

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-23398 Rev. *N

www.infineon.com 2024-07-29

SPI handler/driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration, and use of the serial peripheral interface (SPI)
handler/driver. This document explains the functionality of the driver and provides a reference to the driver's
API.

The installation, build process, and general information on the use of the EB tresos are not within the scope of
this document.

Intended audience

This document is intended for anyone who uses the SPI handler/driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the SPI handler/driver, explains the embedding in the

AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the SPI handler/driver details the steps on how to use the SPI handler/driver in your

application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies for the SPI
handler/driver.

Chapter 4 EB tresos Studio configuration interface describes the driver's configuration.

Chapter 5 Functional description gives a functional description of all services offered by the SPI handler/driver.

Chapter 6 Hardware resources gives a description of all hardware resources used.

The Appendix A and Appendix B provides a complete API reference and access register table.

Abbreviations and definitions

Table 1 Abbreviation

Abbreviation Description

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

Basic Software Standardized part of software which does not fulfill a vehicle

functional job.

DEM Diagnostic Event Manager

DET Default Error Tracer

GCE Generic Configuration Editor

http://www.infineon.com/

User guide 2 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

About this document

Abbreviation Description

EB tresos Studio Elektrobit Automotive configuration framework

ISR Interrupt Service Routine

µC Microcontroller

MCAL Microcontroller Abstraction Layer

MPU Memory Protection Unit

PCLK Peripheral Clock

SPI Serial Peripheral Interface

SCB Serial Communication Block

UTF-8 8-Bit Universal Character Set Transformation Format

Related documents

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.

[2] Specification of SPI handler/driver, AUTOSAR release 4.2,2.

[3] Specification of standard types, AUTOSAR release 4.2.2.

[4] Specification of default error tracer, AUTOSAR release 4.2.2.

Elektrobit automotive documentation

Bibliography

[5] EB tresos Studio for ACG8 user's guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[6] Layered software architecture, AUTOSAR release 4.2.2.

User guide 3 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 3

1 General overview ... 6

1.1 Introduction to the SPI handler/driver ... 6

1.2 User profile .. 6

1.3 Embedding in the AUTOSAR environment ... 7

1.4 Supported hardware ... 8

1.5 Development environment ... 8

1.6 Character set and encoding .. 8

2 Using the SPI handler/driver.. 9

2.1 Installation and prerequisites ... 9

2.2 Configuring the SPI driver ... 9

2.2.1 Architecture specifics ... 9

2.3 Adapting your application .. 9

2.4 Starting the build process ... 10

2.5 Measuring stack consumption .. 11

2.6 Memory mapping .. 11

2.6.1 Memory allocation keyword .. 11

2.6.2 Restriction of memory allocation .. 12

3 Structure and dependencies ... 13

3.1 Static files .. 13

3.2 Configuration files ... 13

3.3 Generated files .. 13

3.4 Dependencies .. 14

3.4.1 PORT driver .. 14

3.4.2 MCU driver .. 14

3.4.3 DIO driver .. 14

3.4.4 AUTOSAR OS ... 14

3.4.5 BSW scheduler .. 14

3.4.6 DET .. 14

3.4.7 DEM ... 14

3.4.8 Error callout handler .. 15

3.4.9 DMA ... 15

4 EB tresos Studio configuration interface .. 16

4.1 General configuration ... 16

4.2 SPI driver configuration .. 16

4.2.1 Channel configuration ... 16

4.2.2 Job configuration ... 17

4.2.3 External device configuration .. 18

4.2.4 Sequence configuration ... 21

4.2.5 SPI DEM event parameter references .. 22

4.2.6 SPI published information ... 22

4.3 Vendor and driver specific parameters .. 22

4.3.1 Container SpiGeneral ... 22

4.3.1.1 SpiErrorCalloutFunction ... 22

4.3.1.2 SpiIncludeFile .. 22

4.4 Other modules ... 23

User guide 4 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

Table of contents

4.4.1 PORT driver .. 23

4.4.2 DET .. 23

4.4.3 AUTOSAR OS ... 23

4.4.4 BSW scheduler .. 23

5 Functional description ... 24

5.1 Channels, jobs, and sequences ... 24

5.1.1 Channels ... 24

5.1.1.1 General .. 24

5.1.1.2 Internally buffered channels .. 25

5.1.1.3 Externally buffered channels .. 25

5.1.1.4 Data buffers ... 26

5.1.2 Jobs .. 26

5.1.3 Sequences .. 26

5.1.4 Scheduling .. 27

5.2 Inclusion .. 27

5.3 Initialization ... 27

5.4 Runtime reconfiguration ... 27

5.5 API parameter checking .. 27

5.5.1 AUTOSAR specified development errors ... 27

5.5.2 Vendor specific development errors ... 28

5.6 Production errors .. 29

5.7 Reentrancy ... 29

5.8 Sleep mode .. 29

5.9 Debugging support .. 29

5.10 Execution time dependencies .. 29

5.11 Deviation from AUTOSAR .. 29

5.12 Caveats .. 30

6 Hardware resources .. 31

6.1 Ports and pins .. 31

6.2 Timer .. 31

6.3 Interrupts ... 31

6.4 DMA .. 32

7 Appendix A – API reference ... 33

7.1 Include files.. 33

7.2 Data types .. 33

7.2.1 Spi_StatusType .. 33

7.2.2 Spi_JobResultType .. 33

7.2.3 Spi_SeqResultType .. 33

7.2.4 Spi_DataBufferType ... 34

7.2.5 Spi_NumberOfDataType .. 34

7.2.6 Spi_ChannelType ... 34

7.2.7 Spi_JobType ... 34

7.2.8 Spi_SequenceType .. 34

7.2.9 Spi_HWUnitType .. 35

7.2.10 Spi_AsyncModeType .. 35

7.2.11 Spi_ExtDeviceType ... 35

7.2.12 Spi_OvsValueType ... 35

7.3 Constants ... 36

7.3.1 Error codes ... 36

User guide 5 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

Table of contents

7.3.2 Vendor specific error codes ... 36

7.3.3 Version information ... 36

7.3.4 Module information ... 37

7.3.5 API service IDs .. 37

7.3.6 Vendor specific API service IDs .. 37

7.4 Functions ... 38

7.4.1 Spi_Init.. 38

7.4.2 Spi_DeInit ... 39

7.4.3 Spi_WriteIB ... 40

7.4.4 Spi_AsyncTransmit .. 41

7.4.5 Spi_ReadIB ... 42

7.4.6 Spi_SetupEB ... 43

7.4.7 Spi_GetStatus ... 44

7.4.8 Spi_GetJobResult ... 45

7.4.9 Spi_GetSequenceResult .. 46

7.4.10 Spi_GetVersionInfo .. 47

7.4.11 Spi_SyncTransmit .. 48

7.4.12 Spi_GetHWUnitStatus .. 49

7.4.13 Spi_Cancel .. 50

7.4.14 Spi_SetAsyncMode ... 51

7.4.15 Spi_GetBufferStatus .. 52

7.4.16 Spi_Terminate .. 53

7.4.17 Spi_ChangeOvsSetting .. 54

7.5 Scheduled functions ... 55

7.5.1 Spi_MainFunction_Handling ... 55

7.6 Required callback functions ... 56

7.6.1 SPI notification functions .. 56

7.6.1.1 Spi_JobEndNotification ... 56

7.6.1.2 Spi_SeqEndNotification ... 57

7.6.2 DET .. 57

7.6.2.1 Det_ReportError .. 57

7.6.3 DEM ... 58

7.6.3.1 Dem_ReportErrorStatus ... 58

7.6.4 Callout functions .. 58

7.6.4.1 Error callout API .. 58

8 Appendix B – Access register table ... 60

8.1 SCB ... 60

8.2 DW .. 68

Revision history... 71

Disclaimer... 73

User guide 6 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

1 General overview

1 General overview

1.1 Introduction to the SPI handler/driver

The SPI handler/driver is a set of software routines, which enables you to support SPI communication on
special output pins of the CPU.

The SPI handler/driver provides services for reading from and writing to devices connected via SPI buses. The

SPI handler/driver provides access to SPI communication for multiple users (e.g., EEPROM, watchdog, and I/O
ASICs). Only SPI master mode and full-duplex operation are supported.

The SPI handler/driver provides three levels of scalable functionality as specified in the AUTOSAR Specification

of SPI handler/driver [2]:

• Level 0 is a simple synchronous SPI handler/driver using a FIFO policy for multiple accesses.

• Level 1 is a basic asynchronous SPI handler/driver supporting interruptible sequences and priority based

scheduling.

• Level 2 is an enhanced SPI handler/driver supporting one hardware peripheral using synchronous transfers

as well as asynchronous transfers for the other peripherals.

The SPI handler/driver is not responsible for initializing or configuring hardware ports. This is done by the PORT
driver.

The SPI handler/driver conforms to the AUTOSAR standard and is implemented according to the AUTOSAR

Specification of SPI handler/driver [2].

1.2 User profile

This guide is intended for users with a basic knowledge of the following domains:

• Embedded systems

• C programming language

• AUTOSAR standard

• Target hardware architecture

User guide 7 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

1 General overview

1.3 Embedding in the AUTOSAR environment

Figure 1 Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. The SPI handler/driver (Figure 2) is part of the
microcontroller abstraction layer (MCAL), the lowest layer of basic software in the AUTOSAR environment.

For an exact overview of the AUTOSAR layered software architecture, see Layered software architecture [6].

Figure 2 SPI handler/driver in MCAL layer

User guide 8 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

1 General overview

1.4 Supported hardware

This version of the SPI handler/driver supports the TRAVEO™ T2G family. No special external hardware devices
are required.

The supported derivatives are listed in the release notes.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The modules Base, Dio, Make, Mcu, Port
and Resource are needed for proper functionality of the SPI handler/driver.

1.6 Character set and encoding

All source code files of the SPI driver are restricted to the ASCII character set. The files are encoded in UTF-8
format, with only the 7-bit subset (values 0x00 … 0x7F) being used.

User guide 9 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

2 Using the SPI handler/driver

2 Using the SPI handler/driver

This chapter describes all necessary steps to incorporate the SPI handler/driver into your application.

2.1 Installation and prerequisites

Note: Before continuing with this chapter, see the EB tresos Studio for ACG8 user's guide [5]. You can find

the required basic information about the installation procedure of EB tresos AUTOSAR

components and the use of the EB tresos and the EB tresos AUTOSAR build environment. You will
also find information on how to set up and integrate your own application within the EB tresos
AUTOSAR build environment there.

The installation of the SPI handler/driver corresponds with the general installation procedure for EB tresos

AUTOSAR components given in the documents mentioned above.

This document assumes that you have set up your project using the application template. This template

provides the necessary folder structure, project, and makefiles needed to configure and compile your
application within the build environment. You must be familiar with the use of the command shell.

2.2 Configuring the SPI driver

The SPI handler/driver can be configured with any AUTOSAR-compliant GCE tool. Save the configuration in a
separate file, for example, Spi.epc. For more information about the SPI handler/driver configuration, see

chapter 4 EB tresos Studio configuration interface.

2.2.1 Architecture specifics

• SpiSetupDelay: Specifies the timing to start transmission after chip select is activated.

• SpiHoldDelay: Specifies the timing of chip select to be inactive after a transmission is finished.

• SpiDeselect: Specifies the timing of chip select to be active again after being inactive.

• SpiUseDma: Enables or disables the DMA channel for communication.

• SpiUseFifo: Enables or disables the transmission using the FIFO functionality.

• SpiDmaChannelRx: Specifies the DMA channel to be used for receiving data.

• SpiDmaChannelTx: Specifies the DMA channel to be used for sending data.

• SpiForceOverwrite: Enables or disables forced overwrite of the control register.

• SpiClockRef: Specifies the frequency for the specific transmission unit.

• SpiErrorCalloutFunction: Specifies the error callout function.

• SpiIncludeFile: Specifies a file that must be included by Spi_ExternalInclude.h.

2.3 Adapting your application

To use the SPI handler/driver in your application, include the header files of SPI and PORT driver by adding the
following lines of code in your source file:

#include "Mcu.h" /* AUTOSAR MCU Driver */

#include "Port.h" /* AUTOSAR PORT Driver */

#include "Spi.h" /* AUTOSAR SPI Handler/Driver */

This publishes all required function and data prototypes and symbolic names of the configuration into the
application.

User guide 10 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

2 Using the SPI handler/driver

To use the SPI handler/driver, the appropriate port pins, SCB clock setting and SPI interrupts must be
configured in PORT driver, MCU driver, and OS. For detailed information, see chapter 6 Hardware resources.

Initialization of MCU, PORT, and SPI handler/driver needs to be done in the following order:

Mcu_Init(&Mcu_Config[0]);

Port_Init(&Port_Config[0]);

Spi_Init(NULL_PTR);

The function Port_Init() is called with a pointer to a structure of type Port_ConfigType, which is

published by the PORT driver itself.

If level 1 or level 2 functionality is used, an interrupt service routine must be configured in the AUTOSAR OS for

each asynchronous SPI peripheral as described in section 6.3 Interrupts.

When using level 2 functionality and the "polling" asynchronous mode, you must call the
Spi_MainFunction_Handling function cyclically. This can either be done by configuring the BSW scheduler
accordingly or by calling the Spi_MainFunction_Handling function from any other cyclic task. Note that the

"polling" mode is the default mode after initialization of the SPI handler/driver when using level 2 functionality.
To set "interrupt" mode instead, use the Spi_SetAsyncMode API function as described in section 7.4.14

Spi_SetAsyncMode.

