

The following document contains information on Cypress products.

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use,

including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not

designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless

extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury,

severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control,

mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where

chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable

to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such

failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and

prevention of over-current levels and other abnormal operating conditions. If any products described in this document

represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law

of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the

respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion

product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without

notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy,

completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other

warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of

the information in this document.

Copyright © 2013 Spansion Inc. All rights reserved. Spansion
®
, the Spansion logo, MirrorBit

®
, MirrorBit

®
 Eclipse

TM
,

ORNAND
TM

 and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and

other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.

Fujitsu Microelectronics Europe
Application Note

MCU-AN-390094-E-V12

F²MC-16LX FAMILY
16-BIT MICROCONTROLLER

MB90F897

EEPROM EMULATION WITH
DUAL OPERATION FLASH

APPLICATION NOTE

EEPROM EMULATION
Revision History

MCU-AN-390094-E-V12 - 2 - © Fujitsu Microelectronics Europe GmbH

Revision History

Date Issue
2003-07-09 MWi, First version
2003-07-21 MWi, V1.1, upgraded
2005-12-28 MWi, V1.2, FWR0/1 defines in code removed

This document contains 17 pages.

EEPROM EMULATION
Warranty and Disclaimer

© Fujitsu Microelectronics Europe GmbH - 3 - MCU-AN-390094-E-V12

Warranty and Disclaimer
To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH restricts
its warranties and its liability for all products delivered free of charge (eg. software include or
header files, application examples, target boards, evaluation boards, engineering samples of IC’s
etc.), its performance and any consequential damages, on the use of the Product in accordance with
(i) the terms of the License Agreement and the Sale and Purchase Agreement under which
agreements the Product has been delivered, (ii) the technical descriptions and (iii) all accompanying
written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu
Microelectronics Europe GmbH disclaims all warranties and liabilities for the performance of the
Product and any consequential damages in cases of unauthorised decompiling and/or reverse
engineering and/or disassembling. Note, all these products are intended and must only be used
in an evaluation laboratory environment.

1. Fujitsu Microelectronics Europe GmbH warrants that the Product will perform substantially in
accordance with the accompanying written materials for a period of 90 days form the date of
receipt by the customer. Concerning the hardware components of the Product, Fujitsu
Microelectronics Europe GmbH warrants that the Product will be free from defects in material
and workmanship under use and service as specified in the accompanying written materials
for a duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Microelectronics Europe GmbH´s entire liability
and the customer´s exclusive remedy shall be, at Fujitsu Microelectronics Europe GmbH´s
sole discretion, either return of the purchase price and the license fee, or replacement of the
Product or parts thereof, if the Product is returned to Fujitsu Microelectronics Europe GmbH in
original packing and without further defects resulting from the customer´s use or the transport.
However, this warranty is excluded if the defect has resulted from an accident not attributable
to Fujitsu Microelectronics Europe GmbH, or abuse or misapplication attributable to the
customer or any other third party not relating to Fujitsu Microelectronics Europe GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Microelectronics Europe GmbH
disclaims all other warranties, whether expressed or implied, in particular, but not limited to,
warranties of merchantability and fitness for a particular purpose for which the Product is not
designated.

4. To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH´s
and its suppliers´ liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu
Microelectronics Europe GmbH and its suppliers be liable for any damages whatsoever
(including but without limitation, consequential and/or indirect damages for personal
injury, assets of substantial value, loss of profits, interruption of business operation,
loss of information, or any other monetary or pecuniary loss) arising from the use of
the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining
stipulations shall stay in full effect

EEPROM EMULATION
Contents

MCU-AN-390094-E-V12 - 4 - © Fujitsu Microelectronics Europe GmbH

Contents

REVISION HISTORY.. 2

WARRANTY AND DISCLAIMER ... 3

CONTENTS .. 4

0 INTRODUCTION.. 5

1 EEPROM EMULATION.. 6
1.1 Purpose... 6
1.2 Flash Memory Structure of MB90F897 .. 6
1.3 Used Algorithm.. 7

1.3.1 Initializing... 7
1.3.2 Writing data ... 7

2 PROGRAMMING EXAMPLE ... 8
2.1 Definitions ... 8
2.2 Low Level Drivers.. 8
2.3 EEPROM Routines.. 10

2.3.1 C Functions ... 12
2.4 Using Driver and EEPROM routines in a program... 13
2.5 How to use the EEPROM functions in an own application (Function Summary) 14

