

Application Note Please read the Important Notice and Warnings at the end of this document V 1.2

www.infineon.com page 1 of 63 12/15/2022

AN2018-27

P U B L I C

How to Use iMOTION™ Script Language

About this document

Scope and purpose

This application note provides a guideline for using the iMOTIONTM script language on Motion Control Engine
(MCE) platform with typical script examples covering the implementation of Low-Pass Filter (LPF), 2-level speed
selection interface, motor target speed shaping based on DC bus voltage with brown-out protection, and

dynamic motor current limit customization. Each script example is prepared for both the

MCEWizard/MCEDesigner platform and for the iMOTIONTM Solution Designer (iSD) platform.

Intended audience

This document is intended for customers who would like to understand how to use the iMOTIONTM script
language to realize customization of system start-up behavior, specific speed profile design, and system

specific fault handling design.

Table of contents

About this document ... 1

Table of contents .. 1

1 Script Language Overview ... 3

1.1 Introduction ... 3

1.2 Script Development Workflow .. 3

1.2.1 Using MCEWizard/MCEDesigner .. 3

1.2.2 Using iMOTIONTM Solution Designer .. 3

1.2.3 Migrating from MCEWizard/MCEDesigner platform to iSD Platform.. 4

2 Script Application Examples .. 8

2.1 2-Level Speed Selection Interface .. 8

2.1.1 Speed Selection Interface Requirement ... 8

2.1.2 Analog Input Pin for Speed Selection Interface .. 8

2.1.3 Speed Selection State Machine ... 9

2.1.4 Speed Selection Interface Script Implementation ... 10

2.1.4.1 Script Code for MCEWizard/MCEDesigner .. 10

2.1.4.2 Script Code for iSD .. 12

2.2 Low-Pass Filter for DC Bus Voltage ... 15

2.2.1 DC Bus Voltage Ripple .. 15

2.2.2 DC Bus Voltage Sensing ... 16

2.2.3 LPF Design & Implementation ... 17

2.2.3.1 Script Code for MCEWizard/MCEDesigner .. 18

2.2.3.2 Script Code for iSD .. 19

2.2.4 LPF Test Results ... 20

2.3 Target Speed Shaping & Brown-out Protection ... 22

2.3.1 Target Speed Requirements .. 22

2.3.2 DC Bus Status State Machine ... 23

Application Note 2 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Table of Contents

P U B L I C

2.3.3 Scaling for Target Speed Shaping Calculation.. 24

2.3.4 Target Speed Shaping & Brown-out Protection Script Implementation 25

2.3.4.1 Script Code for MCEWizard/MCEDesigner .. 26

2.3.4.2 Script Code for iSD .. 30

2.3.5 Target Speed Shaping Measurement Results ... 34

2.4 Dynamic Motor Current Limit Customization .. 36

2.4.1 Motor Current Limit Requirement ... 36

2.4.2 Dynamic Motor Current Limit Algorithm Design & Implementation .. 36

2.4.2.1 Script Code for MCEWizard/MCEDesigner .. 38

2.4.2.2 Script Code for iSD .. 43

2.4.3 Dynamic Motor Current Limit Measurement Results .. 50

3 Script Performance Evaluation ... 53

3.1 CPU Load Evaluation ... 53

3.1.1 CPU Load Evaluation Using MCEWizard/MCEDesigner ... 53

3.1.2 CPU Load Evaluation Using iSD ... 54

3.2 Script Task Timing ... 55

3.2.1 Script Task Timing Setup ... 55

3.2.2 Script Task Execution Time Evaluation ... 56

3.2.2.1 Execution Time Evaluation Using MCEWizard/MCEDesigner .. 56

3.2.2.2 Execution Time Evaluation Using iSD .. 57

3.2.3 Script Task Execution Period Evaluation .. 58

3.2.3.1 Execution Period Evaluation Using MCEWizard/MCEDesigner ... 58

3.2.3.2 Execution Period Evaluation Using iSD .. 59

4 Script Guidelines & Limitations ... 60

5 References ... 62

Revision history... 62

Application Note 3 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Language Overview

P U B L I C

1 Script Language Overview

1.1 Introduction

The latest software release of iMOTIONTM MCE includes a script engine, which offers users the ability to
customize system level functionalities without affecting the motor and PFC control algorithm. The script engine
is a light weight virtual machine that supports the reading and writing of all the motor control and PFC

parameters and variables, allowing users to take advantage of the analog and digital resources that are not
used by motor and / or PFC control, and is scalable for any functional extension in future. Typical script use
cases include customization of system start-up behavior, specific speed profile definition and parameter
configuration, and fault handling.

• The CPU resource is prioritized for the execution of the motor and PFC control algorithms. The spare CPU

resource is used for the execution of background tasks as well as the script engine which is used to drive the

execution of the script code. The priority of the execution of the script code is lower than that of the motor
and PFC control algorithm execution, so that it won’t affect the performance of the control algorithms. It is

highly recommended to check actual CPU load during the run time to ensure the CPU resource is allocated
appropriately.

• The script engine supports 2 independent tasks, namely Task 0 and Task 1, running concurrently. The user

script program runs repeatedly on a configurable interval within the Task 0 or Task 1 loop. The shortest
possible execution period is 1 ms for Task 0 and 10 ms for Task 1. The execution period for each task can be

configured to the multiples of 1 ms for Task 0 or 10 ms for Task 1 in the script code. Task 0 has greater
priority than Task 1.

• iMOTIONTM script language is a type of interpreted language, for which its implementation compiles a script
program into pseudo code (bytecode) first, and then executes instructions directly by a virtual machine

running on MCE.

1.2 Script Development Workflow

1.2.1 Using MCEWizard/MCEDesigner

The typical workflow of script program development starts from using MCEWizard [4] (or any other text editors)
to write script code and save as script input file with ‘.mcs’ suffix. MCEWizard is used to configure available
Analog-to-Digital Converter (ADC) or General-Purpose-Input-Output (GPIO) pins if needed, and MCEWizard is
also used to compile the script code to generate a script object file with ‘.ldf’ suffix. The ldf file contains
information about the total number of script instructions for Task 0 and Task 1, as well as a list of global

variables defined in the script code. Then MCEDesigner [3] is used to download the ldf file to the target MCE,
and it also supports monitoring the values of global variables used in the script program. More details about
the script language and its development can be found in [2].

1.2.2 Using iMOTIONTM Solution Designer

A typical workflow for script program development starts from using the Script Editor in the iSD to create a new

script project. The created script project is saved in the “Script” folder of the active iSD project. The created
script project has three default template files for script source code files, each with the suffix '.mcs'

(Globals.mcs, Script_Task0.mcs and Script_Task1.mcs). Use the Script Editor to edit source code, define the
global variables (Globals.mcs), write instructions to be executed in Task 0 (Script_Task0.mcs) and Task 1
(Script_Task1.mcs) respectively, and then save the source code. It is also possible to put all the instructions in

Application Note 4 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Language Overview

P U B L I C

one script file, as is the case with MCEWizard/MCEDesigner. In that case, exclude the unused script source code
files in the active script project.

The available ADC (Analog-to-Digital Converter) or General-Purpose-Input-Output (GPIO) pins can be

configured in the Parameter Configuration Wizard window in the iSD if needed. The Script Editor can also
compile the script source code to generate a script bytecode file with the '.ldf' suffix in the “Output” folder,

located in the script project directory. The ldf file contains information about the total number of script
instructions for Task 0 and Task 1, as well as a list of global variables defined in the script code.

After having successfully built a script project using the Script Editor, program the script bytecode using the iSD
(‘Project --> Build Project --> build’ with script, and ‘Tools --> Programmer --> Connect --> Program’ to program
the target device). The Script Editor supports a debugging function, and users can monitor the value of global
variables, set break points, etc. using the debug session in Script Editor after connecting to the target device

with the iSD. Compared to the workflow using MCEWizard/MCEDesigner, the workflow of script program

development using the iSD is simpler. More details about the script language and its development can be found

in [5] .

1.2.3 Migrating from MCEWizard/MCEDesigner platform to iSD Platform

This section explains how to migrate the script code developed using the MCEWizard/MCEDesigner to the iSD
platform. Please refer to the following steps.

1. Prepare an original script source code file developed using the MCEWizard/MCEDesigner’s.

2. Create new project: click “Project” in the Script Editor menu and click “New Project”. Type in the desired

new project name in the text box of the “New Project” window, then click “Ok” to generate a new script
project. In the example shown in Figure 1, the script project name is given as “mce_script”. By default, there

are three *.mcs files included in the script project: “Global.mcs”, “Script_Task0.mcs” and

“Script_Task1.mcs”.

3. Copy the original script source code developled using MCEWizard/MCEDesigner to the relevant script source

code files in the Script Editor.

a. Script system parameters, such as execution period and exection steps for Task 0 and Task 1,
are defined in the "Properties" window of the Script Editor as shown in Figure 1, and it is not

necessary to repeat this information in the source code. Please type in each value of the script
system parameters here with reference to the original script source code developed using

MCEWizard/MCEDesigner.

b. Open Globals.mcs file and copy the code of the definition of global variables from the original

script source code developed using MCEWizard/MCEDesigner.

c. Open Script_Task0.mcs file and copy the code of the Task 0 functions, such as

Script_Task0_init() and Script_Task0() from the original script source code developed using
MCEWizard/MCEDesigner.

d. Open Script_Task1.mcs file and copy the code of the Task 1 functions, such as

Script_Task1_init() and Script_Task1() from the original script source code developed using
MCEWizard/MCEDesigner.

Application Note 5 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Language Overview

P U B L I C

Figure 1 Create new script project on Script Editor in iSD

4. Change the parameter names for the iSD.

MCE parameter names are different between the MCEDesigner and the iSD. Therefore, it is necessary to
modify the parameter names appropriately for the iSD. For example, as shown in Figure 2, you can find the
error in the line 17, and the error message in the "Errors" window of the Script Editor is “Error #11: Unknown

identifier 'VdcFilt' at mce_script\script_task0.mcs:17”. From this error message, you can find that this

variable should be modify for the iSD.

Figure 2 Identify the different name variable between MCEDesigner and iSD

Use the iSD help window to find the correct parameters for the iSD. As shown in Figure 3, click the question
mark icon in the iSD and open the help window. In the help window, click on the “Search” Tab, type in

parameter name, click the “Search” button, and click the links of the search result, then the parameter
information for the iSD will be appeared in the right side of the help window, and you can identify the
parameter name for the iSD.

Application Note 6 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Language Overview

P U B L I C

Figure 3 How to identify the parameter name for iSD (using Help window in iSD)

Return to the script and replace the iSD parameter name, resolving the error as shown in Figure 4. With that,

the original script source code developed using the MCEWizard/MCEDesigner has been migrated to the iSD. It is
ready to build the script project.

Figure 4 Modified parameter for iSD with NO errors

As an alternative way to change the parameter names for the iSD. There is an auto completion feature in the
Script Editor. As shown in Figure 5, at first select the Unknown parameter 'VdcFilt' and next press the

“Ctrl+SpaceBar” shortcut keys in the Script Editor, then a complete list of all the available MCE parameters and

variables appear inside editor area. Finally select the desired parameter name and press enter to replace. It is

ready to build the script project.

Application Note 7 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Language Overview

P U B L I C

Figure 5 How to identify the parameter name for iSD (using Auto Completion feature)

Application Note 8 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

2 Script Application Examples

2.1 2-Level Speed Selection Interface

2.1.1 Speed Selection Interface Requirement

A multi-level speed selection interface to support different speed levels selected by users is commonly seen in
motor control applications such as hair-dryers. This example details the requirement and script
implementation of a 2-level speed selection interface using one of the available ADC pins on an IMC101T [1]

controller from iMOTIONTM MCE series.

Some hardware circuits were designed to translate the position of the speed selection mechanical switch into a

corresponding analog voltage level between 0 V and 5 V. Specifically, the voltage range from 0 V to 1 V was

defined as the OFF state, the voltage range from 1 V to 2 V was defined as the LOW SPEED state, and the voltage
range from 2 V and above was defined as the HIGH SPEED. In order to eliminate potential oscillation when the
voltage level is in the vicinity of the boundaries of different speed states, a hysteresis of 0.2 V was introduced.

This application requires an analog voltage sensing interface to sample and translate the analog voltage to the

corresponding speed selection levels.

Figure 6 depicts the relationship between the speed selection and the analog voltage level. The solid line shows

that when the speed selection is currently in the OFF state, and if the analog voltage rises above 1 V, then the

speed selection shifts from the OFF state to the LOW SPEED state. When the current speed selection is in the
LOW SPEED state, and if the analog voltage exceeds 2 V, then the speed selection shifts from the LOW SPEED
state to the HIGH SPEED state. The dashed line shows that when the speed selection is currently in the HIGH

SPEED state, and if the analog voltage falls below 1.8 V, then the speed selection shifts from the HIGH SPEED

state to the LOW SPEED state. When the current speed selection is in the LOW SPEED state, and if the analog

voltage falls below 0.8 V, then the speed selection shifts from the LOW SPEED state to the OFF state.

0.8V 1V 1.8V 2V

OFF

LOW SPEED

HIGH SPEED

Speed Selection

0V Vanalog

Figure 6 Speed Selection & Analog Voltage Relationship

2.1.2 Analog Input Pin for Speed Selection Interface

This application specific speed selection requirement described in Section 2.1.1 can be achieved by enabling an
analog input pin that is supported by the script engine. For this design, an AIN0 pin was chosen to interface
with the speed selection hardware circuit. Once enabled, this analog input pin is sampled by MCE every 1 ms
[2], and the ADC conversion results can be obtained by reading the variable named ADC_Result0.

Application Note 9 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Given that the resolution of the ADC is 12 bit, the calculation from the voltage at AIN0 pin to the ADC conversion

result follows this formula: ADC_Result0 = 𝐼𝑁𝑇(𝑉𝐴𝐼𝑁0 ∙
212−1

𝑉𝑟𝑒𝑓
+ 0.5) , where 𝑉𝑟𝑒𝑓 is the reference voltage for the

ADC. If we choose 𝑉𝑟𝑒𝑓 as 5 V, then those voltage thresholds associated with HIGH SPEED and LOW SPEED levels

can be calculated using the abovementioned formula as summarized in Table 1.

Table 1 Speed Selection Interface Voltage Thresholds

Variable Name Voltage Threshold ADC Conversion Result

VLSStart 1 V 819 (ADC Counts)

VLSStop 0.8 V 655 (ADC Counts)

VHSStart 2 V 1638 (ADC Counts)

VHSStop 1.8 V 1474 (ADC Counts)

2.1.3 Speed Selection State Machine

The speed selection logic can be abstracted using a finite state machine (FSM) model. An FSM can change from

one state to another in response to certain inputs. Figure 7 shows a state machine that was designed to
interpret the speed selection inputs. It uses a state variable named SpeedMode to represent 3 possible states,

namely, Speed_Mode_OFF (SpeedMode = 0), Speed_Mode_LOW_SPEED (SpeedMode = 1), and
Speed_Mode_HIGH_SPEED (SpeedMode = 2). Starting off in the Speed_Mode_OFF state, the target speed is

reset to 0, and the motor is stopped. If VSP pin voltage is greater than VLSStart, then it shifts to the
Speed_Mode_LOW_SPEED state. While it is in the Speed_Mode_LOW_SPEED state, if VSP pin voltage is lower

than VLSStop, then it shifts to Speed_Mode_OFF; if VSP pin voltage is greater than VHSStart, then it shifts to
the Speed_Mode_HIGH_SPEED state. While it is in the Speed_Mode_HIGH_SPEED state, if VSP pin voltage is

lower than VHSStop, then it shifts to the Speed_Mode_LOW_SPEED state. While it is in the

Speed_Mode_HIGH_SPEED or Speed_Mode_LOW_SPEED state, the target speed is set to the pre-defined

HighSpeedValue or LowSpeedValue corresponding to the specific speed selection levels, and the motor is
started. The start / stop motor operation can be realized by setting or resetting the motor variable named

Command. Thanks to the accessibility of the motor parameters enabled by the script engine, the Command

parameter can be directly used in the script code without declaration.

