Datasheet

TMR transmission speed sensor for magnetic encoder applications

Features

- High magnetic field sensitivity enables ultra-low jitter over high operating air-gap range
- Two wire PWM current interface
- Direction detection
- Vibration suppression (active via protocol suppression; passive via adaptive hysteresis)
- Differential sensing principle enables magnetic stray field robustness
- Flexible read allows top and side read sensing and makes bending of sensor leads obsolete
- EMC robust without the need of capacitors on sensor leads
- Comprehensive digital diagnostic interface, enabling readout of internal signals and electronic chip ID

Potential applications

- Ideal for the use in harsh environments, particularly automotive transmissions
- Suitable for all kinds of transmission systems including DHT (dedicated hybrid transmission) and EV (electric vehicle) concepts.

Product validation

Qualified for automotive applications. Product validation according AEC-Q100.

ISO 26262 safety element out of context for safety requirements up to ASIL B(D).

Description

The TLE5555iC is a differential magnetic speed sensor based on tunnel magnetoresistance (TMR) sensing technology. This technology enables best-in-class jitter and air gap performance and allows sensing flexibility in top and side read configuration. It basic function is provide information about the rotational speed and the direction of the rotation to the transmission control unit. Therefore the sensor family includes a sophisticated algorithm which actively suppress vibration. The output has been designed as a two wire current interface based on a PWM (pulse width modulation) principle. The TLE5555iC operates without external components and is fully EMC-compliant thanks to its capacitor integrated on silicon level.

The "ME" family members are designed for magnetic encoder (ME) applications. It comes in a RoHS compliant two-pin-package, qualified for automotive usage. For toothed wheel applications, other sensors are available.

Note

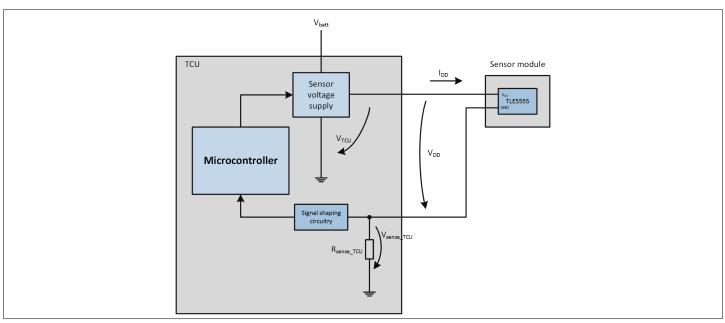
This document is an internet datasheet, it does not completely specify our products. Please contact Infineon if you need the full version of the datasheet.

Ordering information

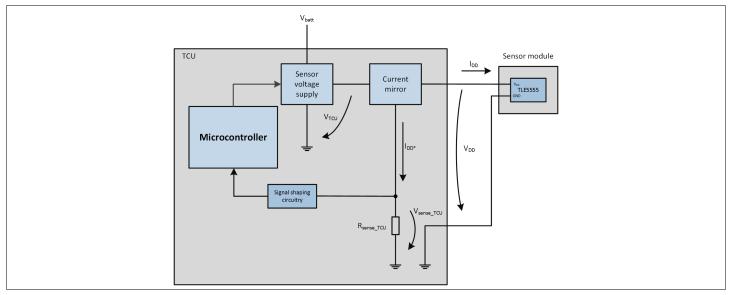
Product name	Ordering code	Marking	Package
TLE5555iC ME E0	SP003883456	55BDP0	PG-SSO-2-51
TLE5555iC ME E1	SP005832719	55BDP1	PG-SSO-2-51
TLE5555iC ME E4B	SP005829763	55BDP4	PG-SSO-2-51

Table of contents

Table of contents


	Table of contents	2
1	Pin description and application diagram	3
2	Operating range	5
3	Characteristics	6
4	Protocol timing	7
5	Application information	10
6	Package drawing	11
7	Revision history	12
	Disclaimer	