3 TIME EFFORT ... 15
3.1 Background... 15
3.2 Timing ... 15

4 OTHER USAGE ... 16
4.1 O-Buffer (Ring-Buffer) Concept 1 .. 16
4.2 O-Buffer Concept 2 ... 16

EEPROM EMULATION
Introduction

© Fujitsu Microelectronics Europe GmbH - 5 - MCU-AN-390094-E-V12

0 Introduction
This application note describes how to implement an in-circuit EEPROM emulation with the
Dual Operation Flash in the MB90F897.

EEPROM EMULATION
Chapter 1 EEPROM Emulation

MCU-AN-390094-E-V12 - 6 - © Fujitsu Microelectronics Europe GmbH

1 EEPROM Emulation

EEPROM EMULATION EXAMPLE OF THIS APPLICATION NOTE

1.1 Purpose
Often it is useful in an application that some data have to be stored to an “solid-state
memory”, so that it is retained after power-off of the system. Usually EEPROMs are used for
that purpose.

With a (Single operation) Flash device the emulation of an EEPROM is quite complex,
because the Flash Memory cannot be cleared/programmed while code is executed in it. A
programming software has to be moved to the RAM area first, and then the Flash content
can be manipulated.

The Dual Operation Flash offers the ability to update one of the two Flash-banks while code
is executed in the other bank. Therefore there is no need to use a program code which is
transferred to the RAM first.

There exists one little difference between an EEPROM and Flash Memory: In a Flash
Memory a single cell cannot be cleared – only Memory areas (the so called sectors) can be
erased.

To emulate an EEPROM behavior nevertheless, a little trick has to be done. Let’s say we
need 4K of an EEPROM Memory. For this we have to use two 4K-Flash-Sectors. To (over-
write) an area the unused sector is erased and the content of the last used sector is copied
to the other, omitting the area for the new data. Finally this data is written to the omitted
“gap”.

This application note gives an example how to implement this.

1.2 Flash Memory Structure of MB90F897
The flash memory in the MB90F897 is divided into two banks, which are divided into sectors
as follows:

Flash memory CPU address

SA9 (4 KB) FFFFFFH
FFF000H

SA8 (4 KB) FFEFFFH
FFE000H

SA7 (4 KB) FFDFFFH
FFD000H

SA6 (4 KB) FFCFFFH
FFC000H

SA5 (16 KB) FFBFFFH
FF8000H

U
pp

er
ba

nk

SA4 (16 KB) FF7FFFH
FF4000H

SA3 (4 KB) FF3FFFH
FF3000H

SA2 (4 KB) FF2FFFH
FF2000H

SA1 (4 KB) FF1FFFH
FF1000HLo

w
er

ba
nk

SA0 (4 KB) FF0FFFH
FF0000H

EEPROM EMULATION
Chapter 1 EEPROM Emulation

© Fujitsu Microelectronics Europe GmbH - 7 - MCU-AN-390094-E-V12

1.3 Used Algorithm
For the EEPROM emulation the sectors SA0 and SA1 of the lower Flash bank of the
MB90F897 is used, while the code is executed in the upper Flash bank.

1.3.1 Initializing
For the very first operation both sectors SA0, SA1 have to be erased. Later this initialization
must not be performed, because it would mean losing all stored “EEPROM data”.

SA0 is then selected as the valid sector by writing 0x0001 to the uppermost cell
(0xFF0FFE).

1.3.2 Writing data
For writing new data to the “EEPROM”, the content of the valid sector is copied to the other,
except the area, which will be used for this new data. After this the new data is written to the
gap and the non-valid sector becomes the valid one.

Note that the data is written word-wise.