All required input clocks for the configured hardware units (SCB) must be activated prior to initialization of the
SPI handler/driver. See section 3.4.2 MCU driver.

Your application must provide the notification functions and its declarations that you configured. The file

containing the declarations must be included using the SpiDriverConfiguration/SpiIncludeFile or

SpiDriverConfiguration/ SpiUserCallbackHeaderFile parameter. The SpiJobEndNotification

function and the SpiSeqEndNotification function take no parameters and have void return type:

void MyNotificationFunction(void)

{

/* Insert your code here */

}

The notification function is called from an interrupt or polling context and synchronous transmission process.

2.4 Starting the build process

Do the following to build your application:

Note: For a clean build, use the build command with target clean_all. before (make clean_all).

1. On the command shell, type the following command to generate the necessary configuration-dependent
files. See 3.3 Generated files.

> make generate

2. Type the following command to resolve required file dependencies:

> make depend

3. Type the following command to compile and link the application:

> make (optional target: all)

User guide 11 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

2 Using the SPI handler/driver

The application is now built. All files are compiled and linked to a binary file which can be downloaded to the
target hardware.

2.5 Measuring stack consumption

Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with a dedicated compiler option. The executable

file built in this step must be used only to measure stack consumption.

1. Add the following compiler option to the Makefile to enable stack consumption measurement.

-DSTACK_ANALYSIS_ENABLE

2. Type the following command to clean library files.

make clean_lib

3. Follow the build process described in 2.4 Starting the build process.

4. Follow the instructions in the release notes and measure the stack consumption.

2.6 Memory mapping

The Spi_MemMap.h file in the $(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0I0R0/include directory is a

sample. This file is replaced by the file generated by MEMMAP module. Input to MEMMAP module is generated
as Spi_Bswmd.arxml in the $(PROJECT_ROOT)/ output/generate_swcd/swcd directory of your project folder

2.6.1 Memory allocation keyword

• SPI_START_SEC_CODE_ASIL_B / SPI_STOP_SEC_CODE_ASIL_B

The memory section type is CODE. All executable code is allocated in this section.

• SPI_START_SEC_CONST_ASIL_B_UNSPECIFIED / SPI_STOP_SEC_CONST_ASIL_B_UNSPECIFIED

The memory section type is CONST. All configuration data is allocated in this section.

• SPI_START_SEC_VAR_NO_INIT_ASIL_B_UNSPECIFIED /
SPI_STOP_SEC_VAR_NO_INIT_ASIL_B_UNSPECIFIED

The memory section type is VAR. All non-initialized variables with non-alignment are allocated in this section.

• SPI_START_SEC_VAR_NO_INIT_ASIL_B_32 / SPI_STOP_SEC_VAR_NO_INIT_ASIL_B_32

The memory section type is VAR. The variable for internal buffers of transmission with 4 bytes alignment are
allocated in this section.

• SPI_START_SEC_VAR_INIT_ASIL_B_8 / SPI_STOP_SEC_VAR_INIT_ASIL_B_8

The memory section type is VAR. The initialized variable for number of queued sequences is allocated in this
section.

• SPI_START_SEC_VAR_INIT_ASIL_B_UNSPECIFIED / SPI_STOP_SEC_VAR_INIT_ASIL_B_UNSPECIFIED

The memory section type is VAR. All initialized variables with non-alignment are allocated in this section.

User guide 12 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

2 Using the SPI handler/driver

2.6.2 Restriction of memory allocation

The CPU has an individual cache that is not shared with the DMA bus master. Therefore, you must ensure that
the data related to DMA are in specific regions accessible to the DMA. In addition, some sections must be
allocated in a specific memory region. This driver does not support the use of data related to DMA placed in
CPU's tightly coupled memories (TCMs) and internal video RAM (VRAM).

• The section that contains external buffers (EB) used for RX:

− When using DMA for EB reception:

The section must be allocated to a user-specific memory region configured by the CPU's memory protection
unit (MPU) as non-cache-able.

− When not using DMA or the EB is not used for DMA reception:

No restriction.

• The section that contains external buffers (EB) used for Tx:

− When using DMA for EB transmission:

The section must be allocated to a user-specific memory region configured by the MPU as write-through or

non-cache-able. For performance, it is recommended to allocate the section to non-cache-able.

− When not using DMA or the EB is not used for DMA transmission:

No restriction.

• The section surrounded by SPI_START_SEC_VAR_NO_INIT_ASIL_B_32
/SPI_STOP_SEC_VAR_NO_INIT_ASIL_B_32

− When using DMA without internal buffers (IB):

The section must be allocated to a user-specific memory region configured by the MPU as write-through or
non-cache-able. For performance, it is recommended to allocate the section to non-cache-able.

− When using DMA with internal buffers (IB):

The section must be allocated to a user-specific memory region configured by the MPU as non-cache-able.

− When not using DMA:

No restriction of memory allocation.

Note: This restriction is applied only to Cortex®-M7 devices because they include TCMs, VRAM and inner

cache. There is no restriction when using Cortex®-M4 devices.
All buffers accessed by DMA require 4-byte alignment.

User guide 13 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

3 Structure and dependencies

3 Structure and dependencies

The SPI handler/driver consists of static, configuration, and generated files.

3.1 Static files

• $(PLUGIN_PATH)=$(TRESOS_BASE)/plugins/Spi_TS_* is the path to the SPI handler/driver plugin.

• $(PLUGIN_PATH)/lib_src contains all static source files of the SPI handler/driver. These files contain the
functionality of the driver that does not depend on the current configuration. The files are grouped into a

static library.

• $(PLUGIN_PATH)/src comprises configuration-dependent source files or special derivate files. Each file will

be rebuilt when the configuration is changed.

All necessary source files will automatically be compiled and linked during the build process and all include
paths will be set if the SPI handler/driver is enabled.

• $(PLUGIN_PATH)/include is the basic public include directory needed by the user to include Spi.h.

• $(PLUGIN_PATH)/autosar directory contains the AUTOSAR ECU parameter definition with vendor,

architecture and derivative-specific adaptations to create a correct matching parameter configuration for
the SPI handler/driver.

3.2 Configuration files

The configuration of the SPI handler/driver is done via EB tresos Studio. The file containing the SPI
handler/driver's configuration is named Spi.xdm and is in the directory $(PROJECT_ROOT)/config. This file

serves as the input for the generation of the configuration-dependent source and header files during the build
process.

3.3 Generated files

During the build process, the following files are generated based on the current configuration description. They
are in the output/generated sub folder of your project folder.

• include/Spi_Cfg.h

• include/Spi_Cfg_Der.h

• include/Spi_ExternalInclude.h

• src/Spi_PBCfg.c

• src/Spi_PBCfg_Der.c

• src/Spi_Irq.c

• src/Spi_MainFunction_Handling.c

Note: Generated source files need not to be added to your application make file. These files will be
compiled and linked automatically during the build process.

• swcd/Spi_Bswnd.arxml

Note: Additional steps are required for the generation of BSW module description. In EB tresos Studio,
follow the menu path Project > Build Project and click generate_swcd.

User guide 14 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

3 Structure and dependencies

3.4 Dependencies

3.4.1 PORT driver

Although the SPI handler/driver can be successfully compiled and linked without an AUTOSAR-compliant PORT

driver, the latter is required to configure and initialize all ports. Otherwise, the SPI handler/driver will show
undefined behavior. The PORT driver needs to be initialized before the SPI handler/driver is initialized.

3.4.2 MCU driver

The MCU driver needs to be initialized and all MCU clock reference points referenced by the hardware units
(SCB) via the configuration parameter SpiClockRef must have been activated (via calls of MCU API functions)

before initializing the SPI handler/driver. See the MCU driver's user guide for details.

Note that the clock, prescaler, or PLL settings are controlled by the MCU driver. There are no shared resources

with the SPI handler/driver. Depending on the configuration, changes in the clock settings may affect the
operation of the SPI handler/driver.

3.4.3 DIO driver

The SPI handler/driver allows you to optionally control chip select by the software using a GPIO pin. This can be
configured by setting the SpiCsSelection parameter of an external device to CS_VIA_GPIO. In this case, the

SPI handler/driver uses the DIO driver to control the DIO channel configured in the SpiCsIdentifier
parameter for chip select operation.

3.4.4 AUTOSAR OS

The AUTOSAR operating system handles the interrupts used by the SPI handler/driver. See section 6.3

Interrupts for more information.

3.4.5 BSW scheduler

The BSW scheduler handles the critical sections that are used by the SPI handler/driver.

3.4.6 DET

If default error detection is enabled in the SPI handler/driver configuration, the DET needs to be installed,
configured, and integrated into the application as well.

This driver reports DET error codes as instance 0.

3.4.7 DEM

If the DEM event report is enabled in the SPI module configuration, the DEM needs to be installed, configured,

and integrated into the application as well.

To enable DEM support in the SPI handler/driver, the SPI_E_HARDWARE_ERROR production error needs to be
defined in the DEM configuration in the SpiDemEventParameterRefs container:

User guide 15 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

3 Structure and dependencies

3.4.8 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection
is enabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It is
configured via the configuration parameter SpiErrorCalloutFunction.

3.4.9 DMA

DMA is supported for some hardware instances (see the datasheet of the subderivative for details). If a
hardware instance does not support DMA and it is configured to use DMA, an error will be generated.

The SPI module does not modify the global status of the DMA hardware. You must ensure that DMA is globally

enabled before using the DMA feature of the SPI.

User guide 16 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

4 EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see EB tresos Studio for ACG8 user's guide [5].

4.1 General configuration

The module comes preconfigured with default settings. You must adapt these to your environment when
necessary.

• SpiDmaErrorHandlingPolling specifies the DMA error handling mode. When enabled in the interrupt

mode, the DMA error is handled by the polling mode.

• SpiCancelApi enables or disables the cancel API function.

• SpiChannelBuffersAllowed is the allowed buffers type to be used.

− 0: Internal buffers only

− 1: External buffers only

− 2: Both buffers

• SpiDevErrorDetect enables or disables the DET functionality for the SPI handler/driver.

• SpiHwStatusApi enables or disables the hardware status API function.

• SpiInterruptibleSeqAllowed enables or disables the interruptible sequences.

If SpiLevelDelivered is set to '1' or '2', this parameter is editable.

• SpiLevelDelivered is the level of driver to be used.

− 0: Level 0 simple synchronous mode

− 1: Level 1 basic asynchronous mode

− 2: Level 2 enhanced mode

• SpiSupportConcurrentSyncTransmit specifies whether concurrent Spi_SyncTransmit calls for

different sequences is supported.

• SpiUserCallbackHeaderFile specifies the header file names that will be included by the SPI driver.

• SpiVersionInfoApi specifies whether the API function Spi_GetVersionInfo is available.

4.2 SPI driver configuration

• SpiMaxChannel is not used. It is calculated and generated by the generator automatically.

• SpiMaxJob is not used. It is calculated and generated by the generator automatically.

• SpiMaxSequence is not used. It is calculated and generated by the generator automatically.

4.2.1 Channel configuration

Note that the channel name and ID of a channel must be unique.

• SpiChannelId is the ID for the channel. It is used as a parameter for API functions.

Note: Channel IDs must be zero-based and consecutive.

• SpiChannelType is the type of buffering to be used for this channel.

− IB: Internal buffering

− EB: External buffering

Note: A selectable value depends on the SpiChannelBuffersAllowed setting.

User guide 17 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

4 EB tresos Studio configuration interface

• SpiDataWidth is the data width setting for transmission in bits.

Note: List of values available for configuration depends on the subderivative.

Note: If SpiDataWidth=8-bit and the total data is more than 32 bytes, the data is divided into several
portions; the SPI driver sends each data portion to FIFO. So, if the SPI interrupt is blocked by

another interrupt or the main function is not being called frequently, FIFO empty occurs and CS
will be de-asserted. To avoid this situation, do one of the following;
- Set the SPI interrupt as a high-priority interrupt

- Call Spi_MainFunction_Handling frequently
- Set the SPI baudrate low

- Use SpiDataWidth=16-bit/32-bit.

- Use DMA (SpiUseDma)

• SpiDefaultData is the default value setting for transmission.

Note: The configured value must be within the range configured by SpiDataWidth.

Note: If SpiDefaultData is disabled, the default value setting is 0.

• SpiEbMaxLength is the maximum size of a data buffer (Range: 1 to 65535); type Spi_NumberOfDataType.

If EB is selected as SpiChannelType and 1 or 2 is selected as SpiChannelBuffersAllowed, this parameter
is editable.

• SpiAlignedBuffer requires a data-width-aligned external buffer

If a data-width-aligned buffer is required, Spi_SetupEB will check the assigned data buffer. The required 1-,
2-, or 4-byte alignment depends on the declared data width.

The alignment is required to allow DMA-supported transmission of the channel.

• SpiIbNBuffers is the size of the data buffers (Range: 1 to 65535; type Spi_NumberOfDataType.

If IB is selected as SpiChannelType and 0 or 2 is selected as SpiChannelBuffersAllowed is, this

parameter is editable.

Note: Maximum size differs according to SpiDataWidth. Maximum size is 65535 if SpiDataWidth is 8
bits or less. Maximum size is 32767 if SpiDataWidth is 9 bits to 16 bits. Maximum size is 16383 if

SpiDataWidth is 17 bits or more.

