

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

Cypress Semiconductor Product Qualification Report

QTP#130104 VERSION*E June 2015 Ramtron#: 02-60-5134

QTP #130104 AEC-Q100 Grade 3 Qual Report, B-W Serial F-RAM Family 4Kb to 256Kb Product Qualification				
130nm Technology, TI Fab				
FM24C04B-G	4Kb I2C (512Kx8bits) 5V Serial F-RAM Memory			
FM24C04B-GTR	4Kb I2C (512Kx8bits) 5V Serial F-RAM Memory			
FM24C16B-G	16Kb I2C (2,048Kx8bits) 5V Serial F-RAM Memory			
FM24C16B-GTR	16Kb I2C (2,048Kx8bits) 5V Serial F-RAM Memory			
FM24C64B-G	64Kb I2C (8,192Kx8bits) 5V Serial F-RAM Memory			
FM24C64B-GTR	64Kb I2C (8,192Kx8bits) 5V Serial F-RAM Memory			
FM24CL04B-G	4Kb I2C (512Kx8bits) 3V Serial F-RAM Memory			
FM24CL04B-GTR	4Kb I2C (512Kx8bits) 3V Serial F-RAM Memory			
FM24CL16B-G	16Kb I2C (2,048Kx8bits) 3V Serial F-RAM Memory			
FM24CL16B-GTR	16Kb I2C (2,048Kx8bits) 3V Serial F-RAM Memory			
FM24CL16B-DG	16Kb I2C (2,048Kx8bits) 3V Serial F-RAM Memory			
FM24CL16B-DGTR	16Kb I2C (2,048Kx8bits) 3V Serial F-RAM Memory			
FM24CL64B-G	64Kb I2C (8,192Kx8bits) 3V Serial F-RAM Memory			
FM24CL64B-DGTR	64Kb I2C (8,192Kx8bits) 3V Serial F-RAM Memory			
FM24CL64B-DG	64Kb I2C (8,192Kx8bits) 3V Serial F-RAM Memory			
FM24CL64B-GTR	64Kb I2C (8,192Kx8bits) 3V Serial F-RAM Memory			
FM24W256-G	256Kb I2C (32,768Kx8bits) Serial Wide Voltage F-RAM Memory			
FM24W256-GTR	256Kb I2C (32,768Kx8bits) Serial Wide Voltage F-RAM Memory			
FM25040B-G	4Kb I2C (512Kx8bits) 5V Serial F-RAM Memory			
FM25040B-GTR	4Kb I2C (512Kx8bits) 5V Serial F-RAM Memory			
FM25640B-G	64Kb SPI (8,192Kx8bits) 5V Serial F-RAM Memory			

FM25640B-GTR	64Kb SPI (8,192Kx8bits) 5V Serial F-RAM Memory
FM25C160B-G	16Kb SPI (2,048Kx8bits) 5V Serial F-RAM Memory
FM25C160B-GTR	16Kb SPI (2,048Kx8bits) 5V Serial F-RAM Memory
FM25CL64B-DG	64Kb SPI (8,192Kx8bits) 3V Serial F-RAM Memory
FM25CL64B-DGTR	64Kb SPI (8,192Kx8bits) 3V Serial F-RAM Memory
FM25CL64B-G	64Kb SPI (8,192Kx8bits) 3V Serial F-RAM Memory
FM25CL64B-GTR	64Kb SPI (8,192Kx8bits) 3V Serial F-RAM Memory
FM25L04B-DG	4Kb I2C (512Kx8bits) 3V Serial F-RAM Memory
FM25L04B-DGTR	4Kb I2C (512Kx8bits) 3V Serial F-RAM Memory
FM25L04B-G	4Kb I2C (512Kx8bits) 3V Serial F-RAM Memory
FM25L04B-GTR	4Kb I2C (512Kx8bits) 3V Serial F-RAM Memory
FM25L16B-DG	16Kb SPI (2,048Kx8bits) 3V Serial F-RAM Memory
FM25L16B-DGTR	16Kb SPI (2,048Kx8bits) 3V Serial F-RAM Memory
FM25L16B-G	16Kb SPI (2,048Kx8bits) 3V Serial F-RAM Memory
FM25L16B-GTR	16Kb SPI (2,048Kx8bits) 3V Serial F-RAM Memory
FM25W256-G	256Kb SPI (32,768Kx8bits) Serial Wide Voltage F-RAM Memory
FM25W256-GTR	256Kb SPI (32,768Kx8bits) Serial Wide Voltage F-RAM Memory

FOR ANY QUESTIONS ON THIS REPORT, PLEASE CONTACT

reliability@cypress.com or via a CYLINK CRM CASE

Prepared By:Becky Thomas
Reliability Engineer

Reviewed By: Rene Rodgers Reliability Manager

Approved By:Don Darling
Reliability Director

Document No. 001-85617 Rev. *E ECN #:4806826

QUALIFICATION HISTORY

Qual Report	Description of Qualification Purpose	
02-60-5112 / 124901	TI Process Qualification 130nm F-RAM Process	Aug 2008 / Dec 2012
02-60-5134	QTP #130104 AEC-Q100 Grade 3 Qual Report, B-W Serial F-RAM Family 4Kb to 256Kb Product Qualification	Aug 2011
130104	Ramtron quality integration - paper qual	Jan 2013
130104	Standardize from MSL1 to MSL3	Dec 2014

	PRODUCT DESCRIPTION (for qualification)				
Qualification Purpose: Qualification	Qualification Purpose: QTP #130104 AEC-Q100 Grade 3 Qualification Report, B-W Serial F-RAM Family 4Kb to 256Kb Product Qualification				
Marketing Part #:	FM24C04B-G, FM24C04B-GTR, FM24C16B-G, FM24C16B-GTR, FM24C64B-G, FM24C64B-GTR,				
	FM24CL04B-G, FM24CL04B-GTR, FM24CL16B-G, FM24CL16B-GTR, FM24CL16B-DG,				
	FM24CL16B-DGTR, FM24CL64B-G, FM24CL64B-GTR, FM24CL64B-DG, FM24CL64B-DGTR				
	FM24W256-G, FM24W256-GTR, FM25040B-G, FM25040B-GTR, FM25640B-G, FM25640B-GTR,				
	FM25C160B-G, FM25C160B-GTR, FM25CL64B-DG, FM25CL64B-DGTR, FM25CL64B-G,				
	FM25CL64B-GTR, FM25L04B-DG, FM25L04B-DGTR, FM25L04B-G, FM25L04B-GTR, FM25L16B-DG,				
	FM25L16B-DGTR, FM25L16B-G, FM25L16B-GTR, FM25W256-G, FM25W256-GTR				
Device Description:	4Kb to 256Kb Serial F-RAM				
Cypress Division:	Cypress Semiconductor Corporation – Memory Products Division (MPD)				

TECHNOLOGY/FAB PROCESS DESCRIPTION – F-RAM Die 1						
Number of Metal Layers:	Proprietary*	Metal Compo	sition:	Proprietary*		
Passivation Type and Thic	kness:		Propriet	Proprietary*		
Generic Process Technology/	Design Rule (µ	ι-drawn):	E035.1	E035.1 F-RAM / 130nm		
Gate Oxide Material/Thickne	ss (MOS):		Propriet	tary*		
Name/Location of Die Fab (p	rime) Facility:		Texas Iı	nstruments / Dallas, TX		
Die Fab Line ID/Wafer Proce	ess ID:		DMOS	5 / E035.1		
TECHNOLOGY/FAB PROCESS DESCRIPTION- CMOS Die 2						
Number of Metal Layers:	4	Metal Compo	sition:	Metal 1: Cu, 0.33um		
				Metal 2: Al, 0.48um		
				Metal 3: Al, 0.48um		
				Metal 4: Al, 2.0um		
Passivation Type and Thickne	ess:		SiN, 0.45um; SiO, 1.35um			
Generic Process Technology/Design Rule (μ-drawn):		ι-drawn):	CMOS / 180nm			
Gate Oxide Material/Thickness (MOS):		SiO2 / 12nm				
Name/Location of Die Fab (prime) Facility:		IBM / Burlington, VT				
Die Fab Line ID/Wafer Process ID:		Fab Line ID is Not Applicable / CMRF7TG				

^{*}Texas Instruments' proprietary information is available with signed NDA.