Application Note 10 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Speed_Mode_OFF

entry /
do / Target Speed = 0;
Stop motor;
exit /

ADC_Result0 > VLSStart

Speed_Mode_LOW_SPEED

entry /
do /
TargetSpeed = LowSpeedValue;
Start motor;
exit /

ADC_Result0 > VHSStart

Speed_Mode_HIGH_SPEED

entry /
do /
TargetSpeed = HighSpeedValue;
Start motor;
exit /

ADC_Result0 < VHSStop

ADC_Result0 < VLSStop

Figure 7 Speed Selection State Machine

2.1.4 Speed Selection Interface Script Implementation

Code Listing 1 shows the source code for the 2-level speed selection interface application implemented in Task

1 using the MCEWizard/MCEDesigner. Since the user speed selection switch position doesn’t change frequently,

it is recommended to set the loop execution period of Task 1 to be 50 ms. Code Listing 2 shows a portion of the

compiled script object file where it shows at line 009 that the number of instructions for Task 1 is 20. With this in
mind, the execution step for Task 1 should be set to greater than 20 to ensure that the entire loop of Task 1 is

completed during each execution period. In this example, the execution period for Task 1

(SCRIPT_TASK1_EXECUTION_PERIOD) was set to 5, and the execution step for Task 1

(SCRIPT_TASK1_EXECUTION_STEP) was chosen to be 20 to meet the desired timing requirement.

This example can also be implemented in Task 0, in which case the execution period for Task 0
(SCRIPT_TASK0_EXECUTION_PERIOD) should be set to 50 to achieve the same execution period of 50 ms.

2.1.4.1 Script Code for MCEWizard/MCEDesigner

Code Listing 1 Speed Selection Interface Script Code for MCEWizard/MCEDesigner

001 /**/

002 /*Script user version value, should be 255.255*/

003 #SET SCRIPT_USER_VERSION (1.00)

004 #SET SCRIPT_TASK1_EXECUTION_PERIOD (5)

005 /*Defines number of lines to be executed every 10mS in Task1*/

006 #SET SCRIPT_TASK1_EXECUTION_STEP (20)

007 /**/

008 /* constant definition */

009 CONST int VLSStart = 819; /* 1.0 V => 819 counts */

010 CONST int VLSStop = 655; /* 0.8 V => 655 counts */

011 CONST int VHSStart = 1638; /* 2.0 V => 1638 counts */

Application Note 11 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 1 Speed Selection Interface Script Code for MCEWizard/MCEDesigner

012 CONST int VHSStop = 1474; /* 1.8 V => 1474 counts */

013 CONST int LowSpeedValue = 5000;

014 CONST int HighSpeedValue = 10000;

015

016 /* Task1 init function*/

017 Script_Task1_init()

018 {

019 /* local variable definition */

020 int SpeedMode;

021

022 /* Initialize local variable*/

023 SpeedMode = 0;

024 }

025 /* Task1 script function*/

026 Script_Task1()

027 {

028 if (SpeedMode == 0) /* Speed selection is in OFF state. */

029 {

030 TargetSpeed = 0;

031 Command = 0; /* Stop the motor. */

032 if (ADC_Result0 > VLSStart)

033 {

034 SpeedMode = 1; /* Shift to LOW_SPEED state. */

035 }

036 }

037 if (SpeedMode == 1) /* Speed selection is in LOW_SPEED

state. */

038

039 {

040 if (ADC_Result0 > VHSStart)

041 {

042 SpeedMode = 2; /* Shift to HIGH_SPEED state. */

043 }

044 else

045 {

046 if (ADC_Result0 < VLSStop)

047 {

048 SpeedMode = 0; /* Shift to OFF state. */

049 }

050 else /* Stay in LOW_SPEED state. */

051 {

052 TargetSpeed = LowSpeedValue; /* Update

TargetSpeed. */

053 Command = 1; /* Start motor. */

054 }

055 }

056 }

057 if(SpeedMode == 2) /* Speed selection is in HIGH_SPEED

state. */

058 {

059 if(ADC_Result0 < VHSStop)

060 {

061 SpeedMode = 1; /* Shift to LOW_SPEED state. */

Application Note 12 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 1 Speed Selection Interface Script Code for MCEWizard/MCEDesigner

062 }

063 else /* Stay in HIGH_SPEED state. */

064 {

065 TargetSpeed = HighSpeedValue; /* Update TargetSpeed.

*/

066 Command = 1;

067 }

068 }

069 }

Code Listing 2 Portion of Compiled Script Object File for Speed Selection Interface Script Code

001 %---

002 % Script Object File

003 %---

004 % SCRIPT_USER_VERSION : 001.000

005 % DATE & TIME : 26.09.2022 11:22:33

006 % SIZE : 297 Bytes

007 % Total Number of Lines : 69

008 % Task0 - Number of Instructions : 0

009 % Task1 - Number of Instructions : 20

010 %---

2.1.4.2 Script Code for iSD

Code Listing 3 and Code Listing 4 shows the source code for the 2-level speed selection interface application
using the iSD. In order to reuse the source code from the MCEWizard/MCEDesigner in the iSD, it is necessary to

modify the names for some variables. The names of variables that need to be modified are listed in Table 2.

In addition, since the iSD sets the Task 0/Task 1 execution period and execution step in the Script Project
Properties, these settings are removed from the script code. Click on Script Project in the Script Explorer, then

the information of the script execution period and execution steps are appeared in the Property window as
shown in Figure 8, then set the appropriate values. This time, with the same settings as in Code Listing 1, the

execution period of Task 1 (SCRIPT_TASK1_EXECUTION_PERIOD) is set to 5 and the execution step of Task 1

(SCRIPT_TASK1_EXECUTION_STEP) to 20. As shown in Figure 9, the number of instructions of each task can be
confirmed in the Output window as part of the Build result.

Code Listing 3 Speed Selection Interface Script Code for iSD (Global.mcs)

001 /**/

002 /*Global variables*/

003 /**/

004 /* constant definition */

005 CONST int VLSStart = 1240; /* 1 V => 1240 counts */

006 CONST int VLSStop = 992; /* 0.8 V => 992 counts */

007 CONST int VHSStart = 2480; /* 2 V => 2480 counts */

008 CONST int VHSStop = 2232; /* 1.8 V => 2232 counts */

009 CONST int LowSpeedValue = 5000;

010 CONST int HighSpeedValue = 10000;

Application Note 13 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 4 Speed Selection Interface Script Code for iSD (Script_Task1.mcs)

001 /**/

002 /*Task1 init function*/

003 Script_Task1_init()

004 {

005 /* local variable definition */

006 uint8_t SpeedMode;

007

008 /*Initialize local variable */

009 SpeedMode = 0;

010 }

011 /**/

012 /*Task1 script function*/

013 Script_Task1()

014 {

015 if (SpeedMode == 0) /* Speed selection is in OFF state. */

016 {

017 APP_MOTOR0.TargetSpeed = 0;

018 APP_MOTOR0.Command = 0; /* Stop the motor. */

019 if (FB_ADC.adc_result[0] > VLSStart)

020 {

021 SpeedMode = 1; /* Shift to LOW_SPEED state. */

022 }

023 }

024 if (SpeedMode == 1) /* Speed selection is in LOW_SPEED

state. */

025 {

026 if (FB_ADC.adc_result[0] > VHSStart)

027 {

028 SpeedMode = 2; /* Shift to HIGH_SPEED state. */

029 }

030 else

031 {

032 if (FB_ADC.adc_result[0] < VLSStop)

033 {

034 SpeedMode = 0; /* Shift to OFF state. */

035 }

036 else /* Stay in LOW_SPEED state. */

037 {

038 APP_MOTOR0.TargetSpeed = LowSpeedValue; /*

Update APP_MOTOR0.TargetSpeed. */

039 APP_MOTOR0.Command = 1; /* Start motor. */

040 }

041 }

042 }

043 if(SpeedMode == 2) /* Speed selection is in HIGH_SPEED

state. */

044 {

045 if(FB_ADC.adc_result[0] < VHSStop)

046 {

047 SpeedMode = 1; /* Shift to LOW_SPEED state. */

048 }

049 else /* Stay in HIGH_SPEED state. */

Application Note 14 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 4 Speed Selection Interface Script Code for iSD (Script_Task1.mcs)

050 {

051 APP_MOTOR0.TargetSpeed = HighSpeedValue; /* Update

APP_MOTOR0.TargetSpeed. */

052 APP_MOTOR0.Command = 1;

053 }

054 }

055 }

Table 2 Parameter name Differences between MCEWizard/MCEDesigner and iSD

MCEWizard/MCEDesigner iSD

TargetSpeed APP_MOTOR0.TargetSpeed

Command APP_MOTOR0.Command

ADC_Result0 FB_ADC.adc_result[0]

Figure 8 The execution period and step of each tasks

Figure 9 Build Result of the Speed Selection Interface Script Code on iSD

In the iSD, as shown in Figure 10, the “Watch View” window can be used to read or write script variables in

debug mode of the Script Editor. It is also possible to read MCE parameters and variables using this window in
debug mode.

Application Note 15 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Press + to add the variable
into Watch View Window

To read or write script variables
in the Watch View Window in
debug mode.

Figure 10 Script Editor: Watch View Window

2.2 Low-Pass Filter for DC Bus Voltage

2.2.1 DC Bus Voltage Ripple

Typically, the AC input front-end stage consists of a bridge rectifier followed by a bulky DC bus capacitor to

convert the AC mains voltage to DC voltage whose amplitude tracks the peak of the AC input voltage. DC bus
voltage refers to the voltage across the DC bus capacitor. When the motor is running, the DC bus voltage

waveform typically contains high frequency switching ripples as well as low frequency ripples due to bus

capacitor charge and discharge operation at twice the mains frequency. Figure 11 is a screenshot of the AC
portion of the actual DC bus voltage waveform with an IMC101T controller driving a Permanent Magnet

Synchronous Motor (PMSM) running at a speed = 19400 RPM and Vin = 125 VAC / 50 Hz. The amplitude of the DC

bus voltage ripples is around 9.84 V.

Application Note 16 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Figure 11 DC Bus Voltage Waveform Screenshot

2.2.2 DC Bus Voltage Sensing

The valid input voltage for the ADC of MCE ranges from 0 V to 5 V due to the selection of 5 V as the ADC reference
voltage (𝑉𝑟𝑒𝑓 = 5𝑉). Accordingly, the DC bus voltage is scaled down by a voltage divider composed of R1 and

R2 as shown in Figure 12 and then connected to VDC pin of MCE. With 𝑅1 = 2𝑀Ω and 𝑅2 = 13.3𝐾Ω, the DC Bus

sensing gain 𝐺𝐷𝐶𝐵𝑢𝑠_𝑠𝑒𝑛𝑠𝑖𝑛𝑔 =
𝑅2

𝑅1+𝑅2
=

13.3𝐾Ω

2𝑀Ω+13.3𝐾Ω
= 0.00661, and the maximum DC voltage that the VDC pin

can sense is up to
𝑉𝑟𝑒𝑓

𝐺𝐷𝐶𝐵𝑢𝑠_𝑠𝑒𝑛𝑠𝑖𝑛𝑔
=

5

0.00661
=757 V.

Figure 12 DC Bus Voltage Sensing Interface Circuit Diagram

The DC bus voltage is sampled by MCE every motor Pulse Width Modulation (PWM) cycle and is represented by
the motor parameter VdcRaw whose unit is ADC count [2]. A typical motor PWM cycle value is 50 µs. VdcRaw

goes through an internal digital LPF stage and the result is stored in VdcFilt [2].

Given that the resolution of the ADC is 12 bit, the conversion from DC bus voltage to ADC sampling result

follows this formula: 𝑉𝐷𝐶𝐵𝑢𝑠_𝐴𝐷𝐶 = 𝐼𝑁𝑇(𝑉𝐷𝐶𝐵𝑢𝑠 ∙ 𝐺𝐷𝐶𝐵𝑢𝑠_𝑠𝑒𝑛𝑠𝑖𝑛𝑔 ∙
212−1

𝑉𝑟𝑒𝑓
+ 0.5), where the 𝐼𝑁𝑇 operator means

taking the integer portion of a given number.

Thanks to the accessibility of the motor parameters enabled by the script engine, VdcRaw and VdcFilt
parameters can be directly used in the script code without declaration. Figure 13 shows the VdcRaw and

VdcFilt waveforms under the same input / output conditions as in the case of Figure 11 using the tracing
window of MCEDesigner [3]. With 9.84 V of DC bus voltage ripple amplitude, VdcRaw ripple amplitude should be

CH3: DC Bus Voltage (AC coupling); Vpp_CH3: 9.84 V

R1
2M

R2
13.3K

DC Bus

GND

MCE Device

VDC

C1

Application Note 17 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

53 ADC counts following the abovementioned conversion formula. From Figure 13 it can be seen that the
amplitude of VdcRaw ripple was about 53 ADC counts. Comparing VdcFilt waveform with that of VdcRaw, it
can be observed that although most of the high frequency ripples seen in VdcRaw was attenuated, VdcFilt

still presented a good amount of low frequency ripples whose amplitude was as high as 30 ADC counts.

In order to obtain an averaged value of DC bus voltage when the system is in steady state, there is a need to

implement an additional stage of LPF in the script to attenuate the ripple of VdcFilt to no more than 1 ADC
count.

Ch1: VdcRaw; Ch2: VdcFilt; FPWM: 20 kHz; Sample at PWM frequency divided by 2; Trigger Level: 920; Vin: 125

VAC / 50 Hz; Vpp_CH1: 53 ADC counts; Vpp_CH2: 30 ADC counts

Figure 13 VdcRaw & VdcFilt Waveform Screenshot

2.2.3 LPF Design & Implementation

Considering the limited resources supported by the script engine, a 1st order Infinite Impulse Response (IIR)
low-pass digital filter algorithm was chosen for this application. Its difference equation is shown as follows:
(𝑛) = 𝛼 ∙ 𝑦(𝑛 − 1) + (1 − 𝛼) ∙ 𝑥(𝑛) , where 𝛼 is a constant between 0 and 1, 𝑥(𝑛) is the current input value,
𝑦(𝑛) is the current output value, and 𝑦(𝑛 − 1) is the last output value. This filter’s 𝑧 domain transfer function is

as follows: 𝐻𝐿𝑃𝐹(𝑧) =
1−𝛼

1−𝛼∙𝑧−1 . Assuming that the sampling period is represented by 𝑇𝑠, and using 𝑧 = 𝑒𝑠∙𝑇𝑠 to

replace 𝑧, we could obtain the filter’s transfer function in 𝑠 domain: 𝐻𝐿𝑃𝐹(𝑠) =
1−𝛼

1−𝛼∙𝑒−𝑠𝑇𝑠
 .

