or 60 Hz as nominal line frequency. Valid range of the actual AC input frequency
is also configurable. For example, with a nominal AC frequency of 50 Hz, a typical valid range of actual AC input
frequency is from 47 to 53 Hz.

The AC input frequency is determined by measuring the time between zero-crossings of the input voltage.
During each Base Rate cycle the MCE checks for zero-crossing and increments a counter when a zero-crossing is
not detected. When a zero-crossing is detected the counter value is latched and stored in parameter THLC
which then holds the number of Base Rate cycle per half line cycle period. Note, that a long half line cycle
period corresponds to a low frequency. AC input frequency is checked against min/max limits at the Sequencer
Update Rate (1 kHz).

The principle behind the Input Frequency Protection function is shown in Figure 76. If the measured positive- or
negative half line cycle period, THCL, is greater than the maximum limit, THLC_Validation_Max_Thr, and
remains higher than the threshold during a deglitch window of length THLC_Validation_Deglitch_Time, bit 3 of
FaultFlags is set to indicate a low line frequency. If the half line cycle period drops below the threshold during
the deglitch window, the fault is not set. The frequency fault is cleared when the half line cycle period drops
below THLC_Validation_Max_Thr minus a hysteresis, THLC_Validation_Max_Hyst and stays below this
threshold for the duration of a deglitch window with a length of THLC_Validation_Deglitch_Time. If the half line
cycle period fails to stay below the threshold throughout the deglitch window, FaultFlags[3] remains set.

Similarly, If the measured half line cycle period, THCL, is less than the max limit, THLC_Validation_Min_Thr, and
remains lower than the threshold during a deglitch window of length THLC_Validation_Deglitch_Time, bit 3 of
FaultFlags is set to indicate a high line frequency. If the half line cycle period exceeds the threshold during the
deglitch window, the fault is not set. The frequency fault is cleared when the half line cycle period exceeds
THLC_Validation_Min_Thr plus a hysteresis, THLC_Validation_Min_Hyst and stays above this threshold for the
duration of a deglitch window with a length of THLC_Validation_Deglitch_Time. If the half line cycle period fails
to stay above the threshold throughout the deglitch window, FaultFlags[3] remains set.

Figure 76 Min/max input frequency detection and clear

3.4.5 Vout Over Voltage and Open Loop Protection

Vout over voltage fault is active when the DC-bus voltage exceeds a configurable threshold and Vout Open Loop
(undervoltage) fault is active when the DC-bus voltage drops below a configurable threshold. A hysteresis and a
deglitch window are added to prevent rapid toggling between normal- and fault conditions. The DC-bus voltage
is sampled every PFC switching cycle and can be read from the parameter Vout.

The DC-bus over-voltage detection and clearing is illustrated in Figure 77. If the DC-bus voltage exceeds
Vout_OVP_Thr, and remains higher than the threshold during a deglitch window of length
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Vout_OVP_Deglitch_Time, bit 2 of FaultFlags is set. If the voltage drops below the threshold during the deglitch
window, the fault is not set. To clear the overvoltage fault, the voltage must drop below Vout_OVP_Thr minus a
hysteresis, Vout_OVP_Hyst and stay below this threshold for the duration of a deglitch window with a length of
Vout_Norm_Deglitch_Time. If the voltage fails to stay below the threshold throughout the deglitch window,
FaultFlags[2] remains set.

Figure 77 Vout over voltage detection and clear

The Vout Open-Loop (undervoltage) detection and clear is illustrated in Figure 78. If the DC-bus voltage drops
below Vout_OLP_Thr, and remains lower than the threshold during a deglitch window of length
Vout_OLP_Deglitch_Time, bit 1 of FaultFlags is set. If the voltage rises above the threshold during the deglitch
window, the fault is not set. To clear the brown-out fault, the voltage must exceed Vout_OLP_Thr plus a
hysteresis, Vout_OLP_Hyst, and stay above this threshold for the duration of a deglitch window with a length of
Vout_Norm_Deglitch_Time. If voltage fails to stay above the threshold throughout the deglitch window,
FaultFlags[1] remains set.

Figure 78 Vout open loop detection and clear

3.4.6 Current Measurement O�set

As part of the PFC startup, the ofset of the current measurement channel, ILOfset, is determined and used for
calibration of the inductor current samples. If this measured ofset falls outside configurable limits,
ILOfset_Min and ILOfset_Max, a protection function prevents the PFC from starting and raises a FaultFlags[7].
Out of range Current Measurement Ofset brings the PFC into a dedicated fault state, PFC_FAULT.

iMOTION™ Motion Control Engine
Functional Reference Manual

3  Power Factor Correction

Functional Reference Manual 91 V 1.4
2024-10-28



An out of range ofset indicates a faulting measurement circuit that cannot be relied on for closed loop current
control. Only an MCE reset or a PFC reset (Command = 2) will initiate a new start attempt.

3.4.7 Execution

CPU execution load is monitored at a system level and takes all running tasks into account. If the execution
load exceeds 95% or if background tasks are not executed at least once every 60s, FaultFlags[9] is set to indicate
a fault. If the fault is enabled, the PFC enters a dedicated fault state, PFC_FAULT. Only an MCE reset or a PFC
reset (Command = 2) will initiate a new start attempt.

If Class B is enabled, the evaluation period of background task execution interval is reduced to 1 second. If Class
B is disabled and BG monitoring is enabled (MCEOS. SysTaskConfig.BGtask_Monitoring_EN == 1, i.e bit 6 of
<SysTaskConfig=), sovware reset is performed in case any of the background task is not executed at least once
60s period.

4 System

4.1 Internal Oscillator Calibration

4.1.1 Overview

The internal oscillator frequency of MCE varies as the temperature changes. The accuracy of the internal
oscillator can be improved by a calibration process with respect to temperature changes. The MCE implements
a run-time calibration routine that measures the die temperature using its on-chip temperature sensor, and
applies an ofset value to adjust the internal oscillator accordingly to achieve higher accuracy. This calibration
routine is executed every 20 ms automatically.

This internal oscillator calibration function can be enabled by setting the 3rd bit of 8SysTaskConfig9 parameter.
See respective product datasheets for detailed specification of achievable accuracy.

4.2 Multiple Parameter Programming

4.2.1 Parameter Page Layout

In iMOTION ™ product, 4k bytes of flash memory are used to store control parameter data. There are totally 16
parameter blocks, each parameter block is 256 bytes in size. Multiple parameter blocks up to a maximum of 16
can be used to support diferent motor types or hardware.

Active parameter set is specified by a parameter set number, which can be configured using iMOTION ™ Solution
Designer. iMOTION ™ Solution Designer output (out.ldf) that contains the parameter values, can be
programmed into the parameter block using iMOTION ™ Solution Designer. iMOTION ™ Solution Designer output
file contains the specified parameter set number. Solution Designer loads the parameter values into the
corresponding parameter block. Each parameter block can be updated individually multiple times.

Each parameter set will take one parameter block. The valid parameter set IDs can range from 0(0x00) to
15(0x0F).

4.2.2 Parameter Block Selection

MCE supports to select the parameter block in 3 diferent methods; UART, Analog input and GPIO pins.
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Parameter block selection input configuration is available in iMOTION ™ Solution Designer and iMOTION ™

Solution Designer updated "ParSetConf" parameter. Table 15 shows relationship between ParSetConf[3:0] and
configuration of parameter selection.

Table 15 Configuration of Parameter Selection

MCEOS.ParSetConf[3:0] Parameter Selection

0 UART control

1 Multiple parameter handling is not enabled. Parameter sets specified in
MCEOS.ParPageConf[9:4] is loaded as a default parameter set

2 Analog input

3 GPIO pins (PAR0, 1, 2 and 3)

Note: Not all of the 4 methods to select parameter block are available in all iMOTION ™ devices, due to pin

availabilities. Refer specific device datasheet for available methods to select parameter block.

4.2.2.1 UART Control

Specific UART messages are defined to load the parameter block from flash to RAM and save the parameter set
from RAM to flash. Refer Chapter 5.1.7.10 for message format.

4.2.2.2 Analog Input

Parameter block is selected based on the analog input value. MCE uses <PARAM= pin as the Analog input for
parameter set selection. Mapping between parameter page selections based on Analog input mentioned below

ParameterBlock = Integer
AnalogInput

Vadcref
× 15

Example if AnalogInput = 1.2 V and Vadcref = 3.3 V, then ParameterBlock = 5

Note: Maximum value of parameter block is 15 (0x00 to 0x0F).

4.2.2.3 GPIO Pins

Parameter block is selected based on the four GPIO pins. GPIO pins used for parameter set selection are named
as <PAR0=, <PAR1=, <PAR2= and <PAR3=. Mapping between parameter page selections based on GPIO pins are
listed in the Table 16.

Table 16

GPIO Input Parameter Block

PAR3 PAR2 PAR1 PAR0

0 0 0 0 0 (0x00)

0 0 0 1 1 (0x01)

0 0 1 0 2 (0x02)

0 0 1 1 3 (0x03)

0 1 0 0 4 (0x04)

(table continues...)

iMOTION™ Motion Control Engine
Functional Reference Manual

4  System

Functional Reference Manual 93 V 1.4
2024-10-28



Table 16 (continued)

GPIO Input Parameter Block

PAR3 PAR2 PAR1 PAR0

0 1 0 1 5 (0x05)

0 1 1 0 6 (0x06)

0 1 1 1 7 (0x07)

1 0 0 0 8 (0x08)

1 0 0 1 9 (0x09)

1 0 1 0 10 (0x0A)

1 0 1 1 11 (0x0B)

1 1 0 0 12 (0x0C)

1 1 0 1 13 (0x0D)

1 1 1 0 14 (0x0E)

1 1 1 1 15 (0x0F)

Figure 79 Parameter Load Procedure
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4.2.3 Parameter load fault

If there is no parameter data available in the selected parameter block, MCE stays in IDLE state. It is not possible
to start the motor from IDLE state. If there is no valid parameter data is available in the selected parameter
block, MCE report parameter load fault and stays in IDLE state. In this condition, it is required to load the right
parameter data or select right parameter block.

If there is no other fault, the MCE load parameter values into RAM then go to STOP state and is ready to run the
motor.

4.3 Low Power Standby

The MCE provides two types of standby modes, CPU Idle Sleep and Low Power, that enabled reduced power
consumption of the MCE when the motor/PFC are not operating. These two modes can be enabled together or
independently. CPU Idle Sleep puts the CPU into sleep mode when there are no tasks to execute. Power
reduction depends on the MCE idle time (CPU load) and power reduction is limited. Low Power Mode achieves
more power reduction by reducing the CPU clock and switching of some of the internal controller peripherals.
In Low Power mode, the Motor PWM unit and the PFC PWM unit (if supported) are disabled. In Low Power
mode, VDC is measured every 1 ms. To detect a critical over voltage, over voltage, or under voltage fault two
consecutive VDC measurements must be above the over voltage threshold for a fault to be triggered, giving a
total response time of 2 ms. The measured VDC is not filtered and the raw value is used for the voltage
protection functions.

The highest power saving is achieved when enabling both CPU Idle Sleep and Low Power Mode simultaneously.
The Bitfields of the parameter 8StandbyConf9 enables/disables the standby modes.

Available features depend on the standby mode, where CPU Idle Sleep generally supports all available features
and Low Power Mode only supports a subset. The table below gives a general overview of the features
supported in each mode.

