

IRFM350 (JANTX2N7227)

PD-90491G

Power MOSFET Thru-Hole (TO-254AA) 400V, 14A, N-channel, HEXFET™ MOSFET Technology

Features

- Simple drive requirements
- Hermetically sealed
- Electrically isolated
- Dynamic dv/dt rating
- Light weight
- Ceramic eyelets
- ESD rating: class 2 per MIL-STD-750, Method 1020

Potential Applications

- DC-DC converter
- Motor drives

Product Validation

Qualified to JANTXV screening flow according to MIL-PRF-19500 for high-reliability applications

Description

IR HiRel HEXFET[™] technology is advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET[™] transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, fast switching and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET[™] transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

Ordering Information

Table 1 Ordering options						
Part number	Package	Screening Level				
IRFM350	TO-254AA	COTS				
JANTX2N7227	TO-254AA	JANTX				
JANTXV2N7227	TO-254AA	JANTXV				

Product Summary

- **BV**_{DSS}: 400V
- I_D:14A
- $\mathbf{R}_{DS(on),max}$: 315m Ω
- **Q**_{G, max}: 110nC
- **REF:** MIL-PRF-19500/592

Table of contents

Table of contents

Featu	Jres	. 1
Pote	ntial Applications	. 1
Prod	uct Validation	. 1
Desci	ription	. 1
	· ring Information	
	e of contents	
1	Absolute Maximum Ratings	
2	Device Characteristics	
2.1	Electrical Characteristics	4
2.2	Source-Drain Diode Ratings and Characteristics	5
2.3	Thermal Characteristics	5
3	Electrical Characteristics Curves	. 6
4	Test Circuits	. 9
5	Package Outline	10
Revis	ion history	

1 Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings						
Symbol	Parameter	Value	Unit			
$I_{D1} @ V_{GS} = 10V, T_C = 25^{\circ}C$	Continuous Drain Current	14	А			
$I_{D2} @ V_{GS} = 10V, T_C = 100^{\circ}C$	Continuous Drain Current	9.0	А			
I _{DM} @ T _c = 25°C	Pulsed Drain Current ¹	56	А			
$P_{D} @ T_{C} = 25^{\circ}C$	Maximum Power Dissipation	150	W			
	Linear Derating Factor	1.2	W/°C			
V _{GS}	Gate-to-Source Voltage	± 20	V			
E _{AS}	Single Pulse Avalanche Energy ²	700	mJ			
I _{AR}	Avalanche Current ¹	14	А			
E _{AR}	Repetitive Avalanche Energy ¹	15	mJ			
dv/dt	Peak Diode Reverse Recovery ³	4.0	V/ns			
TJ Tstg	Operating Junction and Storage Temperature Range	-55 to +150	°C			
	Lead Temperature	300 (0.063 in. /1.6 mm from case for 10s)				
	Weight	9.3 (Typical)	g			

Table 2 Absolute Maximum Ratings

¹ Repetitive Rating; Pulse width limited by maximum junction temperature.

 $^{^2}$ V_{DD} = 50V, starting T_{J} = 25°C, L = 7.1mH, Peak I_L = 14A, V_{GS} = 10V

 $^{^3}$ I_{SD} \leq 14A, $di/dt \leq$ 145A/µs, V_{DD} \leq 400V, $T_{\rm J} \leq$ 150°C