PACKAGE AVAILABILITY

PACKAGE	ASSEMBLY FACILITY SITE	
8-pin SOIC, 150 mil	UTAC, Thailand (UT)	
8-pin TDFN, 4.0 × 4.5 × 0.8 mm	UTAC, Thailand (UT)	

MAJOR PACKAGE INFORMATION USED IN THIS QUALIFICATION				
Package Designation:	SW815, SZ815			
Package Outline, Type, or Name:	8LD SOIC (150mil)			
Mold Compound Name/Manufacturer:	EME-G600/Sumitomo			
Mold Compound Flammability Rating:	V-0 / UL94			
Mold Compound Alpha Emission Rate:	<0.1			
Oxygen Rating Index: >28%	53%			
Lead Frame Designation:	FMP			
Lead Frame Material:	Cu			
Substrate Material:	N/A			
Lead Finish, Composition / Thickness:	Pure Sn			
Die Backside Preparation Method/Metallization:	Backgrind			
Die Separation Method:	Wafer Saw			
Die Attach Supplier:	Henkel			
Die Attach Material:	8200T			
Bond Diagram Designation	001-86095			
Wire Bond Method:	Thermosonic			
Wire Material/Size:	Au / 0.8 mil			
Thermal Resistance Theta JA °C/W:	59 °C/W			
Package Cross Section Yes/No:	No			
Assembly Process Flow:	CP-NSE-001/SOIC			
Name/Location of Assembly (prime) facility:	UTL-Thailand (UT)			
MSL LEVEL	3			
REFLOW PROFILE	260C			

MAJOR PACKAGE INFORMATION USED IN THIS QUALIFICATION				
Package Designation:	LH08F			
Package Outline, Type, or Name:	8-Lead TDFN			
Mold Compound Name/Manufacturer:	EME- G770/Sumitomo			
Mold Compound Flammability Rating:	UL-94 V-0			
Mold Compound Alpha Emission Rate:	<0.1			
Oxygen Rating Index: >28%	53%			
Lead Frame Designation:	FMP			
Lead Frame Material:	Copper			
Substrate Material:	N/A			
Lead Finish, Composition / Thickness:	Pure Sn			
Die Backside Preparation Method/Metallization:	Backgrind			
Die Separation Method:	Wafer Saw			
Die Attach Supplier:	Henkel			
Die Attach Material:	8200			
Bond Diagram Designation	001-86128			
Wire Bond Method:	Thermosonic			
Wire Material/Size:	Au/0.8 mil			
Thermal Resistance Theta JA °C/W:	21 °C/W			
Package Cross Section Yes/No:	No			
Assembly Process Flow:	CP-NSE-001/QFN			
Name/Location of Assembly (prime) facility:	UTL-Thailand (UT)			
MSL LEVEL	3			
REFLOW PROFILE	260C			

	ELECTRICAL TEST / FINISH DESCRIPTION
Test Location:	Sort Test: KYEC, Taiwan; Class Test: UTL, Thailand / Finish: CML, Philippines

Note: Please contact a Cypress Representative for other package availability.

RELIABILITY FAILURE RATE SUMMARY

Stress/Test	Device Tested/ Device Hours	# Fails	Activation Energy	Thermal AF ³	Failure Rate
High Temperature Operating Life Early Failure Rate (ELFR)	4800 Devices	0	N/A	N/A	0 PPM
High Temperature Operating Life ^{1,2,} Long Term Failure Rate (HTOL)	547,000 DHRs* 616,000 DHRs	0	0.7	55	14 FITs

^{*}Leverage HTOL data from TI 130nm F-RAM Process QTP#124901 (SPEC#001-85093)

$$AF = \exp \left[\frac{E_A}{k} \left[\frac{1}{T_2} - \frac{1}{T_I} \right] \right]$$

where:

E_A =The Activation Energy of the defect mechanism.

 $k = Boltzmann's constant = 8.62x10^{-5} eV/Kelvin.$

 T_1 is the junction temperature of the device under stress and T_2 is the junction temperature of the device at use conditions.

¹ Assuming an ambient temperature of 55°C and a junction temperature rise of 15°C.

² Chi-squared 60% estimations used to calculate the failure rate..
³ Thermal Acceleration Factor is calculated from the Arrhenius equation

⁴ Thermal Total device hours is based on HTOL test and post endurance cycles HTOL test

AEC-Q100 Grade 3 Product Qualification Report

(Document #02-60-5134)

PRODUCTS: FM24C04B-G;FM24CL04B-G FM24C16B-G; FM24CL16B-G; FM24CL16B-DG; FM24CL64B-G; FM24CL64B-G; FM24CL64B-DG; FM25C164B-DG; FM25C160B-G; FM25L16B-G; FM25L16B-DG; FM25CL64B-G; FM25CL64B-G; FM25CL64B-DG; FM25CL64

4Kbit to 256Kbit Memory, SPI and I2C, 3V and 5V Revision: AA & AB

Foundry Supplier: Texas Instruments & IBM

Package Suppliers: UTL & HANA, Bangkok, Thailand

Issue Date: August 8, 2011

Updated: December 21, 2012

Originated by:

QA/Reliability

TABLE OF CONTENTS

1		SCOPE	10
2		APPLICABLE DOCUMENTS	10
3		RELIABILITY STRESS TESTS	11
	3.1	PRE-CONDITIONING OF SAMPLES, AEC-Q100 TEST #A1	11
	3.2	HIGHLY ACCELERATED STRESS TEST (HAST), AEC-Q100 TEST #A2	11
	3.3	PRECONDITIONED AUTOCLAVE (AC), AEC-Q100 TEST #A3	
	3.4	PRECONDITIONED TEMPERATURE CYCLING (TC), AEC-Q100 TEST #A4	13
	3.5	HIGH TEMPERATURE STORAGE LIFE (HTSL), AEC-Q100 TEST #A6	14
	3.6	HIGH TEMPERATURE OPERATING LIFE (HTOL), AEC-Q100 TEST #B1	15
	3.7	EARLY LIFE FAILURE RATE (ELFR), AEC-Q100 TEST #B2	16
	3.8	NVM ENDURANCE, DATA RETENTION AND OPERATIONAL LIFE (EDR), AEC-Q100 TEST #	B3 16
	3.9	WIRE BOND SHEAR TEST (WBS), AEC-Q100 TEST #C1	
	3.10	WIRE BOND PULL TEST (WBP), AEC-Q100 TEST #C2	18
	3.11	SOLDERABILITY (SD), AEC-Q100 TEST #C3	
	3.12	PHYSICAL DIMENSIONS (PD), AEC-Q100 TEST #C4	
	3.13	ELECTROSTATIC DISCHARGE - HUMAN BODY MODEL (ESD-HBM) AEC-Q100 TEST #E2	
	3.14	ELECTROSTATIC DISCHARGE - CHARGED DEVICE MODEL (CDM) AEC-Q100 TEST #E3	
	3.15	LATCH-UP IMMUNITY (LU) AEC-Q100 TEST #E4	
	3.16	ELECTRICAL DISTRIBUTIONS (ED) AEC-Q100-009 TEST #E5	
	3.17	ELECTRICALLY INDUCED GATE LEAKAGE (GL) AEC-Q100 TEST #E8	23
4		CONCLUSIONS	23
5		ADDITIONAL REPORTS AND DATA	23
	5 1	ELECTROSTATIC DISCHARGE – MACHINE MODEL (MM)	23