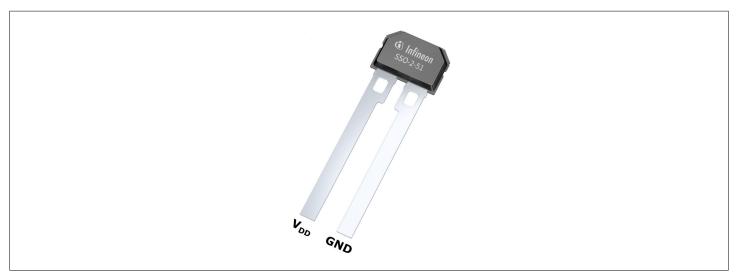
1 Pin description and application diagram


1 Pin description and application diagram

The device shall operate in the following application circuits: **1.** with sensing resistor connected to the GND pin of the sensor

Figure 1 TCU application circuit

2. in a current mirror configuration with the sensing element connected to the current mirror



 $I_{DD^{\star}}$ is the mirrored current of I_{DD}

1 Pin description and application diagram

Figure 3 Pin configuration

Pin No.	Symbol	Function
1	V _{DD}	positive supply
2	GND	negative supply

2 Operating range

2 Operating range

All parameters specified in the following sections refer to these operating conditions unless noted otherwise. For further details please refer also to any relevant application note.

Table 1 Operating range

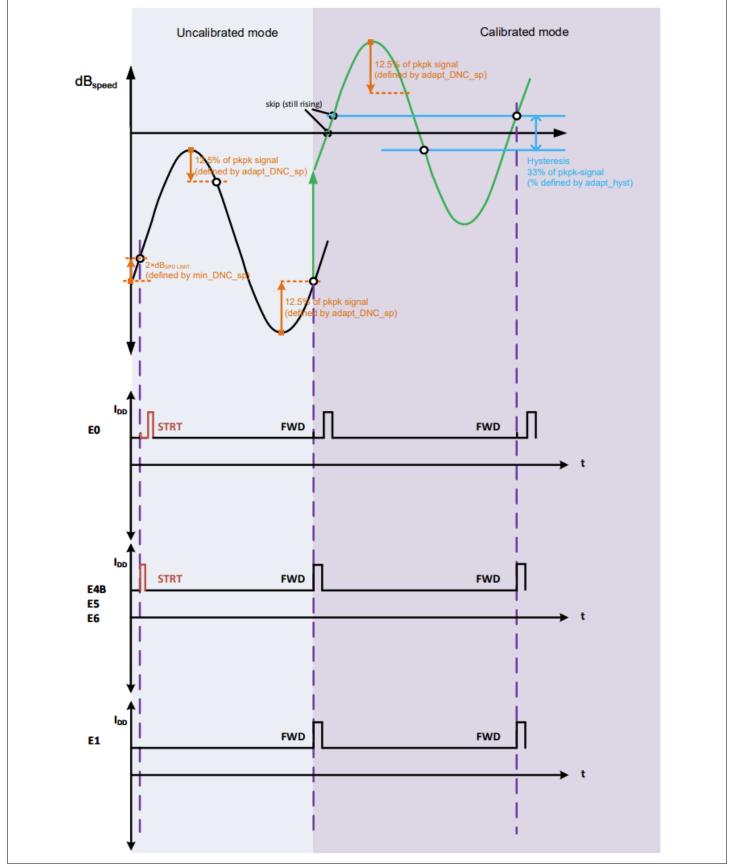
Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Supply voltage	V _{DD}	4.0	9.0	24.5	V	Measured on IC leads.
Operating junction temperature	TJ	-40		175	°C	2500h; T _J variations described in safety manual
Magnetic input frequency range	f _{MAG}	0		16	kHz	
Limit threshold speed	dB _{SPD_LIMIT}		74	124	μΤ	amplitude value; differential signal: R-L; at 25°C; $TC_{\Delta B}$ of typ1900ppm/K; 99.99% criterion

3 Characteristics

3 Characteristics

The product characteristics are valid over the operating range.