Group Protection Fault CPU Idle Sleep Low Power Mode

Interface iSD DashBoard x x

iSD Oscilloscope x x

JCOM x x

USER UART x x

Digital/Analog Hall x  

PFC x  

Control Input VSP x x

DUTY x x

FREQ x x

Scripting Scripting x x

IR Interface x RC-5 only

Data Storage x x

TRIAC Control x x

I2C x x

Available protection functions also depend on the standby mode. With CPU Idle Sleep all protection functions
are supported and with Low Power Mode only a subset of protection functions is supported. The table below
gives a general overview of the functions are supported in each mode.
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Group Protection Fault CPU Idle Sleep Low Power Mode

Motor Critical Over Voltage x x

Over Voltage x x

Under Voltage x x

Gate Kill x  

Gate Kill Pin x  

Flux x  

Over Temperature x x

Rotor Lock x  

Phase Loss x  

Current Ofset x  

PFC Over Current (OCP) x  

VAC Drop-out x  

VAC Overvoltage x  

VAC Brown-out x  

VAC Frequency x  

Vout Overvoltage x  

Vout Open-Loop x  

Current Meas. Ofset x  

System UART link break x x

CPU Execution x x

Parameter Load x x

4.3.1 Entry and Exit Conditions

If enabled, CPU Idle Sleep is entered as soon as the MCE is in an execution idle state. No other conditions need
to be met. CPU Idle Sleep is exited when there are tasks to execute.

Before entering Low Power mode, a configurable delay time must expire and specific conditions must be met.
During this time the system remains fully active and can cancel entry to Low Power mode by running the motor
or triggering a fault. The delay time is configured by the 8StandbyPauseTimeout9 parameter with a maximum of
65535 milliseconds. This parameter cannot be modified at runtime from script.

Following are the conditions for entering and exiting to/from Low Power mode for MOTOR and PFC (if
supported):

Entry Conditions:

1. Motor is in STOP state

2. PFC is disabled (if supported)

3. No motor faults are present

4. Zero-Vector-Braking is not active

5. Pause before entering low power mode has expired

Exit Conditions:

1. Motor start command has been received
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2. PFC is enabled (if supported)

3. Fault has occurred

A motor start command or a fault is needed to wakeup the MCE from Low Power Mode. The start command can
come from any of the active sources which include Control Input (VSP/FREQ/DUTY), scripting, JCOM, User UART
or Solution Designer.

4.3.2 Scripting

Script functionality is fully supported with instructions limitations per Execution Step and a minimum a task
period of 1 millisecond (Task 0).

• Up to 40 instructions when using Motor and no PFC

• Up to 20 instruction when Motor and PFC

Both Motor_SequencerState = 13 and PFC_SequencerState = 7 (if supported) will indicate that MOTOR and PFC
are in Low Power Mode. For more information on state handling during standby, refer to Chapter 2.1 and
Chapter 3.2

4.3.2.1 Timing

Entering Low Power Mode takes 'Overhead Time' + 'Pause Before Entering to Low Power' + '1 millisecond state
transition' in the worst case. Average Overhead Time is 106 microseconds, corresponding to ramp-down
process and stand-by request.

Exiting from STAND-BY mode takes 'Overhead Time' + '1 millisecond state transition' in the worst case. Average
Overhead Time is 34.24 microseconds where the system reconfigures what was disabled in the ramp down
process.

5 Communication Interface

5.1 User Mode UART

The user mode UART communication is designed to provide a simple, reliable and scalable communication
protocol for motor control application. The protocol is simple so that it can be easily implemented even in low-
end microcontrollers which work as master to control the motor. It supports networking (up to 15 nodes on
same network) which is required in some industrial fan/pump applications. Each UART commands are
processed every 1 ms.

If users intend to implement a customized UART communication protocol, it can be realized by using those
configurable UART driver methods described in Chapter 6.11.1.

5.1.1 Baud Rate

The MCE supports the following Baud rate configuration for user mode UART: 2400 bps, 9600 bps, 19200 bps,
57600 bps, 115200 bps, and 230400 bps.

5.1.2 Data Frame

The format of the data frame is shown in Figure 80 . Notice that it follows little endian format.
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Figure 80 UART Data Frame

5.1.3 Node Address

Node address is the first byte in a data frame. It is designed to allow one master controlling multiple slaves in
the same network. Each slave node has its unique node ID. The slave only acknowledges and responds to the
message with same ID. There are two broadcast addresses (0x00 and 0xFF) defined for diferent usage. If a
message is received with address = 0x00, all the slaves execute the command but will not send a reply to the
master. This is useful in a multiple slave network and the master needs to control all the slaves at the same
time, for example, turn on all the motor by sending only one message. If received a frame with address = 0xFF,
the slave will execute the command and send a reply to the master. This is useful in 1-to-1 configuration when
the master does not know or does not need to know the slave node address.

Table 17 Node Address Definition

Node Address Command

0x00 All nodes receive and execute command, no response

0x01 to 0x0 F Only the node that has same address executes the command and replies to the master

0x10 to 0xFE Reserved

0xFF All nodes receive and execute the command and reply to the master. Only used in 1-to-1
configuration. It will cause conflict if multiple nodes connected to the same network

5.1.4 Link Break Protection

Link break protection is to stop the motor if there is no UART communication for certain period of time. In some
application, the main controller maintains communication with the motor controller. In case of a loss of
communication or line break, it is desired to stop the motor for protection. This protection feature is enabled or
disable and Link break timeout is configured in Solution Designer.

5.1.5 Command

UART command is the second byte in a data frame. Bit [5:0] specifies the command code. Bit [7]indicates the
direction of the data frame. All data frames sent by master must have bit 7 cleared (= 0), all reply data frames
sent by slave will have bit 7 set (= 1). Bit [6] in the reply data frame indicates the success (=0) or error (=1) of the
command.

Table 18 UART Command Definition

Command (Bit[5:0]) Description

0 Read Status

1 Request to clear fault flag

2 Select Control input mode

(table continues...)

iMOTION™ Motion Control Engine
Functional Reference Manual

5  Communication Interface

Functional Reference Manual 98 V 1.4
2024-10-28



Table 18 (continued) UART Command Definition

Command (Bit[5:0]) Description

3 Set motor control target speed

4 Not used, slave will not reply to master

5 Read Register

6 Write Register

7 Not used, slave will not reply to master

8 Register Write Low-Word and bufer

9 Register Write High-Word to bufer

10 Register Read High-Word from bufer

11 - 31 Not used, slave will not reply to master

32 Load parameter set

33-63 Not used, slave will not reply to master

5.1.6 Checksum

Checksum is 16-bit format and it shall be calculated as below:

[Command: Node address] + Data Word 0 + Data Word 1 + Checksum = 0x0000

Notice that when sending the checksum word to the user UART interface, little endian format shall be followed
as shown inFigure 80.

Checksum calculation example:

Input: Node address = 1, command = 2, Data Word 0 = 0x1122 and Data Word 1 = 0x3344

[Command: Node address] = 0x0201

Checksum = -1 x (0x0201 + 0x1122 + 0x3344) = 0xB999

Data frame:

Figure 81 Data Frame to be transmitted
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5.1.7 UART message

5.1.7.1 Read Status: Command = 0x00

Figure 82 Read Status command

Table 19 Status code and status reply

Status code Status reply

0x0000 Fault Flags

0x0001 Motor Speed

0x0002 Motor State

0x0003 Node ID

0x0004 – 0xFFFF 0x0000

5.1.7.2 Clear Fault: Command = 0x01

Figure 83 Clear fault command

5.1.7.3 Change Control Input Mode: Command = 0x02

Figure 84 Control input mode command

iMOTION™ Motion Control Engine
Functional Reference Manual

5  Communication Interface

Functional Reference Manual 100 V 1.4
2024-10-28



5.1.7.4 Motor Control: Command = 0x03

Figure 85 Motor control Command

Note: Target Speed = 0: motor stop, TargetSpeed ≠ 0: motor start

5.1.7.5 Register Read: Command = 0x05

     

Master → Slave
Node

address
Com-
mand FB ID

Register
ID 0x00 0x00 Checksum

  (1 byte) = 0x05 (1 byte) (1 byte)     (2 bytes)

   

Slave → Master
Node

address
Com-
mand FB ID

Register
ID

Register Value (lower
16 bit) Checksum

(reply) (1 byte) = 0x85 (1 byte) (1 byte) (2 bytes) (2 bytes)

   

Note: Reading 32 bit registers provides the lower 16 bit of the register value immediately. The higher 16 bit

are copied into a register bufer and can be read by command 0x0A.

5.1.7.6 Register Read High-Word: Command = 0x0A

     

Master → Slave
Node

address
Com-
mand 0x00 0x00 0x00 0x00 Checksum

  (1 byte) = 0x0A         (2 bytes)

   

Slave → Master
Node

address
Com-
mand 0x00 0x00

Register Bufer
(higher 16 bit) Checksum

(reply) (1 byte) = 0x8A     (2 bytes) (2 bytes)

   

Note: Reading the higher 16 bit of a 32 bit register requires to update the register bufer by calling register

read command 0x05 in advance.

Attention: The register bu�er is shared between read and write command
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5.1.7.7 Register Write: Command = 0x06

     

Master → Slave
Node

address
Com-
mand FB ID

Register
ID Register Value Checksum

  (1 byte) = 0x06 (1 byte) (1 byte) (2 bytes) (2 bytes)

   

Slave → Master
Node

address
Com-
mand FB ID

Register
ID Register Value Checksum

(reply) (1 byte) = 0x86 (1 byte) (1 byte) (2 bytes) (2 bytes)

   

5.1.7.8 Register Write Low-Word: Command = 0x08

     

Master → Slave
Node

address
Com-
mand FB ID

Register
ID Register Value Checksum

  (1 byte) = 0x08 (1 byte) (1 byte) (2 bytes) (2 bytes)

   

Slave → Master
Node

address
Com-
mand FB ID

Register
ID Register Value Checksum

(reply) (1 byte) = 0x88 (1 byte) (1 byte) (2 bytes) (2 bytes)

   

Note: Writing a 32 bit register requires to update the register bufer by calling register write high-word

command 0x09 in advance. This command writes the content of the register bufer as high-word

combined with the register value as low-word into the register at once.

5.1.7.9 Register Write High-Word: Command = 0x09

     

Master → Slave
Node

address
Com-
mand 0x00 0x00

Register Bufer
(higher 16 bit) Checksum

  (1 byte) = 0x09     (2 bytes) (2 bytes)

   

Slave → Master
Node

address
Com-
mand 0x00 0x00

Register Bufer
(higher 16 bit) Checksum

(reply) (1 byte) = 0x89     (2 bytes) (2 bytes)

   

Note: This command updates the register bufer as high-word only. Writing a 32 bit register requires calling

register write low-word command 0x08 averward.
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Attention: The register bu�er is shared between read and write command

5.1.7.10 Load Parameter Set: Command = 0x20

8Load parameter set9 command will trigger device reset before to load the parameters from the specified
parameter set stored in FLASH into the RAM. The valid range of the parameter set number is: 0 – 15. In the reply
frame, data 0 word contains the value of 8Status9 (0: success; 1: fail; 2: parameter set number not supported.)

Figure 86 Load Parameter with Reset Command

5.1.8 Connecting multiple nodes to same network

It is possible to connect multiple MCE to same UART network, see Figure 87 detail.