Document No. 001-85617 Rev. *E ECN #:4806826

1 SCOPE

1.1 AEC-Q100 Grade 3 Product Family Qualification testing is successfully performed on the Ramtron 130 nm process fab family, initially based on 1Mb TI memory products, with supplementary B/W-Family testing. Package Qualification testing was successfully completed on the 8-lead SOIC Green package assembled at HANA and UTAC and on the 8-lead TDFN package assembled at UTAC. This Qualification Report includes family data for the following products:

FM24C04B-G: 4Kb I2C Serial 5V F-RAM Memory, organized as 512 x 8 bits FM24CL04B-G: 4Kb I2C Serial 3V F-RAM Memory, organized as 512 x 8 bits FM24C16B-G: 16Kb I2C Serial 5V F-RAM Memory, organized as 2,048 x 8 bits FM24CL16B-G/ FM24CL16B-DG: 16Kb I2C Serial 3V F-RAM Memory, organized as 2,048 x 8 bits FM24C64B-G: 64Kb I2C Serial 5V F-RAM Memory, organized as 8,192 x 8 bits FM24CL64B-G/FM24CL64B-DG: 64Kb I2C Serial 3V F-RAM Memory, organized as 8,192 x 8 bits FM25040B-G: 4Kb I2C Serial 5V F-RAM Memory, organized as 512 x 8 bits FM25L04B-G/ FM25L04B-DG: 4Kb I2C Serial 3V F-RAM Memory, organized as 512 x 8 bits FM25C160B-G: 16Kb SPI Serial 5V F-RAM Memory, organized as 2,048 x 8 bits FM25C16B-G/ FM25L16B-DG: 16Kb SPI Serial 3V F-RAM Memory, organized as 2,048 x 8 bits FM25CL64B-G/ FM25CL64B-DG: 64Kb SPI Serial 3V F-RAM Memory, organized as 8,192 x 8 bits FM25C40B-G: 64Kb SPI Serial 5V F-RAM Memory, organized as 8,192 x 8 bits FM25C40B-G: 256Kb I2C Serial 5V F-RAM Memory, organized as 8,192 x 8 bits FM24W256-G: 256Kb I2C Serial Wide Voltage F-RAM Memory, organized as 32,768 x 8 bits

FM25W256-G: 256Kb SPI Serial Wide Voltage F-RAM Memory, organized as 32,768 x 8 bits

AEC-Q100 package-related testing is successfully completed on three assembly lots of product from this family, the largest memory size produced at each vendor was selected for testing:

8-lead Green SOIC package at HANA 8-lead Green SOIC package at UTL 8-lead Green 4.0mmx4.5mm TDFN package at UTL

- 1.2 Product testing is designed to assess overall compliance to the AEC-Q100 Rev. G Standard. Random samples were chosen from three lots for each test.
- 1.3 These products were fabricated at Texas Instruments in Dallas, Texas and IBM in Burlington, VT. Product qualified was assembled at UTL and HANA in Bangkok, Thailand. Qualification stress/testing was performed at Ramtron International Corporation in Colorado Springs, CO, Integra Technologies in Santa Clara, CA and at Innovative Circuits Engineering in San Jose, California.
- 1.4 The following report details the environmental stress tests performed, test sample sizes, accept/reject criteria, test results and conclusions of this qualification. Test and inspection results performed on the selected qualification lots are also summarized in Table I.

2 APPLICABLE DOCUMENTS

- 2.1 Ramtron FM24C04B, FM24CL04, FM24C16B, FM24CL16B, FM24CC64B, FM24CL64B; FM25O40B; FM25L04B; FM25C160B; FM25L16B; FM25CL64B; FM25C4B; FM25CL64B; FM25CL6
- 2.2 "Failure Mechanism Based Stress Test Qualification for Integrated Circuits" AEC-Q100 Rev. G.
- 2.3 Ramtron FM25V10-G Qualification Report, Document #02-60-5119, dated November 23, 2009.

3 RELIABILITY STRESS TESTS

- 3.1 Pre-conditioning of Samples, AEC-Q100 Test #A1
- 3.1.1 Inspection method: JEDEC JESD22 A113-C
- 3.1.2 Stress Conditions: Moisture Sensitivity Level 3 soak conditions (30°C, 60%

Relative Humidity for 192 hrs), three cycles of reflow at 260 °C

- 3.1.3 Purpose: The purpose of the pre-conditioning of samples prior to HAST, Autoclave and Temperature Cycle is to simulate typical solder reflow operation.
- 3.1.4 Sample size: 80 units per lot per test (240 units from each lot)
- 3.1.5 Accept/Reject Criteria: Accept the lot on 0 failures, reject on 1 failure from sample. A device is considered to fail if it is unable to electrically operate within the parameters detailed in the Device Specification for functionality and AC and DC characteristics at an operating temperature of 25°C and 85°C. Failed devices are removed from the test and submitted to Failure Analysis for failure mode and mechanism identification.
- 3.1.6 Pre-conditioning Test Results:

TI 130nm Fabricated 1Mbit Monolithic	FM25V10-G	FM25V10-G	FM25V10-G
F-RAM	Fab	Fab	Fab
AEC-Q100 Grade 3	Lot# 8536300	Lot# 8673581	Lot# 8709155
Post Pre-Condition Electrical Test @ 25 °C	Ofails/240parts	Ofails/240parts	Ofails/240parts

W/B-Family Product AEC-Q100 Grade 3	FM25W256-G (256Kbit) UTL Assembly Lot 00001G	FM24W256-G (256Kbit) UTL Assembly Lot 00001G	FM24C64B-G (64Kbit) HANA Assembly Lot 00001G8
Post Pre-Condition Electrical Test @ 25 °C	0fails/240parts	0fails/240parts	0fails/240parts

Green 8-pin 4.0mm x 4.5mm TDFN	FM25CL64B-DG	FM25CL64B-DG	FM25CL64B-DG
AEC-Q100 Grade 3	(64Kbit)	(64Kbit)	(64Kbit)
	UTL Assembly Lot # 0399	UTL Assembly Lot# 0400	UTL Assembly Lot# 0410
Post Pre-Condition Electrical Test @ 25 °C	0fails/240parts	0fails/240parts	0fails/240parts

3.2 Highly Accelerated Stress Test (HAST), AEC-Q100 Test #A2

3.2.1 Inspection methods: **Preconditioning-** JEDEC JESD22 Method A113-C;

HAST- JEDEC JESD22 Method A110-B

3.2.2 Stress Conditions: **Preconditioning**: Moisture Sensitivity Level 3 soak conditions (30°C, 60%

Relative Humidity for 192 hrs), three cycles of reflow at 260 °C

HAST: 130°C, 85% Relative Humidity, P=33.3psia, biased at Vddmax, 96 hours

3.2.3 Purpose: The purpose of the Pre-conditioned HAST test is to detect defective packaging materials and processes used for the assembly of these parts. Preconditioning simulates a standard multiple solder reflow operation. HAST conditions accelerate the penetration of moisture through the package molding material and die passivation to the active die surface. Die Company Confidential

surface moisture, in turn, can initiate corrosion, ionic migration and other processes resulting in functional or parametric part failure.