Device Characteristics

2 Device Characteristics

2.1 Electrical Characteristics

Table 3Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Table 5 Electrical characteristics @ 1j = 25 C (onless otherwise specified)							
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	
BV _{DSS}	Drain-to-Source Breakdown Voltage	400	_	_	v	$V_{GS} = 0V, I_{D} = 1.0mA$	
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	_	0.46	_	V/°C	Reference to 25°C, I _D = 1.0mA	
	Static Drain-to-Source On-State	_	_	315		$V_{GS} = 10V, I_{D2} = 9.0A^{1}$	
R _{DS(on)}	Resistance	_	_	415	mΩ	$V_{GS} = 10V, I_{D1} = 14A^{1}$	
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	
Gfs	Forward Transconductance	6.0	_	—	S	$V_{DS} = 15V, I_{D2} = 9.0A$	
		_	_	25		$V_{DS} = 320V, V_{GS} = 0V$	
I _{DSS}	Zero Gate Voltage Drain Current	_	_	250	μA	$V_{DS} = 320V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	
	Gate-to-Source Leakage Forward	_	_	100		V _{GS} = 20V	
I _{GSS}	Gate-to-Source Leakage Reverse	_	_	-100	nA	V _{GS} = -20V	
Q _G	Total Gate Charge	_	_	110		I _{D1} = 14A	
Q _{GS}	Gate-to-Source Charge	_	_	18	nC	$V_{DS} = 200V$	
Q _{GD}	Gate-to-Drain ('Miller') Charge	_	_	65		$V_{GS} = 10V$	
t _{d(on)}	Turn-On Delay Time	_	_	35		I _{D1} = 14A **	
t _r	Rise Time	_	_	190		$V_{DD} = 200V$	
t _{d(off)}	Turn-Off Delay Time	_	_	170	ns	$R_{G} = 2.35\Omega$	
t _f	Fall Time	_	_	130		$V_{GS} = 10V$	
L _s +L _D	Total Inductance	_	6.8	_	nH	Measured from Drain lead (6mm / 0.25 in from package) to Source lead (6mm/ 0.25 in from package) with Source wire internally bonded from Source pin to Drain pad	
C _{iss}	Input Capacitance	_	1300	_		$V_{GS} = 0V$	
C _{oss}	Output Capacitance	_	400	—	рF	$V_{DS} = 25V$	
C _{rss}	Reverse Transfer Capacitance	_	130	_	1	<i>f</i> = 1.0MHz	

** Switching speed maximum limits are based on manufacturing test equipment and capability.

 $^{^1}$ Pulse width \leq 300 μs ; Duty Cycle \leq 2%

Device Characteristics

2.2 Source-Drain Diode Ratings and Characteristics

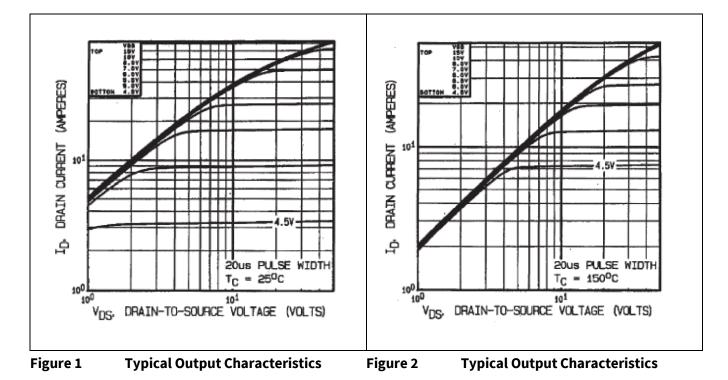
Table 4Source-Drain Diode Characteristics

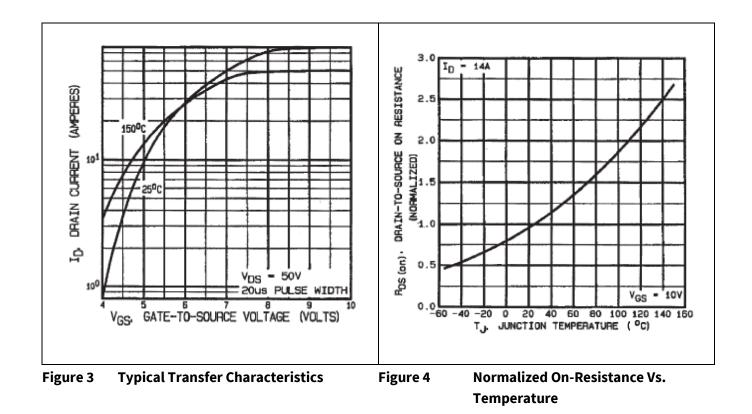
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
ls	Continuous Source Current (Body Diode)	-	_	14	А	
I _{SM}	Pulsed Source Current (Body Diode) ¹	_	_	56	А	
V _{SD}	Diode Forward Voltage	_	_	1.7	V	$T_J = 25^{\circ}C$, $I_S = 14A$, $V_{GS} = 0V^{-2}$
t _{rr}	Reverse Recovery Time		_	1200	ns	$T_J = 25^{\circ}C, I_F = 14A, V_{DD} \le 50V$
Q _{rr}	Reverse Recovery Charge		7.3		μC	di/dt = 100A/µs
t _{on}	Forward Turn-On Time		ic turn-	on time is	s negligil	ble (turn-on is dominated by L_S+L_D)