The dominant portion of the VdcFilt ripples was the twice-of-mains-frequency component at 100 Hz or 120

Hz. According to Nyquist theorem, the sampling frequency must be at least twice of the frequency of interest or
greater to realize effective attenuation. Task 1 can support down to 10 ms execution period, which in this case
is not enough. Task 0 was chosen to implement this LPF algorithm thanks to its support for down to 1 ms
execution period. The greater the sampling frequency is, the greater the frequency of interest that can be

attenuated goes. Accordingly, we chose the sampling period 𝑇𝑠 = 1 𝑚𝑠 so that the LPF would be effective for

the frequency ranging up to 500 Hz.

Taking 100 Hz as the worst case example, attenuation of
1

30
 corresponds to 20 ∙ 𝑙𝑜𝑔10 (

1

30
) = −29.5𝑑𝐵. In order

to achieve at least −29.5𝑑𝐵 at 100 Hz, the desired 𝛼 needs to be 0.98 based on the calculation of the
magnitude of 𝐻𝐿𝑃𝐹(𝑠). Unfortunately, the script engine only supports 32-bit signed integer type of variables [2],

so that the floating point number 0.98 has to be represented in fractional format. If we define 𝛼 =
𝛼𝑁𝑈𝑀

𝛼𝐷𝐸𝑁
, then

the LPF can be implemented by using the following pseudo code in Code Listing 5.

Code Listing 5 LPF Pseudo Code

Application Note 18 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

056 Y1(n)=Y1(n-1)+(αDEN-αNUM)*(X(n)-Y(n-1));

057 Y(n)=Y1(n)/αDEN;

It is recommended users choose 𝛼𝐷𝐸𝑁 to be equal to the power of 2, so that the division operation can be

realized efficiently by right shift operation. If we choose 𝛼𝐷𝐸𝑁 = 64, then the best integer value with minimum

error for 𝛼𝑁𝑈𝑀 = 63, which results in an equivalent 𝛼 = 0.984 with an error of 0.5 %. The division by 64 can be
replaced by right shifting 6 bits. Code Listing 6 shows the script code implementation for the LPF using
MCEWizard/MCEDesigner, and Code Listing 7 and Figure 16 shows the implementation using the iSD as well.

2.2.3.1 Script Code for MCEWizard/MCEDesigner

Code Listing 6 LPF Script Code for MCEWizard/MCEDesigner

001 /**/

002 /*Script execution time for Task0 in ms, maximum value 65535*/

003 #SET SCRIPT_TASK0_EXECUTION_PERIOD (1)

004 /*Defines number of lines to be executed every 1ms in Task0*/

005 #SET SCRIPT_TASK0_EXECUTION_STEP (2)

006 /**/

007 /* Global variable definition */

008 int VDCBusLPF;

009 /**/

010 /*Task0 init function*/

011 Script_Task0_init()

012 {

013 /*Initialize global variable*/

014 VDCBusLPF = 0;

015 /* local variable definition */

016 int VDCBusMultiplyDEN;

017 /*Initialize local variable*/

018 VDCBusMultiplyDEN = 0;

019 }

020

021 /*Task0 script function*/

022 Script_Task0()

023 {

024 /* Vdcbus filtering */

025 VDCBusMultiplyDEN = VDCBusMultiplyDEN + (VdcFilt - VDCBusLPF);

026 VDCBusLPF = VDCBusMultiplyDEN >> 6;

027 }

As can be seen from the code, since there are 2 effective instructions (line 025 and 026) in the LPF
implementation, the number of instructions to be executed every 1 ms by Task 0 needs to be set to 2
accordingly (line 005), so that Task 0 loop execution period becomes 1 ms. Thus, 1 kHz sampling frequency for

VdcFilt is ensured. The effective number of instructions for each Task can be found out in the relevant script
object file with a suffix of ‘.ldf’.

With this implementation, the filter’s time constant 𝜏 = −
𝑇𝑠

𝐿𝑛(𝛼)
= −

1𝑚𝑠

𝐿𝑛(0.984)
= 63𝑚𝑠; the cut-off frequency

𝑓𝑐 =
1

2𝜋𝜏
=

1

2𝜋∙63𝑚𝑠
= 2.51𝐻𝑧; the gain at 100 Hz is -31.9 dB. The Bode plot and step response of the

implemented LPF were calculated and shown in Figure 14 and Figure 15.

Application Note 19 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Figure 14 Calculated 1st Order IIR LPF Frequency Response

Figure 15 Calculated 1st Order IIR LPF Step Response

2.2.3.2 Script Code for iSD

The LPF Script Code for the MCEWizard/MCEDesigner (Code Listing 6), migrated to iSD is shown in Code Listing
7 and Code Listing 8. In order to reuse the source code from MCEWizard/MCEDesigner in iSD, the variable

names must be modified as shown in Table 3.

Code Listing 7 LPF Script Code for iSD (Global.mcs)

001 /**/

002 /*Global variables*/

003 /**/

004 /* Global variable definition */

005 int VDCBusLPF;

Code Listing 8 LPF Script Code for iSD (Script_Task0.mcs)

001 /**/

Application Note 20 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 8 LPF Script Code for iSD (Script_Task0.mcs)

002 /*Task0 init function*/

003 Script_Task0_init()

004 {

005 /*Initialize global variable*/

006 VDCBusLPF = 0;

007 /* local variable definition */

008 int VDCBusMultiplyDEN;

009 /*Initialize local variable*/

010 VDCBusMultiplyDEN = 0;

011 }

012 /**/

013 /*Task0 script function*/

014 Script_Task0()

015 {

016 /* Vdcbus filtering */

017 VDCBusMultiplyDEN = VDCBusMultiplyDEN + (FB_MEASURE.VdcFilt

- VDCBusLPF);

018 VDCBusLPF = VDCBusMultiplyDEN >> 6;

019 }

Figure 16 The execution period and the step for LPF Script Code

Table 3 Parameter name Differences between MCEWizard/MCEDesigner and iSD

MCEWizard/MCEDesigner iSD

VdcFilt FB_MEASURE.VdcFilt

2.2.4 LPF Test Results

Figure 17 shows the waveforms of the filter input represented by VdcFilt and the filter output represented by

VDCBusLPF_L (lower 16 bit of VDCBusLPF). It can be seen that the filtered result, VDCBusLPF_L, fluctuated by
no more than 1 ADC count. With the amplitude of VdcFilt being 30 ADC counts, the degree of attenuation

achieved was about -30 dB.

Figure 18 shows the measured step response of the implemented LPF, where Vin was increased from 70 VAC to
125 VAC. The initial value of VdcFilt was 500 ADC counts, and the steady state value of VdcFilt was 919 ADC
counts, resulting in a step change of 419 ADC counts. The time it took for VdcFilt to step up by 265 ADC counts

Application Note 21 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

(419 ∙ (1 − 𝑒−1) = 419 ∙ 0.6321 = 265) was 63.374 sample counts. Since the motor PWM cycle was 50 µs, and
the tracing window screenshot was obtained with a sample rate that was equal to motor PWM frequency
divided by 20, the equivalent sample cycle was 1 ms. Accordingly, the measured time constant 𝜏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =

63.374 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑢𝑛𝑡𝑠 ∙ 1𝑚𝑠 = 63.374𝑚𝑠. This result matches the theoretical value very well.

Note: In the iSD, the only way to debug the script variables is to use the watch view window in script

debugger. Currently it doesn’t support reading script variables in dashboard or oscilloscope.

Ch1: VdcFilt; Ch2: VDCBusLPF_L; FPWM: 20 kHz; Sample at PWM frequency divided by 2; Trigger Level: 920;

Vin: 125 VAC / 50 Hz; Vpp_CH1 : 30 ADC counts; Vpp_CH2 : 1 ADC count

Figure 17 VdcFilt & VDCBusLPF_L Waveform Screenshot

Ch1: VdcFilt; Ch2: VDCBusLPF_L; FPWM: 20 kHz; Sample at PWM frequency divided by 20; Trigger Level: 600;

Vin: step up from 70 VAC to 125 VAC; △X: 63.374 sample counts; △Y: 264.700 ADC counts

Figure 18 Measured 1st Order IIR LPF Step Response Screenshot

Application Note 22 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

2.3 Target Speed Shaping & Brown-out Protection

In this example, it is shown that the motor target speed can be tailored as a function of the DC bus voltage.
Additionally, if the DC bus voltage brown-out occurs, then the motor is stopped. Since both of the requirements

are based on the DC bus voltage, these two functions are implemented together in this example.

2.3.1 Target Speed Requirements

Some applications, such as hair-dryers, require setting the motor target speed dynamically based on

instantaneous DC bus voltage level. Take an application that uses a 6 pole PMSM type motor whose maximum

speed is 20K RPM as an example: given the 2-level speed selection interface described in Section 2.1, the
relationship between the target speed and DC bus voltage is defined by a quadratic function with 2 different
sets of coefficients for HIGH SPEED and LOW SPEED levels respectively as shown below.

𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑𝐻𝑆 = 𝐴ℎ ∙ 𝑉𝐷𝐶𝐵𝑢𝑠
2 + 𝐵ℎ ∙ 𝑉𝐷𝐶𝐵𝑢𝑠 + 𝐶ℎ ;

𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑𝐿𝑆 = 𝐴𝑙 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠
2 + 𝐵𝑙 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠 + 𝐶𝑙 .

The unit of 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 is RPM, and the unit of 𝑉𝐷𝐶𝐵𝑢𝑠 is Volt. The coefficients of the quadratic function are

listed in Table 4.

Table 4 Coefficients of the Quadratic Function for Target Speed & DC Bus Voltage Relationships

LOW SPEED HIGH SPEED

𝑨𝒍 -0.572 𝑨𝒉 -0.159

𝑩𝒍 228.480 𝑩𝒉 132.585

𝑪𝒍 -6153.675 𝑪𝒉 1494.450

The calculated target speed using the aforementioned quadratic function needs to be within its corresponding
maximum and minimum limits. Table 5 below lists the speed limit requirements for HIGH SPEED and LOW

SPEED levels.

Table 5 Max. & Min. Target Speed Limit Definitions

 LOW SPEED HIGH SPEED

Max. Target Speed Limit 16200 RPM 19400 RPM

Min. Target Speed Limit 11625 RPM 13537 RPM

In addition, DC bus brown-out protection is required to prevent the motor from continuing to operate when the
DC bus voltage decreases below a certain threshold. In order to eliminate potential oscillation when the DC bus

voltage is around the brown-out level, a hysteresis of 5 V was introduced. Table 6 lists the DC bus brown-in and

brown-out voltage levels.

Table 6 DC Bus Brown-In & Brown-Out Voltage Levels

DC Bus Brown-In Voltage 90 V

DC Bus Brown-Out Voltage 85 V

The overall relationships between the target speed and the DC bus voltage for HIGH SPEED and LOW SPEED
levels are shown in Figure 19 and Figure 20. The solid line shows that if the DC bus voltage rises from 0 V, the

Application Note 23 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

motor won’t start to run until the DC bus voltage exceeds 90 V. The dashed line shows that if the motor is
currently running, then it doesn’t stop running until the DC bus voltage falls below 85 V.

Figure 19 Target Speed Shaping (LOW SPEED)

Figure 20 Target Speed Shaping (HIGH SPEED)

2.3.2 DC Bus Status State Machine

A dedicated state machine can be designed to keep track of DC Bus brown-in / brown-out status as shown in
Figure 21. The DC bus status state machine uses a state variable DCBusState to represent 2 possible states,
namely, DC_Bus_State_Abnormal (DCBusState = 0), and DC_Bus_State_Normal (DCBusState = 1). The

input signal for this state machine needs to be an averaged DC bus voltage ADC conversion result to minimize
potential oscillation. The LPF described in Section 2.2 can be used to generate the required input signal
VDCBusLPF. Starting off in DC_Bus_State_Abnormal state, if VDCBusLPF is greater than the value of

VDCBusBrownIn, then the DC bus status state machine shifts to DC_Bus_State_Normal state. While it is in
DC_Bus_State_Normal state, if VDCBusLPF becomes less than the value of VDCBusBrownOut, then the state
machine shifts back to DC_Bus_State_Abnormal state.

Application Note 24 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Figure 21 DC Bus Status State Machine Diagram

The calculation of the value of VDCBusBrownIn and VDCBusBrownOut follows the conversion formula
described in Section 2.2.2 (voltage sense range is 757 V), and the voltage levels specified in Table 6. The results

are shown in Table 7 below.

Table 7

DC Bus Brown-In Voltage 90 V VDCBusBrownIn 487 (ADC counts)

DC Bus Brown-Out Voltage 85 V VDCBusBrownOut 460 (ADC counts)

2.3.3 Scaling for Target Speed Shaping Calculation

Section 2.3.1 defined the relationship between 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 and 𝑉𝐷𝐶𝐵𝑢𝑠 for different speed selection levels,
where the unit of 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 was RPM, and the unit of 𝑉𝐷𝐶𝐵𝑢𝑠 was Volt. However, in the MCE software, the

target speed is represented by a signed 16-bit integer, where 16383 corresponds to the motor’s maximum
speed. For this application, TargetSpeed = 16383 corresponds to the maximum motor speed of 20K RPM.

The DC bus voltage in the MCE software is presented by its corresponding ADC sampling result in ADC counts,
following the conversion formula described in Section 2.2.2. Thus, the formulas defined in Section 2.3.1 cannot

be used directly in script code. In order to obtain the correct calculation result of target speed in script code,

those scaling factors need to be taken into consideration as shown in the following formula.

𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑𝑠𝑐𝑟𝑖𝑝𝑡 = [𝐴 ∙ (𝑉𝐷𝐶𝐵𝑢𝑠𝐴𝐷𝐶
∙

𝑉𝑟𝑒𝑓

212−1
∙

1

𝐺𝐷𝐶𝐵𝑢𝑠𝑠𝑒𝑛𝑠𝑖𝑛𝑔

)2 + 𝐵 ∙ (𝑉𝐷𝐶𝐵𝑢𝑠𝐴𝐷𝐶
∙

𝑉𝑟𝑒𝑓

212−1
∙

1

𝐺𝐷𝐶𝐵𝑢𝑠𝑠𝑒𝑛𝑠𝑖𝑛𝑔

) + 𝐶] ∙
16383

𝑆𝑝𝑒𝑒𝑑𝑚𝑎𝑥
 , where

𝑉𝑟𝑒𝑓 = 5𝑉, 𝐺𝐷𝐶𝐵𝑢𝑠_𝑠𝑒𝑛𝑠𝑖𝑛𝑔 = 0.00661 (described in Section 2.2.2), 𝑆𝑝𝑒𝑒𝑑𝑚𝑎𝑥 = 20000, 𝐴, 𝐵, and 𝐶 are the 3

coefficients in the original quadratic function that defines the relationship between the target speed and DC
bus voltage for different speed selection levels.

If we define 𝑇𝑠𝑝𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 =
16383

𝑆𝑝𝑒𝑒𝑑𝑚𝑎𝑥
= 0.819 , and 𝑉𝐷𝐶𝐵𝑢𝑠_𝑓𝑎𝑐𝑡𝑜𝑟 =

𝑉𝑟𝑒𝑓

212−1
∙

1

𝐺𝐷𝐶𝐵𝑢𝑠𝑠𝑒𝑛𝑠𝑖𝑛𝑔

= 0.185 , then we can

obtain the following formula:

𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑𝑠𝑐𝑟𝑖𝑝𝑡 = (𝐴 ∙ 𝑇𝑠𝑝𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠_𝑓𝑎𝑐𝑡𝑜𝑟
2) ∙ 𝑉𝐷𝐶𝐵𝑢𝑠𝐴𝐷𝐶

2 + (𝐵 ∙ 𝑇𝑠𝑝𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠_𝑓𝑎𝑐𝑡𝑜𝑟) ∙ 𝑉𝐷𝐶𝐵𝑢𝑠𝐴𝐷𝐶
+ (𝐶 ∙ 𝑇𝑠𝑝𝑑_𝑓𝑎𝑐𝑡𝑜𝑟) .