The functionality is shown in the illustration below:

Flow of the EEPROM Emulation

New data

Valid Sector

Non-valid Sector

2. Copy 2. Copy

3. Write

1. Erase

4. Make valid

EEPROM EMULATION
Chapter 2 Programming Example

MCU-AN-390094-E-V12 - 8 - © Fujitsu Microelectronics Europe GmbH

2 Programming Example

EXAMPLE CODE OF HOW TO PROGRAMM A EEROM EMULATION

2.1 Definitions
The following definitions should be done to make the code more readable:

2.2 Low Level Drivers
The following code gives an example of the basic Flash Memory operations:

/* THIS SAMPLE CODE IS PROVIDED AS IS AND IS SUBJECT TO ALTERATIONS. FUJITSU */
/* MICROELECTRONICS ACCEPTS NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR */
/* ELIGIBILITY FOR ANY PURPOSES. */
/* (C) Fujitsu Microelectronics Europe GmbH */

/*--
 MAIN.C
 - description
 - EEPROM Emulation Demonstration with Dual Flash

/*--*/

// sequence addresses for SA1
#define seq_1AAA ((__far volatile unsigned int*)0xFF1AAA)
#define seq_1554 ((__far volatile unsigned int*)0xFF1554)

// sequence addresses for SA2
#define seq_2AAA ((__far volatile unsigned int*)0xFF2AAA)
#define seq_2554 ((__far volatile unsigned int*)0xFF2554)

// sector SA1 start address
#define SA1 ((__far unsigned int*)0xFF1000)
#define SA1W 0xFF1000
// sector SA2 start address
#define SA2 ((__far unsigned int*)0xFF2000)
#define SA2W 0xFF2000

// valid sector flag (SA1)
#define act1 ((__far unsigned int*)0xFF1FFE)
// valid sector flag (SA2)
#define act2 ((__far unsigned int*)0xFF2FFE)

#define DQ7 0x0080 // data polling flag
#define DQ5 0x0020 // time limit exceeding flag

/------------------ low level driver -----------------------------

int sec_erase(__far unsigned int *adr) // Erases sector SAn
{

unsigned char flag;

flag = 0;

FMCS_WE = 1; // programming enable ▼

EEPROM EMULATION
Chapter 2 Programming Example

© Fujitsu Microelectronics Europe GmbH - 9 - MCU-AN-390094-E-V12

FWR0 = 0x03FF; // write enable (all sectors) ▲

if (adr < SA2) // which sector?
 {
 *seq_1AAA = 0xAA; // send erase command to SA1
 *seq_1554 = 0x55;
 *seq_1AAA = 0x80;
 *seq_1AAA = 0xAA;
 *seq_1554 = 0x55;
 }
 else
 {
 *seq_2AAA = 0xAA; // send erase command to SA2
 *seq_2554 = 0x55;
 *seq_2AAA = 0x80;
 *seq_2AAA = 0xAA;
 *seq_2554 = 0x55;
 }
 *adr = 0x0030; // erase!

while(flag == 0)
 {
 if((*adr & DQ7) == DQ7) // Toggle bit
 {

flag = 1; // successful erased
 }

if((*adr & DQ5) == DQ5) // time out
 if((*adr & DQ7) == DQ7)
 {

flag = 1; // successful erased
}
else

 {
flag = 2; // timeout error

 }
}
FMCS_WE = 0;

return flag;

}

int write(__far unsigned int *adr,
 unsigned int data) // Writes a word to sector SAn address
{

unsigned char flag;

flag = 0;

FMCS_WE = 1; // programming enable
FWR0 = 0x03FF; // write enable (all sectors)

if (adr < SA2) // which sector?
 {
 *seq_1AAA = 0xAA; // sends write command to SA1
 *seq_1554 = 0x55;
 *seq_1AAA = 0xA0;
 }
 else
 {
 *seq_2AAA = 0xAA; // sends write command to SA2

*seq_2554 = 0x55;
 *seq_2AAA = 0xA0;

}
*adr = data; // send data to the pointed address ▼

EEPROM EMULATION
Chapter 2 Programming Example

MCU-AN-390094-E-V12 - 10 - © Fujitsu Microelectronics Europe GmbH

2.3 EEPROM Routines
The next code boxes contain the code for the usage of the Flash Memory as an EEPROM
as described in the last chapter.