3.2.4 Sample size: 77 devices per lot

3.2.5 Accept/Reject Criteria: Accept on 0 failures, reject on 1. A device is considered to fail if it is unable to electrically operate within the parameters detailed in the Device Specification for functionality and AC and DC characteristics at an operating temperature of 25°C and 85°C. Failed devices are removed from the test and submitted to Failure Analysis for failure mode and mechanism identification.

3.2.6 Pre-Conditioned HAST Test Result:

TI 130nm Fabricated 1Mbit Monolithic	FM25V10-G	FM25V10-G	FM25V10-G
F-RAM	Fab	Fab	Fab
AEC-Q100 Grade 3	Lot# 8536300	Lot# 8673581	Lot# 8709155
Post Pre-Conditioned HAST Electrical Test @ 25 °C	Ofails/77parts	Ofails/77parts	Ofails/77parts
Post Pre-Conditioned HAST Electrical Test @ 85 °C	Ofails/77parts	Ofails/77parts	Ofails/77parts

W/B-Family Product AEC-Q100 Grade 3	FM25W256-G (256Kbit) UTL Assembly Lot 00001G	FM24W256-G (256Kbit) UTL Assembly Lot 00001G	FM24C64B-G (64Kbit) HANA Assembly Lot 00001G8
Post Pre-Conditioned HAST Electrical Test @ 25 °C	0fails/77parts	0fails/77parts	Ofails/77parts
Post Pre-Conditioned HAST Electrical Test @ 85 °C	Ofails/77parts	Ofails/77parts	Ofails/77parts

Green 8-pin 4.0mm x 4.5mm TDFN AEC-Q100 Grade 3	FM25CL64B-DG (64Kbit) UTL Assembly Lot # 0399	FM25CL64B-DG (64Kbit) UTL Assembly Lot# 0400	FM25CL64B-DG (64Kbit) UTL Assembly Lot# 0410
Post Pre-Conditioned HAST Electrical Test @ 25 °C	0fails/77parts	Ofails/77parts	Ofails/77parts
Post Pre-Conditioned HAST Electrical Test @ 85 °C	Ofails/77parts	Ofails/77parts	Ofails/77parts

3.3 Preconditioned Autoclave (AC), AEC-Q100 Test #A3

3.3.1 Inspection Method: Preconditioning: JEDEC JESD22 Method A113-C Autoclave: JEDEC JESD22 Method A102 Rev. C

3.3.2 Stress Conditions: Preconditioning: Moisture Sensitivity Level 3 soak conditions (30°C, 60%

Relative Humidity for 192 hrs), three cycles of reflow at 260 °C Autoclave: 121°C, 29.7 psia 100% Relative Humidity, 96 hrs

3.3.3 Test Description: Preconditioning conditions simulate a standard multiple solder reflow operation. Unbiased autoclave is performed to evaluate the moisture resistance of non hermetic packages. This is a highly accelerated test which employs conditions of pressure, humidity and temperature to accelerate moisture penetration through external protective materials or along the interface between external protective materials and the metallic conductors passing through it.

- 3.3.4 Sample Size 77 parts per lot
- 3.3.5 Accept/Reject Criteria: Accept on 0 failures, Reject on 1 failure. A device is considered a failure if it is unable to electrically operate within the parameters detailed in the Device Specification for functionality and AC and DC characteristics at 25°C after stress. Failed devices are removed from the test and submitted to Failure Analysis for failure mode and mechanism identification.
- 3.3.6 Pre-Conditioned Autoclave (AC) Test Results:

TI 130nm Fabricated 1Mbit Monolithic	FM25V10-G	FM25V10-G	FM25V10-G
F-RAM AEC-Q100 Grade 3	Fab Lot# 8536300	Fab Lot# 8673581	Fab Lot# 8709155
Post Pre-Conditioned AC Electrical Test @ 25 °C	Ofails/77parts	Ofails/77parts	Ofails/77parts

W/B-Family Product AEC-Q100 Grade 3	FM25W256-G (256Kbit) UTL Assembly Lot 00001G	FM24W256-G (256Kbit) UTL Assembly Lot 00001G	FM24C64B-G (64Kbit) HANA Assembly Lot 00001G8
Post Pre-Conditioned AC Electrical Test @ 25 °C	0fails/77parts	Ofails/77parts	Ofails/77parts

Green 8-pin 4.0mm x 4.5mm TDFN AEC-Q100 Grade 3	FM25CL64B-DG (64Kbit) UTL Assembly Lot # 0399	FM25CL64B-DG (64Kbit) UTL Assembly Lot# 0400	FM25CL64B-DG (64Kbit) UTL Assembly Lot# 0410
Post Pre-Conditioned AC Electrical Test @ 25 °C	0fails/77parts	Ofails/77parts	Ofails/77parts

3.4 Preconditioned Temperature Cycling (TC), AEC-Q100 Test #A4

3.4.1 Inspection method: Preconditioning: JEDEC Method A113-C;

Temperature Cycling: JESD22, Method A104, Rev. B

3.4.2 Stress Conditions: Preconditioning: Moisture Sensitivity Level 3 soak conditions (30°C, 60%

Relative Humidity for 192 hrs), three cycles of reflow at 260 °C

Temperature Cycling: -50°C to +125°C, 500 cycles

Wire Pull on decapped units – 3 grams min

- 3.4.3 Test Description: Preconditioning conditions simulate a standard multiple solder reflow operation. Temperature cycling stress testing is used to subject devices to severe temperature gradients by cycling the parts into hot and cold air. This test evaluates package strength, bond quality, and assembly process consistency. The test will reveal any thermal expansion mismatches in the die or die/package interfaces. At the conclusion of the temperature cycling test, an electrical functional and parametric test is performed at 25°C and 85°C. The 5 units from each lot are decapped and Wire Pull testing performed.
- 3.4.4 Sample size: 77 parts per lot.
- 3.4.5 Accept/Reject Criteria: Accept on 0 failures, Reject on 1 failure. A device is considered a failure if it is unable to electrically operate within the parameters detailed in the Device Specification for functionality and AC and DC characteristics at 25°C

and 85°C after stress. 5 decapped units for wire bond pull testing must meet 3 gram minimum. Failed devices are removed from the test and submitted to Failure Analysis for failure mode and mechanism identification.