If we define 𝐴𝑠𝑐𝑟𝑖𝑝𝑡 = 𝐴 ∙ 𝑇𝑠𝑝𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠_𝑓𝑎𝑐𝑡𝑜𝑟
2 , 𝐵𝑠𝑐𝑟𝑖𝑝𝑡 = 𝐵 ∙ 𝑇𝑠𝑝𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠_𝑓𝑎𝑐𝑡𝑜𝑟 , and 𝐶𝑠𝑐𝑟𝑖𝑝𝑡 = 𝐶 ∙

𝑇𝑠𝑝𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠_𝑓𝑎𝑐𝑡𝑜𝑟 , then the above formula can be simplified as follows.

𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑𝑠𝑐𝑟𝑖𝑝𝑡 = 𝐴𝑠𝑐𝑟𝑖𝑝𝑡 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠𝐴𝐷𝐶

2 + 𝐵𝑠𝑐𝑟𝑖𝑝𝑡 ∙ 𝑉𝐷𝐶𝐵𝑢𝑠𝐴𝐷𝐶
+ 𝐶𝑠𝑐𝑟𝑖𝑝𝑡 .

Using this formula, the relevant coefficients with the inclusion of the scaling factors can be calculated for
different speed selection levels as shown in Table 8.

VDCBusLPF < VDCBusBrownOut

DC_Bus_State_Abnormal

entry /
do / DCBusState = 0;
exit /

DC_Bus_State_Normal

entry /
do / DCBusState = 1;
exit /

VDCBusLPF > VDCBusBrownIn

Application Note 25 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Table 8 Coefficients in Floating Point Format for the Quadratic Function for Target Speed & DC Bus
Voltage Relationships with Scaling Factors

 LOW SPEED HIGH SPEED

𝑨𝒍_𝒔𝒄𝒓𝒊𝒑𝒕 -0.016 𝑨𝒉_𝒔𝒄𝒓𝒊𝒑𝒕 -0.004

𝑩𝒍_𝒔𝒄𝒓𝒊𝒑𝒕 34.593 𝑩𝒉_𝒔𝒄𝒓𝒊𝒑𝒕 20.074

𝑪𝒍_𝒔𝒄𝒓𝒊𝒑𝒕 -5040.783 𝑪𝒉_𝒔𝒄𝒓𝒊𝒑𝒕 1224.179

The script engine only supports 32-bit signed integer type of variables [2], so these floating-point numbers have
to be represented in fractional format in the script code. For instance, if we choose a common denominator

DEN, then the target speed shaping calculation in the script can be realized by using the following pseudo code
in Code Listing 9.

Code Listing 9 Target Speed Shaping Calculation Pseudo Code

001 Speed_Value = A_NUM * VDCBus * VDCBus + B_NUM * VDCBus +

C_NUM;

002 TargetSpeed = Speed_Value / DEN;

Considering the accuracy requirement and overflow limit, we chose a common denominator of 65536 (Q15.16
format), with which the division operation can be replaced by efficient right shifting 16 bits. With that, the
numerator value for each coefficient can be calculated accordingly as shown in Table 9.

Table 9 Coefficients in Q15.16 Format for the Quadratic Function for Target Speed & DC Bus

Voltage Relationships with Scaling Factors

𝑫𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓 65536

LOW SPEED HIGH SPEED

𝑨𝒍_𝑵𝑼𝑴 -1049 𝑨𝒉_𝑵𝑼𝑴 -291

𝑩𝒍_𝑵𝑼𝑴 2267065 𝑩𝒉_𝑵𝑼𝑴 1315558

𝑪𝒍_𝑵𝑼𝑴 -330352746 𝑪𝒉_𝑵𝑼𝑴 80227776

2.3.4 Target Speed Shaping & Brown-out Protection Script Implementation

Code Listing 10, Code Listing 11, Code Listing 12, and Code Listing 13 show the source code for the target speed
shaping with brown-out protection application implemented in Task 1 for the MCEWizard/MCEDesigner and
iSD, respectively. Since the target speed doesn’t need to be updated too frequently, it is recommended to set

the loop execution period of Task 1 to be 50 ms. The compiled script object file shows that the number of
instructions for Task 1 is 42. So, the execution step for Task 1 should be set to greater than 42 to ensure that the

entire loop of Task 1 is completed during each execution period. In this example, the execution period for Task
1 (SCRIPT_TASK1_EXECUTION_PERIOD) was set to 5, and the execution step for Task 1

(SCRIPT_TASK1_EXECUTION_STEP) was chosen to be 50 to meet the desired timing requirement.

This example can also be implemented in Task 0, in which case the execution period for Task 0

(SCRIPT_TASK0_EXECUTION_PERIOD) should be set to 50 to achieve the same execution period of 50 ms.

Note: When using a negative value for the CONST parameter in the MCEWizard/MCEDesigner, it must be
defined in hexadecimal format. If it is defined in decimal format, then, the minus sign will be
ignored and the parameter will be recognized as a positive integer. In the iSD, both decimal and
hexadecimal format can be used for the negative value CONST parameter.

Application Note 26 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

2.3.4.1 Script Code for MCEWizard/MCEDesigner

Code Listing 10 Target Speed Shaping & Brown-out Protection Script Code for

MCEWizard/MCEDesigner

001 /* ** */

002 /* Script user version value, should be 255.255 */

003 #SET SCRIPT_USER_VERSION (1.00)

004 /* Script execution time for Task0 in mS, maximum value 65535

*/

005 #SET SCRIPT_TASK0_EXECUTION_PERIOD (1)

006 /* Defines number of lines to be executed every 1mS in Task0

*/

007 #SET SCRIPT_TASK0_EXECUTION_STEP (2)

008 /* Script execution time for Task1 in 10mS, maximum value

65535 */

009 #SET SCRIPT_TASK1_EXECUTION_PERIOD (5)

010 /* Defines number of lines to be executed every 10mS in Task1

*/

011 #SET SCRIPT_TASK1_EXECUTION_STEP (50)

012 /* ** */

013 /* constant definition */

014 CONST int VDCBusBrownIn = 487; /* Vdcbus_brown_in = 90V => 487

counts */

015 CONST int VDCBusBrownOut = 460; /* Vdcbus_brown_out = 85V =>

460 counts */

016

017 CONST int VLSStart = 819; /* Vsp_low_spd_start = 1V => 819

counts */

018 CONST int VLSStop = 655; /* Vsp_low_spd_stop = 0.8V => 655

counts */

019 CONST int VHSStart = 1638; /* Vsp_high_spd_start = 2V => 1638

counts */

020 CONST int VHSStop = 1474; /* Vsp_high_spd_stop = 1.8V => 1474

counts */

021

022 CONST int AlNum = 0xFFFFFBE7; /* -0.016 * 2^16 = -1049 */

023 CONST int BlNum = 0x002297B9; /* 34.593 * 2^16 = 2267065 */

024 CONST int ClNum = 0xEC4F3796; /* -5040.783 * 2^16 = -330352746

*/

025 CONST int AhNum = 0xFFFFFEDD; /* -0.004 * 2^16 = -291 */

026 CONST int BhNum = 0x001412E6; /* 20.074 * 2^16 = 1315558 */

027 CONST int ChNum = 0x04C82DC0; /* 1224.179 * 2^16 = 80227776 */

028 CONST int DenShiftBit = 16; /* Denominator = 2^16 = 65536 */

029

030 CONST int TspdLSMin = 9523; /* In LOW_SPEED mode, Target Speed

min = 11625 rpm => 9523 counts. */

031 CONST int TspdLSMax = 13270; /* In LOW_SPEED mode, Target

Speed max = 16200 rpm => 13270 counts. */

032 CONST int TspdHSMin = 11089; /* In HIGH_SPEED mode, Target

Speed min = 13537 rpm => 11089 counts. */

033 CONST int TspdHSMax = 15892; /* In HIGH_SPEED mode, Target

Speed max = 19400 rpm => 15892 counts. */

034

035 /* Global variable definition */

Application Note 27 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 10 Target Speed Shaping & Brown-out Protection Script Code for
MCEWizard/MCEDesigner

036 int VDCBusLPF;

037 int DCBusState;

038 int SpeedMode;

039 int SpeedValue;

040

041 /* Task0 init function */

042 Script_Task0_init()

043 {

044 /* Initialize global variable */

045 VDCBusLPF = 0;

046 /* local variable definition */

047 int VDCBusMultiplyDEN;

048 /* Initialize local variable */

049 VDCBusMultiplyDEN = 0;

050 }

051

052 /* Task0 script function */

053 Script_Task0()

054 {

055 /* Vdcbus filtering */

056 VDCBusMultiplyDEN = VDCBusMultiplyDEN + (VdcFilt -

VDCBusLPF);

057 VDCBusLPF = VDCBusMultiplyDEN >> 6;

058 }

059

060 /* Task1 init function */

061 Script_Task1_init()

062 {

063 /* Initialize global variable */

064 DCBusState = 0;

065 SpeedMode = 0;

066 SpeedValue = 0;

067

068 /* local variable definition */

069

070 /* Initialize local variable */

071 }

072

073 /* Task1 script function */

074 Script_Task1()

075 {

076 /* DC bus state machine */

077 if (DCBusState == 0) /* DCBus is abnormal. */

078 {

079 if (VDCBusLPF > VDCBusBrownIn)

080 {

081 DCBusState = 1; /* Shift to DCBus normal state. */

082 }

083 }

084

085 if (DCBusState == 1) /* DCBus is normal. */

086 {

Application Note 28 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 10 Target Speed Shaping & Brown-out Protection Script Code for
MCEWizard/MCEDesigner

087 if (VDCBusLPF < VDCBusBrownOut)

088 {

089 DCBusState = 0; /* Shift to DCBus abnormal state. */

090 }

091 }

092

093 /* Speed selection state machine */

094 if (SpeedMode == 0) /* Speed selection is in OFF state.

095 {

096 TargetSpeed = 0;

097 Command = 0; /* Stop the motor. */

098

099 if (ADC_Result0 > VLSStart)

100 {

101 SpeedMode = 1; /* Shift to LOW_SPEED state. */

102 }

103 }

104

105 if (SpeedMode == 1) /* Speed selection is in LOW_SPEED state.

*/

106 {

107 if (ADC_Result0 > VHSStart)

108 {

109 SpeedMode = 2; /* Shift to HIGH_SPEED state. */

110 }

111 else

112 {

113 if (ADC_Result0 < VLSStop)

114 {

115 SpeedMode = 0; /* Shift to OFF state. */

116 }

117 else /* Stay in LOW_SPEED state. */

118 {

119 if (DCBusState == 1) /* DC bus voltage is normal.

*/

120 {

121 /* Calculate target speed. Target speed

follows 2nd order polynomial curve for LS. */

122 SpeedValue = AlNum * VDCBusLPF * VDCBusLPF +

BlNum * VDCBusLPF + ClNum;

123 SpeedValue = SpeedValue >> DenShiftBit;

124 if (SpeedValue > TspdLSMax) /* Upper limit

check */

125 {

126 SpeedValue = TspdLSMax;

127 }

128 if (SpeedValue < TspdLSMin) /* Lower limit

check */

129 {

130 SpeedValue = TspdLSMin;

131 }

Application Note 29 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 10 Target Speed Shaping & Brown-out Protection Script Code for
MCEWizard/MCEDesigner

132 TargetSpeed = SpeedValue; /* Update

TargetSpeed. */

133 Command = 1; /* Start motor. */

134 }

135 else /* DC bus voltage is abnormal. */

136 {

137 TargetSpeed = 0; /* Reset TargetSpeed. */

138 Command = 0; /* Stop motor. */

139 }

140 }

141 }

142 }

143

144 if(SpeedMode == 2) /* Speed selection is in HIGH_SPEED state.

*/

145 {

146 if(ADC_Result0 < VHSStop)

147 {

148 SpeedMode = 1; /* Shift to LOW_SPEED state. */

149 }

150 else /* Stay in HIGH_SPEED state. */

151 {

152 if (DCBusState == 1) /* DC bus voltage is normal. */

153 {

154 /* Target speed follows 2nd order polynomial curve

for HS. */

155 SpeedValue = AhNum * VDCBusLPF * VDCBusLPF + BhNum

* VDCBusLPF + ChNum;

156 SpeedValue = SpeedValue >> DenShiftBit;

157 if (SpeedValue > TspdHSMax) /* Upper limit check

*/

158 {

159 SpeedValue = TspdHSMax;

160 }

161 if (SpeedValue < TspdHSMin) /* Lower limit check

*/

162 {

163 SpeedValue = TspdHSMin;

164 }

165 TargetSpeed = SpeedValue; /* Update TargetSpeed.

*/

166 Command = 1; /* Start motor. */

167 }

168 else /* DC bus voltage is abnormal. */

169 {

170 TargetSpeed = 0; /* Reset TargetSpeed. */

171 Command = 0; /* Stop motor. */

172 }

173 }

174 }

175 }

Application Note 30 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

2.3.4.2 Script Code for iSD

Code Listing 11 Target Speed Shaping & Brown-out Protection Script Code for iSD(Global.mcs)

001 /* ** */

002 /* Global variables */

003 /* ** */

004 /* constant definition */

005 CONST int VDCBusBrownIn = 487; /* Vdcbus_brown_in = 90V => 487

counts */

006 CONST int VDCBusBrownOut = 460; /* Vdcbus_brown_out = 85V =>

460 counts */

007

008 CONST int VLSStart = 819; /* Vsp_low_spd_start = 1V => 819

counts */

009 CONST int VLSStop = 655; /* Vsp_low_spd_stop = 0.8V => 655

counts */

010 CONST int VHSStart = 1638; /* Vsp_high_spd_start = 2V => 1638

counts */

011 CONST int VHSStop = 1474; /* Vsp_high_spd_stop = 1.8V => 1474

counts */

012

013 CONST int AlNum = 0xFFFFFBE7; /* -0.016 * 2^16 = -1049 */

014 CONST int BlNum = 0x002297B9; /* 34.593 * 2^16 = 2267065 */

015 CONST int ClNum = 0xEC4F3796; /* -5040.783 * 2^16 = -330352746

*/

016 CONST int AhNum = 0xFFFFFEDD; /* -0.004 * 2^16 = -291 */

017 CONST int BhNum = 0x001412E6; /* 20.074 * 2^16 = 1315558 */

018 CONST int ChNum = 0x04C82DC0; /* 1224.179 * 2^16 = 80227776 */

019 CONST int DenShiftBit = 16; /* Denominator = 2^16 = 65536 */

020

021 CONST int TspdLSMin = 9523; /* In LOW_SPEED mode, Target Speed

min = 11625 rpm => 9523 counts. */

022 CONST int TspdLSMax = 13270; /* In LOW_SPEED mode, Target

Speed max = 16200 rpm => 13270 counts. */

023 CONST int TspdHSMin = 11089; /* In HIGH_SPEED mode, Target

Speed min = 13537 rpm => 11089 counts. */

024 CONST int TspdHSMax = 15892; /* In HIGH_SPEED mode, Target

Speed max = 19400 rpm => 15892 counts. */

025

026 /* Global variable definition */

027 int VDCBusLPF;