▲
while(flag == 0)

 {
 if((*adr & DQ7) == (data & DQ7)) // Toggle bit

{
flag = 1; // successful programmed

}
if((*adr & DQ5) == DQ5) // time out

if((*adr & DQ7) == (data & DQ7))
 {

flag = 1; // successful programmed
}
else

 {
flag = 2; // timeout error

 }
}
FMCS_WE = 0; // reset programming enable flag

return(flag);
}

//------------------ "EEPROM" functions --------------------

unsigned char init_eeprom (void)
{

unsigned char err = 0;

if (sec_erase (SA1) == 2) err = 1; // erase SA1
 if (sec_erase (SA2) == 2) err = 2; // erase SA2
 if (write (act1, 1) == 2) err = 3; // mark SA1 as valid sector

return err;
}

unsigned char sec_copy (unsigned int start_adr, unsigned int end_adr)
{

unsigned char err = 0;
 unsigned int addr, dummy;
 unsigned int __far *address;

if (*act1 == 1) // SA1 valid?
 {

if (sec_erase(SA2) == 2) err=1; // erase SA2

if (err == 0) // copy complete sector except
 { // [start_adr...end_adr] and "actual flag"

for (addr = 0; addr < 0x0FFE; addr = addr + 2)
 {

if (((addr < start_adr) | (addr > end_adr)) & (err == 0))
 {

address = (unsigned int __far*)(SA1W + addr);
 dummy = *address;
 if (write ((unsigned int __far*)(SA2W + addr), dummy) == 2)
 err = 1;
 } ▼

EEPROM EMULATION
Chapter 2 Programming Example

© Fujitsu Microelectronics Europe GmbH - 11 - MCU-AN-390094-E-V12

} ▲

if (write (act2, 1) == 2) err = 1; // make SA2 valid
if (write (act1, 0) == 2) err = 1; // SA1 not valid anymore

}
}
else if (*act2 == 1) // SA2 valid?

 {
if (sec_erase(SA1) == 2) err=1; // erase SA1

if (err == 0) // copy complete sector except
{ // [start_adr...end_adr] and "actual flag"

for (addr = 0; addr < 0x0FFE; addr = addr + 2)
 {

if (((addr < start_adr) | (addr > end_adr)) & (err == 0))
 {

address = (unsigned int __far*)(SA2W + addr);
 dummy = *address;
 if (write ((unsigned int __far*)(SA1W + addr), dummy) == 2)
 err = 1;
 }

}

if (write (act1, 1) == 2) err = 1; // make SA1 valid
 if (write (act2, 0) == 2) err = 1; // SA2 not valid anymore
 }

}
else err = 1; // error

return err;
}

unsigned char write_eeprom(unsigned int start_adr, unsigned int end_adr)
{

unsigned char err, i;
 unsigned int adr;

err = sec_copy(start_adr, end_adr); // Copy data from actual sector

if (err != 1)
{

adr = start_adr;
 i = 0;

if (*act1 == 1) // Write new data to new valid sector
{

while ((err == 0) & (adr < end_adr))
 {

if (write((unsigned int __far*)(SA1W + adr), datafield[i]) == 2)
 err = 1;
 adr = adr + 2;
 i++;
 }

}
else if (*act2 == 1) // Write new data to new valid sector
{

while ((err == 0) & (adr < end_adr))
 {

if (write((unsigned int __far*)(SA2W + adr), datafield[i]) == 2)
 err = 1;
 adr = adr + 2;
 i++;
 }

}
else

 { ▼

EEPROM EMULATION
Chapter 2 Programming Example

MCU-AN-390094-E-V12 - 12 - © Fujitsu Microelectronics Europe GmbH

2.3.1 C Functions
• init_eeprom() Initializes and erases both EEPROM-sectors.

• sec_copy(startadr, endadr) Copies complete sector from actual to non-valid,
remaining a gap between startadr and endadr.
Marks non-valid sector to actual.

• write_eeprom(startadr, endadr) Calls sec_copy. Writes data from startadr to
endadr to EEPROM.

• read_eeprom(adr) Reads a single word from adr of actual sector.