For the TXD pin of each MCE node, it needs to connect a Schottky diode before connect to the same wire, and
on the master controller side, a 4.7 kOhm pull up resister is required.

Figure 87 UART network connection

5.1.9 UART Transmission Delay

A configurable delay (bit [14:7] of parameter 8UARTConf9) can be inserted between the reception of a message
from the host and the transmission of a response message.

5.2 JCOM Inter-Chip Communication

The JCOM interface is designed to provide a means of point-to-point bi-directional communication for dual-
core products between the motor control core running the MCE (named T core hereaver) and the integrated
MCU (named A core hereaver). JCOM interface utilizes an internal serial port. JCOM protocol assumes one
master and one slave during communication. JCOM interface can be enabled by using bit field [5:3] of the
parameter 8TargetInterfaceConf9 and parameter 8JCOMConf9.

5.2.1 Operation Mode

JCOM interface supports asynchronous mode between the master and the slave.
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5.2.1.1 Asynchronous Mode

In asynchronous mode, the A core (MCU) serves as the master, while the T core (MCE based motor control)
serves as the slave. All communication activities are initiated by the master.

From the slave side, JCOM interface driver is interrupt driven to ensure that the response from T core is handled
with minimum delay. As soon as enough data is accumulated in the reception FIFO, the JCOM interrupt handler
is triggered where the received frame is parsed to extract the message payload. Based on the Message Object
(MO) number, relevant action is executed per the Command and Response Protocol. Then, the response frame
is constructed and sent to the transmission FIFO.

5.2.2 Baud Rate

The Baud rate of JCOM interface can be configured at the start-up or during run-time. The valid range is from
6.1 Kbps to 6 Mbps. The default Baud rate is 1 Mbps.

If the T core JCOM interface experiences some frame error more than 3 times due to mismatch of Baud rate
configuration between the A core and the T core, then the Baud rate of JCOM interface of the T core would be
reset to the default value (1 Mbps) automatically.

5.2.3 Message Frame Structure

Each JCOM message frame consists of the following fields assuming transmission sequence is from lev to right.
The following Table 20 shows the details of the JCOM message frame structure.

Table 20 JCOM Message Frame Structure

Flag Seq Res MO Data

[0]

Data

[1]

Data

[2]

Data

[3]

Data

[4]

Data

[5]

CRC Flag

Message

1 byte
(0x7E)

2 bit 2 bit 4 bit 6 bytes 1 byte 1 byte
(0x7E)

Flag: Indication of the start and end of a frame.

Seq: This sequence number is used to detect a wrong sequence fault. During normal operation, Seq number is
incremented per frame and checked at the receiver side. If the Seq number doesn9t match, then the entire
frame is ignored and no response is sent.

Res: Reserved for future use.

MO: This Message Object number defines how the data is interpreted.

Data [x]: These data fields contain the payload of the message.

CRC: The CRC byte is calculated over the "Message" fields including the MO number. If CRC check fails, then
the entire frame is ignored and no response is sent.

5.2.4 Command and Response Protocol

The command and response protocol is used when JCOM interface works in asynchronous mode. The message
contains a Message Object number and 4 data bytes. Under the 8direction9 column found in the following
Message Structure figures, 8DS9 refers to communication from master (A core) to slave (T core), and 8US9 refers to
communication from slave (T core) to master (A core). If a command frame sent from the master is successfully
received by the slave and passes CRC check, then a corresponding response frame would be sent from the
slave. If the command frame sent from the master is out of synchronization due to Seq number mismatch, or
fails the CRC check, then the entire command frame is ignored by the slave with no response. Some time-out
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recovery mechanism is recommended from the master side to deal with those faults. The following Table 21
summarizes the functions corresponding to diferent MO numbers.

Table 21 Message Object Function Table

Message Object Functions

0 State machine inquiry;
Execution time and CPU load inquiry

1 System configuration protection;

Reset T core;

Access static parameter;

Set boot mode;
Set JCOM Baud rate

6 Get parameter

7 Set parameter

8 Get parameter request

Others Reserved for future use

5.2.4.1 Message Object: 0

The following Table 22 shows the details of the message structure with MO set to 0. With MO = 0, data [0]
contains a status byte that represents the type of objects whose status is requested.

Table 22 Message Structure (MO = 0)

Direction Data[0] Data[1] Data[2] Data[3] Data[3] Data[4] Comments

DS STATUS x x x x x Status = 0:
returns the
state
number of
the SM0
(motor) and
SM1 (PFC)
state
machines.

US SM0 state SM1 state 0xFF 0xFF 0xFF 0xFF Status = 0

US reserved reserved reserved Status = 1

5.2.4.1.1 State Machine Inquiry

If the status byte = 0 in the command frame, then the relevant state numbers of the motor and PFC state
machines are requested by the master. The response frame is supposed to contain the state number
(8Motor_SequencerState9) of the motor state machine in data[0] and the state number (8PFC_SequencerState9)
of the PFC state machine in data[1].
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5.2.4.2 Message Object: 1

The following Table 23 shows the details of the message structure with MO set to 1. With MO = 1, the command
frame contains a Command word in data[0] and data[1] and a Value word when applicable in data[2] and
data[3]. The response frame is supposed to contain the same Command word in data[0] and data[1] and the
same Value word in data[2] and data[3] to acknowledge successful reception.

Table 23 Message Structure (MO = 1)

Direction Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Comments

Command Value reserved

System Configuration

DS 0x0000 p x Configuration
protection: p = 0:
protected
0 < p < 3:
unprotected for the
next p commands

DS 0x0001 0 x Reset (immediately)

DS 0x0002 a x Static parameter
access:

a = 0: disable

a = 1: enable

DS 0x00BD (~bmd<<8)+bmd x Set boot mode

JCOM Configuration

DS 0x0100 Baud rate x Set JCOM Baud rate

Parameter Handler Commands

DS 0x0200 x x Disable coherent
parameter handling

DS 0x0201 x x Enable coherent
parameter handling

DS 0x0202 x x Set parameter
coherently and
disable coherent
parameter handling.

DS 0x0203 x x Flush coherent
parameter FIFO.

DS 0x0204 x x Get parameters
coherently.

File Handler Commands

DS 0x0303 file# x Load parameter file
with Reset

(table continues...)
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Table 23 (continued) Message Structure (MO = 1)

Direction Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Comments

Command Value reserved

Response

US Command Value x Response,
Acknowledge from
slave

5.2.4.2.1 System Configuration Protection

Changing system configuration requires going through a 2-step unlock process for safety concerns. Those
operations include resetting T core, accessing static parameters, as well as setting boot mode.

The 1st step is to have the master send a command frame (MO = 1) with Command = 0x0000 and Value = p to
unprotect the next p commands. p can be set to 1 or 2.

The 2nd step is to have the master send a command frame (MO = 1) with one of those system configuration
related commands to change system configuration.

5.2.4.2.2 Reset T Core

A core can perform a reset request for T core by the following steps.

The 1st step is to have the master send a command frame (MO = 1) with Command = 0x0000 and Value = 1 to
unprotect the next 1 command.

The 2nd step is to have the master send a command frame (MO = 1) with Command = 0x0001 and Value = 0.
Upon receiving this frame, the T core will immediately reset itself with no response US frame.

5.2.4.2.3 Access Static Parameter

Writing to those static type of parameters is not allowed by default. A 2-step unlock process is needed to obtain
write access to the static type of parameters. Without going through this process, attempting to write to those
static type of parameters would have no efect.

The 1st step is to have the master send a command frame (MO = 1) with Command = 0x0000 and Value = 1 to
unprotect the next 1 command.

The 2nd step is to have the master send a command frame (MO = 1) with Command = 0x0002 and Value = 1 to
grant write access to those static type of parameters.

Then the master has the right to write to those static type of parameters using a command frame with MO = 7.
Aver the write operation is completed, it is recommended to disable the write access to those static type of
parameters by the same 2-step lock process.

The 1st step is to have the master send a command frame (MO = 1) with Command = 0x0000 and Value = 1 to
unprotect the next 1 command.

The 2nd step is to have the master send a command frame (MO = 1) with Command = 0x0002 and Value = 0 to
disable write access to those static type of parameters.

5.2.4.2.4 Set Boot Mode

By default T core (MCE) operates in Application Mode. A core can request changing the MCE to Configuration
Mode (BMD = 0xCD) or Boot-Loader Mode (BMD = 0x5D) by the following steps.
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The 1st step is to have the master send a command frame (MO = 1) with Command = 0x0000 and Value = 1 to
unprotect the next 1 command.

The 2nd step is to have the master send a command frame (MO = 1) with Command = 0x00BD and Value =
0x32CD to set the boot mode to Configuration Mode, or Value = 0xA25D to set the boot mode to Boot-Loader
Mode.

5.2.4.2.5 Set JCOM Baud Rate

The master can request changing the Baud rate of the JCOM interface of the slave by sending a command frame
(MO = 1) with Command = 0x0100 and Value = desired Baud rate (bps)/100.

5.2.4.3 Message Object: 6

5.2.4.3.1 Get Parameter

The following Table 24 shows the details of the message structure with MO set to 6. Each parameter can be
addressed by using the FB ID and Register ID number which are described in Parameter Reference Manual. With
MO = 6, the command frame contains the FB ID byte in data[0] and the Register ID byte in data[1] of the
specified parameter or variable. The response frame is supposed to contain the same FB ID byte in data[0], the
same Register ID byte in data[1], and the Value word of the requested parameter or variable from data[2] to
data[5] to confirm a successful operation. In case of error, the response frame is supposed to contain a value of
0xFF in both data[0] and data[1], and the status value in data[2] and data[3], and the remaining value's data
bytes contain invalid data (0xFF).

Table 24 Message Structure (MO = 6)

Direction Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Comments

DS FB ID Register ID 0x00000000 Get parameter

Response

US FB ID Register ID Value Send requested
parameter

US 0xFF 0xFF Status 0xFFFF Status Error:

1: Index Unknown

2: Access not allowed

3: Value out of range

4: Error

5.2.4.4 Message Object: 7

5.2.4.4.1 Set Parameter

The following Table 25 shows the details of the message structure with MO set to 7. With MO = 7, the command
frame contains the FB ID byte in data[0], the Register ID byte in data[1], and the Value word in data[2] and data
3] of the specified parameter or variable. The response frame is supposed to contain the same FB ID byte in
data[0], the same Register ID byte in data[1], and the same Value word of the requested parameter or variable
from data[2] to data[5] to confirm a successful operation. In case of error, the response frame is supposed to
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contain a value of 0xFF in both data[0] and data[1], and the status value in data[2] and data[3] and the
remaining value's data bytes contain invalid data (0xFF).

Table 25 Message Structure (MO = 7)

Direction Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Comments

DS FB ID Register ID Value Set parameter

Response

US FB ID Register ID Value Send back parameter
for confirmation

US 0xFF 0xFF Status 0xFFFF Status Error:

1: Index Unknown

2: Access not allowed

3: Value out of range

4: Error

5.2.4.5 Message Object: 8

5.2.4.5.1 Get Parameter Request

The following Table 26 shows the details of the message structure with MO set to 8. Each parameter can be
addressed by using the FB ID and Register ID number which are described in Parameter Reference Manual. With
MO = 8, the command frame contains the FB ID byte in data[0] and the Register ID byte in data[1] and the Value
word of 0 from data[2] to data[5] to confirm a successfully operation. In case of error, the response frame is
supposed to contain a value of 0xFF in both data[0] and data[1], and the status value in data[2] and data[3] and
the remaining value's data bytes contain invalid data (0xFF).