3.4.6 Pre-Conditioned TC Test Results:

TI 130nm Fabricated 1Mbit Monolithic F-RAM AEC-Q100 Grade 3	FM25V10-G Fab Lot# 8536300	FM25V10-G Fab Lot# 8673581	FM25V10-G Fab Lot# 8709155
Post Pre-Conditioned TC Electrical Test @ 25 °C (500cycles -50°C to +125°C)	Ofails/77parts	0fails/77parts	Ofails/77parts
Post Pre-Conditioned TC Electrical Test @ 85 °C (500cycles -50°C to +125°C)	Ofails/77parts	Ofails/77parts	Ofails/77parts
Post Pre-Conditioned TC Wire Pull Test	Ofails/5 units	Ofails/5 units	Ofails/5 units

W/B-Family Product AEC-Q100 Grade 3	FM25W256-G (256Kbit) UTL Assembly Lot 00001G	FM24W256-G (256Kbit) UTL Assembly Lot 00001G	FM24C64B-G (64Kbit) HANA Assembly Lot 00001G8
Post Pre-Conditioned TC Electrical Test @ 25 °C (500cycles -50°C to +125°C)	Ofails/77parts	Ofails/77parts	Ofails/77parts
Post Pre-Conditioned TC Electrical Test @ 85 °C (500cycles -50°C to +125°C)	Ofails/77parts	Ofails/77parts	Ofails/77parts
Post Pre-Conditioned TC Wire Pull Test	Ofails/5 units	Ofails/5 units	Ofails/5 units

Green 8-pin 4.0mm x 4.5mm TDFN AEC-Q100 Grade 3	FM25CL64B-DG (64Kbit) UTL Assembly Lot # 0399	FM25CL64B-DG (64Kbit) UTL Assembly Lot# 0400	FM25CL64B-DG (64Kbit) UTL Assembly Lot# 0410
Post Pre-Conditioned TC Electrical Test @ 25 °C (500cycles -65C to 150C)	Ofails/77parts	Ofails/77parts	Ofails/77parts
Post Pre-Conditioned TC Electrical Test @ 85 °C (500cycles -65C to 150C)	Ofails/77parts	Ofails/77parts	Ofails/77parts

Green 8-pin 4.0mm x 4.5mm TDFN	FM25CL64B-DG	FM25CL64B-DG	FM25CL64B-DG
AEC-Q100 Grade 3	(64Kbit)	(64Kbit)	(64Kbit)
	UTL Assembly	UTL Assembly	UTL Assembly
	Lot # 0399	Lot# 0400	Lot# 0410
Post Pre-Conditioned TC Electrical Test @	0fails/77parts	0fails/77parts	Ofails/77parts
25 °C (500cycles -50°C to +125°C)			
Post Pre-Conditioned TC Electrical Test @	Ofails/77parts	Ofails/77parts	Ofails/77parts
85 °C (500cycles -50°C to +125°C)	-	_	_

3.5 High Temperature Storage Life (HTSL), AEC-Q100 Test #A6

3.5.1 Inspection method: JESD22, Method A103, Rev. B

3.5.2 Stress Conditions: 150°C, 500 hrs.

Document No. 001-85617 Rev. *E ECN #:4806826

- 3.5.3 Purpose: The purpose of the high temperature storage life test is determine the effects of time and temperature, under storage conditions, for thermally activated failure mechanisms, including non volatile memory devices.
- 3.5.4 Sample size: One Lot of 45 samples
- 3.5.5 Accept/Reject Criteria: Accept the lot on 0 failures, reject on 1 failure for a sample size of 45 parts from 1 lot. A device is considered to fail if it is unable to electrically operate within the parameters detailed in the Device Specification for functionality and AC and DC characteristics at an operating temperature of 25°C. Failed devices are removed from the test and submitted to Failure Analysis for failure mode and mechanism identification.
- 3.5.6 High Temperature Storage Life (HTSL) Test Results:

W/B-Family Product	FM24C64B-G	FM25640B-G	FM25C160B-G	FM24CL64B
AEC-Q100 Grade 3	(64Kbit)	(64Kbit)	(16Kbit)	(64Kbit)
	Fab	Fab	Fab	Fab
	Lot L3804G8	Lot L3807G5	Lot AM1300G1	Lot L3803G4
			(Rev AB)	
Post HTSL (1,000 hour, 150°C	0fails/45parts	Ofails/45parts	Ofails/45parts	Ofails/45parts
Bake) Electrical Test 25°C				
Post HTSL (1,000 hour, 150°C	0fails/45parts	Ofails/45parts	Ofails/45parts	Ofails/45parts
Bake) Electrical Test 125°C				

3.6 High Temperature Operating Life (HTOL), AEC-Q100 Test #B1

- 3.6.1 Inspection method: JESD22, Method A108, Rev. B
- 3.6.2 Stress Conditions: 125°C, Vddmax, Operating 1000 hrs
- 3.6.3 Purpose: The purpose of the high temperature operating life test is to simulate device operation at elevated temperatures and higher than nominal operating voltages. The data obtained from this test is translated to a lower temperature (55°C) by using the Arhennius temperature acceleration modeling. The acceleration factor and distribution of failures accumulated is then fit to the appropriate failure distribution equation to statistically predict product end of operating life.
- 3.6.4 Sample size: Three lots of 77 samples each.
- 3.6.5 Accept/Reject Criteria: Accept the lot on 0 failures, reject on 1 failure. A device is considered to fail if it is unable to electrically operate within the parameters detailed in the Device Specification for functionality and AC and DC characteristics at an operating temperature of 25°C, 85°C and -40°C. Failed devices are removed from the test and submitted to Failure Analysis for failure mode and mechanism identification.
- 3.6.6 HTOL Test Results:

TI 130nm Fabricated 1Mbit Monolithic F-RAM AEC-Q100 Grade 3	FM25V10-G Fab Lot# 8536300	FM25V10-G Fab Lot# 8673581	FM25V10-G Fab Lot# 8709155
Endurance: 1 E5 Cycles at 3.65V	0fails/77parts	0fails/77parts	0fails/77parts
Post Pre-Conditioned HTOL Electrical Test @ 25 °C	Ofails/77parts	Ofails/77parts	Ofails/77parts
Post Pre-Conditioned HTOL Electrical Test @ 85 °C	Ofails/77parts	Ofails/77parts	Ofails/77parts
Post Pre-Conditioned HTOL Electrical Test @ -40 °C	Ofails/77parts	0fails/77parts	Ofails/77parts

W/B-Family Product	FM24W256-G	FM5640B-G	FM24C64B-G	FM25C160B-G	FM24CL64B-G
AEC-Q100 Grade 3	(256Kbit)	(64Kbit)	(64Kbit)	(16Kbit)	(64Kbit)
	Fab	Fab	Fab	Fab	
	Lot 00001G	Lot L3807G5	Lot L3804G8	Lot AM1300G1	Lot L3803G4
				(Rev AB)	
Post Pre-Conditioned HTOL	Ofails/77parts	0fails/77parts	Ofails/77parts	0fails/77parts	Ofails/77parts
Electrical Test @ 25 °C					
Post Pre-Conditioned HTOL	Ofails/77parts	0fails/77parts	0fails/77parts	0fails/77parts	0fails/77parts
Electrical Test @ 85 °C					
Post Pre-Conditioned HTOL	16fails/77parts*	Ofails/77parts(Ofails/77parts(p	0fails/77parts(p	0fails/77parts(p
Electrical Test @ -40 °C	(<u>not</u> pre-tested	pre & post	re & post tested	re & post tested	re & post tested
	at -40C)	tested at -40C)	at -40C)	at -40C)	at -40C)

^{*}Cold Temperature Failures resulted in TPU specification change (look-ahead lot not pre-tested at -40C). Test escape, not related to HTOL stress.