2.3 Thermal Characteristics

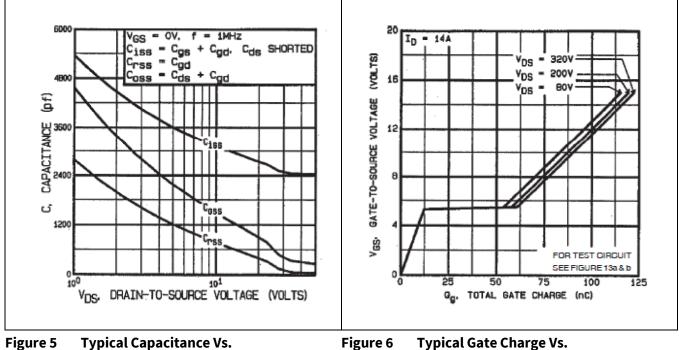
Table 5 Thermal Resistance

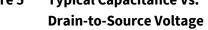
Symbol	Parameter	Min.	Тур.	Max.	Unit
$R_{\theta JC}$	Junction-to-Case	_	_	0.83	
$R_{\theta CS}$	Case-to-Sink	_	0.21	_	°C/W
$R_{\theta JA}$	Junction-to-Ambient (Typical socket mount)	_	_	48	

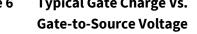

¹ Repetitive Rating; Pulse width limited by maximum junction temperature.

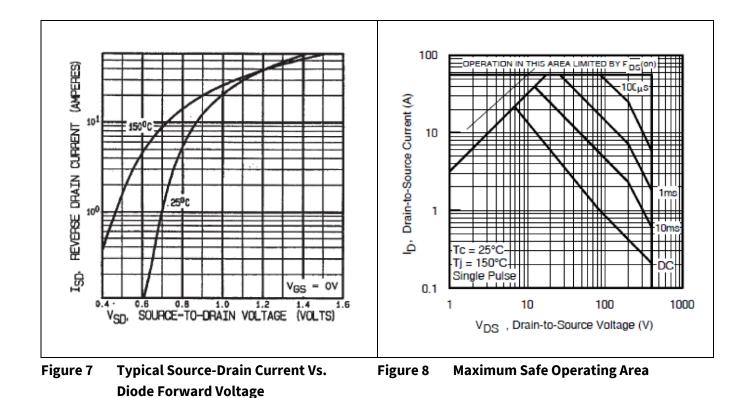

 $^{^2}$ Pulse width \leq 300 $\mu s;$ Duty Cycle \leq 2%

IRFM350 (JANTX2N7227) Power MOSFET Thru - Hole (TO-254AA) Electrical Characteristics Curves