Table 26 Message Structure (MO = 8)

Direction Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Comments

DS FB ID Register ID Value Get parameter
request

Response

US FB ID Register ID 0x00000000 Operation Status.

US 0xFF 0xFF Status 0xFFFF Status Error:

1: Index Unknown

2: Access not allowed

3: Value out of range

4: Error

6 Script Engine

Script engine is a light-weight <C= language like virtual machine running on the MCE. The script engine enables
users to implement system level functionalities beyond motor control and PFC function. Key advantages of
script engine are:
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• Extend capabilities of manipulating additional digital and analog pins that are not used by motor control
and/or PFC

• Scalable for any future functional extension beyond motor control and PFC

• Read and write all MCE parameters and variables

• Multi-tasking capability

6.1 Overview

Script code follows 8C9-like syntax. The script engine executes the script code from two diferent tasks (Task 0
and Task 1) with diferent priority. The script engine supports arithmetic, binary logical operators, decision
statement (if...else statement) and loop statement (FOR statement). In the MCE, 16 kB of flash memory is
reserved for script byte code and constant data. Consequently, the maximum allowed script byte code size is 16
kB (Approximately 1.5 k lines of code). 256 bytes of data memory is allocated for script global variables and 128
bytes of data memory is allocated for local variables in each task separately.

6.2 Script Program Structure

The script program consists of the following parts:

• Set Commands: Define script user version and script task execution period

• Functions: Script code should be written inside four predefined functions- Script_Task0_init (),
Script_Task0 (), Script_Task1_init () and Script_Task1 ()

• Variables, parameters and script methods

• Statement and Expressions: Each individual statement must be ended with a semicolon

• Comments: Starts with a slash asterisk/* and ends with an asterisk slash */for multiple line comments or
prefix double slash//to comment single lines

6.3 Script Program Execution

The script engine executes script code from two independent tasks, named Task0 and Task1. Both the tasks are
executed periodically.

Global priority of Script language tasks is lower than that of the MCE embedded tasks such as the FOC, PFC
tasks, and others. In the other word CPU computation resource is allocated to the MCE first and then to Script
language tasks by utilizing the remaining CPU resource of MCE. If the embedded MCE function of FOC and PFC
utilizes a full amount of CPU loading (that is high PWM carrier update for the FOC and/or PFC) in a specific
application environment, then Script language tasks have no room for their computation. Therefore, the CPU
resource availability is highly dependent on a specific application condition.

Task execution period can be configured using <SCRIPT_TASK0_EXECUTION_PERIOD= and
<SCRIPT_TASK1_EXECUTION_PERIOD=, for each task. Each task has separate initialization functions
(Script_Taskx_init ( )) to initialize script variables and MCE parameters. Also, it is possible to write script code
inside the initialization function. These init functions are called only once during start-up. Task0/Task1 script
functions (Script_Taskx()) are called periodically based on task execution period value.

Among script tasks, Task0 has higher priority than Task1.

For Task0, by default, the execution step is 1 and the execution period is 50 (50 x 1 ms = 50 ms). So, Task0
executes one line of script code or script instruction every 1 ms by default, and starts over the execution of the
entire script loop every 50 ms. For Task1, by default, the execution step is 10, the execution period is 10 (10 x 10
ms = 100 ms). So Task1 executes 10 lines of script code or script instruction every 10 ms by default, and starts
over the execution of the entire loop every 100 ms.

Total script execution time for Task0 or Task1 can be calculated based on number of script instructions in the
script code. For example, if the number of script instructions in Task0 is 20, then by default, Task0 takes 20 ms
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to finish executing the entire script code. No script code is executed in the remaining 30 ms. Aver 50 ms, Task0
starts to execute the first script instruction again.

Execution step and execution period of each task is configurable. For example, if Task0 execution period is set
to 100 ms (SCRIPT_TASK0_EXECUTION_PERIOD =100), then Task0 execution is repeated every 100 ms.

If Task0 execution period is set to 100 ms (SCRIPT_TASK0_EXECUTION_PERIOD = 100), and number of lines in
Task0 is 150, task0 script function takes 150 ms to execute the complete script code once. Aver finishing
execution, it immediately starts over again.

6.3.1 Execution Time Adjustment

As mentioned, Task0 executes one line of script code or script instruction every 1 ms and Task1 executes 10
lines of script code or script instruction for every 10 ms by default. It is possible to increase the number of lines
executed by Task0 or Task1 per step, to accelerate the script execution.

Number of lines to be executed every 1 ms in Task0 can be configured in <SCRIPT_TASK0_EXECUTION_STEP=. If
Task0 execution period is set to 100 ms (SCRIPT_TASK0_EXECUTION_PERIOD = 100), Task0 number of lines to
be executed every 1 ms is set to 2 (SCRIPT_TASK0_EXECUTION_STEP = 2) and number of lines in Task0 is 100.
Task0 script function takes 50 ms to execute the complete script code once.

Similarly, in Task1, number of lines to be executed every 10 ms can be configured in
<SCRIPT_TASK1_EXECUTION_STEP=.

Figure 88 Script Task Execution

6.4 Constants

Script supports only integer literals in decimal and hexadecimal representation. Hexadecimal value should be
prefixed with 0x. Constant value should not have any sufix, for example U or L.

If any variable is assigned with float literals, digits aver the decimal place are ignored by the script translator.

Script translator supports up to 100 constant definitions. To define a constant, use descriptor CONST or const in
front of the variable type keyword.

6.5 Variable types and scope

The script engine supports global and local variables. The global variables can be accessed from both tasks and
local variables can only be accessed within the respective task.

The script engine supports the following variable types:
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Table 27 Script Variable Types

Type Storage Size Value range Description

uint8_t 1 byte 0 to 255 Byte length unsigned integer

int8_t 1 byte -128 to 127 Byte length integer

uint16_t 2 bytes 0 to 65,535 Short unsigned integer

int16_t 2 bytes -32,768 to 32,767 Short integer

int32_t 4 bytes -2,147,483,648 to 2,147,483,647 integer

int 4 bytes -2,147,483,648 to 2,147,483,647 integer

In the MCE, 256 bytes of data memory is allocated for script global variables and 128 bytes of data memory is
allocated for local variables in each task.

Script variable name should only consist of alphanumerical characters and underscore symbol (8_9). Variable
name is case-sensitive. All the variable names including global and local should be unique.

Variables declared outside the Task0 or Task1 functions are treated as global variables. Variables declared
inside Task0 or Task1 functions are local to Task0 or Task1 respectively.

Note: Variable cannot be initialized during declaration unless is a constant variable.

6.5.1 Mapping of Variables to Parameters

The parameter handler provides access to global and local variables of the script engine. The access to diferent
data-types (8 bit, 16 bit, 32 bit) is done by parameter mapping.

The variables memory space is visible in the range 0xF000 to 0xF7FF:

• 0xF000 to 0xF07F local task 0 variables with 8 bit access

• 0xF080 to 0xF0FF local task 1 variables with 8 bit access

• 0xF100 to 0xF17F local task 0 variables with 16 bit access

• 0xF180 to 0xF1FF local task 1 variables with 16 bit access

• 0xF300 to 0xF37F local task 0 variables with 32 bit access

• 0xF380 to 0xF3FF local task 1 variables with 32 bit access

• 0xF400 to 0xF4FF global variables with 8 bit access

• 0xF500 to 0xF5FF global variables with 16 bit access

• 0xF700 to 0xF7FF global variables with 32 bit access

There is no variable range check or data-type check implemented. As a result, the full variables memory space
can be accessed in any data-type mapping regardless the declaration in the script source code.

Note: Access to the gaps (0xF200 to 0xF2FF and 0xF600 to 0xF6FF) is detected and results in an error

response of the parameter handler.

6.6 MCE Parameter Access

All MCE parameters and variables can be accessed from script. Parameters and variables can be used directly in
the script code without declaration. Only DYNAMIC type parameters and READWRITE type variables are writable
from the script code.
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A set of parameters and variables can be updated simultaneously using the coherent update method. Two
methods (EnableCoherentUpdate () and DoCoherentUpdate ()) are defined in script to do simultaneous update
of parameter and variables.

If Coherent update is enabled (by called EnableCoherentUpdate () method), write operation will not update
parameters and variables values immediately. Instead, all the values are stored into a bufer and all parameters
and variables are updated simultaneously aver calling DoCoherentUpdate (). Script supports simultaneous
update of up to 32 parameters and variables (Chapter 6.10.2).

6.7 Operators

An operator is a symbol that informs the script to perform a specific mathematical or logical function. A list of
operators supported in script function are listed below:

Table 28 Arithmetic Operators

Operator Description

+ Adds two operands

- Subtracts second operand from the first

* Multiplies both operands

/ Divides numerator by de-numerator

% Modulus Operator, remainder aver an integer division

Table 29 Binary Operators

Operator Description

| Binary OR Operator copies a bit to the result if it exists in either operand

& Binary AND Operator copies a bit to the result if it exists in both operands

^ Binary XOR Operator copies a bit to the result if it is set in one operand but not both

~ Binary Ones Complement Operator is unary and has the efect of 'flipping' bits

<< Binary Lev Shiv Operator. The lev operands value is moved lev by the number of bits
specified by the right operand

>> Binary Right Shiv Operator. The lev operands value is moved right by the number of bits
specified by the right operand

Table 30 Assignment Operators

Operator Description

= Simple assignment operator. Assigns values from right side operands to lev side operand

Table 31 Relational Operators

Operator Description

== Checks if the values of two operands are equal. If yes, then the condition becomes true

!= Checks if the values of two operands are not equal. If yes, then the condition becomes true

> Checks if the value of lev operand is greater than the value of right operand. If yes, then
the condition becomes true

(table continues...)
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Table 31 (continued) Relational Operators

Operator Description

>= Checks if the value of lev operand is greater than or equal to the value of right operand. If
yes, then the condition becomes true

< Checks if the value of lev operand is less than the value of right operand. If yes, then the
condition becomes true

<= Checks if the value of lev operand is less than or equal to the value of right operand. If yes,
then the condition becomes true

Table 32 Logical Operators

Operator Description

&& Logical AND operator used to combine two or more conditions. Operator returns true when
both the conditions in consideration are satisfied. Otherwise it returns false

|| Logical OR Operator used to combine two or more conditions. Operator returns true when
any one of the conditions in consideration are satisfied. Otherwise it returns false

The precedence and associativity of all the operators in script languages are summarized in the table below.