3.7 Early Life Failure Rate (ELFR), AEC-Q100 Test #B2

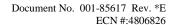
3.7.1 Inspection method: AEC-Q100-008.

3.7.2 Stress Conditions: 125°C, Vddmax, 48 hours.

3.7.3 Test Description: The units are tested per the High Temp Operating Life requirements of Jedec 22-A108.

3.7.4 Sample size: 800 per lot

3.7.5 Accept/Reject Criteria: Accept on 0, reject on 1.


3.7.6 Early Life Failure Rate (ELFR) Test Results:

TI 130nm Fabricated 1Mbit Monolithic F-RAM AEC-Q100 Grade 3	FM25V10-G Fab Lot# 8536300	FM25V10-G Fab Lot# 8673581	FM25V10-G Fab Lot# 8709155
Post Pre-Conditioned ELFR Electrical Test @ 25 °C	Ofails/800parts	0fails/800parts	Ofails/800parts
Post Pre-Conditioned ELFR Electrical Test @ 85 °C	Ofails/800parts	Ofails/800parts	Ofails/800parts

W/B-Family Product	FM25640B-G	FM24C64B-G	FM25C160B-G
AEC-Q100 Grade 3	(64Kbit)	(64Kbit)	(64Kbit)
	Fab	Fab	Fab
	Lot L3807G5	Lot L3804G8	Lot AM1300G1
			(Rev AB)
Post Pre-Conditioned ELFR Electrical Test	Ofails/800parts	Ofails/800parts	Ofails/800parts
@ 25 °C			
Post Pre-Conditioned ELFR Electrical Test	0fails/800parts	Ofails/800parts	Ofails/800parts
@ 85 °C			

3.8 NVM Endurance, Data Retention and Operational Life (EDR), AEC-Q100 Test #B3

3.8.1 Inspection method: AEC-Q100-005

3.8.2 Stress Conditions: Program/Endurance: 1E5 Cycles at 3.65V

High Temperature Storage: 125°C, 1000 hrs.

3.8.3 Purpose: Devices are first exercised through the Program/Endurance test, then HTSL.

3.8.4 Sample size: 77 per lot.

3.8.5 Accept/Reject Criteria: Accept on 0 failures, reject on 1 failure. A device is considered to fail if it is unable to electrically operate within the parameters detailed in the Device Specification for functionality and AC and DC characteristics at an operating temperature of 25°C and 85°C. Failed devices are removed from the test and submitted to Failure Analysis for failure mode and mechanism identification.

3.8.6 NVM Endurance (EDR) Test Results:

NVM Endurance, Data Retention, and HTSL

TI 130nm Fabricated 1Mbit Monolithic	FM25V10-G	FM25V10-G	FM25V10-G
F-RAM	Fab	Fab	Fab
AEC-Q100 Grade 3	Lot# 8536300	Lot# 8673581	Lot# 8709155
Endurance Testing per AEC Q100-005	0 fails/77 parts	0 fails/77 parts	0 fails/77 parts
1E 5 Cycles, 3.65V			
Read Zeros	0 fails/77 parts	0 fails/77 parts	0 fails/77 parts
Read Ones	0 fails/77 parts	0 fails/77 parts	0 fails/77 parts
Post RETN Electrical Test 25°C (HTSL)	0 fails/77 parts	0 fails/77 parts	0 fails/77 parts
Post RETN Electrical Test 85°C (HTSL)	0 fails/77 parts	0 fails/77 parts	0 fails/77 parts

W/B-Family Product AEC-Q100 Grade 3	FM25640B-G (64Kbit) Fab Lot L3807G5	FM24C64B-G (64Kbit) Fab Lot L3804G8	FM25C160B-G (64Kbit) Fab Lot AM1300G1 (Rev AB)
Read Zeros	0 fails/77 parts	0 fails/77 parts	0 fails/77 parts
Read Ones	0 fails/77 parts	0 fails/77 parts	0 fails/77 parts
Post RETN Electrical Test 25°C (HTSL)	0 fails/45 parts	0 fails/45 parts	0 fails/45 parts
Post RETN Electrical Test 85°C (HTSL)	0 fails/45 parts	0 fails/45 parts	0 fails/45 parts

3.9 Wire Bond Shear Test (WBS), AEC-Q100 Test #C1

3.9.1 Inspection Method: AEC-Q100-001

3.9.2 Stress Conditions: 12.4 grams minimum.

- 3.9.3 Purpose: This test establishes a procedure for determining the strength of the interface between the gold ball bond and a package bonding surface on either pre-encapsulated or post encapsulated devices. Family data is acceptable for this test.
- 3.9.4 Sample size: 30 bonds from a minimum of 5 devices
- 3.9.5 Accept/Reject Criteria: Accept the lot on 0 failures, reject on 1 failure, and Cpk >1.33or Ppk>1.67
- 3.9.6 Wire Bond Shear (WBS) Test Results: (Family Data)

W/B-Family Product Assembled at			
HANA	Min	Avg	CPK
FM24C04B-GA	15.01	22.88	1.73
FM24C16B-G	13.74	22.43	1.62
FM24C64B-GA	15.10	21.47	1.71
FM24CL04B-GA	15.05	19.22	1.51

W/B-Family Product Assembled at			
UTAC	Min	Avg	PPK
FM25040B-G	20.65	22.46	3.45
FM25L04B-G	20.50	24.17	2.20
FM25640B-G	20.79	23.62	2.42
FM25CL64B-G	20.15	23.29	2.44

3.10 Wire Bond Pull Test (WBP), AEC-Q100 Test #C2

- 3.10.1 Inspection Method: MIL-STD883 Method 2011
- 3.10.2 Stress Conditions: For gold bond wires <1mil diameter, wipe bond pull is performed with the hook over the ball bond, and not mid-wire method; 2.4g min.
- 3.10.3 Purpose: This test establishes a procedure for determining the strength of the interface between the gold ball bond and a package bonding surface on either pre-encapsulated or post encapsulated devices. Family data is acceptable for this test.
- 3.10.4 Sample size: 30 bonds from a minimum of 5 devices
- 3.10.5 Accept/Reject Criteria: Accept the lot on 0 failures, reject on 1 failure, and Cpk >1.33or Ppk>1.67
- 3.10.6 Wire Bond Shear (WBS) Test Results: (Family Data)

W/B-Family Product Assembled at			
HANA	Min	Avg	CPK
FM24C04B-GA	5.01	6.57	3.73
FM24C16B-G	5.04	6.53	3.66
FM24C64B-GA	5.31	6.32	4.10
FM24CL04B-GA	5.16	6.50	4.05

W/B-Family Product Assembled at			
UTAC	Min	Avg	PPK
FM25040B-G	6.66	7.25	7.10
FM25L04B-G	6.32	7.14	4.25
FM25640B-G	6.86	7.41	4.62
FM25CL64B-G	6.69	7.29	4.53

3.11 Solderability (SD), AEC-Q100 Test #C3

3.11.1 Inspection method: JEDEC Method B102-C

3.11.2 Stress Conditions: 8 hour steam aging prior to solderability test

- 3.11.3 Purpose: The purpose of this test is to determine the solderability of device package terminal leads intended to be joined to another surface using solder. Family data is acceptable for this test.
- 3.11.4 Sample size: 15 samples from 1 lot.
- 3.11.5 Accept/Reject Criteria: Accept the lot on 0 failures, reject on 1 failure.
- 3.11.6 Solderability (SD) Test Results: (Family Data)

	8-Lead Green SOIC Assembled at UTL Lot #00001G1, FM24W256-G	8-Lead Green SOIC Family Data from HANA
Sample Size	15	15
Pass/fail	15 passes/0 fails	15 passes/0 fails

3.12 Physical Dimensions (PD), AEC-Q100 Test #C4

3.12.1 Inspection method: JEDEC Method B100

3.12.2 Stress Conditions: N/A

- 3.12.3 Purpose: Package outline and leads measured for concurrence with the Device Specification package drawing.