• SpiTransferStart is the bit ordering for transmission.

− LSB: Least significant bit first

− MSB: Most significant bit first

4.2.2 Job configuration

Note that the name and ID of a Job must be unique.

• SpiHwUnitSynchronous is the job setting for synchronous or asynchronous transmission.

− SYNCHRONOUS: Synchronous

− ASYNCHRONOUS: Asynchronous

Note: If the parameter is not set, SpiJob uses the driver also in an asynchronous way.

User guide 18 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

4 EB tresos Studio configuration interface

Note: All SpiJob parameters that belong to the same external device specified by
SpiDeviceAssignment will have the same SpiHwUnitSynchronous setting.

• SpiJobEndNotification specifies the function that will be called by the driver on completion of the job.
You must implement this function.

If SpiJobEndNotification is blank, the function is not called.

If SpiJobEndNotification is disabled, the function is not called.

• SpiJobId is the ID of the job. This value will be assigned to the following symbolic names:

− The symbolic name derived from the SpiJob container short name.

− The symbolic name derived from the SpiJob container short name prefixed with "Spi_".

− The symbolic name derived from the SpiJob container short name prefixed with "SpiConf_SpiJob_".

Note: Job IDs must be zero-based and consecutive.

• SpiJobPriority is the priority for the job; priorities lie in the range of 0 to 3, 0 being the lowest.

• SpiDeviceAssignment specifies the external device to be used for the job.

• SpiChannelList references to SPI, the channels, and their order within the job.

− SpiChannelIndex: specifies the order of channels within the job.

Note: SpiChannelIndex must have the same value as the index of the actual entry in
SpiChannelList.

− SpiChannelAssignment: specifies a list of channels associated with this Job.

Note: The SpiDataWidth for each channel that is assigned in one job must have the same width when
using the peripheral chip select (SpiEnableCs = enabled and SpiCsSelection = CS_VIA_

PERIPHERAL_ENGINE).

Note: SpiTransferStart for each channel that is assigned in one job must have the same first
starting bit

Note: The total size of all channels' data buffers (SpiEbMaxLength and SpiIbNBuffers) must not
exceed 65535 bytes.

Note: The bytes may be a multiple of units depending on the SpiDataWidth entry.

If SpiDeviceAssignment selects an external device with DMA support, the channels of the job

must allow buffer alignment even if the data width declared is 8 bits or less.

4.2.3 External device configuration

• SpiForceOverwrite enables or disables forced overwrite of the control register. When this parameter is
enabled, control information in the control register is overwritten even if the transfer is to the same external

device.

• SpiClockRef is the reference to the clock source configuration, which is set in the MCU driver

configuration.

Note: During configuration, an applicable clock will be selected. The runtime system is responsible for
activating the selected configuration before using the external device.

User guide 19 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

4 EB tresos Studio configuration interface

• SpiBaudrate is the communication baud rate. This parameter allows using a range of values, from the
point of view of the configuration tools, from Hz up to MHz. The value is in Hz.

Note: The hardware supports discrete baud rates in a range depending on the frequency of source clock
as follows:
(SpiClockRef.McuClockReferencePointFrequency / (OVSValue+1)),

OVSValue=3,4,5,…,15

Note: You can enter any baud rate value in this range, without respecting the hardware support of the
concrete baud rates. The code generator will automatically select the next lower allowed baud
rate without reporting a warning.
The tresos system supports checking and selecting the real baud rate. After entering the expected

baud rate, you can let the system calculate its exact value. If the given baud rate cannot be
supported, the calculation makes a weighted selection between the next higher or lower baud
rates. This weighting prefers four times more deviation for the lower baud rate selection than the

higher one. The configuration will support this calculated baud rate.

Before calculation, the clock reference point must be selected and correctly configured. The
calculation also works well if the given baud rate is outside the accepted range. In this case, the

highest or lowest accepted baud rate will be selected.

• SpiEnableCs enables or disables the chip select handling functions. If this parameter is enabled,

SpiCsSelection provides further details of the type of chip select control; if disabled, SpiCsSelection

is ignored.

Note: Even if this parameter is set to disable, the SCB hardware function internally outputs

SPI_SELECT0. Make sure SPI_SELECT0 is not output to the outside in the Port driver.

• SpiCsSelection specifies if the chip select is handled automatically by the SCB hardware function or via

general-purpose I/O.

− CS_VIA_GPIO: Handled via general-purpose I/O by the SPI driver.

− CS_VIA_PERIPHERAL_ENGINE: Handled automatically by the SCB hardware function. The parameters

SpiSetupDelay, SpiHoldDelay, and SpiDeselect take effect on the chip select signal only in this
mode.

Note: When CS_VIA_GPIO is selected for this parameter, the SCB unit internally outputs SPI_SELECT0.
Make sure SPI_SELECT0 is not output to the outside in the Port driver.

Note: If DMA is not used for SCB, the chip select might be de-asserted during a job transmission. To avoid

this situation, do either of the following;

- Use CS_VIA_GPIO (SpiCsSelection)
- Use DMA (SpiUseDma)
- Use data, which is 32 elements or less, for a job

• SpiCsIdentifier specifies the chip select pin allocated to this Job. Available pins depend on the setting
of SpiCsSelection:

− CS_VIA_GPIO: all configured Dio channels are listed

− CS_VIA_PERIPHERAL_ENGINE: SPI_SELECT0...SPI_SELECT3, depending on the configured SCB

If SpiEnableCs is enabled, this parameter is editable.

• SpiHwUnit is the hardware unit to be used for this external device.

User guide 20 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

4 EB tresos Studio configuration interface

− SCB0: SCB Channel 0

− SCB1: SCB Channel 1

− ...

− SCBn: SCB Channel n

Note: Selectable hardware units depend on the subderivative.

Note: If the same SpiHwUnit is set to multiple SpiExternalDevice containers, note the settings of
the following parameters.

The chip select pin must be set to each SpiCsIdentifier.
If multiple SpiExternalDevice share the same SCB, the same value must be set for the

following parameters:
- SpiCsSelection

- SpiEnableCs
- SpiDmaChannelRx
- SpiDmaChannelTx.
If multiple SpiExternalDevice share the same SCB and SpiCsIdentifier, the same value must be set

for the following parameters:

- SpiDataShiftEdge

- SpiShiftClockIdleLevel
- SpiCsPolarity

- SpiSetupDelay

- SpiHoldDelay.

• SpiCsPolarity specifies the active polarity of the chip select.

If SpiEnableCs is enabled, this parameter is editable.

− LOW: Low level

− HIGH: High level

• SpiDataShiftEdge specifies the data shift edge.

− LEADING: Leading edge

− TRAILING: Trailing edge

If SpiDataShiftEdge is set to LEADING, the SpiSetupDelay must be configured such that the sampling of
the first bit takes place after the chip select pin becomes active.

• SpiShiftClockIdleLevel specifies the shift clock idle level.

− LOW: Low level

− HIGH: High level

• SpiTimeClk2Cs allows using a range of values from 0 up to 100 microseconds. This parameter is not used

and not editable.

• SpiSetupDelay specifies the time in Spi serial clock count to start the transmission after chip select is
activated.

This parameter is only enabled, if SpiEnableCs is enabled. The parameter is editable and effective on the
signal only if a hardware-controlled chip select, i.e., if SpiCsSelection is set to
CS_VIA_PERIPHERAL_ENGINE.

Note: This parameter will be selected from the selection list.
Allowed value depends on SpiDataShiftEdge

User guide 21 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

4 EB tresos Studio configuration interface

• SpiHoldDelay specifies the time the Spi serial clock count of chip select takes to become inactive after the
transmission is completed.

This parameter is only enabled, if SpiEnableCs is enabled. It is only editable and effective on the signal if a

hardware-controlled chip select, i.e., if SpiCsSelection is set to CS_VIA_PERIPHERAL_ENGINE.

Note: This parameter will be selected from the selection list.
Allowed value is depend on SpiDataShiftEdge

• SpiDeselect specifies the time chip select takes to become active again after it is inactive. This parameter

is not used and is not editable.

• SpiUseFifo enables or disables the transmission using the FIFO functionality. This parameter is fixed to

enable and not editable.

Note: FIFO transferable max entries depend on the subderivative. It is Max/4 entries.

• SpiUseDma determines whether the DMA controller is used to handle transfers for the specified peripheral.

If DMA is used for a peripheral, the two configuration parameters, SpiDmaChannelsRx and
SpiDmaChannelTx, must be set to specify the DMA channel for Rx and Tx:

Note: The DMA controller is used only for asynchronous transmission.

Note: DMA operation is not supported for all hardware instances. The configurator will report an error if

SpiUseDma is enabled and the selected hardware instance does not support DMA transfer.

− SpiDmaChannelRx specifies the DMA channel to be used to handle specified peripheral reception.

− SpiDmaChannelTx specifies the DMA channel to be used to handle specified peripheral transmission.

4.2.4 Sequence configuration

Note that the name and ID of a sequence must be unique.

• SpiInterruptibleSequence specifies whether the sequence can be interrupted, i.e., jobs from another
sequence may run before the jobs for this sequence depending on the job priorities set.

• If SpiInterruptibleSeqAllowed is checked, this parameter is editable.

• SpiSeqEndNotification specifies the function that will be called by the driver on completion of the

sequence. You need to implement this function.

• If SpiSeqEndNotification is blank, the function is not called. If SpiSeqEndNotification is disabled,

the function is not called.

• SpiSequenceId is the ID for the sequence to be used as a parameter for API functions.

Note: Sequence IDs must be zero-based and consecutive.

• SpiJobAssignment specifies a list of jobs associated with this sequence.

Note: Jobs must be ordered in the descending order of their priorities.

Note: The SPI sequence must not mix synchronous and asynchronous jobs.

User guide 22 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

4 EB tresos Studio configuration interface

Note: The priorities of a job can only be between 0 (lowest) and 3 (highest); therefore, it is not possible to
have more than four jobs in a sequence with differing (decreasing) values. Jobs with equal priority

will be processed in the order of configuration in the sequence.

4.2.5 SPI DEM event parameter references

This is the container holding the references to DemEventParameter elements that are invoked using the

Dem_ReportErrorStatus API if the corresponding error (SPI_E_HARDWARE_ERROR) occurs.

• SPI_E_HARDWARE_ERROR is the reference to the DemEventParameter which will be issued when the
hardware error has occurred.

4.2.6 SPI published information

This is container holding all SPI-specific published information parameters.

• SpiMaxHwUnit specifies the maximum number of different SPI hardware microcontroller serial peripherals
(units/buses) available and handled by this SPI handler/driver module. This value is dummy. See the
hardware data sheet for the actual number of units.

4.3 Vendor and driver specific parameters

4.3.1 Container SpiGeneral

4.3.1.1 SpiErrorCalloutFunction

Description

Error callout function. Syntax:

void ErrorCalloutHandler

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

The error callout function is called on every error. The ASIL level of this function limits the ASIL level of the SPI

handler/driver.

Type

FunctionNameParamDef

4.3.1.2 SpiIncludeFile

Description

A list of file names that will be included within the driver. Any application-specific symbol that is used by the Spi
configuration (e.g., error callout function) should be included by configuring this parameter.

Type

StringParamDef

User guide 23 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

4 EB tresos Studio configuration interface

4.4 Other modules

4.4.1 PORT driver

The pins given in section 6.1 Ports and pins must be configured in the PORT driver.

The trigger multiplexer given in section 6.4 DMA and trigger multiplexer must be configured in the PORT driver.

4.4.2 DET

DET must be configured, if default error detection is activated.

4.4.3 AUTOSAR OS

The SPI handler/driver's interrupts (listed in section 6.3 Interrupts) must be configured in the AUTOSAR
operating system.

Note: The AUTOSAR OS must only configure those interrupts that are used by the SPI handler/driver.

4.4.4 BSW scheduler

The SPI handler/driver uses the following services of the BSW scheduler (SchM) to enter and leave critical
sections

• SchM_Enter_Spi_SPI_EXCLUSIVE_AREA_0(void)

• SchM_Exit_Spi_SPI_EXCLUSIVE_AREA_0(void)

You must ensure that the BSW scheduler is properly configured and initialized before using the SPI services.

The exclusive area must prevent all tasks or interrupts from calling any SPI API function or SPI interrupt service
routine.

User guide 24 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

5 Functional description

5 Functional description

The SPI handler/driver may be used with three different levels of functionality; level 0 offers basic synchronous

transmission, level 1 offers asynchronous transmission with job scheduling between multiple sequences, and
level 2 offers enhanced features handling both synchronous and asynchronous transmissions. The basic
operation of the driver is based on the configuration of channels, Jobs, and sequences. These are described in
more detail in this chapter

5.1 Channels, jobs, and sequences

The SPI handler/driver supports one or more channels, Jobs, and sequences to drive different kinds of
hardware devices. Data transmission depends on the configuration of these.

Figure 3 shows the correlation between channel, Job, and sequence.

Figure 3 Correlation between sequences, jobs, and channels

5.1.1 Channels

5.1.1.1 General

A channel defines a data channel that can be used to send data to a hardware device. Each channel has a
unique identifier. It is possible to have more than one channel set up for one hardware device.

For instance, the following are the channels for an EEPROM device on SPI:

• Channel for command

• Channel for address

• Channel for data

User guide 25 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

5 Functional description

Buffers for the different channels set up can have different sizes and can be located internally in the driver or
externally in your application. These are referred to as internally buffered (IB) or externally buffered (EB)

channels.