Table 33 Script Operator Precedence

Precedence Operator Description Associativity

8 Highest ~

-

Bitwise NOT (One's Complement)

Unary minus

Right to lev

7 *

/
%

Multiplication

Division
Modulo (remainder)

Lev to right

6 +
-

Addition
Subtraction

Lev to right

5 <<
>>

Bitwise lev shiv
Bitwise right shiv

Lev to right

4 <

<=

>
>=

Less than

Less than or equal to

Greater than
Greater than or equal to

Lev to right

3 ==
!=

Equal to
Not equal to

Lev to right

2 &

|
^

Bitwise AND

Bitwise OR
Bitwise XOR (exclusive or)

Lev to right

1 Lowest &&
||

Logical AND
Logical OR

Lev to right

The order of precedence can be overridden by using parentheses. Simply enclose within a set of parentheses
the part of the equation that needs to be executed first.
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6.8 Decision Structures

Decision structures are used for branching. The script engine provides if-statement for decision making. If
statements can be followed by an optional else statement, which executes when the Boolean expression is
false. Boolean expression can consist of relational operator and logical operators. Syntax of if…else statement
in script language is shown below:

If...else statement syntax

1    if(boolean_expression)
2    {
3      /*Statement(s) will execute if the expression is true*/
4    }
5    else
6    {
7      /*Statement(s) will execute if the expression is false*/
8    }
If and else statement should be followed by curly braces

Script programming assumes any non-zero and non-null values as true, and if it is either zero or null, then it is
assumed as false value. Depth of nested if condition is limited to 15.

6.9 Loop Structures

The MCE supports FOR-statements for repeat processes. Syntax of FOR statement in script language is shown
below:

For statement syntax

9    for(<ScriptVariable> = <Startvalue> : <Endvalue>)
10    {
11      /*Statement(s) will execute for defined loop time*/
12    } 

Statements inside the for loop are executed for Endvalue - Startvalue+1 time. The FOR statement does not
support count down mode (decreasing index). The start value must always be less than end value.

6.10 Methods

Predefined methods are available for specific operations. Methods supported in script functions are described
in the following sections.

6.10.1 Bit access Methods

Three methods are defined in the script to read or write particular bit of script variables or motor control/PFC
related variables or parameters.
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Table 34 Bit Access Methods

Methods Description

void SET_BIT(<Var>, <bitposition>) Set the particular bit of variable

void CLEAR_BIT(<Var>, <bitposition>) Clear the particular bit of variable

uint8_t GET_BIT(<Var>, <bitposition>) Read the particular bit of variable

Note: Bit position value must be 0 to 15.

6.10.2 Coherent update methods

These methods are used for updating motor control and/or PFC parameters and variables simultaneously.

Table 35 Coherent Methods

Methods Description

EnableCoherentUpdate() Enable simultaneous update of parameter/variables

DoCoherentUpdate() Trigger simultaneous update of parameter/variables

Note: Maximum 32 parameters/variables can be updated simultaneously.

When a coherent update is enabled, values are not updated into parameter/variables immediately. Instead
values are stored into bufer and update the actual variable/parameter aver trigger the coherent update.

6.10.3 User GPIOs

The Script enables access to digital pins and analog inputs not used by motor control and PFC. Read and write
of digital pins is supported and read of analog inputs are supported.

6.10.3.1 Digital Input and Output Pins

Digital pins available to users can be configured as input or output pins. All configured digital input/output pins
values are read/write by the script every 1 ms.

Four dedicated variables are defined in the MCE to read or write digital input/output pins.

Variable Name Type Description

FB_GPIO.GPIO_Status READONLY Holds digital input/output (GPIO0 to GPIO29) pin values

FB_GPIO.GPIO_Set READWRITE Sets or resets digital output pin (GPIO0 to GPIO29)

The logic level of a GPIO pin can be read via the read–only registers <FB_GPIO.GPIO_Status=. Read
<FB_GPIO.GPIO_Status= register always returns the current logical value of the GPIO pin, regardless of the pin
direction (input or output). It is possible to read the complete variable or binary data.

<FB_GPIO.GPIO_Set= register determines the value of a digital pin when it is configured as output. Writing a 0 to
a bit position delivers a low level at the corresponding output pin. Likewise, writing a 1 to a bit position delivers
a high level at the corresponding output pin. It is possible to read the complete variable or binary data.

6.10.3.2 Analog pins

Analog pins available to the user are read by MCE every 1 ms. The result value is accessible to the script code.
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12 dedicated variables are defined in the MCE to read analog input pins value.

Variable Name Type Description

FB_ADC.adc_result[0] READONLY Holds AIN0 analog input value (12 bit value)

FB_ADC.adc_result[1] READONLY Holds AIN1 analog input value (12 bit value)

FB_ADC.adc_result[2] READONLY Holds AIN2 analog input value (12 bit value)

FB_ADC.adc_result[3] READONLY Holds AIN3 analog input value (12 bit value)

FB_ADC.adc_result[4] READONLY Holds AIN4 analog input value (12 bit value)

FB_ADC.adc_result[5] READONLY Holds AIN5 analog input value (12 bit value)

FB_ADC.adc_result[6] READONLY Holds AIN6 analog input value (12 bit value)

FB_ADC.adc_result[7] READONLY Holds AIN7 analog input value (12 bit value)

FB_ADC.adc_result[8] READONLY Holds AIN8 analog input value (12 bit value)

FB_ADC.adc_result[9] READONLY Holds AIN9 analog input value (12 bit value)

FB_ADC.adc_result[10] READONLY Holds AIN10 analog input value (12 bit value)

FB_ADC.adc_result[11] READONLY Holds AIN11 analog input value (12 bit value)

6.11 Plugins

6.11.1 Configurable UART

The MCE firmware includes an UART interface that consists of a plug-in of the scripting engine and script APIs.
Based on UART API provided an UART communication protocol can be implemented.

To find out what pins the device9s pins are, refer to your device9s datasheet.

Table 36 Configurable UART API

API name Brief description

UART_DriverInit() Initializes the UART hardware driver

UART_DriverDeinit() De-initializes the UART hardware driver

UART_FifoInit() Initialize UART hardware FIFO

UART_BuferInit() Initialize UART sovware bufer

UART_GetStatus() Get the status word for the UART communication status

UART_GetRxDelay() Returns the delay time between receive frames

UART_Control() Writes to the Control Word that defines UART control commands

UART_RxFifo() Returns one byte from the receive FIFO

UART_TxFifo() Puts one byte to the transmit FIFO

UART_RxBufer() Returns one byte from the receive bufer from a specified location

UART_TxBufer() Puts one byte in the transmit bufer at a specified location
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6.11.1.1 UART_DriverInit()

Declaration:

void UART_DriverInit(channel, rxInvert, txInvert, baudrate, dataBits, stopBits)

Input Parameters Min Max Description

channel 0 1 Selects which UART
channel to be used.

0: UART 0
1: UART 1

rxInvert 0 1 Configures the data
interpretation logic for the
received data.

0: non-inverting
1: inverting

txInvert 0 1 Configures the data
interpretation logic for the
transmitted data.

0: non-inverting
1: inverting

baudrate 600 bps 115,200 bps
(230,400 bps in FIFO
mode)

Configures the baudrate
for the UART in bits-per-
second

dataBits 5 bits 8 bits Configures the length of
the data bits in a UART
byte

parity 0 3 Select parity:

0: no parity

2: even parity

3: odd parity

stopBits 1 bit 2 bits Configures the number of
stop bits in a UART byte.

1: 1 stop bit

2: 2 stop bits

Description:

This API initializes the UART driver.

6.11.1.2 UART_DriverDeinit()

Declaration:

void UART_DriverDeinit(void)

Input Parameters Min Max Description

N/A N/A N/A N/A
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Return type Description

N/A N/A

Description:

This API deinitializes the UART driver.

6.11.1.3 UART_FifoInit()

Declaration:

void UART_FifoInit(rxFifoSize, txFifoSize)

Input Parameters Min Max Description

rxFifoSize 1 byte 31 bytes Size of the FIFO bufer
allotted for receive in
bytes

txFifoSize 1 byte 31 bytes Size of the FIFO bufer
allotted for transmit in
bytes

Description:

This API initializes the UART FIFO.

6.11.1.4 UART_Bu�erInit()

Declaration:

void UART_BufferInit(halfDuplex, rxTimeout, txDelay, txByteDelay, rxFlag, txFlag, rxDataLength, 
txDataLength)

Input Parameters Min Max Description

halfDuplex 0 1 Configure the UART bufer
for half or full duplex
communication.

0: Full duplex
1: Half duplex

rxTimeout 0 65535 Configure the longest
expected time to receive
a frame. If a frame is not
received within this time
an RxTimeout will occur

txDelay 0 65535 Configure the delay time
from having received a
frame and starting to
transmit a frame in ms

txByteDelay 0 65535 Configure the delay time
between each byte in a
transmit frame
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Input Parameters Min Max Description

rxFlag 0 65535 RxFlag is a byte that
signifies the beginning of
a receive frame.

0-255: valid flag byte
256-65535: invalid flag/no
flag byte is used

txFlag 0 65535 TxFlag is a byte that
signifies the beginning of
a transmit frame.

0-255: valid flag byte
256-65535: invalid flag/no
flag byte is used

rxDataLength 1 byte 8 bytes Configure the length of
the receive frame, in
bytes, not including the
start flag byte

txDataLength 1 byte 8 bytes Configure the length of
the transmit frame, in
bytes, not including the
start flag byte

Description:

This API configures the UART sovware bufer.

6.11.1.5 UART_GetStatus()

Declaration:

int32_t UART_GetStatus(void)

Input Parameters Min Max Description

N/A N/A N/A N/A
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Return Type Description

int32_t Returns the status word whose bitfield representation is described below

FIFO status:

Bit 0 – IsRxFIFOEmpty: is receive FIFO empty bit

• 0: receive FIFO is not empty

• 1: receive FIFO is empty

Bit 1 – IsRxFIFOFull: is receive FIFO full bit

• 0: receive FIFO is not full

• 1: receive FIFO is full

Bit 2 – IsTxFIFOEmpty: is transmit FIFO empty bit

• 0: transmit FIFO is not empty

• 1: transmit FIFO is empty

Bit 3 – IsTxFIFOFull: is transmit FIFO full bit

• 0: transmit FIFO is not full

• 1: transmit FIFO is full

Bit 4:7- reserved: read as 809

Bu�er status:

Bit 8 – IsRxBu�erFull: is receive bufer full bit

• 0: receive bufer is not full

• 1: receive bufer is full

Bit 9 – reserved: read as 809

Bit 10 – IsTxBu�erEmpty: is transmit bufer empty bit

• 0: transmit bufer is not empty

• 1: transmit bufer is empty

Bit 11:14 – reserved: read as 809

Bit 10 – IsBu�erMode: is Bufer Mode Initialized bit

• 0: the frame bufer and the driver handler is not initialized

• 1: the frame bufer and the driver handler is initialized

Handler status:

Bit 16 – IsRxTimeout: is receive frame timeout bit

• 0: receive frame is not timed out

• 1: receive frame is timed out

Bit 17 – IsCollision: is collision detected bit

• 0: collision is not detected

• 1: collision is detected

Bit 18:19 – HandlerState: Handler state bitfield

• 00: FRAME_START

• 01: FRAME_RECEIVE

• 10: FRAME_DELAY

• 11: FRAME_TRANSMIT

Bit 20:22- reserved: read as 809

Bit 23 – IsHalfDuplex: is half duplex bit
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Return Type Description

• 0: the driver handler is not initialized in half-duplex mode

• 1: the driver handler is initialized in half-duplex mode

Driver status:

Bit 24 – IsRxNoiseDetected: is receive noise detected bit

• 0: noise on the receive line has not been detected

• 1: noise on the receive line has been detected

Bit 25 – IsParityError: is parity error bit

• 0: a parity error has not occurred

• 1: a parity error has occurred

Bit 26 – IsStopBitError: is stop bit error

• 0: a stop bit error has not occurred

• 1: a stop bit error has occurred

Bit 27:30 – reserved: read as 809

Bit 31 – IsInitialized: is initialized bit

• 0: the driver is not initialized

• 1: the driver handler is initialized

Description:

This API returns the status word.