 Measurements are made with micrometers to determine adherence to specifications (Jedec MS-012). Family data is acceptable for this test.
- 3.12.4 Sample size: 10 units per lot
- 3.12.5 Accept/Reject Criteria: Accept the lot on 0 failures, reject on 1 failure. Cpk > 1.3, ppk > 1.67
- 3.12.6 Family Data Physical Dimension (PD) Results:

HANA 8-lead Green SOIC (02-60-5120)	Lot# 94078052	Lot# 94725581	Lot# 95378251	Ppk
Sample Size	10	10	10	
A Overall Package Height Lot average Spec: 1.35-1.75mm	1.513	1.544	1.54	5.28
b Lead Width Lot average Spec: .3351 mm	0.453	0.447	0.438	3.46
D Overall Package Length Lot Average Spec:4.80-5.00mm	4.925	4.954	4.961	3.14
E Overall Package Width Lot Average Spec: 5.80-6.20mm	5.941	5.92	5.948	7.4

UTL Green 8-lead SOIC (02-60-5113)				
Sample Size	10	10	10	Ppk
A Overall Package Height Lot average Spec: 1.35-1.75mm	1.6	1.596	1.599	7.46
b Lead Width Lot average Spec: .3351 mm	0.431	0.435	0.448	2.34
D Overall Package Length Lot Average Spec:4.80-5.00mm	4.931	4.925	4.919	2.26
E Overall Package Width Lot Average Spec: 5.80-6.20mm	6.028	6.035	6.037	6.67

3.13 Electrostatic Discharge - Human Body Model (ESD-HBM) AEC-Q100 Test #E2

- 3.13.1 Test Method: AEC-Q100-002
- 3.13.2 Stress Conditions: Human Body Model, 100pF discharge through a 1.5K-ohm resistor.
- 3.13.3 Test Description: The purpose of the electrostatic discharge test is to classify the components as to their sensitivity to static electricity by using the Human Body Model as detailed in JEDEC A114-B (100pF discharged through 1.5K ohms). The devices are subjected to voltage ranging from 500V through 4500V for each group of three (3) devices.
- 3.13.4 Sample size: 3 parts per voltage group tested.
- 3.13.5 Accept/Reject Criteria: A device passed a voltage level if all devices in the sample group stressed at that voltage and below pass.

NOTE: A device is considered a failure if it is unable to operate electrically within the device parameters detailed in the Device Specification after ESD stress is applied.

3.13.6 ESD HBM Test Results:

Voltage	FM24C04B	FM24CL04B	FM24C16B	FM24CL16B	FM24C64B	FM24CL64B	FM24W256
	Lot #	Lot #	Lot #	Lot #	Lot #	Lot #	Lot #
	00001G4	00001G5	L3800G9	00001G7	00001G8	00001G9	A00001G1
HBM 500V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 1000V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 1500V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 2000V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 2500V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 3000V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 3500V	Fail	Pass	Pass	Pass	Pass	Pass	Pass
HBM 4000V	Fail	Fail	Pass	Pass	Pass	Pass	Fail
HBM 4500V	Fail	Fail	Fail	Pass	Pass	Pass	Pass

Voltage	FM25040B Lot # 00001G	FM25L04B Lot # 00001G1	FM25C160B Lot # L4103G3	FM25L16B Lot # L3807G11	FM25640B Lot# L3807G5	25CL64B Lot # 00001G3	FM25W256 Lot # B00001G
HBM 500V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 1000V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 1500V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 2000V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 2500V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 3000V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 3500V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
HBM 4000V	Fail	Pass	Pass	Pass	Pass	Pass	Pass
HBM 4500V	Fail	Pass	Pass	Pass	Pass	Pass	Pass

3.14 Electrostatic Discharge – Charged Device Model (CDM) AEC-Q100 Test #E3

- 3.14.1 Test Method: AEC-Q100-011
- 3.14.2 Stress Conditions: Transferring of electrostatic charge between bodies at different electrostatic potentials, with circuitry as described in section 2.1 of AEC–Q100-011 Rev. B, Direct Charge or Field Induced Charge.
- 3.14.3 Test Description: The purpose of the electrostatic discharge test is to classify the components as to their sensitivity to static electricity by using the Charged Device Model as detailed in AEC Q100-011. The devices are subjected to voltage ranges from 250V to 1250V.
- 3.14.4 Sample size: 3 parts per voltage group tested.
- 3.14.5 Accept/Reject Criteria: A device passes a voltage level if all devices in the sample group stressed at that voltage and below pass. A device is considered a failure if it is unable to operate electrically within the device parameters detailed in the Device Specification after ESD stress is applied.
- 3.14.6 Test Summary: ESD CDM Results

Voltage	FM24C04B Lot # 00001G4	FM24CL04 B Lot # 00001G5	FM24C16B Lot # L3800G9	FM24CL16B Lot # 00001G7	FM24C64B Lot # 00001G8	FM24CL64B Lot # 00001G9	FM24W256 Lot # A00001G1
CDM 250V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
CDM 500V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
CDM 750V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
CDM 1000V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
CDM 1250V	Pass	Pass	Pass	Pass	Pass	Pass	Pass

Voltage	FM25040B	FM25L04B	FM25C160B	FM25L16B	FM25640B	25CL64B	FM25W256
	Lot # 00001G	Lot #	Lot #	Lot #	Lot#	Lot #	Lot #
		00001G1	L4103G3	L3807G11	L3807G5	00001G3	B00001G
CDM 250V	Pass	Pass	Pass	Pass	Pass	Pass	Pass

| CDM 500V | Pass |
|-----------|------|------|------|------|------|------|------|
| CDM 750V | Pass |
| CDM 1000V | Pass |
| CDM 1250V | Pass |

3.15 Latch-up Immunity (LU) AEC-Q100 Test #E4

3.15.1 Test Method: AEC-Q100-004

3.15.2 Stress Conditions: Latch-Up: Must pass - 100mA current injection, each input pin.

Tested to –300mA current injection, each input pin.