5.1.1.2 Internally buffered channels

Internal buffers (IB) are used for small data transfer devices and daisy chain implementations. The maximum

size is defined by Spi_NumberOfDataType. The actual size of the IB to be used must be set in the configuration.

This is then fixed for all transmissions using this channel.

The SPI handler/driver provides a transmit buffer for each IB channel. Before starting of a transmission, data

needs to be written to the buffer by using the Spi_WriteIB function. After that, a synchronous or

asynchronous transmission can be started by using Spi_SyncTransmit or Spi_AsyncTransmit respectively.

Note that the SPI handler/driver is not able to ensure integrity of the data residing in the buffer during
transmission. In addition, each request of Spi_WriteIB on a channel will overwrite the previous content in its
transmit buffer, regardless of whether a transmission has been performed with this data.

The SPI handler/driver provides a receive buffer for the IB channel with the same size as the transmit buffer.
The buffer is overwritten with new data at each transmission on that channel. Therefore, make sure that the

received data is read before a new transmission on that channel is initiated.

Reading of data from the receive buffer is done by using the Spi_ReadIB function, which should only be called

after completion of a transmission.

5.1.1.3 Externally buffered channels

Externally buffered (EB) channels can be used to transmit large streams for communication: for EEPROM data
read and write, or for controlling complex hardware chips. The maximum size, defined by

Spi_NumberOfDataType, must be set in the configuration, but the buffer is in the users’ application. Before
transmission, you must provide the addresses of source and destination buffers together with their length by

using the API function Spi_SetupEB.

For EB channels, you must the buffer. You must ensure the consistency of the buffered data. You also provide
the pointers to the buffers for reception and transmission as well as the size of those buffers. The size should

not exceed the maximum size configured. A transmission is initiated in the same way as for IB channels, by

calling either Spi_SyncTransmit or Spi_AsyncTransmit operation.

Note: Before using the channel for transmit and receive operations, an application must call

Spi_SetupEB at least once to configure the channel's parameters such as channel length,

transmit, and receive buffer pointers. If data is sent without calling the function Spi_SetupEB,

the single default data is transmitted. The default data is set by the configuration parameter
SpiDefaultData and the width is set by the configuration parameter SpiDataWidth. If the
channel's length or the transmit and receive buffer's location has changed in the application, it is
mandatory to reconfigure the channel's parameters with Spi_SetupEB before using the channel.
If the channel's length, transmit and receive buffer's location are not changed, it is not necessary

to call Spi_SetupEB . While updating the channel’s parameters, the application must make sure
that the channel is not currently being used by driver.
The channel's status can be identified by the status of SpiJob from Spi_GetJobResult. All
SpiJobs that share the channel must be checked. Spi_SetupEB can be called if each JobResult

is either SPI_JOB_OK or SPI_JOB_FAILED.

User guide 26 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

5 Functional description

5.1.1.4 Data buffers

The TX buffer that is passed to a channel (using Spi_WriteIB or Spi_SetupEB) must contain the data in a
certain manner, depending on the setting of SpiDataWidth. The RX buffer is filled the same way during
transmission.

• SpiDataWidth <= 8

• One byte (B0) of the buffer represents one data element (e.g., d0..d7) consisting of not more than 8 bits

each.

• 8 < SpiDataWidth <= 16

• Two bytes (B0, B1) of the buffer represent one data element (e.g., d0..d15) consisting of more than 8 and not
more than 16 bits each. The lower byte (B0) must be filled with the lower bits of the data element (d0..d7).

The higher byte (B1) must be filled with the remaining bits (d8..d15), starting at the lowest bit of B1.

• 16 < SpiDataWidth <= 32

• Four bytes (B0, B1, B2, B3) of the buffer represent one data element (e.g., d0..d31) consisting of more than
16 and not more than 32 bits each. The lowest byte (B0) must be filled with the lowest bits of the data
element (d0..d7). The next byte (B1) must be filled with the next bits (d8..d15), and so on. If SpiDataWidth

<= 24, the data in fourth byte (B3) is ignored (TX case) or filled with zero (RX case). All 4 bytes (B0, B1, B2, B3)
are allocated even if SpiDataWidth <= 24.

The addresses of the TX and RX buffers must be integer multiples of the data element size, i.e.,:

• SpiDataWidth <= 8: any address

• 8 < SpiDataWidth <= 16: address mod 2 must be 0

• 16 < SpiDataWidth <= 32: address mod 4 must be 0

5.1.2 Jobs

A Job is composed of one or several channels with the same chip select (is not released during the processing

of the Job). A Job is considered atomic and therefore cannot be interrupted by another Job. A Job has an
assigned priority.

A Job contains at least one channel. It can contain more than one channel. These channels are configured in a

list for that Job. A Job has a priority that can be from 0 up to 3, where 0 is the lowest priority. A Job can belong

to more than one sequence.

A chip select is attached to a Job definition. The chip select is set at the beginning of the Job transmission and
released at the end of the Job.

At the end of the Job, a 'SpiJobEndNotification' is called, if configured.

5.1.3 Sequences

A sequence is a number of consecutively transmitted Jobs. Jobs configured for a sequence must be in the order
of priority starting with the highest priority first.

If a level 1 or level 2 driver is configured, sequences may be configured as either interruptible or non-

interruptible. If a sequence is interruptible and asynchronously transmitted, Jobs from another sequence may

run depending on priority.

If a sequence is configured as non-interruptible, a new sequence is scheduled after the transmitting sequence,

if the sequences are using the same hardware unit. If different hardware units are used, more than one
sequence can be transmitted at the same time.

User guide 27 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

5 Functional description

Note that while sequences may be configured to have shared Jobs, sequences that have shared Jobs may not
be transmitted at the same time, i.e., the driver will reject a request to transmit a sequence if it has Jobs that

are configured as part of a sequence already in transmission.

At the end of the sequence, a 'SpiSeqEndNotification' is called, if configured.

5.1.4 Scheduling

Jobs have assigned priorities. They will have decreasing priorities if they are linked in a sequence, i.e., the first
Job will have the highest priority.

If an interruptible sequence is configured, the system will check for another pending sequence at the end of a
Job transmission. If there is a Job for the same hardware with a higher priority, this Job will be transmitted

next.

When using interruptible sequences, note that the same channels should not be configured in those sequences,

as otherwise the data of the channels may be overwritten by a Job with a higher priority before you have read

the data. You must make sure of the consistent use of channels.

5.2 Inclusion

The file Spi.h includes all necessary external identifiers. Thus, your application only needs to include Spi.h to
make all API functions and data types available.

5.3 Initialization

The SPI handler/driver must be initialized before use by calling the API function Spi_Init. The module PORT

must also be initialized in a similar way.

5.4 Runtime reconfiguration

All configuration parameters can be not changed at runtime.

5.5 API parameter checking

The driver's services perform regular error checks.

When an error occurs, the error hook routine (configured via SpiErrorCalloutFunction) is called and the

error code, service ID, module ID, and instance ID are passed as parameters.

If default error detection is enabled, all errors are also reported to DET, a central error hook function within the

AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

The AUTOSAR specified development error and vendor-specific development error checks are performed by
the services of the SPI handler/driver.

See section 7.4 Functions for a description of API functions and associated error codes.

5.5.1 AUTOSAR specified development errors

Any API function - except Spi_Init and Spi_GetVersionInfo - called with the driver in uninitialized state
reports the error code SPI_E_UNINIT.

If Spi_Init is called and the driver is already in the initialized state, the error code

SPI_E_ALREADY_INITIALIZED is reported.

User guide 28 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

5 Functional description

If the functions Spi_WriteIB, Spi_ReadIB or Spi_SetupEB are called with an incorrect channel parameter,
the error code SPI_E_PARAM_CHANNEL is reported.

If the function Spi_GetJobResult is called with the wrong Job parameter, the error code SPI_E_PARAM_JOB

is reported.

If the function Spi_GetSequenceResult, Spi_AsyncTransmit, Spi_SyncTransmit, and Spi_Cancel are

called with the wrong parameter sequence, the error code SPI_E_PARAM_SEQ is reported.

If the function Spi_SetupEB is called with the wrong parameter length, the error code SPI_E_PARAM_LENGTH

is reported.

If the function Spi_GetHWUnitStatus is called with the wrong parameter HwUnit, the error code

SPI_E_PARAM_UNIT is reported.

If the function Spi_GetVersionInfo is called with a NULL pointer, the error code SPI_E_PARAM_POINTER is
reported.

5.5.2 Vendor specific development errors

The error code SPI_E_INVALID_HW is reported if the Spi_SyncTransmit function is called for a sequence

having Jobs for asynchronous hardware units or the Spi_AsyncTransmit function is called for a sequence
having Jobs for the synchronous hardware unit.

If the Spi_SetupEB function is called with buffer pointers that are not aligned and the buffer alignment

required (SpiAlignedBuffer is checked), the error code SPI_E_PARAM_POINTER is reported. A buffer pointer
is aligned if <buffer address> mod <required bytes per data unit> = 0. The number of required

bytes per data unit depends on SpiDataWidth (see the section called data buffers).

If the function Spi_SetAsyncMode is called with an undefined parameter value buffer, the error code

SPI_E_PARAM_BAD_MODE is reported.

If the function Spi_ReadIB is called with the parameter DataBufferPointer as NULL pointer, the error code

SPI_E_PARAM_POINTER is reported.

The vendor-specific function Spi_GetBufferStatus reports SPI_E_UNINIT if the driver is not in the
initialized state, SPI_E_PARAM_CHANNEL if an invalid channel parameter, and SPI_E_PARAM_POINTER if NULL

has been passed to one or more of its remaining parameters.

If the Spi_AsyncTransmit function is called with the parameter sequence using the same HwUnit while
transmitting with the Spi_SyncTransmit function, the error code SPI_E_SEQ_PENDING is reported.

If the, Spi_SyncTransmit function is called with the parameter sequence using the same HwUnit while
transmitting with the Spi_AsyncTransmit function, the error code SPI_E_SEQ_IN_PROCESS is reported.

In the Spi_Init function is called with an invalid driver configuration set parameter the error code
SPI_E_PARAM_CONFIG is reported.

When an interrupt from an unconfigured SCB or DMA is detected, SPI's ISR reports SPI_E_PARAM_CONFIG.

The vendor-specific, Spi_Terminate function reports SPI_E_UNINIT if the driver is not in initialized state and
reports SPI_E_PARAM_SEQ in case of an invalid sequence parameter.

The vendor-specific Spi_ChangeOvsSetting function reports:

• SPI_E_UNINIT if the driver is not in initialized state

• SPI_E_PARAM_OTHER in case of an invalid over sampling parameter (ScbOvsValue)

User guide 29 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

5 Functional description

• SPI_E_PARAM_UNIT in case of an invalid external device id (ExtDev)

5.6 Production errors

If receive FIFO overflow is detected during asynchronous transfer (as used in levels 1 and 2), or if timeout error
is detected during synchronous transfer, or executed Spi_Terminate API during asynchronous transfer (as

used in levels 1), SPI_E_HARDWARE_ERROR is reported to the DEM - provided that its usage is enabled in the
configuration.

For synchronous transmission timeout detection is implemented as a loop cycle counter with constant counter

values. The Transmission timeout counter is restarted after each channel data word that was successfully
transmitted. Ensure the expected transmission duration and chip select durations are within timeout limits.

5.7 Reentrancy

All services except Spi_Init, Spi_DeInit, Spi_SetAsyncMode and Spi_MainFunction_Handling are
reentrant.

5.8 Sleep mode

The SPI handler/driver and the hardware controlled by the SPI handler/driver do not provide a dedicated Sleep

mode.

Note: All SPI sequences must be completed or stopped before entering the DeepSleep mode.

SPI operation in DeepSleep mode is not guaranteed.

5.9 Debugging support

The SPI handler/driver does not support debugging.

5.10 Execution time dependencies

The execution of the API function is dependent on certain factors. Table 2 lists these dependencies.

Table 2 Execution time dependencies

Affected function Dependency

Spi_Init() Runtime depends on the number of configured hardware units, Jobs,

sequences, and channels.

Spi_DeInit()

Spi_MainFunction_Handling()

Runtime depends on the number of configured hardware units.

Spi_AsyncTransmit() Runtime depends on the number of Jobs configured for the requested

sequence and the total number of configured channels.

Spi_SyncTransmit() Runtime depends on the number of Jobs configured for the requested

sequence.

5.11 Deviation from AUTOSAR

By AUTOSAR standard, level 2 functionality will allow only one dedicated hardware instance for synchronous
transmission. All other instances may be used for asynchronous transmission. The operation of synchronous
and asynchronous transmission on the same hardware instance is not specified.

User guide 30 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

5 Functional description

This SPI handler/driver allows synchronous transmission on multiple hardware instances (i.e., SCB units).
Furthermore, it is possible to operate synchronous and asynchronous transmissions on the same hardware

instance, provided they do not overlap in time.

5.12 Caveats

This section provides a non-exhaustive list of items that are responsible for your application:

• [SWS_Spi_00052] [SWS_SPI_00053] [SWS_SPI_00049] [SWS_SPI_00084]: The application will take care of
the consistency of data in the external buffers and internal buffers during transmission. The application will
ensure that any Spi channel is not used by more than one hardware channel at a time. The application will

not call Spi_SetupEB, Spi_WriteIB, or Spi_ReadIB for channels that are currently in transmission.