028 int DCBusState;

029 int SpeedMode;

030 int SpeedValue;

Code Listing 12 Target Speed Shaping & Brown-out Protection Script Code for iSD(Script_Task0.mcs)

001 /* ** */

002 /* Task0 init function */

003 Script_Task0_init()

004 {

005 /* Initialize global variable */

Application Note 31 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 12 Target Speed Shaping & Brown-out Protection Script Code for iSD(Script_Task0.mcs)

006 VDCBusLPF = 0;

007 /* local variable definition */

008 int VDCBusMultiplyDEN;

009 /* Initialize local variable */

010 VDCBusMultiplyDEN = 0;

011 }

012

013 /* ** */

014 /* Task0 script function */

015 Script_Task0()

016 {

017 /* Vdcbus filtering */

018 VDCBusMultiplyDEN = VDCBusMultiplyDEN + (FB_MEASURE.VdcFilt

- VDCBusLPF);

019 VDCBusLPF = VDCBusMultiplyDEN >> 6;

020 }

Code Listing 13 Target Speed Shaping & Brown-out Protection Script Code for iSD(Script_Task1.mcs)

001 /* ** */

002 /* Task1 init function */

003 Script_Task1_init()

004 {

005 /* Initialize global variable */

006 DCBusState = 0;

007 SpeedMode = 0;

008 SpeedValue = 0;

009

010 /* local variable definition */

011

012 /* Initialize local variable */

013 }

014

015 /* ** */

016 /* Task1 script function */

017 Script_Task1()

018 {

019 /* DC bus state machine */

020 if (DCBusState == 0) /* DCBus is abnormal. */

021 {

022 if (VDCBusLPF > VDCBusBrownIn)

023 {

024 DCBusState = 1; /* Shift to DCBus normal state. */

025 }

026 }

027 if (DCBusState == 1) /* DCBus is normal. */

028 {

029 if (VDCBusLPF < VDCBusBrownOut)

030 {

031 DCBusState = 0; /* Shift to DCBus abnormal state. */

032 }

Application Note 32 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 13 Target Speed Shaping & Brown-out Protection Script Code for iSD(Script_Task1.mcs)

033 }

034

035 /* Speed selection state machine */

036 if (SpeedMode == 0) /* Speed selection is in OFF state. */

037 {

038 APP_MOTOR0.TargetSpeed = 0;

039 APP_MOTOR0.Command = 0; /* Stop the motor. */

040

041 if (FB_ADC.adc_result[0] > VLSStart)

042 {

043 SpeedMode = 1; /* Shift to LOW_SPEED state. */

044 }

045 }

046 if (SpeedMode == 1) /* Speed selection is in LOW_SPEED

state. */

047 {

048 if (FB_ADC.adc_result[0] > VHSStart)

049 {

050 SpeedMode = 2; /* Shift to HIGH_SPEED state. */

051 }

052 else

053 {

054 if (FB_ADC.adc_result[0] < VLSStop)

055 {

056 SpeedMode = 0; /* Shift to OFF state. */

057 }

058 else /* Stay in LOW_SPEED state. */

059 {

060 if (DCBusState == 1) /* DC bus voltage is

normal. */

061 {

062 /* Calculate target speed. Target speed

follows 2nd order polynomial curve for LS. */

063 SpeedValue = (AlNum * VDCBusLPF * VDCBusLPF)

+ (BlNum * VDCBusLPF) + ClNum;

064 SpeedValue = SpeedValue >> DenShiftBit;

065 if (SpeedValue > TspdLSMax) /* Upper limit

check */

066 {

067 SpeedValue = TspdLSMax;

068 }

069 if (SpeedValue < TspdLSMin) /* Lower limit

check */

070 {

071 SpeedValue = TspdLSMin;

072 }

073 APP_MOTOR0.TargetSpeed = SpeedValue; /*

Update APP_MOTOR0.TargetSpeed. */

074 APP_MOTOR0.Command = 1; /* Start motor. */

075 }

076 else /* DC bus voltage is abnormal. */

077 {

Application Note 33 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 13 Target Speed Shaping & Brown-out Protection Script Code for iSD(Script_Task1.mcs)

078 APP_MOTOR0.TargetSpeed = 0; /* Reset

APP_MOTOR0.TargetSpeed. */

079 APP_MOTOR0.Command = 0; /* Stop motor. */

080 }

081 }

082 }

083 }

084 if(SpeedMode == 2)

085 { /* Speed selection is in HIGH_SPEED state. */

086 if(FB_ADC.adc_result[0] < VHSStop)

087 {

088 SpeedMode = 1; /* Shift to LOW_SPEED state. */

089 }

090 else

091 { /* Stay in HIGH_SPEED state. */

092 if (DCBusState == 1)/* DC bus voltage is normal. */

093 {

094 /* Target speed follows 2nd order polynomial

curve for HS. */

095 SpeedValue = (AhNum * VDCBusLPF * VDCBusLPF) +

(BhNum * VDCBusLPF) + ChNum;

096 SpeedValue = SpeedValue >> DenShiftBit;

097 if (SpeedValue > TspdHSMax) /* Upper limit check

*/

098 {

099 SpeedValue = TspdHSMax;

100 }

101 if (SpeedValue < TspdHSMin) /* Lower limit check

*/

102 {

103 SpeedValue = TspdHSMin;

104 }

105 APP_MOTOR0.TargetSpeed = SpeedValue; /* Update

APP_MOTOR0.TargetSpeed. */

106 APP_MOTOR0.Command = 1; /* Start motor. */

107 }

108 else /* DC bus voltage is abnormal. */

109 {

110 APP_MOTOR0.TargetSpeed = 0; /* Reset

APP_MOTOR0.TargetSpeed. */

111 APP_MOTOR0.Command = 0; /* Stop motor. */

112 }

113 }

114 }

115 }

Application Note 34 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Figure 22 The execution period and the step for Target Speed Shaping Brown-out Protection Script

Code

 To migrate the code from MCEWizard/MCEDesigner(Code Listing 10) to iSD (Code Listing 11), the variable
names should be modified as shown in the Table 10.

Table 10 Parameter name Differences between MCEWizard/MCEDesigner and iSD

MCEWizard/MCEDesigner iSD

VdcFilt FB_MEASURE.VdcFilt

TargetSpeed APP_MOTOR0.TargetSpeed

Command APP_MOTOR0.Command

ADC_Result0 FB_ADC.adc_result[0]

2.3.5 Target Speed Shaping Measurement Results

The actual motor speed was measured by calculating the frequency of the motor phase current waveforms
while the input voltage was swept from 65 VAC to 130 VAC at different speed selection levels. The measurement

data for the LOW SPEED level was shown in Table 11 and plotted against the desired target speed shaping
curves in Figure 23. As can be seen from the measurement data, the actual motor speed followed the desired
target speed calculated as a quadratic function of the DC bus voltage with a tolerance of no more than 1 %. The

calculated speed was limited by either the pre-defined minimum or maximum motor speed for the LOW SPEED

level.

Table 11 Measurement Data of Target Speed & DC Bus Voltage (LOW SPEED)

Vin (Vrms) VDCbus (Vdc) Measured Motor Speed (rpm)
Calculated Target Speed
(rpm)

Target Speed Error (%)

64 85.8 11680 11625 0.5 %

67 89.6 11740 11625 1.0 %

78 105.6 11680 11590 0.8 %

80 108.4 11900 11890 0.1 %

90 122.0 13216 13204 0.1 %

100 135.9 14380 14329 0.4 %

110 149.9 15300 15238 0.4 %

120 164.0 15980 15926 0.3 %

125 171.1 16260 16188 0.4 %

126 172.6 16264 16200 0.4 %

Application Note 35 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Vin (Vrms) VDCbus (Vdc) Measured Motor Speed (rpm)
Calculated Target Speed
(rpm)

Target Speed Error (%)

64 85.8 11680 11625 0.5 %

67 89.6 11740 11625 1.0 %

130 178.3 16264 16200 0.4 %

Figure 23 Measurement of Target Speed vs. DC Bus Voltage (LOW SPEED)

Table 12 and Figure 24 show the measurement data for HIGH SPEED level. It can be seen consistently that the
actual motor speed followed the desired target speed calculated as a quadratic function of DC bus voltage with

tolerance of no more than 1 %. The calculated speed was limited by either the pre-defined minimum or
maximum motor speed for HIGH SPEED level.

Table 12 Measurement Data of Target Speed & DC Bus Voltage (HIGH SPEED)

Vin (Vrms) VDCbus (Vdc) Measured Motor Speed (rpm)
Calculated Target Speed
(rpm)

Target Speed Error (%)

65 86.3 13100 13537 -3.2 %

66 87.9 13260 13537 -2.0 %

77 103.7 13600 13537 0.5 %

78 105.0 13628 13667 -0.3 %

90 121.4 15280 15254 0.2 %

100 135.2 16560 16519 0.2 %

110 149.0 17762 17728 0.2 %

120 162.8 18944 18875 0.4 %

124 168.5 19454 19331 0.6 %

125 170.0 19458 19400 0.3 %

130 177.2 19466 19400 0.3 %

-2000
0

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 20 40 60 80 100 120 140 160 180 200

Ta
rg

et
 S

p
ee

d
 (

R
P

M
)

DC Bus Voltage (V)

Target Speed (LOW SPEED) vs. VDCbus

Desired Target Speed (Vdcbus rising) Desired Target Speed (Vdcbus falling)

Measured Motor Speed

Application Note 36 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Figure 24 Measurements of Target Speed vs. DC Bus Voltage (HIGH SPEED)

2.4 Dynamic Motor Current Limit Customization

2.4.1 Motor Current Limit Requirement

By default, the motor current limit is set to 100 % of its rated current. Some applications require implementing
a customized motor current limit based on the speed selection input to enable tighter torque control. During

the motor speed ramp-up or ramp-down period, the motor current limit needs to be loosened up to its original

setting (100 % of the rated current) momentarily to allow for quicker response to speed change request. When
the motor is stopped, the motor current limit also needs to be restored to its original setting. The detailed

motor current limit requirements are listed in Table 13.

Table 13 Motor Current Limit Requirements

 Rated

Current

Speed Ramp-up

/ Ramp-down

Period

Speed Selection

= OFF

Speed Selection

= HIGH SPEED

Speed Selection

= LOW SPEED

Motor Current Limit 3 A 3 A 3 A 0.6 A 0.38 A

2.4.2 Dynamic Motor Current Limit Algorithm Design & Implementation

Figure 25 shows the detailed flowchart for dynamic motor current limit calculation algorithm. During the

initialization, the original motor current limit value (MotorLim) is stored in a variable named
CurrentLimitOriginal. The customized motor current limit during the steady state at a given speed
selection level is updated by the speed selection state machine and is maintained by the variable named
CurrentLimitTarget. The instantaneous motor current limit (CurrentLimitValue) is calculated based on
the absolute difference between the TargetSpeed and SpdRef. The rate of change for CurrentLimitValue

is set by the variable named CurrentLimitIncrement, which was set to 100 (counts / 10 ms) in the script
code. Since the rate of change for SpdRef is relatively slower than that for TargetSpeed, if the absolute
difference between TargetSpeed and SpdRef is greater than the value of SpeedDiffThresh (100 counts)
then it is determined that the speed transient period is started. During this period the motor current limit is

required to increment gradually all the way up to its original value. If the absolute difference between

-2000
0

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 20 40 60 80 100 120 140 160 180 200

Ta
rg

et
 S

p
ee

d
 (

R
P

M
)

DC Bus Voltage (V)

Target Speed (HIGH SPEED) vs. VDCbus

Desired Target Speed (Vdcbus rising) Desired Target Speed (Vdcbus falling)

Measured Motor Speed

Application Note 37 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

TargetSpeed and SpdRef is less than 100 counts, then it implies that the speed steady state is started. During
this state the motor current limit is required to decrement gradually down to its customized value represented
by CurrentLimitTarget for a given speed selection level. The CurrentLimitValue calculation is updated

every loop execution period (10 ms), and then MotorLim value is synchronized to that of
CurrentLimitValue.

Start

SpeedDiff = TargetSpeed - SpdRef

SpeedDiff < 0? Yes SpeedDiff = -1 * SpeedDiff

No

SpeedDiff > SpeedDiffThresh? Yes
CurrentLimitValue = CurrentLimitValue +

CurrentLimitIncrement;

CurrentLimitValue >
CurrentLimitOriginal?

Yes

CurrentLimitValue = CurrentLimitOriginal;

No

CurrentLimitValue > (CurrentLimitTarget
+ CurrentLimitIncrement)? Yes

CurrentLimitValue = CurrentLimitValue -
CurrentLimitIncrement;

No

CurrentLimitTarget >
CurrentLimitIncrement?

Yes

CurrentLimitValue < (CurrentLimitTarget
- CurrentLimitIncrement)? Yes

CurrentLimitValue = CurrentLimitValue +
CurrentLimitIncrement;

No

CurrentLimitValue = CurrentLimitTarget;

No

CurrentLimitValue <
CurrentLimitTarget?

YesCurrentLimitValue = CurrentLimitTarget;

No

CurrentLimitValue > (CurrentLimitTarget
- CurrentLimitIncrement)?

No

CurrentLimitValue = CurrentLimitTarget;

Yes
CurrentLimitValue = CurrentLimitValue +

CurrentLimitIncrement;

No

MotorLim = CurrentLimitValue;

End

Figure 25 Flowchart of Dynamic Motor Current Limit Algorithm

Code Listing 14 and Code Listing 15 show the source code for the dynamic motor current limit customization
application implemented in Task 1 for the MCEWizard/MCEDesigner and iSD, respectively. Since the rate of

change for the motor current limit is defined as 100 counts / 10 ms, it is recommended to set the loop execution

period of Task 1 to be 10 ms. The compiled script object file shows that the number of instructions for Task 1 is

56. With this in mind, the execution step for Task 1 should be set to greater than 56 to ensure that the entire

loop of Task 1 is completed during each execution period. In this example, the execution period for Task 1
(SCRIPT_TASK1_EXECUTION_PERIOD) was set to 1, and the execution step for Task 1
(SCRIPT_TASK1_EXECUTION_STEP) was chosen to be 60 to meet the desired timing requirement.

This example can also be implemented in Task 0, in which case the execution period for Task 0
(SCRIPT_TASK0_EXECUTION_PERIOD) should be set to 10 to achieve the same execution period of 10 ms.