Vsupply Over-Voltage Test

- 3.15.3 Test Description: The Latch-Up Immunity test assesses the devices susceptibility to latch-up at maximum operating temperatures (85°C). A negative current is applied to each package pin (pin to Vss then pin to Vcc). The current is incremented to -300mA, although AEC Q100-011 only requires -100mA. The device Icc current is measured after each current increment and compared to the maximum value as detailed in the Device Specification.
- 3.15.4 Sample size: 6 parts from one lot.
- 3.15.5 Accept/Reject Criteria: Accept on 0 failures and reject on one failure.
- 3.15.6 Latch-Up (LU) Test Results:

Stress	FM24C04B	FM24CL04	FM24C16B	FM24CL16B	FM24C64B	FM24CL64B	FM24W256
	Lot #	B Lot #	Lot #	Lot #	Lot #	Lot #	Lot #
	00001G4	00001G5	L3800G9	00001G7	00001G8	00001G9	A00001G1
LU +300mA at 85C	Pass	Pass	Pass	Pass	Pass	Pass	Pass

Stress	FM25040B	FM25L04B	FM25C160B	FM25L16B	FM25640B	25CL64B	FM25W256
	Lot # 00001G	Lot #	Lot #	Lot #	Lot#	Lot #	Lot #
		00001G1	L4103G3	L3807G11	L3807G5	00001G3	B00001G
LU +300mA at 85C	Pass	Pass	Pass	Pass	Pass	Pass	Pass

3.16 Electrical Distributions (ED) AEC-Q100-009 Test #E5

- 3.16.1 Test Description: Selected parameters from the Characterization test program are tested and datalogged at 3 temperatures, 25C, 90C, and -45C. The data is stored in an excel spreadsheet that then has pivot tables created from it to generate Ppks.
- 3.16.2 Sample size: 30 parts from each of the 3 lots
- 3.16.3 Accept/Reject Criteria: Accept Ppk>1.67

Electrical Distribution	FM24C04B-G	FM25CL64B-G	FM25L04B-G	FM25040B-G
Lots/Temperatures	Lot #00001G4	Lot: A00001G3	Lot:A00001G1	Lot:A00001G
	(10 pcs)	(30 pcs)	(30 pcs)	(30 pcs)
+25 Degrees C	Average Ppk >1.67	Average Ppk >1.67	Average Ppk >1.67	Average Ppk >1.67
+90 Degrees C	Average Ppk >1.67	Average Ppk >1.67	Average Ppk >1.67	Average Ppk >1.67
-45 Degrees C	Average Ppk >1.67	Average Ppk >1.67	Average Ppk >1.67	Average Ppk >1.67

3.15.4 Results: Pass – All average Ppks > 1.67 for all lots at all temperatures.

3.17 Electrically Induced Gate Leakage (GL) AEC-Q100 Test #E8

- 3.17.1 Inspection method: AEC-Q100-006 Rev. D.
- 3.17.2 Stress Conditions: 155°C, + 20kVDC.
- 3.17.3 Test Description: This test is used to determine surface mount integrated circuit susceptibility to Electro-Thermally induced Parasitic Gate Leakage.
- 3.17.4 Sample size: 6 units from one lot.
- 3.17.5 Accept/Reject Criteria: Accept 0, Reject on 1.
- 3.17.6 Gate Leakage (GL) Test Results:

Part Number	<u>Lot Number</u>	<u>+20kVDC</u>	<u>-20kVDC</u>
FM25V10-G	Lot 8536300	Ofails/3parts	Ofails/3parts
FM24W256-G	Lot 00001G	Ofails/3parts	Ofails/3parts
FM25CL64B	Lot #L3802G7	Ofails/3parts	Ofails/3parts

4 CONCLUSIONS

4.1 Based on this successful completion of the FRAM Product Qualification testing, the FM24C04B-G;FM24CL04B-G FM24C16B-G; FM24CL16B-G; FM24CL16B-DG; FM24CL64B-G; FM24CL64B-G; FM25CL64B-DG; FM25CL64B-DG; FM25L04B-G; FM25L04B-DG; FM25CL64B-DG; FM25CL64B-DG

5 ADDITIONAL REPORTS and DATA

- 5.1 Electrostatic Discharge Machine Model (MM)
- 5.1.1 Test Method: JEDEC 22-A115
- 5.1.2 Stress Conditions: Machine Model, 200pF discharge through no resistance.
- 5.1.3 Test Description: The purpose of the electrostatic discharge test is to classify the components as to their sensitivity to static electricity by using the Machine Model test method.
- 5.1.4 Sample size: 3 parts per voltage group tested.

Document No. 001-85617 Rev. *E ECN #:4806826

5.1.5 Accept/Reject Criteria: A device passes a voltage level if all devices in the sample group stressed at that voltage and below pass. A device is considered a failure if it is unable to operate electrically within the device parameters detailed in the Device Specification after ESD stress is applied.

5.1.6 Test Summary: ESD MM Results

Voltage	FM25040B Lot # 00001G	FM25L04B Lot # 00001G1	FM25C160B Lot # L4103G3	FM25L16B Lot # L3807G11	FM25640B Lot# L3807G5	25CL64B Lot # 00001G3	FM25W256 Lot # B00001G
100V	Pass	Pass	100V Pass; 150V Fail	Pass	Pass	Pass	100V Pass; 150V Pass 150V Pass 190V Pass
200V	Pass	Pass	Pass	Pass	Pass	Pass	Fail
250V	Pass	Pass	Fail	Pass	Fail	Pass	Fail
300V	Fail	Fail	Pass	Pass	Fail	Pass	Fail
400V	Fail	Fail	Fail	Fail	Fail	Fail	Fail

Voltage	FM24C04B Lot # 00001G4	FM24CL04 B Lot # 00001G5	FM24C16B Lot # L3800G9	FM24CL16BL ot # 00001G7	FM24C64B Lot # 00001G8	FM24CL64B Lot # 00001G9	FM24W256 Lot # A00001G1
100V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
200V	Pass	Pass	Pass	Pass	Pass	Pass	Pass
250V	Pass	Pass	Pass	Pass	Pass	Pass	Fail
300V	Fail	Pass	Pass	Pass	Pass	Pass	Fail
400V	Fail	Fail	Fail	Fail	Fail	Fail	Fail

Document History Page

Document Title: QTP# 130104 AEC-Q100 GRADE 3 QUAL REPORT, B-W SERIAL F-RAM FAMILY 4KB TO

256KB PRODUCT QUALIFICATION

Document Number: 001-85617

Rev.	ECN Orig. of Description of Change		Description of Change
	No.	Change	
**	3868768	CNOR	Initial spec release.
*A	3908491	BECK	Added Reliability Failure Rate Summary
*B	3953945	BECK	Correct typo from "ITs" to "FITs"
*C	4559828	BECK	Update Page 1 to new template. Standardized from MSL1 to MSL3
*D	4700709	BECK	Update Page 4 to add "PRODUCT DESCRIPTION (for qualification)" Table and "TECHNOLOGY/FAB PROCESS DESCRIPTION" Tables for both Die 1 and Die 2. Update Page 5 to add "PACKAGE AVAILABILITY" Table and "MAJOR PACKAGE INFORMATION USED IN THIS QUALIFICATION" for the 8-LD SOIC Package. Update Page 6 to add "MAJOR PACKAGE INFORMATION USED IN THIS QUALIFICATION" for the TDFN and "ELECTRICAL TEST / FINISH DESCRIPTION" Table.
*E	4806826	ВЕСК	Indicated "Proprietary" Items on the "TECHNOLOGY/FAB PROCESS DESCRIPTION" Table, Page 4.

Distribution: WEB

Posting: None