• [SWS_SPI_00037]: The SPI handler/driver’s environment will call the Spi_SetupEB function once for each
Spi channel with EB declared before the SPI handler/driver’s environment calls a transmit method on them.

• [SWS_SPI_00173]: The SPI handler/driver’s environment will call the Spi_AsyncTransmit function after a

function call of Spi_SetupEB for EB channels or a function call of Spi_WriteIB for IB channels but before
the function call Spi_ReadIB.

• [SWS_SPI_00027]: The SPI handler/driver’s environment will call the Spi_ReadIB function after a transmit
method call to have relevant data within IB channel.

• [SWS_SPI_00257]: The SPI handler/driver’s environment will not call Spi_WriteIB or Spi_ReadIB for

channels that are currently in transmission because the SPI driver cannot prevent overwriting of the IB

channel buffer.

• [SWS_SPI_00038] [SWS_SPI_00042] [SWS_SPI_00287]: The SPI handler/driver’s environment will call the

function to inquire the job status or the sequence status or the SPI hardware status (that is,

Spi_GetJobResult, Spi_GetSequenceResult, or Spi_GetHWUnitStatus).

Your application must prevent synchronous and asynchronous transmissions on the same SCB from running
concurrent transmission (asynchronous/synchronous or synchronous/asynchronous) when it transmits

synchronously. This includes the case when a sequence is cancelled and one job is still in transmission. The
transmission end can be checked by a sequence end notification or Spi_GetHWUnitStatus.

DMA usage for configured SCB, the corresponding TX, RX, or both interrupt service routines (ISRs) might not be

generated. In such cases, the unused interrupt channels must be disabled at the interrupt controller (OS
configuration); that is, they must not be mapped to an unhandled interrupt ISR.

Asynchronous mode (SPI_POLLING_MODE/SPI_INTERRUPT_MODE) must not be changed during the execution
of Spi_MainFunction_Handling, that is. Spi_SetAsyncMode and Spi_MainFunction_Handling must

not be called concurrently.

Spi_MainFunction_Handling must not interrupt or pre-empt other SPI handler/driver functions
(interruption/pre-emption of the Spi_MainFunction_Handling by other SPI handler/driver functions is
permitted according to their corresponding permitted reentrancy). Spi_MainFunction_Handling will be

called from the lowest-priority task with reference to all other tasks and interrupts that call other SPI
handler/driver functions.

The Spi_SyncTransmit function and the Spi_AsyncTransmit function cannot be operated at the same time
using the same SpiHwUnit.

User guide 31 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

6 Hardware resources

6 Hardware resources

6.1 Ports and pins

The SPI handler/driver uses the SCB instances of the TRAVEO™ T2G family microcontrollers. The pins listed in
Table 3 are used. Make sure that the pins are correctly set in the PORT driver's configuration.

Table 3 Pins for SPI operation

Pin name Direction Drive mode Description

SCB<n>_MISO Input high-Z SCB channel <n> serial data input pin

SCB<n>_MOSI Output strong pull down | strong pull

up

SCB channel <n> serial data output pin

SCB<n>_CLK Output strong pull down | strong pull

up

SCB channel <n> clock I/O pin

SCB<n>_SELECT<m> Output strong pull down | strong pull

up

Serial chip select <m> I/O pin of SCB

channel

6.2 Timer

The SPI handler/driver does not use any hardware timers.

6.3 Interrupts

The interrupt services listed in Table 4 must be configured correctly for peripherals used by the SPI

handler/driver. If a peripheral is not used, the corresponding interrupt service must not be present in the
configuration.

Table 4 IRQ vectors and ISR names

IRQ vector ISR name Cat1 ISR name Cat2

SCB<n> interrupt request Spi_Interrupt_SCB<n>_Cat1 Spi_Interrupt_SCB<n>_Cat2

DMA completion interrupt

request ch.<i> for TX

Spi_Interrupt_DMA_CH<i>_Isr_Cat1 Spi_Interrupt_DMA_CH<i>_Isr_Cat2

DMA completion interrupt

request ch.<j> for RX

Spi_Interrupt_DMA_CH<j>_Isr_Cat1 Spi_Interrupt_DMA_CH<j>_Isr_Cat2

Note: The OS must be associated with the named ISRs with the corresponding SCB interrupt.

For example, if the hardware unit SCB ch.2 is configured, Spi_Interrupt_SCB2_Cat2() must
be called from the (OS-)interrupt service routine of SCB ch.2 interrupt. In case of category1 usage,
the address of Spi_Interrupt_SCB2_ Cat1() must be the entry for SCB ch.2 interrupt in the
(OS) interrupt vector table.

Note: DMA completion ISRs are only generated if the given DMA channel is used by an SCB instance for

SPI transmission.
If there is an SCB channel that uses DMA, the interrupt handlers for SCB is required.

User guide 32 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

6 Hardware resources

Table 5 Interrupt handler registration

Interrupt handler

registration

Used DMA Unused DMA

DMA completion interrupt request ch.<i> for TX

DMA completion interrupt request ch.<j> for RX

SCB<n> interrupt request

- SCB<n> interrupt request

Note: Nesting interrupts are not supported because they may cause unexpected behavior. Therefore, all
interrupts of the same SCB (including DMA channels) must be set to the same interrupt priority to
avoid nesting interrupts itself and if you are using different HwUnits, it is possible to set different
interrupt levels for each HwUnit.

Note: The same interrupt priority will not nest itself. However, it allows nesting of other interrupts.

Note: On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing

conditions in the integrated system with TRAVEO™ T2G MCAL. For more details, see the following
errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:
“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at

the end of the interrupt function to avoid the priority inversion.

TRAVEO™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.

Thus, if necessary, the DSB instruction should be added just before the end of the handler by the

integrator.

6.4 DMA

The SPI handler/driver uses DMA channels, which can be configured by the user and will be enabled/disabled
by the SPI handler/driver as required. The DMA hardware itself must be enabled globally by the user before the

SPI handler/driver can be used for DMA transfer.

When using DMA, ensure that one to one trigger multiplexer is correctly set in the PORT driver’s configuration.

If you use the SPI handler/driver with data cache enabled, the memory section identified by

VAR_NO_INIT_ASIL_B_32 should be assigned to normal memory with cache invalid or shared memory with

write-through cache.

User guide 33 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7 Appendix A – API reference

7.1 Include files

The Spi.h file is the only file that needs to be included to use functions from the SPI handler/driver.

7.2 Data types

7.2.1 Spi_StatusType

Type

typedef enum

{

 SPI_UNINIT,

 SPI_IDLE,

 SPI_BUSY

} Spi_StatusType;

Description

Spi_StatusType defines the range of specific status for the SPI handler/driver. This datatype holds the SPI
handler/driver status and can be obtained by calling the API service Spi_GetStatus.

7.2.2 Spi_JobResultType

Type

typedef enum

{

 SPI_JOB_OK,

 SPI_JOB_PENDING,

 SPI_JOB_FAILED,

 SPI_JOB_QUEUED

} Spi_JobResultType;

Description

 Spi_JobResultType defines the range of a specific job’s status for the SPI handler/driver. This datatype
holds the SPI handler/driver Job status and can be obtained by calling the API service Spi_GetJobResult

with the job ID.

7.2.3 Spi_SeqResultType

Type

typedef enum

{

 SPI_SEQ_OK,

 SPI_SEQ_PENDING,

 SPI_SEQ_FAILED,

 SPI_SEQ_CANCELED

} Spi_SeqResultType;

User guide 34 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

Description

Spi_SeqResultType defines the range of a specific sequence status for the SPI handler/driver. This datatype
holds the SPI handler/driver sequence status and can be obtained by calling the API service

Spi_GetSequenceResult with the sequence ID.

7.2.4 Spi_DataBufferType

Type

uint8

Description

Spi_DataBufferType defines the type of application data buffer elements.

7.2.5 Spi_NumberOfDataType

Type

uint16

Description

Spi_NumberOfDataType defines the number of data elements of the Spi_DataType type used to send or

receive on a channel.

7.2.6 Spi_ChannelType

Type

uint8

Description

Spi_ChannelType specifies the identification (ID) for a channel.

The type is numbered from 0 – <number of Channels-1>.

7.2.7 Spi_JobType

Type

uint16

Description

The Spi_JobType specifies the identification (ID) for Job. The type is numbered from 0 – <number of Jobs -1>.

7.2.8 Spi_SequenceType

Type

uint8

Description

The Spi_SequenceType specifies the identification (ID) for a sequence of Jobs. The type is numbered from 0 –

<number of Sequences -1>.

User guide 35 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.2.9 Spi_HWUnitType

Type

uint8

Description

The Spi_HWUnitType specifies the identification (ID) for a SPI hardware peripheral unit.

7.2.10 Spi_AsyncModeType

Type

typedef enum

{

 SPI_POLLING_MODE,

 SPI_INTERRUPT_MODE

} Spi_AsyncModeType;

Description

Spi_AsyncModeType specifies the asynchronous mechanism mode for SPI busses handled asynchronously in

level 2.

The type consists of the values SPI_POLLING_MODE and SPI_INTERRUPT_MODE.

7.2.11 Spi_ExtDeviceType

Type

uint8

Description

Spi_ExtDeviceType specifies the identification (ID) for a SPI external device.

7.2.12 Spi_OvsValueType

Type

uint8

Description

Spi_OvsValueType specifies the serial interface bit period oversampling factor.

User guide 36 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.3 Constants

7.3.1 Error codes

A service may return one of the error codes, listed in Table 6, if default error detection is enabled.

Table 6 Error codes

Name Value Description

SPI_E_PARAM_CHANNEL 10 Channel is not configured

SPI_E_PARAM_JOB 11 Job is not configured

SPI_E_PARAM_SEQ 12 Sequence is not configured

SPI_E_PARAM_LENGTH 13 Length is out of range

SPI_E_PARAM_UNIT 14 Hardware unit is out of range

SPI_E_PARAM_POINTER 16 versioninfo is NULL pointer

SPI_E_UNINIT 26 No Spi_Init done

SPI_E_SEQ_PENDING 42 Sequence is pending or shared job in pending sequence

SPI_E_SEQ_IN_PROCESS 58 Sequence is on transmission and

SpiSupportConcurrentSyncTransmit is disabled or

another sequence is on transmission on the same bus

SPI_E_ALREADY_INITIALIZED 74 API Spi_Init service is called while the SPI handler/driver has

already been initialized

7.3.2 Vendor specific error codes

Besides the error codes given in section 7.3.1 Error codes, this SPI handler/driver defines the errors listed in

Table 7.

Table 7 Vendor specific error codes

Name Value Description

SPI_E_INVALID_HW 82 The transmit API function is called for a sequence containing Jobs for

an invalid hardware unit.

SPI_E_HW_ERROR 83 A hardware error occurred during transmission.

SPI_E_PARAM_BAD_MODE 84 Bad value for parameter mode supported.

SPI_E_PARAM_OTHER 86 Bad value for the other parameter supported.

SPI_E_PARAM_CONFIG 87 Incorrect value for the pointer of the configuration.

7.3.3 Version information

Table 8 Version information

Name Value Description

SPI_SW_MAJOR_VERSION see release notes Vendor-specific major version number

SPI_SW_MINOR_VERSION see release notes Vendor-specific minor version number

SPI_SW_PATCH_VERSION see release notes Vendor-specific patch version number

User guide 37 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.3.4 Module information

Table 9 Module information

Name Value Description

SPI_MODULE_ID 83 Module ID (Spi)

SPI_VENDOR_ID 66 Vendor ID

7.3.5 API service IDs

Table 10 lists the API service IDs used when reporting errors via DET or via the error callout function.

Table 10 API service IDs

Name Value API name

SPI_API_INIT 0x0 Spi_Init

SPI_API_DEINIT 0x1 Spi_DeInit

SPI_API_WRITEIB 0x2 Spi_WriteIB

SPI_API_ASYNCTRANSMIT 0x3 Spi_AsyncTransmit

SPI_API_READIB 0x4 Spi_ReadIB

SPI_API_SETUPEB 0x5 Spi_SetupEB

SPI_API_GETSTATUS 0x6 Spi_GetStatus

SPI_API_GETJOBRESULT 0x7 Spi_GetJobResult

SPI_API_GETSEQUENCERESULT 0x8 Spi_GetSequenceResult

SPI_API_GETVERSIONINFO 0x9 Spi_GetVersionInfo

SPI_API_SYNCTRANSMIT 0xA Spi_SyncTransmit

SPI_API_GETHWUNITSTATUS 0xB Spi_GetHWUnitStatus

SPI_API_CANCEL 0xC Spi_Cancel

SPI_API_SETASYNCMODE 0xD Spi_SetAsyncMode

SPI_API_MAINFUNCTION_HANDLING 0x10 Spi_MainFunction_Handling

7.3.6 Vendor specific API service IDs

The following API service IDs are used when reporting errors via the error callout function:

Table 11 Vendor specific API service IDs

Name Value Description

SPI_API_ISR 0x40 This API ID is used to indicate that an error occurred in a

function that was called within an interrupt context.

SPI_API_GETBUFFERSTATUS 0x41 This is vendor-specific API ID for Spi_GetBufferStatus

SPI_API_HANDLER 0x42 This API ID is used to indicate that the hardware error occurred

in an internal function.

SPI_API_TERMINATE 0x43 This is vendor-specific API ID for Spi_Terminate.