Application Note 38 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

2.4.2.1 Script Code for MCEWizard/MCEDesigner

Code Listing 14 Dynamic Motor Current Limit Script Code

001 /**/

002 /*Script user version value, should be 255.255*/

003 #SET SCRIPT_USER_VERSION (1.00)

004 /*Script execution time for Task0 in mS, maximum value 65535*/

005 #SET SCRIPT_TASK0_EXECUTION_PERIOD (1)

006 /*Defines number of lines to be executed every 1mS in Task0*/

007 #SET SCRIPT_TASK0_EXECUTION_STEP (2)

008 /*Script execution time for Task1 in 10mS, maximum value

65535*/

009 #SET SCRIPT_TASK1_EXECUTION_PERIOD (1)

010 /*Defines number of lines to be executed every 10mS in Task1*/

011 #SET SCRIPT_TASK1_EXECUTION_STEP (60)

012 /**/

013 /* constant definition */

014 CONST int VDCBusBrownIn = 487; /* Vdcbus_brown_in = 90V => 487

counts */

015 CONST int VDCBusBrownOut = 460; /* Vdcbus_brown_out = 85V =>

460 counts */

016

017 CONST int SpeedDiffThresh = 100; /* Set the speed difference

threshold to 100 counts. */

018 CONST int CurrentLimitIncrement = 100; /* Motor current limit

ramp rate = 100 counts / update interval (10 ms). */

019 CONST int CurrentLimitLS = 519; /* low speed motor current

limit = 0.38A => 519 counts */

020 CONST int CurrentLimitHS = 819; /* high speed motor current

limit = 0.6A => 819 counts */

021

022 CONST int VLSStart = 819; /* Vsp_low_spd_start = 1V => 819

counts */

023 CONST int VLSStop = 655; /* Vsp_low_spd_stop = 0.8V => 655

counts */

024 CONST int VHSStart = 1638; /* Vsp_high_spd_start = 2V => 1638

counts */

025 CONST int VHSStop = 1474; /* Vsp_high_spd_stop = 1.8V => 1474

counts */

026

027 CONST int LowSpeedValue = 5000;

028 CONST int HighSpeedValue = 10000;

029

030 /* Global variable definition */

031 int VDCBusLPF;

032 int DCBusState;

033 int SpeedDiff;

034 int CurrentLimitOriginal;

035 int CurrentLimitValue;

036 int CurrentLimitTarget;

037 int SpeedMode;

038

039 /**/

040 /*Task0 init function*/

Application Note 39 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 14 Dynamic Motor Current Limit Script Code

041 Script_Task0_init()

042 {

043 /*Initialize global variable*/

044 VDCBusLPF = 0;

045 /* local variable definition */

046 int VDCBusMultiplyDEN;

047 /*Initialize local variable*/

048 VDCBusMultiplyDEN = 0;

049 }

050

051 /*Task0 script function*/

052 Script_Task0()

053 {

054 /* Vdcbus filtering*/

055 VDCBusMultiplyDEN = VDCBusMultiplyDEN + (VdcFilt -

VDCBusLPF);

056 VDCBusLPF = VDCBusMultiplyDEN >> 6;

057 }

058

059 /*Task1 init function*/

060 Script_Task1_init()

061 {

062 /*Initialize global variable*/

063 DCBusState = 0;

064 SpeedDiff = 0;

065 CurrentLimitOriginal = MotorLim; /* Save the original motor

current limit set in MCEWizard.*/

066 CurrentLimitValue = CurrentLimitOriginal; /* The initial

value needs to be synced with the original motor current limit set in

MCEWizard.*/

067 CurrentLimitTarget = CurrentLimitOriginal; /* The initial

value needs to be synced with the original motor current limit set in

MCEWizard.*/

068 SpeedMode = 0;

069

070 /*local variable definition*/

071

072 /*Initialize local variable*/

073 }

074

075 /*Task1 script function*/

076 Script_Task1()

077 {

078 /* DC bus state machine*/

079 if (DCBusState == 0) /* DCBus is abnormal.*/

080 {

081 if (VDCBusLPF > VDCBusBrownIn)

082 {

083 DCBusState = 1; /* Shift to DCBus normal state.*/

084 }

085 }

086

087 if (DCBusState == 1) /* DCBus is normal.*/

Application Note 40 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 14 Dynamic Motor Current Limit Script Code

088 {

089 if (VDCBusLPF < VDCBusBrownOut)

090 {

091 DCBusState = 0; /* Shift to DCBus abnormal state. */

092 }

093 }

094 /* Calculate the difference between the target speed and the

speed reference in preparation for motor current limit calculation. */

095 SpeedDiff = TargetSpeed - SpdRef; /* Find out the difference

between the speed reference and the target speed. */

096 if(SpeedDiff < 0) /* The target speed is lower than the

speed reference. */

097 {

098 SpeedDiff = -1 * SpeedDiff; /* Takes the absolute value

of SpeedDiff. */

099 }

100 /* Calculate motor current limit based on speed reference

and target speed. */

101 if(SpeedDiff > SpeedDiffThresh) /* The speed reference is

more than SpeedDiffThresh counts different from the target speed. We

need to increase the motor current limit to its original value

temperarily. */

102 {

103 CurrentLimitValue = CurrentLimitValue +

CurrentLimitIncrement; /* Increase the motor current limit by

CurrentLimitIncrement until it reaches CurrentLimOriginal. */

104 if (CurrentLimitValue > CurrentLimitOriginal) /* Upper

boundary check for CurrentLimitValue. */

105 {

106 CurrentLimitValue = CurrentLimitOriginal;

107 }

108 }

109 else /* The speed reference is no more than 100 counts

different from the target speed. We need to decrease the motor current

limit to CurrentLimitTarget. */

110 {

111 if(CurrentLimitValue > (CurrentLimitTarget +

CurrentLimitIncrement)) /* The motor current limit value at this

moment is greater than the specified motor current limit by more than

CurrentLimitIncrement. */

112 {

113 CurrentLimitValue = CurrentLimitValue -

CurrentLimitIncrement; /* Decrease the motor current limit target by

CurrentLimitIncrement. */

114 }

115 else /* The motor current limit target is no more than

the specified motor current limit by more than CurrentLimitIncrement.

*/

116 {

117 if (CurrentLimitTarget > CurrentLimitIncrement) /*

CurrentLimitTarget is greater than CurrentLimitIncrement. Boundary

check needed for the following minus operation. */

118 {

Application Note 41 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 14 Dynamic Motor Current Limit Script Code

119 if (CurrentLimitValue < (CurrentLimitTarget -

CurrentLimitIncrement)) /* The motor current limit value at this

moment is less than the specified motor current limit by more than

CurrentLimitIncrement. */

120 {

121 CurrentLimitValue = CurrentLimitValue +

CurrentLimitIncrement; /* Increase the motor current limit target by

CurrentLimitIncrement. */

122 }

123 else /* The motor current limit target falls

between CurrentLimitTarget - CurrentLimitIncrement and

CurrentLimitTarget + CurrentLimitIncrement. */

124 {

125 CurrentLimitValue = CurrentLimitTarget; /*

Set the motor current limit target to the specified motor current

limit. */

126 }

127 }

128 else /* CurrentLimitTarget is no more than

CurrentLimitIncrement. */

129 {

130 if (CurrentLimitValue < CurrentLimitTarget)

131 {

132 CurrentLimitValue = CurrentLimitTarget; /*

Set the motor current limit target to the specified LOW_SPEED motor

current limit. */

133 }

134 else /* CurrentLimitValue is greater than

CurrentLimitTarget */

135 {

136 if(CurrentLimitValue > (CurrentLimitTarget -

CurrentLimitIncrement)) /* The motor current limit value at this

moment is less than the specified LOW_SPEED motor current limit by

more than CurrentLimitIncrement. */

137 {

138 CurrentLimitValue = CurrentLimitValue +

CurrentLimitIncrement; /* Increase the motor current limit target by

CurrentLimitIncrement. */

139 }

140 else /* The motor current limit value is

within the range of CurrentLimitTarget and CurrentTarget -

CurrentLimitIncrement. */

141 {

142 CurrentLimitValue = CurrentLimitTarget;

/* Set the motor current limit target to the specified motor current

limit. */

143 }

144 }

145 }

146 }

147 }

148 MotorLim = CurrentLimitValue; /* Update MotorLim. */

149

Application Note 42 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 14 Dynamic Motor Current Limit Script Code

150 /* Speed selection state machine */

151 if (SpeedMode == 0) /* Speed selection is in OFF state. */

152 {

153 TargetSpeed = 0;

154 CurrentLimitTarget = CurrentLimitOriginal;

155 Command = 0; /* Stop the motor. */

156

157 if (ADC_Result0 > VLSStart)

158 {

159 SpeedMode = 1; /* Shift to LOW_SPEED state. */

160 }

161 }

162

163 if (SpeedMode == 1) /* Speed selection is in LOW_SPEED

state. */

164 {

165 if (ADC_Result0 > VHSStart)

166 {

167 SpeedMode = 2; /* Shift to HIGH_SPEED state. */

168 }

169 else

170 {

171 if (ADC_Result0 < VLSStop)

172 {

173 SpeedMode = 0; /* Shift to OFF state. */

174 }

175 else /* Stay in LOW_SPEED state. */

176 {

177 if (DCBusState == 1) /* DC bus voltage is

normal. */

178 {

179 TargetSpeed = LowSpeedValue; /* Update

TargetSpeed. */

180 CurrentLimitTarget = CurrentLimitLS;

181 Command = 1; /* Start motor. */

182 }

183 else /* DC bus voltage is abnormal. */

184 {

185 TargetSpeed = 0; /* Reset TargetSpeed. */

186 CurrentLimitTarget = CurrentLimitOriginal;

/* When the target speed is zero, motor current limit is restored back

to the original limit. */

187 Command = 0; /* Stop motor. */

188 }

189 }

190 }

191 }

192

193 if(SpeedMode == 2) /* Speed selection is in HIGH_SPEED

state. */

194 {

195 if(ADC_Result0 < VHSStop)

196 {

Application Note 43 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 14 Dynamic Motor Current Limit Script Code

197 SpeedMode = 1; /* Shift to LOW_SPEED state. */

198 }

199 else /* Stay in HIGH_SPEED state. */

200 {

201 if (DCBusState == 1) /* DC bus voltage is normal. */

202 {

203 /* Target speed follows 2nd order polynomial

curve for HS. */

204 TargetSpeed = HighSpeedValue; /* Update

TargetSpeed. */

205 CurrentLimitTarget = CurrentLimitHS;

206 Command = 1; /* Start motor. */

207 }

208 else /* DC bus voltage is abnormal. */

209 {

210 TargetSpeed = 0; /* Reset TargetSpeed. */

211 CurrentLimitTarget = CurrentLimitOriginal; /*

When the target speed is zero, motor current limit is restored back to

the original limit. */

212 Command = 0; /* Stop motor. */

213 }

214 }

215 }

216 }

2.4.2.2 Script Code for iSD

Code Listing 15 Dynamic Motor Current Limit Script Code (Global.mcs)

001 /**/

002 /*Global variables*/

003 /**/

004 /* constant definition */

005 CONST int VDCBusBrownIn = 737; /* Vdcbus_brown_in = 90V => 737

counts */

006 CONST int VDCBusBrownOut = 696; /* Vdcbus_brown_out = 85V =>

696 counts */

007

008 CONST int SpeedDiffThresh = 100; /* Set the speed difference

threshold to 100 counts. */

009 CONST int CurrentLimitIncrement = 100; /* Motor current limit

ramp rate = 100 counts / update interval (10 ms). */

010 CONST int CurrentLimitLS = 519; /* low speed motor current

limit = 0.05A => 519 counts (12.5% of the maximum value) */

011 CONST int CurrentLimitHS = 819; /* high speed motor current

limit = 0.08A => 819 counts (20% of the maximum value) */

012

013 CONST int VLSStart = 1240; /* 1V => 1240 counts */

014 CONST int VLSStop = 992; /* 0.8V => 992 counts */

015 CONST int VHSStart = 2480; /* 2V => 2480 counts */

016 CONST int VHSStop = 2232; /* 1.8V => 2232 counts */

017

Application Note 44 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 15 Dynamic Motor Current Limit Script Code (Global.mcs)

018 CONST int LowSpeedValue = 5000; /* TargetSpeed = 5000 / 16383

* MaxSpeed(1000) = 305 rpm (31% of the maximum speed) */

019 CONST int HighSpeedValue = 10000; /* TargetSpeed = 10000 /

16383 * MaxSpeed(1000) = 610 rpm (61% of the maximum speed) */

020

021 /* Global variable definition */

022 int VDCBusLPF;

023 int DCBusState;

024 int SpeedDiff;

025 int CurrentLimitOriginal;

026 int CurrentLimitValue;

027 int CurrentLimitTarget;

028 int SpeedMode;

Code Listing 16 Dynamic Motor Current Limit Script Code (Script_Task0.mcs)

001 /**/

002 /*Task0 init function */

003 Script_Task0_init()

004 {

005 /*Initialize global variable */

006 VDCBusLPF = 0;

007 /* local variable definition */

008 int VDCBusMultiplyDEN;

009 /*Initialize local variable */

010 VDCBusMultiplyDEN = 0;

011 }

012

013 /*Task0 script function */

014 Script_Task0()

015 {

016 /* Vdcbus filtering */

017 VDCBusMultiplyDEN = VDCBusMultiplyDEN + (VdcFilt -

VDCBusLPF);

018 VDCBusLPF = VDCBusMultiplyDEN >> 6;

019 }

Code Listing 17 Dynamic Motor Current Limit Script Code (Script_Task1.mcs)

001 /**/

002 /* Task1 init function */

003 Script_Task1_init() {

004 /* Initialize global variable */

005 DCBusState = 0;

006 SpeedDiff = 0;

007 CurrentLimitOriginal = FB_LIMIT_SPEED.MotorLim; /* Save the

original motor current limit set in MCEWizard. */

Application Note 45 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 17 Dynamic Motor Current Limit Script Code (Script_Task1.mcs)

008 CurrentLimitValue = CurrentLimitOriginal; /* The initial

value needs to be synced with the original motor current limit set in

MCEWizard. */

009 CurrentLimitTarget = CurrentLimitOriginal; /* The initial

value needs to be synced with the original motor current limit set in

MCEWizard. */

010 SpeedMode = 0;

011

012 /* local variable definition */

013

014 /* Initialize local variable */

015 }

016

017 /**/

018 /*Task1 script function*/

019 Script_Task1() {

020

021 /* DC bus state machine */

022 /* DCBus is abnormal. */

023 if (DCBusState == 0)

024 {

025 if (VDCBusLPF > VDCBusBrownIn)

026 {

027 /* Shift to DCBus normal state. */

028 DCBusState = 1;

029 }

030 }

031 /* DCBus is normal. */

032 if (DCBusState == 1)

033 {

034 if (VDCBusLPF < VDCBusBrownOut)

035 {

036 /* Shift to DCBus abnormal state. */

037 DCBusState = 0;

038 }

039 }

040 /* Calculate the difference between the target speed and the

speed reference in preparation for motor current limit calculation. */

041 /* Find out the difference between the speed reference and

the target speed. */

042 SpeedDiff = APP_MOTOR0.TargetSpeed -

FB_SPEEDREGULATOR.SpeedRef;

043

044 /* The target speed is lower than the speed reference. */

045 if(SpeedDiff < 0)

046 {

047 /* Takes the absolute value of SpeedDiff. */

048 SpeedDiff = -1 * SpeedDiff;

049 }

050 /* Calculate motor current limit based on speed reference

and target speed. */

051 if(SpeedDiff > SpeedDiffThresh)

Application Note 46 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 17 Dynamic Motor Current Limit Script Code (Script_Task1.mcs)

052 /* The speed reference is more than SpeedDiffThresh counts

different from the target speed. We need to increase the motor current

limit to its original value temperarily. */

053 {

054 /* Increase the motor current limit by

CurrentLimitIncrement until it reaches CurrentLimOriginal. */

055 CurrentLimitValue = CurrentLimitValue +

CurrentLimitIncrement;

056 /* Upper boundary check for CurrentLimitValue. */

057 if (CurrentLimitValue > CurrentLimitOriginal)

058 {

059 CurrentLimitValue = CurrentLimitOriginal;

060 }

061 }

062 /* The speed reference is no more than 100 counts different

from the target speed. We need to decrease the motor current limit to

CurrentLimitTarget. */

063 else

064 {

065 /* The motor current limit value at this moment is

greater than the specified motor current limit by more than

CurrentLimitIncrement. */

066 if(CurrentLimitValue > (CurrentLimitTarget +

CurrentLimitIncrement))