6.11.1.6 UART_GetRxDelay()

Declaration:

int32_t UART_GetRxDelay(void)

Input Parameters Min Max Description

N/A N/A N/A N/A

Return type Description

int32_t Returns the time, in ms, between receive frames. Timing begins from the last byte
of the current receive frame and ends at the first byte of the next receive frame

Description:

This API returns the delay, in ms, between receive frames.

6.11.1.7 UART_Control()

Declaration:

void UART_Control(command)
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Input Parameters Description

command Writes the Control Word whose bit field representation is described below.

FIFO control:

Bit 0 – reserved:

Bit 1 – ClrRxFIFO: Clear RX FIFO bit

• 0: N/A

• 1: clear the receive FIFO

Bit 2 – reserved:

Bit 3 – ClrTxFIFO: Clear TX FIFO bit

• 0: N/A

• 1: clear transmit FIFO

Bit 4:7 – reserved:

Bu�er control:

Bit 8 – ClrRxBu�erFlag: Clear RX Bufer flag bit

• 0: N/A

• 1: clear receive bufer flag

Bit 9 – reserved:

Bit 10 –SendTxBu�er: Send TX Bufer flag

• 0: N/A

• 1: Initiate the sending of bytes from the transmit bufer through the specified
UART channel.

Bit 11:15 – reserved:

Handler control:

Bit 16 – ClrRxTimeoutFlag: Clear RX time-out Flag bit

• 0: N/A

• 1: clear receive time-out flag

Bit 17 – ClrCollisionFlag: Clear Collision detected Flag bit

• 0: N/A

• 1: clear collision detection flag

Bit 18 – RstBu�erControl: Reset Bufer Control bit

• 0: N/A

• 1: reset bufer control state machine

Bit 19:23 – reserved:

Driver Control:

Bit 24 – ClrRxNoiseFlag: Clear RX Noise Flag bit

• 0: N/A

• 1: clear the receive noise flag

Bit 25 – ClrParityErrorFlag: Clear Parity Error Flag bit

• 0: N/A

• 1: clear the parity error flag

Bit 26 – ClrStopbitErrorFlag: Cleare Stop bit Error Flag bit
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Input Parameters Description

• 0: N/A

• 1: clear the stop bit error flag

Bit 27:31 – reserved:

Description:

This API controls the UART9s bufer mode, FIFO mode, driver control, and handler control.

6.11.1.8 UART_RxFifo()

Declaration:

int32_t UART_RxFifo(void)

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Returns one byte from the receive FIFO

Description:

This API returns one byte of data from the receive FIFO in First In First Out order

6.11.1.9 UART_TxFifo()

Declaration:

void UART_TxFifo(data)

Input Parameters Min Max Description

data 0 255 One byte of data placed in
the transmit FIFO

Description:

This API pushes data into the transmit FIFO in First In First Out order.

6.11.1.10 UART_RxBu�er()

Declaration:

int32_t UART_RxBuffer(int32_t idx)

Input Parameters Min Max Description

idx 0 7 Specifies which byte of
data in the receive bufer
to return

Return Type Description

int32_t Returns one byte from the receive bufer specified by idx

Description:
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This API returns one byte of data from the receive bufer. In bufer mode one can select which byte of data to be
returned by specifying the byte using idx.

6.11.1.11 UART_TxBu�er()

Declaration:

void UART_TxBuffer(idx, data)

Input Parameters Min Max Description

idx 0 7 Specifies at which index
to place one byte of data
in the transmit bufer

data 0 255 One byte of data to be
placed at index idx in the
transmit bufer

Description:

This places one byte of data into the transmit bufer. In Bufer mode one can place the byte of data anywhere in
the bufer specified by idx.

6.11.2 Flash Data Storage

The MCE firmware includes an interface that allows the user access to the embedded flash of the device. The
user is allowed access to 160 bytes of storage in which script variables can be persistent stored. This interface
consists of a plug-in to the script engine, providing the user a set of APIs for easy use. Therefore, this interface is
compatible with any iMOTION ™ device that supports the scripting feature.

6.11.2.1 Flash Data Type

Script variables declared with the keyword 8flash9 can be stored in flash upon request from the user. The script
variables will be initialized by stored flash value at initialization. All variable types, supported by scripting, can
be declared as flash variables and both local and global types are supported. To declare a flash variable, use
the syntax 8flash varType varName9, for example:

flash uint8_t FlashVar1;
flash uint16_t FlashVar2;
flash int32_t FlashVar3;

This specifies that this variable will be stored in flash aver the Flash_Write() API is called. If a variable with the
same name has already been stored, the stored value will be assigned to this variable.

Up to 160 bytes of flash variables are supported in any combination of script variable types. For example, 160 8-
bit size variables, 80 16-bit size variables, 40 32-bit size variables, or any size mix of variables.

When flash is empty, a variable of type 8flash9 will be initialized to 0 aver reset. When flash data is invalid, no
content will be loaded from flash. It is up to the user to handle the correct initialization of variables in these
situations.

During execution of the script, the user can write to flash variables at any point. However, the content of that
variable will not be committed to flash until the user calls the API Flash_Write(). Only then, the variable is
stored in flash. It is up to the user to decide when an appropriate time to commit to flash is. At initialization, the
variable is assigned the value last committed to flash.
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6.11.2.2 Flash Data Storage APIs

The APIs of the Flash Data Storage plug-in are summarized in the table below.

API name Brief description

Flash_Write() Writes all <flash= type variables to flash

Flash_Erase() Erases all data in allocated storage

Flash_GetWriteCount() Returns amount of times flash has been written over lifetime

Flash_GetStatus() Returns status from flash driver

6.11.2.3 Flash_Write()

Declaration:

int32_t Flash_Write()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Bit 0 – Write status

0: Write success
1: Write failure

Description:

Writes all <flash= type variables to flash and returns number based on success or failure to write.

Note: Motor/PFC must be stopped before calling.

6.11.2.4 Flash_Erase()

Declaration:

int32_t Flash_Erase()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Bit 0 – Erase status

0: Erase success
1: Erase failure

Description:

Erases all data in storage allocated for data storage interface. Returns status based on success of erase cycle.
Note Flash_Erase() erases content of the flash data storage only. Variables of type flash are initialized aver reset
and the erase value will not be assigned to the flash variables until next initialization.
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6.11.2.5 Flash_WriteCount()

Declaration:

int32_t Flash_WriteCount()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Bit 0-31 – Number of writes

Description:

Returns the number of times flash has been written. Write Counter is cleared when flash is erased.

6.11.2.6 Flash_GetStatus()

Declaration:

int32_t Flash_GetStatus(void)

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Bit 0 – FlashErased: Indicates if flash has been erased

• 0: data in flash

• 1: flash has been erased

Bit 1 – FlashInvalid: Indicates if flash is corrupt

• 0: flash content is valid

• 1: flash is corrupt

Bit 2 – isFlashWriteError: Indicates if flash failed to write

• 0: no error exists

• 1: flash failed to write

Bit 3:31 – reserved

Description:

Returns status message from Flash Data Storage driver. Status of Flash that has never been used or flash that
has been erased will show that 8Flash has been erased9 (bit 0). If checksum of stored data does not match
content, status will show 8Flash content is not valid9 (bit 1). It is up to the user to initialize flash variable
appropriately when flash is empty or not valid.

6.11.2.7 Timing Considerations

The APIs Flash_Write and Flash_Erase() are blocking meaning all other tasks and functions will not be serviced
while performing flash write/erase. Calling these APIs must be done at non-critical times and tightly
synchronized to the system state. Before calling Flash_Write and Flash_Erase(), it is up to the user to make sure
the motor and PFC (if supported) are in a stopped and passive state. Therefore, the user can only use the data
storage interface to write and erase while the motor is stopped-, fault or standby state.
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Flash write time is determined by the carateristics of the embedded flash and of how many variables are
written. Maximum write time of flash wariables is 8.6 ms.

The erase process takes 7.0 ms and leaves the content of flash initialized to 0xF9s. When flash is empty, variable
of type 8flash9 will be initialized to 0 aver reset.

6.11.2.8 Endurance Considerations

The Flash Data Storage utilizes the MCE9s embedded flash which has less endurance than traditional EEPROM.
Maximum numbers of writes supported is 50000 and it is up to be user to keep track of number of write cycles
using the API Flash_WriteCount() and make sure the endurance of the flash is not exceeded.

6.11.3 Infrared Interface

The MCE firmware includes an IR interface that consists of a plug-in of the scripting engine and script APIs. This
allows IR signals to be interpreted directly from an IR sensor, as long as the transmitter9s protocol is supported.
This can, for example, be used for setting the motor speed based on the press of a remote9s button, or
customized for setting of MCE parameters. This can be done by creating a simple script, then connecting an IR
sensor to the chosen device input pin.

6.11.3.1 Infrared Protocols

The IR Interface supports the following protocols: NEC, NEC Extended, RC-5 Phillips. The protocols are
characterized by:

Protocol Number of bits Order of

transmitted parts

Length of each

transmission

Carrier Frequency

NEC 32 Address, inverted
address, command,
inverted command

67.5 ms 38.222 kHz

NEC extended 32 Address low 8 bits,
address high 8 bits,
command, inverted
command

67.5 ms 38.222 kHz

Phillips RC-5 12 1 toggle bit + 5
address bits + 6
command bits

24.892 ms 36.0 kHz

NEC, NEC Extended, and RC-5 operate with 8regular data frames9 for transmission of commands and with
8repeat frames9 for transmission of a repeated command. Both types of frames are supported by the IR script
plug-in.

6.11.3.2 IR Pins

The MCE supports IR data on 3 diferent pins: IR0, IR1 and IR2 . Not all options are available on all devices. The
user must select one of these when utilizing the IR interface. The pins are enabled and assigned IR-function
through the API IR_DriverInit().

When using the IR interface make sure other pin functions colliding with the IR pin are disabled.

Refer to the latest version the datasheet of the device for pin assignment.
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6.11.3.3 Infrared Interface APIs

The APIs of the Infrared Interface plug-in are summarized in the table below.

API name Brief description

IR_DriverInit() Initializes IR Driver based on key parameters

IR_DriverDeinit() De-initializes IR Driver

IR_RxBufer() Returns most recent transmission

IR_GetStatus() Returns status

IR_RxCommand() Returns <Command= section of transmission

IR_RxAddress() Returns <Address= section of transmission

IR_RxRepeats() Returns numbers of transmissions repeated

IR_RxReceived() Returns true if transmission has been received

IR_RxRepeating() Returns true if transmission has not been fully received

6.11.3.4 IR_DriverInit()

Declaration:

int32_t IR_DriverInit(channel, rxInvert, protocol, address)

Input Parameters Min Max Description

channel 0 2 Specifies the channel (pin)
to received IR data.
Availability of pins
depends on the device.

0: IR0

1: IR1
2: IR2

rxInvert 0 1 Indicates if the IR receiver
sensor is sending the
signal inverted or non-
inverter.