SPI_API_CHANGEOVSSETTING 0x44 This is vendor-specific API ID for. Spi_ChangeOvsSetting

User guide 38 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4 Functions

7.4.1 Spi_Init

Syntax

void Spi_Init(

 const Spi_ConfigType* ConfigPtr

)

Service ID

0x0

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

• ConfigPtr – Specifies the pointer to a configuration. If NULL pointer is specified, the first element of the
configuration set array is used.

Parameters (out)

None

Return value

None

DET errors

• SPI_E_ALREADY_INITIALIZED - The SPI handler/driver has already been initialized.

• SPI_E_PARAM_CONFIG – The invalid pointer is specified.

DEM errors

None

Description

This function initializes all local data for the configured channels, Jobs, and sequences. After initialization, the

driver state will be SPI_IDLE, all sequence results will be SPI_SEQ_OK, and all Job results will be SPI_JOB_OK.
This function will be called with NULL pointer. Only precompiled configuration parameters are used for
initialization.

User guide 39 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.2 Spi_DeInit

Syntax

Std_ReturnType Spi_DeInit(

 void

)

Service ID

0x1

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

DEM errors

None

Description

This function sets the driver state to SPI_UNINIT and returns E_OK.

Spi_DeInit returns E_NOT_OK, if the driver is in the SPI_BUSY state or in the SPI_UNINIT state.

User guide 40 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.3 Spi_WriteIB

Syntax

Std_ReturnType Spi_WriteIB(

 Spi_ChannelType Channel,

 const Spi_DataBufferType* DataBufferPtr

)

Service ID

0x2

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• Channel - Specifies the ID of the channel where data will be written.

• DataBufferPtr - Specifies the pointer to a data buffer containing data to be written. If DataBufferPtr is
NULL, the default transmit value will be transmitted.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_CHANNEL - Undefined channel or incorrect channel type.

DEM errors

None

Description

This service writes data to the internal buffer associated with the parameter channel. You must ensure that the

buffer given by DataBufferPtr has the same size as the internal buffer. If successful, it returns E_OK.

User guide 41 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.4 Spi_AsyncTransmit

Syntax

Std_ReturnType Spi_AsyncTransmit(

 Spi_SequenceType Sequence

)

Service ID

0x3

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

• Sequence - Specifies the ID of the sequence that is to be transmitted.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_SEQ - Undefined sequence

• SPI_E_SEQ_PENDING - Sequence is pending or shares a job with a pending sequence or the sequence is
included in the job of the same hardware unit as the synchronous transferring hardware unit.

• SPI_E_INVALID_HW - Sequence contains the jobs for an invalid hardware unit.

DEM errors

• SPI_E_HARDWARE_ERROR – Hardware error was detected. The error is reported after the job ends in the

context of an interrupt or the main function.

Description

This function is the asynchronous service to transmit data on the SPI bus. This service takes the given

parameter, initiates a transmission, sets the SPI handler/driver status to SPI_BUSY, sets the sequence result to
SPI_SEQ_PENDING, sets all Jobs result to SPI_JOB_QUEUED, and returns. If a sequence requested by this
hardware is pending, then the new sequence will be added to the transmit queue for this hardware unit;
otherwise, it will start immediately and set the first job result to SPI_JOB_PENDING. Note that you cannot call

this function if a transmission is in progress on this channel. If successful, it returns E_OK.

User guide 42 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.5 Spi_ReadIB

Syntax

Std_ReturnType Spi_ReadIB(

 Spi_ChannelType Channel,

 Spi_DataBufferType* DataBufferPointer

)

Service ID

0x4

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• Channel - Specifies the ID of the channel from which data will be read.

• DataBufferPointer - Specifies the pointer to a data buffer where the read data will be written.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_CHANNEL - Undefined channel or incorrect channel type

• SPI_E_PARAM_POINTER - Argument DataBufferPointer is NULL pointer

DEM errors

None

Description

This function reads data from the internal buffer specified by the parameter channel and writes this data to the

area given by the DataBufferPointer. You must make sure that at least one transmission function has been
called before attempting to read the buffer. You must also ensure that the area given by the
DataBufferPointer is large enough to store the data from the internal buffer. Note that you must not call
this function if a transmission is in progress on this channel. If successful, it returns E_OK.

User guide 43 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.6 Spi_SetupEB

Syntax

Std_ReturnType Spi_SetupEB(

 Spi_ChannelType Channel,

 const Spi_DataBufferType* SrcDataBufferPtr,

 Spi_DataBufferType* DesDataBufferPtr,

 Spi_NumberOfDataType Length

)

Service ID

0x5

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• Channel - Specifies the ID of the channel for which buffers are to be initialized

• SrcDataBufferPtr - Pointer to a data buffer that holds the transmit data

• DesDataBufferPtr - Pointer to a data buffer where incoming data is stored

• Length - Length of data to be transmitted/received; minimum length is 1 and the maximum length is set in

configuration.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_CHANNEL - Undefined channel or incorrect channel type

• SPI_E_PARAM_LENGTH - Length is out of range or does not match to data width

• SPI_E_PARAM_POINTER - At least one of the data buffers is not aligned according to the buffer alignment
required by the configuration.

DEM errors

None

Description

This function sets up the buffers and the length of data for the external buffers (EB) of the SPI handler/driver for

the given channel. This function should be called for each channel that is configured with external buffers

before a transmission is attempted. If SrcDataBufferPtr is NULL, the default data configured will be
transmitted. If DesDataBufferPtr is NULL, the incoming data is ignored by the driver. Note that you cannot
call this function if a transmission is in progress on this channel. If successful, it returns E_OK.

User guide 44 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.7 Spi_GetStatus

Syntax

Spi_StatusType Spi_GetStatus(

 void

)

Service ID

0x6

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

None

Parameters (out)

None

Return value

SPI_UNINIT, SPI_IDLE, or SPI_BUSY

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

DEM errors

None

Description

The function returns the SPI handler/driver status. It returns SPI_UNINIT if Spi_Init has not yet been called.

It returns SPI_IDLE if there is no sequence in progress. It returns SPI_BUSY if at least one sequence is in
progress.

User guide 45 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.8 Spi_GetJobResult

Syntax

Spi_JobResultType Spi_GetJobResult(

 Spi_JobType Job

)

Service ID

0x7

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• Job - ID of the Job.

Parameters (out)

None

Return value

SPI_JOB_OK, SPI_JOB_PENDING, SPI_JOB_FAILED, or SPI_JOB_QUEUED

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_JOB - Undefined Job ID

DEM errors

None

Description

The function returns the last transmission result of the specified job. If the SPI handler/driver has not been
initialized when this service is called, the return value is undefined. The function is used to verify if the Job
transmission succeeded (SPI_JOB_OK), failed (SPI_JOB_FAILED), executing (SPI_JOB_PENDING), or queued

(SPI_JOB_QUEUED).

User guide 46 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.9 Spi_GetSequenceResult

Syntax

Spi_SeqResultType Spi_GetSequenceResult(

 Spi_SequenceType Sequence

)

Service ID

0x8

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• Sequence - ID of the sequence.

Parameters (out)

None

Return value

SPI_SEQ_OK, SPI_SEQ_PENDING, SPI_SEQ_FAILED, or SPI_SEQ_CANCELED

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_SEQ - Undefined sequence ID.

DEM errors

None

Description

The function returns the last transmission result of the specified sequence. This function is used to verify
whether the full sequence transmission succeeded (SPI_SEQ_OK), failed (SPI_SEQ_FAILED), executing
(SPI_SEQ_PENDING), or canceled (SPI_SEQ_CANCELED). If the service is called before the SPI handler/driver is

initialized, the return value will be undefined.

User guide 47 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.10 Spi_GetVersionInfo

Syntax

void Spi_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID

0x9

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

None

Parameters (out)

• versioninfo - Pointer to the location where the version information will be written.

Return value

None

DET errors

• SPI_E_PARAM_POINTER - versioninfo is NULL pointer.

DEM errors

None

Description

This function returns the version information of this module. This includes module ID, vendor ID, and vendor-

specific version numbers.

User guide 48 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.11 Spi_SyncTransmit

Syntax

Std_ReturnType Spi_SyncTransmit(

 Spi_SequenceType Sequence

)

Service ID

0xA

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

• Sequence - ID of the sequence.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_SEQ - Undefined sequence ID

• SPI_E_SEQ_IN_PROCESS - The function is called at the wrong time or the sequence is included in the job of
the same hardware unit as the asynchronous transferring hardware unit.

• SPI_E_INVALID_HW - Sequence contains the jobs for an invalid hardware unit.

• SPI_E_SEQ_PENDING - Sequence is pending or shares a job with a pending sequence.

DEM errors

• SPI_E_HARDWARE_ERROR – Timeout error was detected.

Description

This function provides synchronous transmission of data. It sets the SPI handler/driver status to SPI_BUSY,

sets the sequence status to SPI_SEQ_PENDING, sets the first Job status to SPI_JOB_PENDING, and performs
the transmission. The driver accepts concurrent Spi_SyncTransmit() if the sequences to be transmitted use
a different bus and SpiSupportConcurrentSyncTransmit is enabled. If successful, it returns E_OK. Job and
sequence results are updated accordingly.

User guide 49 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.12 Spi_GetHWUnitStatus

Syntax

Spi_StatusType Spi_GetHWUnitStatus(

 Spi_HWUnitType HWUnit

)

Service ID

0xB

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• HWUnit - ID of the hardware unit.

Parameters (out)

None

Return value

SPI_UNINIT, SPI_IDLE or SPI_BUSY

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_UNIT - Undefined hardware unit

DEM errors

None

Description

This function returns the status of the specified SPI hardware unit.

User guide 50 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.13 Spi_Cancel

Syntax

void Spi_Cancel(

 Spi_SequenceType Sequence

)

Service ID

0xC

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

• Sequence - ID of the sequence to be canceled.

Parameters (out)

None

Return value

None

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_SEQ - Undefined sequence ID

DEM errors

None

Description

This function cancels an ongoing sequence transmission. The sequence will be canceled between jobs i.e., a
Job will not be canceled once started. The sequence status will be set to SPI_SEQ_CANCELED.

User guide 51 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.14 Spi_SetAsyncMode

Syntax

Std_ReturnType Spi_SetAsyncMode(

 Spi_AsyncModeType Mode

)

Service ID

0xD

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

• Mode - The mode to be used for asynchronous transmissions.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_BAD_MODE - Value for mode is not supported.

DEM errors

None

Description

This function sets the mode for handling asynchronous transmissions on SPI buses. This may be interrupt
mode (SPI_INTERRUPT_MODE) or polling mode (SPI_POLLING_MODE). Spi_SetAsyncMode must not be
called during the execution of Spi_MainFunction_Handling.

User guide 52 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.4.15 Spi_GetBufferStatus

Syntax

Std_ReturnType Spi_GetBufferStatus(

 Spi_ChannelType Channel,

 const Spi_DataBufferType** SrcDataBufferPtrPtr,

 Spi_DataBufferType** DesDataBufferPtrPtr,

 Spi_NumberOfDataType* SrcRemainingLengthPtr,

 Spi_NumberOfDataType* DesRemainingLengthPtr

)

Service ID

0x41

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• Channel - Channel ID.

Parameters (out)

• SrcDataBufferPtrPtr - The pointer that will be filled with the pointer to source data buffer

• DesDataBufferPtrPtr - The pointer that will be filled with the pointer to destination data buffer

• SrcRemainingLengthPtr - Pointer to the variable that will be filled with the remaining length (number of

date elements) of the source data yet to be transmitted from the source data buffer

• DesRemainingLengthPtr - Pointer to the variable that will be filled with the remaining length (number of

date elements) of the destination data yet to be received to destination data buffer

Return value

E_OK: Output parameters have been filled with the buffer status.
E_NOT_OK: Output parameters could not be filled with the buffer status.

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_CHANNEL - Undefined channel

• SPI_E_PARAM_POINTER - NULL_PTR was passed as the parameters SrcDataBufferPtrPtr,
DesDataBufferPtrPtr, SrcRemainingLengthPtr, or DesRemainingLengthPtr.

DEM errors

None

Description

Vendor-specific service to read back the buffer status and the remaining length of data for the SPI
handler/driver channel specified.

User guide 53 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

After the transmission starts started (including the case that it has already finished), Spi_GetBufferStatus
returns the buffer position and the remaining length calculated from the values that will be used (or have been

used) for copying data.

Spi_GetBufferStatus returns the buffer pointers (SrcDataBufferPtrPtr and DesDataBufferPtrPtr)

pointing to the position after the position in the buffer that was read/written the last time; that is, The pointer
to the "next" position is returned or the pointer to the position directly after the buffer is returned if it was
completely processed.

Depending on the configuration of the SCB, the update of the internal variables takes place in chunks or in a
single block. Therefore, during transmission, the returned values may not reflect the actual pointer and
remaining length. Instead, the returned values may relate to the buffer positions at an earlier point in time. The

returned buffer positions and remaining lengths are determined before the transmission starts and after the
transmission ends.

If channel TX data was set to NULL_PTR (i.e., default TX data) before transmission, then
Spi_GetBufferStatus returns undetermined pointer in SrcDataBufferPtrPtr and undetermined length
in SrcRemainingLengthPtr during and after transmission. The returned values cannot be used for TX

plausibility checks.

If channel RX data was set to NULL_PTR (i.e., ignore RX data) before transmission, then

Spi_GetBufferStatus returns undetermined DesDataBufferPtrPtr and undetermined length in
DesRemainingLengthPtr during and after transmission. The returned values cannot be used for RX
plausibility checks.