067

068 {

069 /* Decrease the motor current limit target by

CurrentLimitIncrement. */

070 CurrentLimitValue = CurrentLimitValue -

CurrentLimitIncrement;

071 }

072 /* The motor current limit target is no more than the

specified motor current limit by more than CurrentLimitIncrement. */

073 else

074 {

075 /* CurrentLimitTarget is greater than

CurrentLimitIncrement. Boundary check needed for the following minus

operation. */

076 if (CurrentLimitTarget > CurrentLimitIncrement)

077 {

078 /* The motor current limit value at this moment

is less than the specified motor current limit by more than

CurrentLimitIncrement. */

079 if (CurrentLimitValue < (CurrentLimitTarget -

CurrentLimitIncrement))

080 {

081 /* Increase the motor current limit target

by CurrentLimitIncrement. */

082 CurrentLimitValue = CurrentLimitValue +

CurrentLimitIncrement;

083 }

Application Note 47 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 17 Dynamic Motor Current Limit Script Code (Script_Task1.mcs)

084 /* The motor current limit target falls between

CurrentLimitTarget - CurrentLimitIncrement and CurrentLimitTarget +

CurrentLimitIncrement. */

085 else

086 {

087 /* Set the motor current limit target to the

specified motor current limit. */

088 CurrentLimitValue = CurrentLimitTarget;

089 }

090 }

091 /* CurrentLimitTarget is no more than

CurrentLimitIncrement. */

092 else

093 {

094 if (CurrentLimitValue < CurrentLimitTarget)

095 {

096 /* Set the motor current limit target to the

specified LOW_SPEED motor current limit. */

097 CurrentLimitValue = CurrentLimitTarget;

098 }

099 /* CurrentLimitValue is greater than

CurrentLimitTarget */

100 else

101 {

102 /* The motor current limit value at this

moment is less than the specified LOW_SPEED motor current limit by

more than CurrentLimitIncrement. */

103 if(CurrentLimitValue > (CurrentLimitTarget -

CurrentLimitIncrement))

104

105 {

106 /* Increase the motor current limit

target by CurrentLimitIncrement. */

107 CurrentLimitValue = CurrentLimitValue +

CurrentLimitIncrement;

108 }

109 /* The motor current limit value is within

the range of CurrentLimitTarget and CurrentTarget -

CurrentLimitIncrement. */

110 else

111 {

112 /* Set the motor current limit target to

the specified motor current limit. */

113 CurrentLimitValue = CurrentLimitTarget;

114

115 }

116 }

117 }

118 }

119 }

120 FB_LIMIT_SPEED.MotorLim = CurrentLimitValue;

121 /* Update MotorLim. */

122

Application Note 48 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 17 Dynamic Motor Current Limit Script Code (Script_Task1.mcs)

123 /* Speed selection state machine */

124 /* Speed selection is in OFF state. */

125 if (SpeedMode == 0)

126 {

127 APP_MOTOR0.TargetSpeed = 0;

128 CurrentLimitTarget = CurrentLimitOriginal;

129 /* Stop the motor. */

130 APP_MOTOR0.Command = 0;

131 if (FB_ADC.adc_result[0] > VLSStart)

132 {

133 /* Shift to LOW_SPEED state. */

134 SpeedMode = 1;

135 }

136 }

137 /* Speed selection is in LOW_SPEED state. */

138 if (SpeedMode == 1)

139 {

140 if (FB_ADC.adc_result[0] > VHSStart)

141 {

142 /* Shift to HIGH_SPEED state. */

143 SpeedMode = 2;

144

145 }

146 else

147 {

148 if (FB_ADC.adc_result[0] < VLSStop)

149 {

150 /* Shift to OFF state. */

151 SpeedMode = 0;

152 }

153 else

154 /* Stay in LOW_SPEED state. */

155 {

156 /* DC bus voltage is normal. */

157 if (DCBusState == 1)

158 {

159 /* Update APP_MOTOR0.TargetSpeed. */

160 APP_MOTOR0.TargetSpeed = LowSpeedValue;

161 CurrentLimitTarget = CurrentLimitLS;

162 /* Start motor. */

163 APP_MOTOR0.Command = 1;

164 }

165 /* DC bus voltage is abnormal. */

166 else

167 {

168 /* Reset APP_MOTOR0.TargetSpeed. */

169 APP_MOTOR0.TargetSpeed = 0;

170 /* When the target speed is zero, motor

current limit is restored back to the original limit. */

171 CurrentLimitTarget = CurrentLimitOriginal;

172 /* Stop motor. */

173 APP_MOTOR0.Command = 0;

174 }

Application Note 49 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Code Listing 17 Dynamic Motor Current Limit Script Code (Script_Task1.mcs)

175 }

176 }

177 }

178 /* Speed selection is in HIGH_SPEED state. */

179 if(SpeedMode == 2)

180 {

181 if(FB_ADC.adc_result[0] < VHSStop)

182 {

183 /* Shift to LOW_SPEED state. */

184 SpeedMode = 1;

185 }

186 /* Stay in HIGH_SPEED state. */

187 else

188 {

189 /* DC bus voltage is normal. */

190 if (DCBusState == 1)

191 {

192 /* Target speed follows 2nd order polynomial

curve for HS. */

193 /* Update APP_MOTOR0.TargetSpeed. */

194 APP_MOTOR0.TargetSpeed = HighSpeedValue;

195 CurrentLimitTarget = CurrentLimitHS;

196 /* Start motor. */

197 APP_MOTOR0.Command = 1;

198

199 }

200 /* DC bus voltage is abnormal. */

201 else

202 {

203 /* Reset APP_MOTOR0.TargetSpeed. */

204 APP_MOTOR0.TargetSpeed = 0;

205 /* When the target speed is zero, motor current

limit is restored back to the original limit. */

206 CurrentLimitTarget = CurrentLimitOriginal;

207 /* Stop motor. */

208 APP_MOTOR0.Command = 0;

209 }

210 }

211 }

212 }

Application Note 50 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Figure 26 The execution period and the step for Dynamic Motor Current Limit Script Code

To migrate the code from MCEWizard/MCEDesigner (Code Listing 14) to iSD (Code Listing 15, Code Listing 16,

and Code Listing 17), the variable names should be modified as shown in the Table 14.

Table 14 Parameter name Differences between MCEWizard/MCEDesigner and iSD

MCEWizard/MCEDesigner iSD

VdcFilt FB_MEASURE.VdcFilt

TargetSpeed APP_MOTOR0.TargetSpeed

Command APP_MOTOR0.Command

ADC_Result0 FB_ADC.adc_result[0]

MotorLim FB_LIMIT_SPEED.MotorLim

2.4.3 Dynamic Motor Current Limit Measurement Results

Figure 27 shows how the motor current limit was dynamically changed when the speed selection changed

between the OFF state and the HIGH SPEED state. When the speed selection changed from the OFF state to the
HIGH SPEED state, the motor started to spin with its current limit MotorLim set to its original value saved in
CurrentLimitOriginal. As the motor speed reference SpdRef approached its HIGH SPEED steady state

target speed, the motor current limit MotorLim started to decrease with a rate of 100 counts / 10 ms. After
about 330 ms, it reached its customized limit for the HIGH SPEED level (CurrentLimitHS = 819). When the

speed selection changed from the HIGH SPEED state to the OFF state, the motor speed reference SpdRef was
instantly reset, while the motor limit MotorLim started to ramp up with a rate of 100 counts / 10 ms, and

stabilized at its original value saved in CurrentLimitOriginal after about 330 ms.

Figure 28 shows how the motor current limit was dynamically changed when the speed selection changed

between the OFF state and the LOW SPEED state. When the speed selection changed from the OFF state to the
LOW SPEED state, the motor started to spin with its current limit MotorLim set to its original value saved in
CurrentLimitOriginal. As the motor speed reference SpdRef approached its LOW SPEED steady state

target speed, the motor current limit MotorLim started to decrease with a rate of 100 counts / 10 ms. After

about 360 ms, it reached its customized limit for the LOW SPEED level (CurrentLimitLS = 519). When the

speed selection changed from the LOW SPEED state to the OFF state, the motor speed reference SpdRef was
instantly reset, while the motor limit MotorLim started to ramp up with a rate of 100 counts / 10 ms, and
stabilized at its original value saved in CurrentLimitOriginal after about 360 ms.

Figure 29 shows how the motor current limit was dynamically changed when the speed selection changed
between the LOW SPEED state and the HIGH SPEED state. When the speed selection changed from the LOW

SPEED state to the HIGH SPEED state, the motor speed reference SpdRef started to ramp up, while the motor
current limit MotorLim started to ramp up with a rate of 100 counts / 10 ms from its customized limit for the
LOW SPEED level (CurrentLimitLS = 519). It finally reached its original value saved in
CurrentLimitOriginal. As soon as SpdRef approached its steady state HIGH SPEED target speed, the motor

current limit MotorLim started to decrease with the same ramp rate, and eventually it was stabilized at its
customized limit for the HIGH SPEED level (CurrentLimitHS = 819). When the speed selection changed from
the HIGH SPEED state to the LOW SPEED state, the motor speed reference SpdRef started to ramp down, while
the motor current limit MotorLim started to ramp up with a rate of 100 counts / 10 ms from its customized limit
for HIGH SPEED level (CurrentLimitHS = 819). It finally reached its original value saved in

CurrentLimitOriginal. As soon as SpdRef approached its steady state LOW SPEED target speed, the motor

Application Note 51 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

current limit MotorLim started to decrease with the same ramp rate, and eventually it was stabilized at its
customized limit for the LOW SPEED level (CurrentLimitLS = 519).

Ch1: SpdRef; Ch2: MotorLim; FPWM: 20 kHz; Sample at PWM frequency divided by 200; Trigger Level: 100;

Speed Selection: OFF to HIGH SPEED (left) / HIGH SPEED to OFF (right); Vin: 100 VAC

Figure 27 Motor Current Limit Screenshots (OFF <-> HIGH SPEED)

Ch1: SpdRef; Ch2: MotorLim; FPWM: 20 kHz; Sample at PWM frequency divided by 200; Trigger Level: 100;

Speed Selection: OFF to LOW SPEED (left) / LOW SPEED to OFF (right); Vin: 100 VAC

Figure 28 Motor Current Limit Screenshots (OFF <-> LOW SPEED)

Application Note 52 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Application Examples

P U B L I C

Ch1: SpdRef; Ch2: MotorLim; FPWM: 20 kHz; Sample at PWM frequency divided by 200; Trigger Level: 12000;

Speed Selection: LOW SPEED to HIGH SPEED (left) / LOW SPEED to HIGH SPEED (right); Vin: 100 VAC

Figure 29 Motor Current Limit Screenshots (LOW SPEED <-> HIGH SPEED)

Application Note 53 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Performance Evaluation

P U B L I C

3 Script Performance Evaluation

3.1 CPU Load Evaluation

The CPU resource is prioritized for the implementation of the motor and PFC control algorithm. The script
engine is designed to take advantage of the spare CPU resource for the execution of the script program. The

priority of the execution of the script program is lower than that of the motor and PFC control algorithm, so
that it won’t affect the performance of the control algorithm. However, CPU usage needs to be carefully

evaluated before enabling the script function.

3.1.1 CPU Load Evaluation Using MCEWizard/MCEDesigner

The estimated CPU usage varies depending on the configuration of the motor or PFC PWM frequency as well as

the safety functions. The MCEWizard can be used to estimate the CPU usage. If the CPU usage estimation is
greater than 90 %, as shown in the left screenshot of Figure 30, then enabling the script function is likely to

overload the CPU. It is highly recommended to keep the CPU usage estimation at no more than 90 % when the
users plan to enable the script function.

Left: CPU Usage = 91 %; Right: CPU Usage = 58 %

Figure 30 CPU Usage Estimation Using MCEWizard

The execution of the script program, depending on the complexity of the code and the configuration of the

execution period and the execution step for each task, would have an impact on the CPU loading. It is

recommended to evaluate the CPU load during run time with the script program enabled to ensure that the
MCE is not overloaded.

The CPU load status can be obtained by reading the system parameter ‘CPU Load’ [2] using MCEDesigner [3].
The CPU load is represented in 0.1 % [2]. Figure 31 shows that CPU load was at 68.2 %, with the script described
in Section 2.3 enabled, while the motor was running with speed selection set to LOW SPEED level. The more

complicated the script code becomes, the greater CPU load it would demand.

Application Note 54 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Performance Evaluation

P U B L I C

Speed Selection: LOW SPEED; Vin: 100VAC

Figure 31 Reading ‘CPU Load’ Parameter Using MCEDesigner When Script Is Running

3.1.2 CPU Load Evaluation Using iSD

The estimated CPU usage varies depending on the configuration of the motor or PFC PWM frequency as well as

the safety functions. The Configuration Wizard in the iSD can be used to estimate the CPU usage. If the CPU
usage estimation is greater than 90 % as shown in the left screenshot of Figure 32, then enabling the script

function is likely to overload the CPU. It is highly recommended to keep the CPU usage estimation at no more
than 90 % when the users plan to enable the script function.

Left: CPU Usage = 90.5 %, fPWM = 23 kHz; Right: CPU Usage = 62.5 %, fPWM = 15 kHz

Figure 32 CPU Usage Estimation Using iSD

The execution of the script program, depending on the complexity of the code and the configuration of the

execution period and the execution step for each task, would have an impact on the CPU loading. It is
recommended to evaluate the CPU load during run time with the script program enabled to ensure that the
MCE is not overloaded.

The CPU load status can be obtained by reading the system parameter ‘CPUloadPeak’ [5] as shown in the left
screenshot of Figure 33 or the CPU load progress bar as shown in the right screenshot of Figure 33 using the

Application Note 55 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Performance Evaluation

P U B L I C

iSD. The CPU load is represented in 0.1 % [5]. Figure 33 shows that ‘CPUloadPeak’ was at 61.4 %, with the script
described in Section 2.3 enabled and with the debug mode in the iSD Script Editor, while the motor was
running with speed selection set to LOW SPEED level. The more complicated the script code becomes, the

greater CPU load it would demand.

Speed Selection: LOW SPEED, CPU Usage = 61.4 %, fPWM = 15 kHz

Figure 33 Reading ‘CPU Load’ Parameter Using iSD When Script Is Running

3.2 Script Task Timing

3.2.1 Script Task Timing Setup

The script engine supports 2 independent tasks, Task 0 and Task 1, running concurrently. Task 0 is scheduled to
be executed in the system tick interrupt, which typically occurs every 1 ms. Task 1 is scheduled to be executed
in the background loop task. Task 0 has greater priority than Task 1.

The user script program runs repeatedly on a configurable interval within Task 0 or Task 1 loop. The execution
period of Task 0 is configurable in the script code by setting the parameter named
SCRIPT_TASK0_EXECUTION_PERIOD. The granularity of the configurable execution period for Task 0 is 1 ms.

For example, setting SCRIPT_TASK0_EXECUTION_PERIOD to 5 results in an execution period of 5 ∙ 1𝑚𝑆 =

5𝑚𝑆 for Task 0. The execution period of Task 1 is also configurable in the script code by setting the parameter
named SCRIPT_TASK1_EXECUTION_PERIOD. The granularity of the configurable execution period for Task 1 is

10 ms. For example, setting SCRIPT_TASK1_EXECUTION_PERIOD to 5 results in an execution period of 5 ∙
10𝑚𝑆 = 50𝑚𝑆 for Task 1.