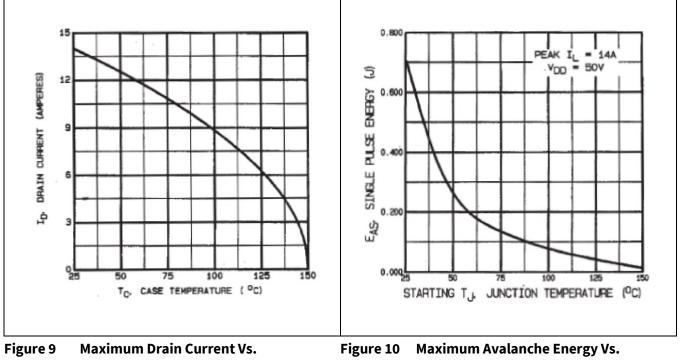

3 Electrical Characteristics Curves







Electrical Characteristics Curves



Electrical Characteristics Curves

Case Temperature

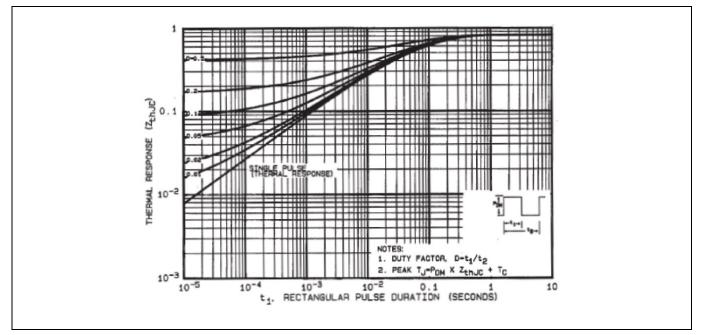
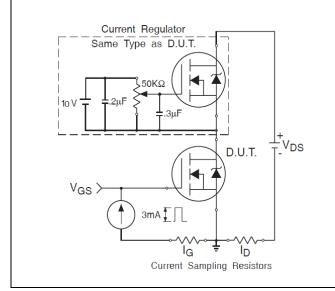
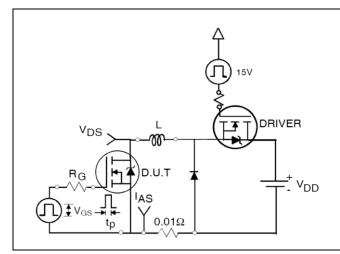
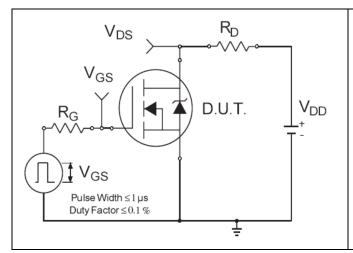
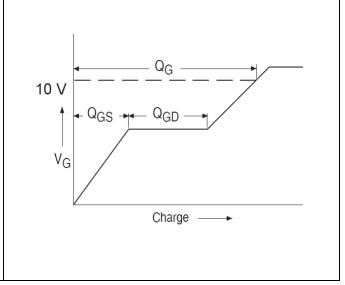
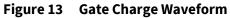



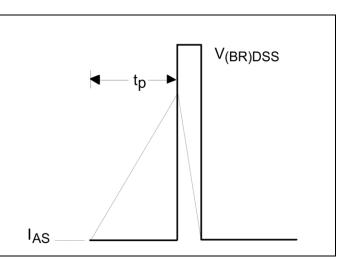
Figure 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case


Test Circuits


4 Test Circuits







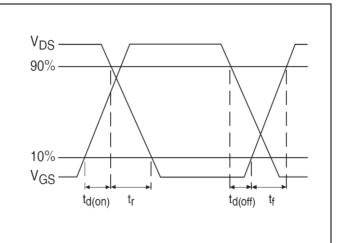
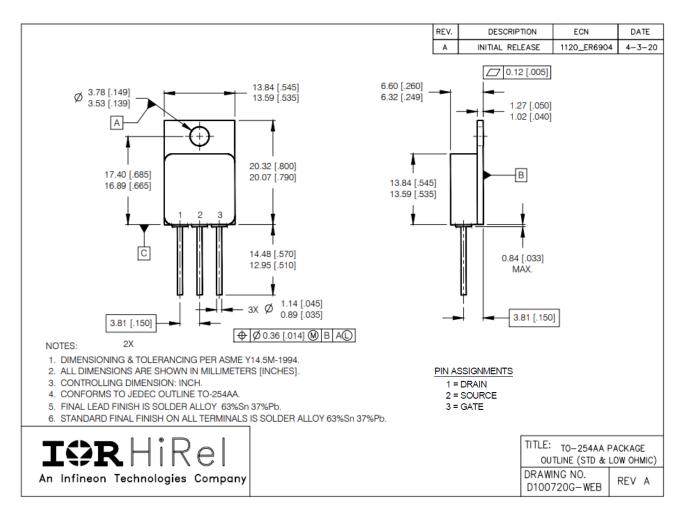



Figure 17 Switching Time Waveforms

Package Outline

Package Outline 5

Note: For the most updated package outline, please see the website: TO-254AA

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

Revision history

Revision history

Document version	Date of release	Description of changes
Rev D	01/14/2002	Datasheet (PD-90491)
Rev E	07/19/2024	Updated based on ECN-14932
Rev F	04/30/2021	Updated based on ECN-1120_08526
Rev G	08/06/2024	Updated based on ECN-1120_10008

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-08-06

Published by

International Rectifier HiRel Products, Inc.

- An Infineon Technologies company
- El Segundo, California 90245 USA

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest International Rectifier HiRel Products, Inc., an Infineon Technologies company, office.

International Rectifier HiRel Components may only be used in life-support devices or systems with the expressed written approval of International Rectifier HiRel Products, Inc., an Infineon Technologies company, if failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety and effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.