7.4.16 Spi_Terminate

Syntax

Std_ReturnType Spi_Terminate(

 Spi_SequenceType Sequence

)

Service ID

0x43

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

• Sequence - Sequence ID of sequence to be terminated.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

User guide 54 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_SEQ - Undefined sequence ID.

DEM errors

None

Description

Vendor-specific service to terminate transmission on the SPI bus only for the ongoing sequence. If successful, it
returns E_OK. SPI hardware unit status is updated accordingly.

7.4.17 Spi_ChangeOvsSetting

Syntax

Std_ReturnType Spi_ChangeOvsSetting(

 Spi_ExtDeviceType ExtDev,

 Spi_OvsValueType ScbOvsValue

)

Service ID

0x44

Sync/Async

Async

Reentrancy

Non-reentrant

Parameters (in)

• ExtDev – External device ID of external device that to be changed baud rate.

• ScbOvsValue – Setting value of OVS bit in SCB CTRL register.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• SPI_E_UNINIT - The driver is uninitialized.

• SPI_E_PARAM_UNIT – Undefined external device ID.

• SPI_E_PARAM_OTHER – Invalid OVS value.

DEM errors

None

User guide 55 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

Description

Vendor-specific service to change SPI over sampling setting for the changing clock. If successful, it returns
E_OK. The set value is reflected at the next transfer.

7.5 Scheduled functions

7.5.1 Spi_MainFunction_Handling

Syntax

void Spi_MainFunction_Handling(

 void

)

Service ID

0x10

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

None

DEM errors

• SPI_E_HARDWARE_ERROR – Hardware error was detected

Description

You must call this function periodically when polling mode is used in the level 2 driver.

User guide 56 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.6 Required callback functions

7.6.1 SPI notification functions

The SPI handler/driver uses the following callback routines to inform other software modules about certain

states or state changes. These other modules are required to provide the routines in the expected manner.

Callback notifications are statically configurable.

Implementation of all notification functions is required to be reentrant.

Notification functions are called if it is enabled in configuration, regardless of synchronous or asynchronous

transmission.

The following API functions may be called from the SPI handler/driver callback notifications:

• Spi_ReadIB

• Spi_WriteIB

• Spi_SetupEB

• Spi_GetJobResult

• Spi_GetSequenceResult

• Spi_GetHWUnitStatus

• Spi_Cancel

All other SPI handler/driver API calls are not allowed.

7.6.1.1 Spi_JobEndNotification

Syntax

void (*Spi_JobEndNotification)(

 void

)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

The Spi_JobEndNotification is a callback routine provided by the user for each job to notify the caller that
a job has been finished. If configured, it will be called at the end of a job transmission.

User guide 57 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

7.6.1.2 Spi_SeqEndNotification

Syntax

void (*Spi_SeqEndNotification)(

 void

)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

The Spi_SeqEndNotification is a callback routine provided by the user for each sequence to notify the

caller that a sequence has been finished. If configured, it will be called at the end of a sequence transmission.

7.6.2 DET

If default error detection is enabled, the SPI handler/driver uses the following callback function provided by

DET. If you do not use DET, you, must implement this function within your application.

7.6.2.1 Det_ReportError

Syntax

Std_ReturnType Det_ReportError

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Reentrant

Parameters (in)

• ModuleId - Module ID of the calling module

• InstanceId - Instance ID of the calling module

• ApiId - ID of the API service that calls this function

• ErrorId - ID of the detected development error

Return value

Returns always E_OK.

User guide 58 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

Description

Service for reporting development errors.

7.6.3 DEM

If DEM notifications are enabled, the SPI handler/driver uses the following callback function provided by DEM. If
you do not use DEM, you must implement this function within your application.

7.6.3.1 Dem_ReportErrorStatus

Syntax

void Dem_ReportErrorStatus

(

 Dem_EventIdType EventId,

 Dem_EventStatusType EventStatus

)

Reentrancy

Reentrant

Parameters (in)

• EventId - Identification of an event by the assigned event ID

• EventStatus - Monitor test result of the given event

Return value

None

Description

Service for reporting diagnostic events.

7.6.4 Callout functions

7.6.4.1 Error callout API

The AUTOSAR SPI module requires an error callout handler. Each error is reported to this handler; error
checking cannot be switched OFF. The name of the function to be called can be configured by the parameter

SpiErrorCalloutFunction.

Syntax

void Error_Handler_Name

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Reentrant

User guide 59 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

7 Appendix A – API reference

Parameters (in)

• ModuleId - Module ID of the calling module

• InstanceId - Instance ID of the calling module

• ApiId - ID of the API service that calls this function

• ErrorId - ID of the detected error

Return value

None

Description

Service for reporting errors.

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

60

002-2
339

8 R
ev. *N

2024-07-29

8 Appendix B – Access register table

8.1 SCB

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

CTRL 31:0 Word

(32 bits)

0x0100800F Initialize CTRL

register

Initialize SPI

driver

0x9303970F 0x01000000

0x81008000 De-initialize CTRL

register

De-initialize

SPI driver
0x9303D70F 0x81000000

0x0100000 | SCB

enable << 31 | over

sampling value

Depend on

configuration

Set up CTRL register From transfer

start to

transfer end

0x9303970F 0x01000000

bit[31]:Set on transfer

stating/Clear on transfer ending

bit[3:0]:Depend on baud rate of

transfer

SPI_CTRL 31:0 Word

(32 bits)

0x80000001 Initialize SPI_CTRL

register

Initialize SPI

driver

0x83014033 0x80000001

0x03000010 De-initialize

SPI_CTRL register

De-initialize

SPI driver

0x8F017F3F 0x03000010

0x80000001 | Chip
select identifier << 26

| CS hold delay << 13 |
CS set up delay << 12

| CS3 polarity << 11 | |
CS2 polarity << 10 |
CS1 polarity << 9 | CS0

polarity << 8 | Clock

idle level << 3 | Data

shift edge << 2

Depend on

configuration

Set up SPI_CTRL

register

When transfer

start

0x83014033 0x80000001

bit[27:26]:Depend on chip select

bit[13]:Depend on hold delay

bit[12]:Depend on set up delay

bit[11:8] :Depend on chip select

polarity

bit[3]:Depend on clock idle level

bit[2]:Depend on data shift edge

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

61

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

SPI_TX_CTRL 31:0 Word

(32 bits)

0x00000000 Initialize

SPI_TX_CTRL register

Initialize SPI

driver

0x00000030 0x00000000

0x00000000 De-initialize

SPI_TX_CTRL register

De-initialize

SPI driver

0x00000030 0x00000000

0x00000000 Refresh SPI_TX_CTRL

register

When transfer

start
0x00000030 0x00000000

SPI_RX_CTRL 31:0 Word

(32 bits)

0x00000000 Initialize

SPI_RX_CTRL register

Initialize SPI

driver

0x00000130 0x00000000

0x00000000 De-initialize

SPI_RX_CTRL register

De-initialize

SPI driver

0x00000130 0x00000000

0x00000000 Refresh SPI_RX_CTRL

register

When transfer

start

0x00000100 0x00000000

TX_CTRL 31:0 Word

(32 bits)

0x00000107 Initialize TX_CTRL

register

Initialize SPI

driver

0x00010000 0x00000000

0x00000107 De-initialize TX_CTRL

register

De-initialize

SPI driver

0x0001011F 0x00000107

0x00000000 | First
transfer bit << 8 | Data

width

Depend on

configuration

Set up TX_CTRL

register

When transfer

start

0x00010000 0x00000000

bit[8]:Depend on first transfer

bit

bit[4:0]:Depend on data width

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

62

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

TX_FIFO_CTRL 31:0 Word

(32 bits)

0x00000000 Initialize
SPI_TX_FIFO_CTRL

register

Initialize SPI

driver

0x00030000 0x00000000

0x00000000 De-initialize
SPI_TX_FIFO_CTRL

register

De-initialize

SPI driver

0x000300FF 0x00000000

0x00000000 |
invalidate FIFO << 16 |

| FIFO trigger level

Depend transfer

mode

Set up transmitter

FIFO control register

From transfer
start to

transfer end

0x00020000 0x00000000

bit[16]:Set on transmission

starting/Clear on transmission

ending

bit[7:0]:

 Sync transfer : FIFO size/bytes

per data element

 Async transfer(DMA) : FIFO

size/bytes per data element

Async transfer(non-DMA

interrupt):1

Async transfer(non-DMA

polling): FIFO size/bytes per

data element

TX_FIFO_STAT

US
31:0 Word

(32 bits)

0x00000000 Read only register Initialize SPI

driver

0xFFFF81FF 0x00000000

0x00000000 Read only register De-initialize

SPI driver

0xFFFF81FF 0x00000000

0x00000000 | FIFO

write pointer << 24 |

FIFO read pointer <<
16 | Amount of entries

in FIFO

Read only

Checking FIFO is not

FULL.

During transfer 0x00008000 0x00000000

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

63

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

TX_FIFO_WR 31:0 Word

(32 bits)

Transfer data Transfer data During transfer

- -

Write only register

RX_CTRL 31:0 Word

(32 bits)

0x00000107 Initialize RX_CTRL

register

Initialize SPI

driver

0x00000200 0x00000000.

0x00000107 De-initialize RX_CTRL

register

De-initialize

SPI driver

0x0000031F 0x00000107

0x00000000 | First

transfer bit << 8 | Data

width

Depend on

configuration

Set up RX_CTRL

register

During transfer 0x00000200 0x00000000.

bit[8]:Depend on first transfer

bit

bit[4:0]:Depend on data width

RX_FIFO_CTRL 31:0 Word

(32 bits)

0x00000000 Initialize
SPI_TX_FIFO_CTRL

register

Initialize SPI

driver

0x00030000 0x00000000

0x00000000 De-initialize
SPI_RX_FIFO_CTRL

register

De-initialize

SPI driver

0x000300FF 0x00000000

0x00000000 |

Invalidate FIFO << 16 |

FIFO trigger level

Depend transfer

mode

Set up receiver FIFO

control register

From transfer

start to

transfer end

0x00000200 0x00000000.

bit[16]:Set on receive

starting/Clear on receive ending

bit[7:0]:

 Sync transfer : FIFO size/bytes

per data element

Async transfer(DMA) : 0

Async transfer(non-DMA

interrupt):(FIFO size-24)/bytes

per data element

Async transfer(non-DMA

polling): 0

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

64

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

RX_FIFO_STAT

US
31:0 Word

(32 bits)

0x00000000 Read only register Initialize SPI

driver

0xFFFF81FF 0x00000000

0x00000000 Read only register De-initialize

SPI driver

0xFFFF81FF 0x00000000

0x00000000 | FIFO
write pointer << 24 |

FIFO read pointer <<
16 | Amount of entries

in FIFO

Read only

Checking received

data exist.
During transfer 0x00008000 0x00000000

RX_FIFO_RD 31:0 Word

(32 bits)

DATA[31:0] Received data - - -

Can’t monitoring

INTR_CAUSE 31:0 Word

(32 bits)

0x00000000 Initialize Initialize SPI

driver

0x00000000

(monitoring

is not

needed.)

0x00000000

(monitoring is not needed.)

0x00000000 De-initialize De-initialize

SPI driver

0x00000000 | RX
interrupt << 3 | Master

interrupt

Read only

Interrupt cause During transfer

INTR_I2C_EC_

MASK
31:0 Word

(32 bits)

0x00000000 Initialize externally
clocked I2C interrupt

mask register

Initialize SPI

driver

0x0000000F 0x00000000

0x00000000 De-initialize

externally clocked
I2C interrupt mask

register

De-initialize

SPI driver

0x0000000F 0x00000000

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

65

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

INTR_SPI_EC_

MASK
31:0 Word

(32 bits)

0x00000000 Initialize externally
clocked SPI interrupt

mask register

Initialize SPI

driver

0x0000000F 0x00000000

0x00000000 De-initialize
externally clocked

SPI interrupt mask

register

De-initialize

SPI driver

0x0000000F 0x00000000

INTR_M 31:0 Word

(32 bits)

0x000003FF Initialize Master

interrupt request

register

Initialize SPI

driver

0x00000000

(monitoring

is not

needed.)

0x00000000

(monitoring is not needed.)

0x000003FF De-initialize Master

interrupt request

register

De-initialize

SPI driver

0x00000000 | SPI

transfer done << 9

SPI bus idle checking During transfer

INTR_M_MASK 31:0 Word

(32 bits)

0x00000000 Initialize Master

interrupt mask

register

Initialize SPI

driver

0x00000317 0x00000000

0x00000000 De-initialize Master

interrupt mask

register

De-initialize

SPI driver

0x00000317 0x00000000

0x00000000 | SPI

transfer done

interrupt mask

Enable or disable

SPI_DONE interrupt

During transfer

in interrupt

mode

0x00000117 0x00000000

bit[9]:Set on complete TX data
write to FIFO in non-DMA Async

transfer

Set on complete RX data

receiving in DMA Async transfer

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

66

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

INTR_S_MASK 31:0 Word

(32 bits)

0x00000000 Initialize Slave
interrupt mask

register

Initialize SPI

driver

0x000007FF 0x00000000

0x00000000 De-initialize Slave
interrupt mask

register

De-initialize

SPI driver

0x000007FF 0x00000000

INTR_TX 31:0 Word

(32 bits)

0x000007FF Initialize transmitter
interrupt request

register

Initialize SPI

driver

0x00000000

(monitoring

is not

needed.)