The number of script instructions that gets executed by each task during every execution period can be
configured in the script code by setting the parameter named SCRIPT_TASK0_EXECUTION_STEP for Task 0 or

SCRIPT_TASK1_EXECUTION_STEP for Task 1 accordingly [2].

Application Note 56 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Performance Evaluation

P U B L I C

The actual timing setup for each script task needs to be adjusted according to the specific application
requirements.

3.2.2 Script Task Execution Time Evaluation

3.2.2.1 Execution Time Evaluation Using MCEWizard/MCEDesigner

The execution time of Task 0 or Task 1 can be measured by taking advantage of the variable named
RunTimeCounter provided by the MCE software. RunTimeCounter is a free running timer with 1 ms resolution
that is accessible from within the script code. As shown in Code Listing 18, one can capture the value of
RunTimeCounter at the beginning of Task 1 and save it in a variable named ExecutionTimeCapture. At the

end of Task 1, the value of RunTimeCounter gets captured again and then subtracted with the value of
ExecutionTimeCapture to obtain the execution time for Task 1 which is saved in the variable named

ExecutionTime. As a global variable, the value of ExecutionTime can be read using MCEDesigner during run
time.

The script program described in Section 2.4 was used as an example to evaluate execution time for Task 1,

whose execution period was set to 10 ms. Figure 34 shows the value of ExecutionTime_L (lower 16 bit of

ExecutionTime) was 4 with the script enabled while the motor was running with speed selection set to LOW
SPEED level. This shows the loop execution time of Task 1 was about 4 ms while the motor was running. Since

the actual execution time for Task 1 was shorter than the specified execution period, it indicates that Task 1
didn’t overrun.

The more complicated the script code in each task becomes, the longer loop execution time it would result in.
As long as the loop execution time for a script task doesn’t exceed the specified loop execution period, the

script task wouldn’t overrun and the timing requirements can always be guaranteed. If the loop execution time
for a script task exceeds the specified loop execution period, then the desired timing for this script task cannot

be guaranteed. In that case, the script task will continue to finish up the on-going loop execution and then

immediately start a new loop execution, in which case the actual loop execution period for this script task is
determined by the loop execution time.

If the execution period of Task 0 is set to 1 ms, then it is not possible to use RunTimeCounter to estimate the
execution time of Task 0 due to the resolution limit. In that case, the CPU load can be checked to indirectly
estimate the execution status of Task 0. As long as the actual CPU load doesn’t exceed 95 %, the specified

number of instructions for Task 0 can be guaranteed to be executed within 1 ms period without over-run
situation. If Task 0 hasn’t finished up executing the specified number of instructions by the end of the 1 ms

period, then it would overload the CPU. In that case, an execution fault would be registered by asserting the
10th bit of the variable FaultFlags [2], and cause the system to go into fault state when the safety functions

are disabled, or going into failsafe mode when the safety functions are enabled.

Code Listing 18 Execution Time Measurement for Task 1 Using RunTimeCounter in Script Code for

MCEWizard/MCEDesigner

001 /**/

002 /* Global variable definition */

003 int ExecutionTimeCapture;

004 int ExecutionTime;

005 /**/

006 /*Task1 script function*/

007 Script_Task1()

008 {

009 ExecutionTimeCapture = RunTimeCounter;

Application Note 57 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Performance Evaluation

P U B L I C

Code Listing 18 Execution Time Measurement for Task 1 Using RunTimeCounter in Script Code for
MCEWizard/MCEDesigner

010 …

011 …

012 …

013 ExecutionTime = RunTimeCounter - ExecutionTimeCapture;

014 }

Speed Selection: LOW SPEED; Vin: 100VAC

Figure 34 Reading ‘ExecutionTime_L’ Variable Used in Script Code Using MCEDesigner

3.2.2.2 Execution Time Evaluation Using iSD

Code Listing 19 and Code Listing 20 shows the code for the iSD that is migrated from the code for the
MCEWizard/MCEDesigner (Code Listing 18). In this migration, the variable names should be modified as shown

in Table 15.

Code Listing 19 Execution Time Measurement for Task 1 Using RunTimeCounter in Script Code for iSD

(Global.mcs)

001 /**/

002 /* Global variable definition */

003 int ExecutionTimeCapture;

004 int ExecutionTime;

Application Note 58 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Performance Evaluation

P U B L I C

Code Listing 20 Execution Time Measurement for Task 1 Using RunTimeCounter in Script Code for iSD
(Script_Task1.mcs)

001 /**/

002 /*Task1 script function*/

003 Script_Task1()

004 {

005 ExecutionTimeCapture = MCEOS.RunTimeCounter;

006 …

007 …

008 …

009 ExecutionTime = MCEOS.RunTimeCounter- ExecutionTimeCapture;

010 }

Table 15 Parameter name Differences between MCEWizard/MCEDesigner and iSD

MCEWizard/MCEDesigner iSD

RunTimeCounter MCEOS.RunTimeCounter

3.2.3 Script Task Execution Period Evaluation

3.2.3.1 Execution Period Evaluation Using MCEWizard/MCEDesigner

The variable RunTimeCounter can also be used to measure the loop execution period of Task 0 or Task 1.

RunTimeCounter is a free running timer with 1 ms resolution that is accessible from within the script code.
Code Listing 21 shows an example of using RunTimeCounter to measure the loop execution period of Task 1

for MCEWizard/MCEDesigner.

Code Listing 21 Loop Execution Period Measurement for Task 1 Using RunTimeCounter in Script Code

for MCEWizard/MCEDesigner

001 /**/

002 /* Global variable definition */

003 int LoopExecutionPeriodCapture;

004 int LoopExecutionPeriod;

005 /**/

006 /*Task1 script function*/

007 Script_Task1()

008 {

009 LoopExecutionPeriod = RunTimeCounter –

LoopExecutionPeriodCapture;

010 LoopExecutionPeriodCapture = RunTimeCounter;

011 …

012 …

013 …

014 }

Application Note 59 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Performance Evaluation

P U B L I C

3.2.3.2 Execution Period Evaluation Using iSD

Code Listing 22 and Code Listing 23 shows the code for the iSD that is migrated from the code for the
MCEWizard/MCEDesigner (Code Listing 21). In this migration, the variable names should be modified as shown

in Table 16

Code Listing 22 Loop Execution Period Measurement for Task 1 Using RunTimeCounter in Script Code
for iSD (Global.mcs)

001 /**/

002 /* Global variable definition */

003 int LoopExecutionPeriodCapture;

004 int LoopExecutionPeriod;

Code Listing 23 Loop Execution Period Measurement for Task 1 Using RunTimeCounter in Script Code
for iSD (Script_Task1.mcs)

001 /**/

002 /*Task1 script function*/

003 Script_Task1()

004 {

005 LoopExecutionPeriod = MCEOS.RunTimeCounter –

LoopExecutionPeriodCapture;

006 LoopExecutionPeriodCapture = MCEOS.RunTimeCounter;

007 …

008 …

009 …

010 }

Table 16 Parameter name Differences between MCEWizard/MCEDesigner and iSD

MCEWizard/MCEDesigner iSD

RunTimeCounter MCEOS.RunTimeCounter

Application Note 60 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Guidelines & Limitations

P U B L I C

4 Script Guidelines & Limitations

• With FW REV 1.03.03, the maximum number of global variables supported by the script engine is 30, and the
maximum number of local variables for each task is 24. With FW REV 5.X.X and its support of several different

variable types, 256 byte of data memory is allocated for global variables and 128 byte of data memory is
allocated for local variables in each task separately. The maximum number of global variables and local
variables depend on the variable type being used. The intercommunication between Task 0 and Task 1 can
be realized by using global variables. Only global variables are accessible from the MCEDesigner, iSD, or user

UART interface. It is recommended to define a variable as the global type if users plan to read its value
during run time using the MCEDesigner [3] or iSD [5].

• The maximum allowed script code size is 16 kB. This is equivalent to approximately 1500 lines of script code.
The actual object code size is reported in the compiled script bytecode file. An example is shown at line 008
and line 009 in Code Listing 2 for the MCEDesigner, and shown in Figure 9 for the iSD.

• The script engine only supports integer type variables, so the floating-point type variables or constants will
need to be converted to Q format for proper processing in the script code. An example of Q format

conversion can be found in Section 2.3.3. And each script engine in the MCEDesigner [2] and iSD [5] support
different types of variables as shown below Table 17 and Table 18 respectively.

Table 17 Script Variable Types in MCEDesigner

Type Storage Size Value range Description

int 4 bytes -2,147,483,648 to

2,147,483,647

integer

Table 18 Script Variable Types in iSD

Type Storage Size Value range Description

uint8_t 1 bytes 0 to 255 Byte length unsigned

integer

int8_t 1 bytes -128 to 127 Byte length integer

uint16_t 2 bytes 0 to 65,535 Short unsigned integer

int16_t 2 bytes -32,768 to 32,767 Short integer

int32_t 4 bytes -2,147,483,648 to

2,147,483,647
integer

int 4 bytes -2,147,483,648 to

2,147,483,647

integer

• The script engine supports 2 independent tasks, Task 0 and Task 1, running concurrently. The user script
program runs repeatedly on a configurable interval within Task 0 or Task 1 loop. The shortest possible
execution period is 1 ms for Task 0, and 10 ms for Task 1. The execution period for each task can be

configured to the multiples of 1 ms for Task 0 or 10 ms for Task 1 in the script code. Task 0 has greater

priority than Task 1. The actual timing setup for each script task needs to be adjusted according to the
specific application requirements.

• The analog input pins are sampled by the MCE every 1 ms. According to Nyquist theorem, if the input analog

signal frequency is greater than 500 Hz, then it cannot be properly represented by the sampling method of

MCE script engine. It is highly recommended that an analog LPF should be used to attenuate the input
analog signal frequency that is greater than 500 Hz to minimize the aliasing effect.

• The GPIO pins are sampled and updated by MCE every 1 ms. Any GPIO input changes that occur faster than 1
ms will not be properly captured by the sampling method of MCE script engine. Similarly, any GPIO output

Application Note 61 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationScript Guidelines & Limitations

P U B L I C

changes that happen faster than 1 ms cannot be realized by using the script program. The fastest possible
frequency generated by toggling an GPIO pin using script is 500 Hz.

• It is recommended to change a specific GPIO pin value only once within the Task 0 or Task 1’s loop. If there is

more than one instance of GPIO manipulation within Task 0 or Task 1’s loop, only the last operation would
take effect due to the unique GPIO update mechanism in the MCE software. For example, given that a

specific GPIO pin is originally reset to logic low level, if this GPIO pin is set to logic high level at the beginning
of Task 0, and is then reset at the end of Task 0, the actual GPIO will not toggle as expected. Instead, it will
remain in a reset state after the execution of Task 0 loop.

• For those time critical functions, it is recommended users utilize Task 0, whose minimum execution period

can be set to 1 ms. For those functions that are not time critical, either Task 0 or Task 1 can be used. In that
case, it is recommended users set the execution period of the script task to 50 ms.

• Digital filter implementation using the script can be realized in Task 0 with sampling frequency up to 1 kHz

due to the minimum execution period limit of Task 0. As a result, signal frequency greater than 500 Hz
cannot be properly sampled and processed.

• The script language in the MCEWizard/MCEDesigner doesn’t support the implementation of infra-red
communication. It’s available from FW5.1 in the iSD.

• The script language can support Programmable Logic Controller (PLC) as long as the minimum timing

requirement is no less than 1 ms.

• The script language doesn’t support the implementation of digital Hall Effect sensors.

• In the iSD, the only way to debug the script variables is to use the watch the view window in the script

debugger. The iSD doesn’t support reading script variables in dashboard or plotting out script variables

using ‘oscilloscope’ function.

Application Note 62 of 63 V 1.2

 12/15/2022

How to Use iMOTION™ Script Language

Script Performance EvaluationReferences

P U B L I C

5 References

[1] iMOTIONTM IMC100 High Performance Motor Control IC Series Datasheet (REV 1.6).

[2] iMOTION™ Motor Control Engine Software Reference Manual (REV 1.3).

[3] MCEDesigner User Guide (REV 2.3.0.1).

[4] MCEWizard 2.0 User Guide (REV 2.3.0.1).

[5] iMOTION™ Motor Control Engine Functional Reference Manual (REV 1.0).

Revision history

Document

version

Date of release Description of changes

1.0 9/5/2018 Initial release.

1.1 6/5/2020 Analog input sampling rate and GPIO update rate are revised.

Example code in Section 2.1.4, 2.3.4, and 2.4.2 revised to use CONST

keyword to define constants.

1.2 10/27/2022 A comment of the iSD is added in the Scope and purpose and Script

Guideline & Limitations.

Workflow for the iSD is added in the Script Development Workflow.

Example code in Section 2.1.4, 2.2.3, 2.3.4, 2.4.2 and 3.2.2 revised to add

the code for the iSD, and to show each code separately.

References is updated to the latest version.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 12/15/2022

AN2018-27

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of contents
	1 Script Language Overview
	1.1 Introduction
	1.2 Script Development Workflow
	1.2.1 Using MCEWizard/MCEDesigner
	1.2.2 Using iMOTIONTM Solution Designer
	1.2.3 Migrating from MCEWizard/MCEDesigner platform to iSD Platform

	2 Script Application Examples
	2.1 2-Level Speed Selection Interface
	2.1.1 Speed Selection Interface Requirement
	2.1.2 Analog Input Pin for Speed Selection Interface
	2.1.3 Speed Selection State Machine
	2.1.4 Speed Selection Interface Script Implementation
	2.1.4.1 Script Code for MCEWizard/MCEDesigner
	2.1.4.2 Script Code for iSD

	2.2 Low-Pass Filter for DC Bus Voltage
	2.2.1 DC Bus Voltage Ripple
	2.2.2 DC Bus Voltage Sensing
	2.2.3 LPF Design & Implementation
	2.2.3.1 Script Code for MCEWizard/MCEDesigner
	2.2.3.2 Script Code for iSD

	2.2.4 LPF Test Results

	2.3 Target Speed Shaping & Brown-out Protection
	2.3.1 Target Speed Requirements
	2.3.2 DC Bus Status State Machine
	2.3.3 Scaling for Target Speed Shaping Calculation
	2.3.4 Target Speed Shaping & Brown-out Protection Script Implementation
	2.3.4.1 Script Code for MCEWizard/MCEDesigner
	2.3.4.2 Script Code for iSD

	2.3.5 Target Speed Shaping Measurement Results

	2.4 Dynamic Motor Current Limit Customization
	2.4.1 Motor Current Limit Requirement
	2.4.2 Dynamic Motor Current Limit Algorithm Design & Implementation
	2.4.2.1 Script Code for MCEWizard/MCEDesigner
	2.4.2.2 Script Code for iSD

	2.4.3 Dynamic Motor Current Limit Measurement Results

	3 Script Performance Evaluation
	3.1 CPU Load Evaluation
	3.1.1 CPU Load Evaluation Using MCEWizard/MCEDesigner
	3.1.2 CPU Load Evaluation Using iSD

	3.2 Script Task Timing
	3.2.1 Script Task Timing Setup
	3.2.2 Script Task Execution Time Evaluation
	3.2.2.1 Execution Time Evaluation Using MCEWizard/MCEDesigner
	3.2.2.2 Execution Time Evaluation Using iSD

	3.2.3 Script Task Execution Period Evaluation
	3.2.3.1 Execution Period Evaluation Using MCEWizard/MCEDesigner
	3.2.3.2 Execution Period Evaluation Using iSD

	4 Script Guidelines & Limitations
	5 References
	Revision history