Table 2Characteristics


Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Supply current low	I _{LOW}	6.0	7.0	8.0	mA	
supply current high	I _{HIGH}	12.0	14.0	16.0	mA	
Supply current failure indication	/ _{FI}	2.0	3.0	3.5	mA	signal path deactivated
Supply current ratio	I _{HIGH} /I _{LOW}	1.9	2.0	2.2		
Supply current ratio	I _{LOW} /I _{FI}	2.0	2.2	2.95		
Output rise and fall slew rate	SR	8	17	26	mA/µs	between 10% to 90% of the nominal supply current levels I _{LOW} and I _{HIGH} ; R _M =75Ω
Power on time	t _{ON}			1	ms	after V _{DD} comparator release
Period jitter	S _{JIT}			0.3	%	1σ period jitter 1 x <i>dB</i> _{SPD_LIMIT} up to 12kHz
Overtemperature warning	T _{J_WRNNG}	165		185	°C	WRNNG pulses are delivered if T_J exceeds T_{J_WRNNG}
Valid for protocols with	h WRNNG pu	Ilses				
Low signal warning	dB _{WRNNG} / dB _{LIMIT}		2			WRNNG pulses are delivered if <i>dB</i> _{SPD} is below 2 x <i>dB</i> _{SPD LIMIT} ; or if <i>dB</i> _{DIR} is below 2 x <i>dB</i> _{DIR LIMIT}
VDD warning level	V _{DD WRNNG}	3.57	3.77	3.99	V	WRNNG pulses delivered in case of undervoltage; valid for protocols with WRNNG pulses
VDD reset level	V _{DD RESET}	2.85	3.00	3.26	V	<i>I</i> _{FI} in case of undervoltage; valid for protocols with WRNNG pulses
Valid for protocols with	hout WRNNG	G pulses				
VDD reset level	V _{DD RESET}	3.42	3.60	3.78	V	<i>I</i> _{FI} in case of undervoltage; valid for protocols without WRNNG pulses
Following characterist	ic depends o	on protoc	ol definit	tion		
Pulse without direction	n _{NODIR}	1	1	1	pulse	valid for protocols with STRT pulse;
information						on wheel rotation startup, the 1st pulse is a STRT pulse, the 2nd pulse provides correct direction information
Pulse without direction	n _{NODIR}	0	0	0	pulse	Valid for protocols without STRT pulse;
information						on wheel rotation startup, pulses are suppressed until direction information is available

4 Protocol timing

4

Protocol timing

Protocol timing description

4 Protocol timing

The sensor provides a PWM-protocol. The frequency of the PWM-pulses rising edges is proportional to the rotational speed of the rotating axis. The pulse width instead provides additional information such as the wheel rotation direction. The table below lists the pulse naming and description.

Pulse	Symbol	Description
STRT pulse	t _{STRT}	first pulse after power on, undervoltage, microbreak or temperature watchdog reset
FWD pulse	t _{FWD}	forward pulses are delivered during wheel rotation in forward direction
BWD pulse	t _{BWD}	backward pulses are delivered during wheel rotation in backward direction
WRNNG FWD pulse	t _{WRNNG_FWD}	warning forward pulses are delivered on low rotational speed if the sensor detects a warning condition and forward rotation direction
WRNNG BWD pulse	t _{WRNNG_BWD}	warning backward pulses are delivered on low rotational speed if the sensor detects a warning condition and backward rotation direction
SPD pulse	t _{SPD}	speed pulses are delivered at high rotational speed to prevent pulse overlapping
ALV pulse	t _{ALV}	alive pulse t _{ALV} is delivered every T _{ALV} at low frequency to ensure correct connection between sensor and TCU.
		If a speed and/or direction pulse is triggered during alive pulse, then this pulse will be delayed and delivered after the alive pulse.
ALV period	T _{ALV}	alive pulse t_{ALV} is delivered every T_{ALV} at low frequency to ensure correct connection between sensor and TCU

60/120/30 protocol (E0 sales type)

The 60/120/30 protocol is well established since decades in the transmission market. It provides rotational direction information only at low speed. This protocol is available as "E0" sales type.

Table 360/120/30 protocol timing

Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
STRT pulse	t _{STRT}	26.5	30	34	μs	
FWD pulse	t _{FWD}	52.5	60	67.5	μs	during wheel rotation from V _{DD} to GND; above a typical frequency of 1 kHz, SPD pulses are delivered
BWD pulse	t _{BWD}	105	120	135	μs	during wheel rotation from GND to V _{DD} ; above a typical frequency of 1 kHz, SPD pulses are delivered
SPD pulse	t _{SPD}	26.5	30	34	μs	above a typical frequency of 1 kHz, SPD pulses are delivered without direction information

4 Protocol timing

45/90/20 protocol (E4B sales type)

The 45/90/20 protocol is available as "E4B" sales type.