Note, if you want to write n words to the EEPROM beginning at startaddress, please use
the following formula for the endaddress:

endaddress = startaddress + 2 • n – 1

Important:

startaddress must be an even value number.

err = 1; ▲
}

}

return err;
}

unsigned int read_eeprom(unsigned int adr) // Read data from valid sector
{

unsigned int rd;
 unsigned int __far *address;

if (*act1 == 1)
{

address = (unsigned int __far*)(SA1W + adr);
 rd = *address;
 }

else
 {

address = (unsigned int __far*)(SA2W + adr);
 rd = *address;
 }

return rd;
}

EEPROM EMULATION
Chapter 2 Programming Example

© Fujitsu Microelectronics Europe GmbH - 13 - MCU-AN-390094-E-V12

2.4 Using Driver and EEPROM routines in a program
The following demonstration C code shows how to use the routines above. Note, that the
function error() stands for an error handler, which is not shown here.

This demonstration program first initializes the EEPROM (erasing all two sectors). This step
should only be done at the very first execution. You may write data to a certain address,
which determines that the EEPROM contains data. After a power-on the content of this
address can be checked and thus the initializing can be skipped.

#include "mb90385.h" // for mb90f897

unsigned int datafield[16]; // data field to write in "EEPROM"

void main(void)
{

unsigned char i;
unsigned int a;

if (init_eeprom() != 0) error(); // Init EEPROM

for (i = 0; i < 16; i++) // Fill data field
 {
 datafield[i] = i * 99;
 }

if (write_eeprom(0, 31) == 1) error(); // write all 16 words

for (i = 0; i < 16; i++) // read back data for checking
{

a = read_eeprom(i * 2);
 if (a != (i * 99))
 {

error();
 }

}

for (i = 0; i < 8; i++) // new data (8 Words)
 {
 datafield[i] = i * 77;
 }

if (write_eeprom(4, 19) == 1) error(); // partly overwrite old data
 // (inserting new data)

// check all data
 if (read_eeprom(0) != 0) error(); // old
 if (read_eeprom(2) != 99) error(); // old
 if (read_eeprom(4) != 0) error(); // new, old: 198
 if (read_eeprom(6) != 77) error(); // new, old: 297
 if (read_eeprom(8) != 154) error(); // new, old: 396
 if (read_eeprom(10) != 231) error(); // new, old: 495
 if (read_eeprom(12) != 308) error(); // new, old: 594
 if (read_eeprom(14) != 385) error(); // new, old: 693
 if (read_eeprom(16) != 462) error(); // new, old: 792
 if (read_eeprom(18) != 539) error(); // new, old: 891

if (read_eeprom(20) != 990) error(); // old
 if (read_eeprom(22) != 1089) error(); // old
 if (read_eeprom(24) != 1188) error(); // old
 if (read_eeprom(26) != 1287) error(); // old
 if (read_eeprom(28) != 1386) error(); // old

if (read_eeprom(30) != 1485) error(); // old

EEPROM EMULATION
Chapter 2 Programming Example

MCU-AN-390094-E-V12 - 14 - © Fujitsu Microelectronics Europe GmbH

After initializing a field of 16 words is generated and then written to the EEPROM beginning
at address “0”. Note, that the address has to be stated as byte, so that the 16 words reach
from 0x0000 to 0x001F (31d). These data words are checked by reading them back
afterwards.

Following the addresses 0x0004 to 0x0012 (18d) are overwritten by 8 new data words.

Finally all data words from 0x0000 to 0x001F (31d) are checked by reading them back.

2.5 How to use the EEPROM functions in an own application (Function
Summary)

The RAM buffer for the EEPROM data should be declared global, so that no pointers has to
be used as arguments in the function calls. This eases the handling. Use the following
declaration
unsigned int datafield[MAXDATA];
With MAXDATA the buffer size is determined.

The initialization at the very first program execution (or erasing the EEPROM) is done by the
function:
unsigned char init_eeprom (void)
“0” is returned if the initialization was successful.

To write to the EEPROM the datafield has to be filled with the desired data and the
function
unsigned char write_eeprom(unsigned int start_adr, unsigned int
end_adr)
writes the desired data to start_adr till end_adr. Please note that always beginning from
datafield[0] the data is written.

Also note, if you want to write n words to the EEPROM beginning at start_adr, please use
the following formula for the end_adr:

end_adr = start_adr + 2 • n – 1

Important: start_adr must be an even value number.