0: Disable invert
1: Enable Invert

protocol 0 2 Selects the IR protocol

0: RC-5

1: NEC
2: NEC Extended

address 0 65535 Configure the address
to use. Must match
transmitter (remote)
address. Range varies
based on protocol
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Return Type Description

int32_t Initialization status.

0 – Driver successfully initialized

1 – IR driver not available

2 – Protocol recognized
3 - Address out of range

Description:

Initializes driver and related peripherals.

6.11.3.5 IR_DriverDeinit()

Declaration:

int32_t IR_DriverDeinit()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Returns success/failure of API execution

0 – Driver successfully de-initialized
1 - IR driver was not available

Description:

De-initializes driver and peripherals.

6.11.3.6 IR_RxBu�er()

Declaration:

int32_t IR_RxBuffer()

Input Parameters Min Max Description

N/A N/A N/A N/A
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Return Type Description

int32_t Returns raw data bufer. Data are organized according to protocol.

Phillips RC-5

• Bit 0 – toggle bit

• Bit 1:5 – address

• Bit 6:11 – command

NEC

• Bit 0:7 – address

• Bit 8:15 – address

• Bit 16:23 – command

• Bit 24:31 – command

NEC extended

• Bit 0:15 – address

• Bit 16:23 – command

• Bit 24:31 – command

Description:

This API returns the raw content of the data bufer without any interpretation. Calling the API clears bit 2 and 3
of IR_GetStatus() return value.

6.11.3.7 IR_GetStatus()

Declaration:

int32_t IR_GetStatus()

Input Parameters Min Max Description

N/A N/A N/A N/A
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Return Type Description

int32_t IR interpreted signal status

Bit 0:1 – ProtocolSelected:

• 0: Phillips RC-5

• 1: NEC

• 2: NEC Extended

Bit 2 – IsRawDataAvailable:

• 0: no data received

• 1: data received

Bit 3 – IsRawDataValid:

• 0: invalid IR signal received or received address does not match configured
address

• 1: valid IR signal received and received address matches configured address

Bit 4 – IsDataAvailable:

• 0: invalid IR signal received or received address does not match address

• 1: valid IR signal received and received address matches configured address

Bit 5 – IsReceiving:

• 0: waiting for IR transmission

• 1: target is currently receiving data

Bit 6 – IsAddressIncorrect:

• 0: no mismatch

• 1: received address doesn9t match address defined in IR_DriverInit()

Bit 7:30 – reserved

Driver Status

Bit 31 – IsInitialized:

• 0: driver not initialized

• 1: driver Initialized

Description:

Returns status of IR driver. Note that status bits IsRawDataAvailable and IsRawDataValid are cleared when
calling API IR_RxBufer(). Staus bit IsDataAvailable is cleared when calling API IR_RxCommand().

6.11.3.8 IR_RxCommand()

Declaration:

int32_t IR_RxCommand()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t The API returns the command of a full frame when address and protocol match
configuration.

On repeat codes, the last valid command is kept as return value
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Description:

Returns command section of transmission as long as the protocol and address match configuration. The API
clears bit 4 of IR_GetStatus() return value.

6.11.3.9 IR_RxAddress()

Declaration:

int32_t IR_RxAddress()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t The API returns the address of a full frame when address and protocol match
configuration. On repeat codes, the last valid address is kept as return value

Description:

Returns address section of IR transmission.

6.11.3.10 IR_RxRepeats()

Declaration:

int32_t IR_RxRepeats()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Contains the number of transmissions repeated aver IR remote9s button has been
released. If target is currently receiving, 0 is returned. Calling this API clears the
return value to 0

Description:

Returns the number of transmissions repeated aver IR remote9s button has been released. This API allows for
script to respond according to how long a button is pressed, such as holding an <increase= button.

6.11.3.11 IR_RxReceived()

Declaration:

int32_t IR_RxReceived()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Bit 0 – Receive status

0: IR message frame has not been received
1: IR message frame has been received
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Description:

Returns 1 aver the first frame of a new transmission is received. Calling IR_RxCommand automatically clears
the return value of this API.

6.11.3.12 IR_RxRepeating()

Declaration:

int32_t IR_RxRepeating()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Bit 0 – Repeat status

0: Transmission is not repeating (has stopped)
1: Transmission is repeating (button is held down)

Description:

Indicates a command is currently repeating via a button being held down. Returns 0 when the transmission
stops.

6.11.3.13 Timing Considerations

The IR bufer update period is 50 ms and it is recommended the script checks for new data at a rate similar or
faster than this. This is to ensure no data are lost in cases where commands are transmitted at a high rate.
Practical limitations, such as the implausibility of pushing a remote button every 50 ms, may enable lower
update rates.

6.11.3.14 Configuration

In order to configure the IR interface, scripting shall be utilized. The process of programming a script to a device
is described in the app note <How to use iMOTION™ Script Language=. The first step in configuring the IR
interface is to use the IR_Driverinit(), an API that initializes the IR driver. This API let's the user choose which
device input pin the IR receiver sensor will be connected to, which IR protocol will be read, and what address
will be sent by the transmitter. Aver executing this API intrepered commands sent by the transmitter are read
with IR_RxCommand() and by using conditional statements.

6.11.4 I2C Interface

The MCE firmware provides a way to communicate directly with I2C enabled devices. Devices can communicate
at data rates of 100 kHz or 400 kHz and is compatible with devices that have 10-bit or standard 7-bit addresses.
This interface is made up of a plug-in to the script engine where users may utilize APIs that deal with sending
signals and accessing the FIFO where the firmware collects data sent back to the device.

Because of the low-level nature of this interface it is necessary to understand how your specific device utilizes
I2C.

Refer to the latest version of device9s datasheet for pins assignment.
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6.11.4.1 I2C Interface API

The APIs of the I2C Interface plug-in are summarized in the table below:

Table 37 I2C API

API name Brief description

I2C_DriverInit() Initializes the I2C driver and specifies data rate and address size

I2C_DriverDeInit() De-initializes the driver and peripheral

I2C_MasterStart() Sends a start condition and target device address

I2C_MasterRepeatedStart() Sends a start condition aver communication has already started

I2C_MasterStop() Sends stop condition

I2C_Transmit() Transmits one byte

I2C_GetDataACK() Returns received data and sends back an acknowledge bit

I2C_GetDataNACK() Returns received data without sending back an acknowledge bit

I2C_GetRxFifo() Returns byte most recently received

I2C_GetStatus() Provides the status for FIFO and I2C driver

I2C_Control() Clears FIFO and I2C driver errors

6.11.4.2 I2C_DriverInit()

Declaration:

int32_t I2C_DriverInit(dataRate, addressMode);

Input Parameters Min Max Description

dataRate 0 1 Select the data rate

0: standard mode 100k Hz
1: fast mode 400 kHz

addressMode 0 1 Select the device address
size

0: standard mode 7-bit
1: 10-bit

Return Type Description

int32_t Initialization status

0 – Driver was initialized successfully

1 – Device does not support I2C
4 – Speed mode/address mode is invalid

Description:

Initializes I2C driver with given data rate and address mode. Internally, this API first de-initializes the I2C driver
and then initializes the driver and peripheral.

iMOTION™ Motion Control Engine
Functional Reference Manual

6  Script Engine

Functional Reference Manual 135 V 1.4
2024-10-28



6.11.4.3 I2C_DriverDeInit

Declaration:

int32_t I2C_DriverDeInit();

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t De-initialization status

0 – Driver was de-initialized successfully
1 – Device does not support I2C

Description:

De-initializes the I2C driver and peripheral.

6.11.4.4 I2C_MasterStart()

Declaration:

int32_t I2C_MasterStart(address);

Input Parameters Min Max Description

address 0 N/A I2C target device address

Return Type Description

int32_t Bit 0 – Returns transmission status

0: Successful transmission
1: Driver not available

Description:

Sends the start condition and address. Use this API only when the iMOTION ™ device is serving as the master.

6.11.4.5 I2C_MasterRepeatedStart()

Declaration:

int32_t I2C_MasterRepeatedStart(address);

Input Parameters Min Max Description

address 0 N/A I2C target device address

Return Type Description

int32_t Bit 0 – Returns transmission status

0: Successful transmission
1: Driver not available

Definition:

Use this API aver a start condition has already been sent and before a stop condition has been sent.
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6.11.4.6 I2C_MasterStop()

Declaration:

int32_t I2C_MasterStop();

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Bit 0 – Stop condition status

0: Successful transmission
1: Driver not available

Definition:

Sends stop condition to I2C target device.

6.11.4.7 I2C_Transmit()

Declaration:

int32_t I2C_Transmit(data);

Input Parameters Min Max Description

data 0 0xFF Data to be interpreted by
target device

Return Type Description

int32_t Bit 0 – Transmission status

0: Successfully transmitted
1: Driver not available

Definition:

Sends one byte to I2C target device.

6.11.4.8 I2C_GetDataACK()

Declaration:

int32_t I2C_GetDataACK();

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Reads received data or an error code if an error occurred

-1 – Driver is not available
-2 – No response; waiting time timeout

Definition:
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Returns data received from other I2C devices and sends back an acknowledge bit. This API is a blocking
function; the script will not move on until data is received or the timeout time is reached. Data will successfully
return if data is received prior to this API as it will be stored in the interface9s FIFO. If there is no data in FIFO the
device will wait 250 µs before returning an error code.

6.11.4.9 I2C_GetDataNACK()

Declaration:

int32_t I2C_GetDataNACK();

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Returns data received or error code if an error occurred.

-1 – Driver is not initialized.
-2 – No response; waiting time timeout

Definition:

Returns data received from other I2C devices and does not send back an acknowledge bit. This API is a blocking
function; the script will not move on until data is received or the timeout time is reached. Data will successfully
return if data is received prior to this API as it will be stored in the interface9s FIFO. If there is no data in FIFO the
device will wait 250 µs before returning an error code.

6.11.4.10 I2C_GetRxFifo()

Declaration:

int32_t I2C_GetRxFifo();

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Returns data received or error code if an error occurred

-1 – Driver is not initialized
-2 – No response; waiting time timeout

Definition:

This should be called when I2C_GetStatus() is either indicating the reception bufer full or not empty.

6.11.4.11 I2C_GetStatus()

Declaration:

int32_t I2C_GetStatus();

Input Parameters Min Max Description

N/A N/A N/A N/A
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Return Type Description

int32_t FIFO status:

Bit 0 – IsReceiveBu�erEmpty

• 0: The receive bufer is not empty. Use I2C_GetRxFifo API to read the data

• 1: The receive bufer is empty

Bit 1 - IsReceiveBu�erFull

• 0: The receive bufer is not full. It could be empty or contain data, but not full.
Use I2C_GetRxFifo API to read the data

• 1: The receive bufer is full

Bit 2 - IsTransmitBu�erEmpty

• 0: Transmit bufer contains data to be transmitted. The transmit bufer is not
empty

• 1: The transmit bufer is empty

Bit 3 - IsTransmitBu�erFull

• 0: The transmit bufer is not full. It could be empty or contain data, but not full

• 1: The transmit bufer is full

Bit 1:7 – reserved:

Driver status:

Bit 24 – Arbitration lost:

• 0: No arbitration lost error in the transmission

• 1: Arbitration lost error in the transmission

Bit 25 – I2C error:

• 0: No error in the transmission

• 1: Error in the transmission

Bit 26 – No response:

• 0: Target device responded properly

• 1: Target device did not respond

Bit 27:30 – reserved:

Bit 31 – Initialized:

• 0: Driver is not initialized

• 1: Driver is initialized

Definition:

Provides the status for FIFO and driver error. Use the I2C_Control() API to clear arbitration lost error, I2C error,
and no response errors. FIFO status are clear automatically.