0x00000000

(monitoring is not needed.)

0x000007FF De-initialize
transmitter interrupt

request register

De-initialize

SPI driver

0x000007FF Clear all transmitter

interrupt factor

When

transition stop

INTR_TX_MASK 31:0 Word

(32 bits)

0x00000000 De-initialize
transmitter interrupt

mask register

Initialize SPI

driver

0x00007FFF 0x00000000

0x00000000 De-initialize
transmitter interrupt

mask register

De-initialize

SPI driver

0x00007FFF 0x00000000

0x00000000 Disable all
transmitter

interrupts

When
transmission

stop

0x00007FFF 0x00000000

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

67

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

INTR_RX 31:0 Word

(32 bits)

0x00000FFF Initialize receiver
interrupt request

register

Initialize SPI

driver

0x00000000

(monitoring
is not

needed.)

0x00000000

(monitoring is not needed.)

0x00000FFF De-initialize receiver
interrupt request

register

De-initialize

SPI driver

0x00000FFF Clear all receiver

interrupt factor

When
receiving stop

When receiver

interrupt is

cached

0x00000000 | FIFO

over flow << 5

Checking transfer

error

During transfer

0x00000000 | FIFO not
empty << 2 | FIFO

trigger

Checking received

data exist.

During transfer

INTR_RX_MASK 31:0 Word

(32 bits)

0x00000000 Initialize receiver

interrupt mask

register

Initialize SPI

driver

0x00000FFF 0x00000000

0x00000000 De-initialize receiver

interrupt mask

register

De-initialize

SPI driver

0x00000FFF 0x00000000

0x0000000 | FIFO
trigger interrupt

enable

Enable receiver FIFO

trigger interrupt

When transfer
start without

DMA in

interrupt

mode

0x00000F80 0x00000000

bit[0]:Set on Async transfer
(non-DMA) starting/Clear on
Async transfer (non-DMA)

ending

0x00000000 Disable all interrupts When transfer
start with DMA

in interrupt

mode or non-

0x00000FFF 0x00000000

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

68

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

interrupt

mode

0x00000000 Disable all receiver

interrupts

When

receiving stop
0x00000FFF 0x00000000

8.2 DW

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

CH_CTL 31:0 Word

(32 bits)

0x00000002 Initialize channel

control register

Initialize SPI

driver

0x80000BF4 0x00000000

0x00000002 De-initialize
channel control

register

De-initialize SPI

driver

0x80000BF4 0x00000000

0x00000000 |

DMA channel

enable << 31

Start or Stop DMA During transfer

with DMA

0x00000BF4 0x00000000

bit[31]:Set on Async transfer (DMA)
stating/Clear on Async transfer (DMA)

ending

CH_STATUS 31:0 Word

(32 bits)

-:Read only Initialize channel

status register

Initialize SPI

driver

0x0000000F 0x00000001

-:Read only De-initialize
channel status

register

De-initialize SPI

driver

0x0000000F 0x00000001

Cause of

interrupt

Read only

Checking DW

channel status.

During transfer

with DMA

0x00000000 0x00000000

bit[3:0]:Clear on Async transfer (DMA)

stating/ Set on Async transfer (DMA) ending

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

69

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

CH_IDX 31:0 Word

(32 bits)

0x00000000 Initialize channel

current indices

Initialize SPI

driver

0x00000000 0x00000000

0x00000000 De-initialize

channel current

indices

De-initialize SPI

driver

0x0000FFFF 0x00000000

0x00000000 | Y

loop index << 8

| X loop index

Calculate buffer

position

During transfer

with DMA

0x00000000 0x00000000

bit[15:8] | bit[7:0]

Clear on Async transfer (DMA) stating

Change on during transfer

CH_CURR_PT

R
31:0 Word

(32 bits)

0x00000000 Initialize channel
current descriptor

pointer register

Initialize SPI

driver

0x00000000 0x00000000

0x00000000 De-initialize
channel current
descriptor pointer

register

De-initialize SPI

driver

0xFFFFFFFC 0x00000000

ADDR[31:2] Set descriptor

address

When stating

transfer with

DMA

0x00000000 0x00000000

bit[31:2]:Set to current descriptor address

on stating transfer

ADDR[31:2] Calculate buffer

position

During transfer

with DMA

0x00000000 0x00000000

bit[31:2]:Clear to 0 on ending transfer

INTR 31:0 Word

(32 bits)
0x00000001 Initialize interrupt

register

Initialize SPI

driver
0x00000000

(monitoring
is not

needed.)

0x00000000

(monitoring is not needed.)

0x00000001 De-initialize

interrupt register

De-initialize SPI

driver

0x00000001 Clear interrupt When stating

transfer with
DMA

When DMA
interrupt

catched

S
P

I h
a

n
d

le
r/d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e

70

002-2
339

8 R
ev. *N

2024-07-29

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

INTR_MASK 31:0 Word

(32 bits)

0x00000000 Initialize interrupt

mask register

Initialize SPI

driver

0x00000001 0x00000000

0x00000000 De-initialize

interrupt mask

register

De-initialize SPI

driver

0x00000001 0x00000000

0x00000000 |

Enable

interrupt

Disable or enable

DMA interrupt

During transfer

with DMA

0x00000000 0x00000000

bit[0]:Set on stating DMA/Clear on ending

DMA

SRAM_DATA0 31:0 Word

(32 bits)

0x00000000 Initialize SRAM

data0 register

Initialize SPI

driver

0x00000000

(monitoring
is not

needed.)

0x00000000

(monitoring is not needed.)

0x00000000 De-initialize SRAM

data0 register

De-initialize SPI

driver

0x00000000

(monitoring
is not

needed.)

0x00000000

(monitoring is not needed.)

SRAM_DATA1 31:0 Word

(32 bits)

0x00000000 Initialize SRAM

data1 register

Initialize SPI

driver

0x00000000

(monitoring
is not

needed.)

0x00000000

(monitoring is not needed.)

0x00000000 De-initialize SRAM

data1 register

De-initialize SPI

driver
0x00000000

(monitoring

is not

needed.)

0x00000000

(monitoring is not needed.)

User guide 71 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

Revision history

Revision history

Revision Issue date Description of change

** 2018-06-27 New spec.

*A 2018-10-09 Added two TRAVEO™ T2G Automotive Body Controller High Family

TRMs in Hardware Documentation.

Deleted the datasheet in Hardware Documentation.

Corrected description of SpiIncludeFile parameter in 2.2.1

Architecture Specifics.

Add DMA and cache usage in following section.

5.12 Using DMA and Cache

Exclude SpiBaudrate and SpiUseDma from the SpiHwUnit Note in the

4.2.3 External Device Configuration.

Changed notes related to the SpiDataWidth and the total size of all

Channel's data buffers in SpiChannelAssignment of 4.2.2 Job

Configuration.

Added to 4.2.6 SPI Published Information that the value of
SpiMaxHwUnit is dummy and that actual value is referenced in the

hardware data sheet.

*B 2019-06-11 Updated hardware documentation information.

6.4 DMA

Add description about section VAR_NO_INIT_ASIL_B_32 assignment

*C 2019-08-07 2.2.1 Architecture Specifics

Added SpiForceOverwrite

4.2.1 Channel Configuration

Added the note comment in SpiDataWidth

4.2.3 External Device Configuration

Added SpiForceOverwrite configuration and changed SpiUseFifo

description.

B.1.1 SCB

Changed CTRL register descriptions.

*D 2019-12-23 4.2.1 Channel Configuration

Added SpiDataWidth (DMA) to the Note

*E 2020-04-06 2.6.2 Restriction of Memory Allocation

Added a chapter regarding restriction of memory allocation.

5.12 Usage of DMA and Cache

Deleted the chapter because the usage of DMA and Cache is merged to

Section 2.6.2.

*F 2020-09-07 2.6 Memory Mapping

Changed Spi_MemMap.h file include folder.

2.6.2 Restriction of Memory Allocation

Added the recommendation of allocation and the restriction of VRAM.

4.1 General Configuration

User guide 72 002-23398 Rev. *N

 2024-07-29

SPI handler/driver user guide

Revision history

Revision Issue date Description of change

Deleted restriction of SpiSupportConcurrentSyncTransmit.

4.2.3 External Device Configuration

Changed and added Note description.

SpiCsSelection

SpiHwUnit

SpiUseDma

5.3 Initialization

Deleted description of post-build.

A.4.15 Spi_GetBufferStatus

Deleted description of DMA.

*G 2020-11-19 MOVED TO INFINEON TEMPLATE.

*H 2021-05-24 5.8 Sleep Mode

Changed description and added Note.

5.1.1.3 Externally Buffered Channels

Changed Note.

*I 2021-08-19 Added a note in 6.3 Interrupts

*J 2021-12-07 Updated to the latest branding guidelines

*K 2023-10-06 Added SRAM_DATA0 and SRAM_DATA1 register information in 8.2 DW.

*L 2023-12-08 Web release. No content updates.

*M 2024-03-18 Deleted Notes in 6.3 Interrupts

*N 2024-07-29 Updated description in 5.6 Production errors

 Important notice Warnings

Edition 2024-07-29

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email:

erratum@infineon.com

Document reference

002-23398 Rev. *N

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the SPI handler/driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding

	2 Using the SPI handler/driver
	2.1 Installation and prerequisites
	2.2 Configuring the SPI driver
	2.2.1 Architecture specifics

	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword
	2.6.2 Restriction of memory allocation

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 PORT driver
	3.4.2 MCU driver
	3.4.3 DIO driver
	3.4.4 AUTOSAR OS
	3.4.5 BSW scheduler
	3.4.6 DET
	3.4.7 DEM
	3.4.8 Error callout handler
	3.4.9 DMA

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 SPI driver configuration
	4.2.1 Channel configuration
	4.2.2 Job configuration
	4.2.3 External device configuration
	4.2.4 Sequence configuration
	4.2.5 SPI DEM event parameter references
	4.2.6 SPI published information

	4.3 Vendor and driver specific parameters
	4.3.1 Container SpiGeneral
	4.3.1.1 SpiErrorCalloutFunction
	4.3.1.2 SpiIncludeFile

	4.4 Other modules
	4.4.1 PORT driver
	4.4.2 DET
	4.4.3 AUTOSAR OS
	4.4.4 BSW scheduler

	5 Functional description
	5.1 Channels, jobs, and sequences
	5.1.1 Channels
	5.1.1.1 General
	5.1.1.2 Internally buffered channels
	5.1.1.3 Externally buffered channels
	5.1.1.4 Data buffers

	5.1.2 Jobs
	5.1.3 Sequences
	5.1.4 Scheduling

	5.2 Inclusion
	5.3 Initialization
	5.4 Runtime reconfiguration
	5.5 API parameter checking
	5.5.1 AUTOSAR specified development errors
	5.5.2 Vendor specific development errors

	5.6 Production errors
	5.7 Reentrancy
	5.8 Sleep mode
	5.9 Debugging support
	5.10 Execution time dependencies
	5.11 Deviation from AUTOSAR
	5.12 Caveats

	6 Hardware resources
	6.1 Ports and pins
	6.2 Timer
	6.3 Interrupts
	6.4 DMA

	7 Appendix A – API reference
	7.1 Include files
	7.2 Data types
	7.2.1 Spi_StatusType
	7.2.2 Spi_JobResultType
	7.2.3 Spi_SeqResultType
	7.2.4 Spi_DataBufferType
	7.2.5 Spi_NumberOfDataType
	7.2.6 Spi_ChannelType
	7.2.7 Spi_JobType
	7.2.8 Spi_SequenceType
	7.2.9 Spi_HWUnitType
	7.2.10 Spi_AsyncModeType
	7.2.11 Spi_ExtDeviceType
	7.2.12 Spi_OvsValueType

	7.3 Constants
	7.3.1 Error codes
	7.3.2 Vendor specific error codes
	7.3.3 Version information
	7.3.4 Module information
	7.3.5 API service IDs
	7.3.6 Vendor specific API service IDs

	7.4 Functions
	7.4.1 Spi_Init
	7.4.2 Spi_DeInit
	7.4.3 Spi_WriteIB
	7.4.4 Spi_AsyncTransmit
	7.4.5 Spi_ReadIB
	7.4.6 Spi_SetupEB
	7.4.7 Spi_GetStatus
	7.4.8 Spi_GetJobResult
	7.4.9 Spi_GetSequenceResult
	7.4.10 Spi_GetVersionInfo
	7.4.11 Spi_SyncTransmit
	7.4.12 Spi_GetHWUnitStatus
	7.4.13 Spi_Cancel
	7.4.14 Spi_SetAsyncMode
	7.4.15 Spi_GetBufferStatus
	7.4.16 Spi_Terminate
	7.4.17 Spi_ChangeOvsSetting

	7.5 Scheduled functions
	7.5.1 Spi_MainFunction_Handling

	7.6 Required callback functions
	7.6.1 SPI notification functions
	7.6.1.1 Spi_JobEndNotification
	7.6.1.2 Spi_SeqEndNotification

	7.6.2 DET
	7.6.2.1 Det_ReportError

	7.6.3 DEM
	7.6.3.1 Dem_ReportErrorStatus

	7.6.4 Callout functions
	7.6.4.1 Error callout API

	8 Appendix B – Access register table
	8.1 SCB
	8.2 DW

	Revision history
	Disclaimer