Reading from the EEPROM realizes the function:
unsigned int read_eeprom(unsigned int adr)

EEPROM EMULATION
Chapter 3 Time effort

© Fujitsu Microelectronics Europe GmbH - 15 - MCU-AN-390094-E-V12

3 Time effort

THIS CHAPTER GIVES AN OVERVIEW OF THE TIME EFFORT

3.1 Background
Because for each new data a whole sector has to be erased and copied, the time effort is
higher than using a standard EEPROM.

The execution time can be decreased by using not the whole sector. The erase time will not
be affected, but the copy time.

3.2 Timing
A 4K sector erase takes about 115 ms and a sector copy 85 ms. This means a copy transfer
rate of 85 ms / 2048 words = 41.5 µs/word at 16 MHz CPU speed.

So for each data writing a time effort of about 115 ms + 85 ms = 200 ms is taken if a whole
sector is used.

EEPROM EMULATION
Chapter 4 Other Usage

MCU-AN-390094-E-V12 - 16 - © Fujitsu Microelectronics Europe GmbH

4 Other Usage

THIS CHAPTER GIVES AN OVERVIEW OF OTHER EEPROM CONCEPTS

4.1 O-Buffer (Ring-Buffer) Concept 1
With some modifications a circular buffer (O-Buffer or Ring-Buffer) can be realized. The
following graphic illustrates such kind of buffer:

O-Buffer

In this example the buffer is divided into 8 sectors. Each buffer sector has the same size. A
pointer points to the last written sector and is increased by 1 if the sector is filled with new
data. When the pointer points to 8 and data is written the pointer moves on to 1 and this
sector is overwritten in the next write process.

One concept is that the EEPROM functions have to be modified a bit so that the valid flag
now is the pointer and a fix data length has to be used. Additionally a small pointer update
routine has to be written and added to the EEPROM functions. The value of the pointer can
be used to calculate the actual address.

4.2 O-Buffer Concept 2
The O-Buffer concept 1 has the disadvantage that for each buffer update a whole Flash
Sector is erased. This takes time and slows the performance of the MCU. A better concept is
the fill one Sector with data. If the end of the Sector is reached, another Sector is filled. From
this time on a Sector Erase is only needed if the end of a Sector is reached. The following
graphics illustrate this concept (The arrow means the pointer):

7

6

5 4

1

2

3

8

Pointer

1. Both Sector empty

SA0

SA1

EEPROM EMULATION
Chapter 4 Other Usage

© Fujitsu Microelectronics Europe GmbH - 17 - MCU-AN-390094-E-V12

… and so on.

Note, that the read_eeprom function must not return the invalid data sections (gray boxes).
So the pointer determines from which sector is read.

In this example a time-consuming sector erase is performed after all 8 writings to the ring
buffer (without the “initial phase”).

2. Sector SA0 is filled with data, end of Sector is reached.

SA0

SA1

1 2 3 4 5 6 7 8

3. Data-9 writing continues with SA1.

SA0

SA1

X 2 3 4 5 6 7 8

9

4. SA1 is full and data-17 writing is pending → SA0 is erased and data is written.

SA0

SA1

17

 X 10 11 12 13 14 15 16

1

9

3. SA0 is full and data-25 writing is pending → SA1 is erased and data is written..

SA0

SA1

X 18 19 20 21 22 23 24

25

17

	Revision History
	Warranty and Disclaimer
	Contents
	0 Introduction
	1 EEPROM Emulation
	1.1 Purpose
	1.2 Flash Memory Structure of MB90F897
	1.3 Used Algorithm
	1.3.1 Initializing
	1.3.2 Writing data

	2 Programming Example
	2.1 Definitions
	2.2 Low Level Drivers
	2.3 EEPROM Routines
	2.3.1 C Functions

	2.4 Using Driver and EEPROM routines in a program
	2.5 How to use the EEPROM functions in an own application (Function Summary)

	3 Time effort
	3.1 Background
	3.2 Timing

	4 Other Usage
	4.1 O-Buffer (Ring-Buffer) Concept 1
	4.2 O-Buffer Concept 2