6.11.4.12 I2c_Control()

Declaration:

int32_t I2C_Control(status);
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Input Parameters Min Max Description

status 0 0x7000000 Control Bits:

• Bit 0-23 - Reserved

• Bit 24 - Arbitration
Lost

- 0 - There is no I2C
arbitration lost
error in the
transaction

- 1 - There is an I2C
arbitration lost
error in the
transaction

• Bit 25 - I2C Error

- 0 - There is no I2C
error (frame
format) in the
transaction

- 1 - There is an I2C
error (frame
format) in the
transaction

• Bit 26 - Clear both
RX/TX FIFO bufers

- 0 - Do not clear
both Rx/Tx FIFO
bufers

- 1 - Do clear both
Rx/Tx FIFO
bufers

• Bit 27-31 - Reserved

Return Type Description

int32_t Returns success/failure of API execution

0 – Successfully cleared driver status error

1 – Driver is not available
4 – Mode is invalid

Definition:

Clears driver status errors. There are three driver status errors: arbitration lost error, I2C error, and no response
error. Clearing the no response error also serves as a way to clear the FIFO.

6.11.5 TRIAC Control

The MCE supports TRIAC based voltage control through a script plug-in. With TRIAC control, the turn-on
instance is delayed with respect to the zero-crossing of the AC-line voltage and thereby reduces the RMS voltage
across the load. Typically, TRIAC control is handled by a separate microcontroller, but the MCE integrates the
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feature and only a few external components are required. The TRIAC plug-in ofers a set a APIs to implement
custom control function in scripting. TRIAC control is supported in Stand-by mode.

The MCE based TRIAC control system is shown in Figure 89. An AC voltage, VAC, is feeding a load through a
TRIAC. The TRIAC9s gate pulse is supplied by a Gate Drive circuit which is driven by a gate pulse from the MCE.
To position the gate pulse correctly with respect to the AC-line, the MCE requires information about the AC
Polarity. That signal is generated by a Zero-Cross Detection circuit.

The TRIAC gate and the zero-cross detection circuits are reference to the AC-line potential which is typically not
the reference potential for the MCE. For that reason, an isolation barrier is needed, for example based on opto-
couplers.

Figure 89 TRIAC Control of a Heating Element

A timing diagram of the TRIAC control is shown in Figure 90. The AC-line, VAC, is a 50/60 Hz AC voltage. A Zero-
Cross detection circuit monitors this AC voltage and generates the signal AClineState. Low-high and high-low
transitions of the AClineState signal indicates zero-cross of the AC-line.

The MCE generates a TRIAC Gate pulse which is delayed ofTime with respect to the zero-crossing of the AC-line
and with a pulse width of onTime. The gate pulse turns the TRIAC on and current, IAC, starts to flow through the
load. The TRIAC turns of by itself when the current has decayed to zero and the sequence starts over.

At ofTime = 0 the load sees the full AC-line voltage but as ofTime is increased, the voltage across the load is
reduced.

The required pulse width of the gate pulse is device specific. With too short a time, the TRIAC may fail to tun
fully ON.
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Figure 90 Phase Control Of a TRIAC

The user can set the ofTime and onTime with the API TRIAC_SetONOFFTime() at any point during a half-line
cycle. The requested times take efect at the following zero-cross of the AC-line as shown in Figure 91.

By latching the onTime and ofTime at AC-line zero-crossing the update rate is kept constant at half the AC-line
frequency. The MCE handles all the time critical tasks and ensure the correct synchronization to the AC-line. The
onTime and ofTime can be set with a resolution of 1 micro-second. The maximum allowed onTime and ofTime
is 21.84 milli-seconds.

Figure 91 Setting and Latching of Gate Pulse Width and Turn-on Delay

With TRIAC control, a new cycle starts at every zero-cross of the AC-line voltage. If the requested ofTime and
onTime do not fit within a half line cycle (THLC), the gate pulse gets truncated. This process is illustrated in
Figure 92.
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Figure 92 Truncation of Gate Pulse Near Zero-crossing

To avoid truncation, ofTime + onTime < THCL. In Figure 92, ofTime1 + onTime < THCL and the gate pulse is
completed in time before the next zero-crossing. The borderline case is ofTime2 + onTime = THCL and no
truncation happens in this case. In case of ofTime3 + onTime > THCL the gate pulse is truncated to fit within the
half-line cycle.

6.11.5.1 TRIAC Pins

The TRIAC control has one input pin (AC-line zero-cross) and one output pin (TRIAC Gate). For flexibility, the
MCE ofers the option to select between two diferent input pins (TRIN0 and TRIN1) and two diferent output
pins (TROUT0 and TROUT1). Availability of the TRIAC pins depends on the device and what other functions are
supported in the application. Not all input/output options are available on all devices.

Refer to the latest version the datasheet of the device for pin assignment.

TRIAC input/output pins are selected during initialization of the TRIAC plug-in. The pins are enabled and
assigned through the API TRIAC_DriverInit(). When using the TRIAC interface, make sure the TRIAC pins are not
colliding with other functions and that the pins are not enabled in in the User Pin Configuration in Solution
Designer.

The TRIAC input pin has an internal pull-down resistor. The TRIAC output pin is a push-pull stage. Active level of
the output pin can be configured by the API TRIAC_DriverInit API().

6.11.5.2 TRIAC Interface APIs

The APIs of the TRIAC Interface plug-in are summarized in the table below.

API name Brief description

TRIAC_DriverInit() Initializes TRIAC interface and initial state of the control

TRIAC_DriverDeInit() De-initializes TRIAC interface

TRIAC_SetONOFFTimes() Sets the TRIAC gate on-time and delay-time

TRIAC_GetStatus() Returns status bits

TRIAC_ClearStatus() Clears sticky status bits

TRIAC_GetOnTime() Returns the actual TRIAC gate on-time

TRIAC_GetOfTime() Returns the actual TRIAC gate delay-time
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6.11.5.3 TRIAC_DriverInit()

Declaration:

int32_t TRIAC_DriverInit(onTime, offTime, inputChannel, outputChannel, outputInvert)

Input Parameters Min Max Description

onTime 0 21845 Specifies the TRIAC gate
pulse width in micro-
seconds. To keep the gate
constantly OFF (inactive
level), set onTime = 0
and ofTime = 0. To keep
the gate constantly ON
(active level), set onTime
= 0xFFFF and ofTime = 0

offTime 0 21845 Specifies the TRIAC gate
delay time in micro-
seconds. To keep the gate
constantly OFF (inactive
level), set onTime = 0
and ofTime = 0. To keep
the gate constantly ON
(active level), set onTime
= 0xFFFF and ofTime = 0

inputChannel 0 1 Specifies the pin for the
AC-line status signal.
Availability of pins
depends on the device

0: TRIN0
1: TRIN1

outputChannel 0 1 Specifies the pin for the
TRIAC gate signal.
Availability of pins
depends on the device

0: TROUT0
1: TROUT1

outputInvert 0 1 Specifies the active level
of the TRIAC gate signal

0: Do not invert, active
level is 8high9
1: Invert, active level is
8low9

Return Type Description

int32_t Returns initialization status.

0 – Driver successfully initialized.
1 – TRIAC driver not available or the selected channel(s) is not supported by
product.
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Description:

Initializes driver, sets initial gate condition and assigns I/O pins.

6.11.5.4 TRIAC_DriverDeInit()

Declaration:

int32_t TRIAC_DriverDeInit()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Returns de-initialization status.

0 – TRIAC driver was de-initialized successfully.
1 – Driver not available or TRIAC driver was not initialized before to de-initialized

Description:

De-initializes driver and I/O pins.

6.11.5.5 TRIAC_SetONOFFTimes()

Declaration:

int32_t TRIAC_SetONOFFTimes(onTime, offTime)

Input Parameters Min Max Description

onTime 0 21845 Specifies the TRIAC gate
pulse width in micro-
seconds. To keep the gate
constantly OFF (inactive
level), set onTime = 0 and
ofTime = 0. To keep the
gate constantly ON (active
level), set onTime= 0xFFFF
and ofTime = 0

offTime 0 21845 Specifies the TRIAC gate
delay time in micro-
seconds. To keep the gate
constantly OFF (inactive
level), set onTime = 0
and ofTime = 0. To keep
the gate constantly ON
(active level), set onTime
= 0xFFFF and ofTime = 0

Return Type Description

int32_t Result of setting timing variables.

0 – Update was successful.
1 – Driver not available or TRIAC driver is not initialized.
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Description:

Sets the TRIAC gate pulse width and the TRIAC turn-on delay time.

6.11.5.6 TRIAC_GetStatus()

Declaration:

int32_t TRIAC_GetStatus()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Bit mapped variable indicating the status of AC-line signal.

Bit 0 – ZeroCross (sticky):

• 0: Zero-crossing of AC-line not detected

• 1: Zero-crossing of AC-line detected

Bit 1 – AClineState:

• 0: AC line signal is low

• 1: AC-line signal is high

Bit 2:31 – Reserved

Description:

Reports status of the AC-line signal. ZeroCross (Bit 0) is sticky. Once set, it remains set until cleared manually by
calling API TRIAC_ClearStatus(). AClineState is not sticky and always reports the current level of the AC-line
signal.

6.11.5.7 TRIAC_ClearStatus()

Declaration:

int32_t TRIAC_ClearStatus(clearMask)

Input Parameters Min Max Description

clearMask 0 255 Mask to clear sticky
bits returned by
TRIAC_GetStatus()

Return Type Description

int32_t Result of status clear.

0 – Clear was successful
1 – Clear was unsuccessful

Description:

The bits of the status returned by TRIAC_GetStatus() are sticky and must be cleared manually by calling this API
with the appropriate mask. To clear bit 0, set mask to 1.
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6.11.5.8 TRIAC_GetOnTime()

Declaration:

int32_t TRIAC_GetOnTime()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Current TRIAC gate on-time in micro-seconds

Description:

This API returns the last on-time set by either TRIAC_DriverInit or TRIAC_SetONOFFTimes.

6.11.5.9 TRIAC_GetO�Time()

Declaration:

int32_t TRIAC_GetOffTime()

Input Parameters Min Max Description

N/A N/A N/A N/A

Return Type Description

int32_t Current TRIAC delay-time in micro-seconds

Description:

This API returns the last delay-time set by either TRIAC_DriverInit or TRIAC_SetONOFFTimes.
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Revision history

Document
version

Date of
release

Description of changes

1.0 2021-11-09 Initial release

1.1 2022-12-21 Document updated to reflect MCE sovware revision MCE FW_V5.1.0

1.2 2023-08-28 Update to include new features introduced with 5.2

1.3 2024-01-10 Include UL Class-B certification column for Motor and PFC protection table.
Update Execution Fault with Class-B protection. Load and Save command
section updated.

1.4 2024-10-28 Document updated to reflect MCE sovware revision MCE V5.4.0

• User Mode UART: Read and Write commands for 32 bit registers

• User Mode UART: Remove description of 'Save' command; not
implemented

• User Mode UART: Correct number of parameter sets for 'Load' command
(0 .. 15)

• Script Engine: Mapping of Variables to Parameters
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