Table 445/90/20 protocol timing

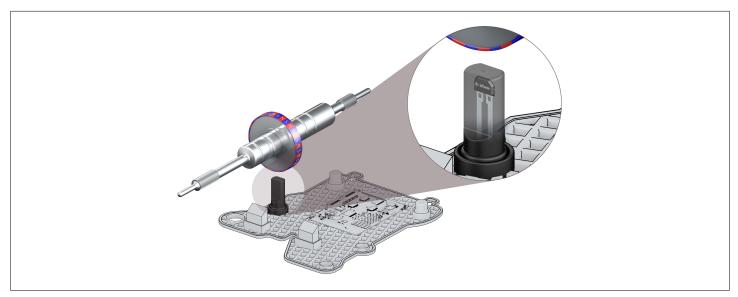
Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
STRT pulse	t _{STRT}	17	20	23	μs	
FWD pulse	t _{FWD}	39.5	45.0	50.5	μs	during wheel rotation from V _{DD} to GND; above a typical frequency of 14.3 kHz, SPD pulses are delivered
BWD pulse	t _{BWD}	79	90	100	μs	during wheel rotation from GND to V _{DD} ; above a typical frequency of 8.7 kHz, SPD pulses are delivered
WRNNG FWD pulse	t _{WRNNG_FWD}	158	180	202	μs	above a typical frequency of 4.8 kHz, FWD pulses are delivered
WRNNG BWD pulse	t _{WRNNG_BWD}	210	240	270	μs	above a typical frequency of 3.7 kHz, BWD pulses are delivered
SPD pulse	t _{SPD}	17.5	20	22.5	μs	
ALV pulse	t _{ALV}	444	500	556	μs	
ALV period	T _{ALV}	21.5	25.0	29.1	ms	time between following rising edges

45/180 protocol (E1 sales type)

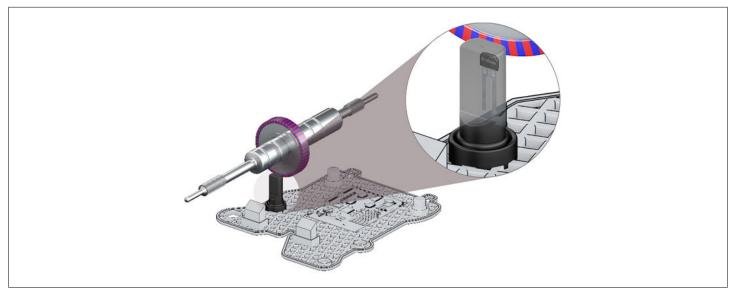
The 45/180 protocol is available as "E1" sales type.

Table 545/180 protocol timing

Parameter	Symbol		Values			Note or condition
		Min.	Тур.	Max.		
FWD pulse	t _{FWD}	39.5	45	50.5	μs	during wheel rotation from GND to V _{DD} ; above a typical frequency of 14.3 kHz, pulses overlap
BWD pulse	t _{BWD}	158	180	202	μs	during wheel rotation from V _{DD} to GND; above a typical frequency of 4.9 kHz, pulses overlap


Infineon

5 Application information


5 Application information

A magnetic encoder (also called pole wheel) is a magnetized wheel with a pre-defined magnetic pattern. In transmission applications typically a regular pattern is used resulting in a sinusoidal-like magnetic field over the wheel circumference. Such a magnetic encoder is mechanically attached to a rotating shaft of a transmission unit. With the movement of the shaft also the wheel with its corresponding magnetic field is rotating.

The TMR sensor detects the differential magnetic field (called dB_{SPD}) and provides an electrical output according to the movement of the wheel. The number of sensor pulses increases with increasing rotational speed of the shaft. The rotational speed of the shaft can be measured by counting the number of pulses delivered by the sensor within a certain time window. Additionally, the rotation direction of the shaft is determined by the sensor. Depending on the detected rotation direction a different pulse length is delivered via PWM (pulse width modulation) protocol.

Application example with sensor in side-read configuration

6 Package drawing

6

Package drawing

Sensing element location

infineon

7 Revision history

7

Revision history

Document version	Date of release	Description of changes
1.00	2023-12-12	First released internet version of datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-12-12 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFXjobid__202312128598234_LastLeaf 2

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.