(infineon

Watchdog driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration, and usage of the watchdog (WDG) driver. This document
explains the functionality of the driver and provides a reference of the driver’s API.

The installation, build process, and general information on the use of EB tresos Studio are not within the scope
of this document. See the EB tresos Studio for ACG8 user’s guide [7] for detailed information about this topic.

Intended audience

This document is intended for anyone who uses the WDG driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the WDG driver, explains the embedding in the
AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the WDG driver provides detailed steps on how to use the WDG driver in an application.
Chapter 3 Structure and dependencies describes the file structure and the dependencies of the WDG driver.

Chapter 4 EB tresos Studio configuration interface describes the driver’s configuration with the EB tresos
Studio.

Chapter 5 Functional description gives a functional description of all services offered by the WDG driver.
Chapter 6 Hardware resources gives a description of all hardware resources used by the driver.

The Appendix A and Appendix B provides a complete API reference and access register table.

Abbreviations and definitions

Abbreviation Description

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

BSW Basic Software. Standardized part of software which does not fulfill a
vehicle functional job.

DEM Diagnostic Event Manager

DET Default Error Tracer

EB tresos ECU AUTOSAR Suite A collection of AUTOSAR Basic Software modules and a Runtime

Environment integrated in a common configuration and build
environment.

EB tresos Studio Elektrobit Automotive configuration framework
ILO Internal Low-speed Oscillator
User Guide Please read the Important Notice and Warnings at the end of this document 002-23353 Rev. *L

www.infineon.com 2023-12-08

o~ _.
Watchdog driver user guide |nf|n90n
TRAVEO™ T2G family '

About this document

Abbreviation Description

LF Source clock of MCWDT which is selectable from several clock sources.
MCAL Microcontroller Abstraction Layer
MCU Micro Controller Unit

ms Millisecond

(ON) Operating System

RAM Random Access Memory

ROM Read Only Memory

WDG Watchdog

WDT Basic Watchdog timer

MCWDT Multi-Counter Watchdog Timer
SRSS System Resources Sub-System

Related documents

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.
[2] Specification of watchdog driver, AUTOSAR release 4.2.2.

[3] Specification of standard types, AUTOSAR release 4.2.2.

[4] Specification of ECU configuration parameters, AUTOSAR release 4.2.2.
[5] Specification of default error tracer, AUTOSAR release 4.2.2.

[6] Specification of diagnostics event manager, AUTOSAR release 4.2.2.

Elektrobit automotive documentation
Bibliography

[7]1 EBtresos Studio for ACG8 user’s guide.

Hardware documentation

The hardware documents are listed in the delivery notes.
Related standards and norms
Bibliography

[8] Layered software architecture, AUTOSAR release 4.2.2.

User Guide 2 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Table of contents

Table of contents

About this dOCUMENtccuuuiiiiuiiiiiiiiiiiiiininiiitiniitttiiitaiirseisrssissrssisssasses 1
Table Of CONEENTS ..cuureuniiniiiiiiiiiiiiiiiiiiitiiriiriietietiitiitteieteieteetaestsetsecctsestsestsesssssssnssrsssssssssesssnsens 3
1 GENEIAl OVENVIEW ..euuireeirieiioeiirniraeiioeniseneseereestsestsnsssssssssssestssstssssssssssssssssssssssssssassssssssssssssssnses 5
1.1 INtroduCtion tO thE WDG AFIVET....c.evuiviiiiieieerieei ettt sttt ettt sre b ae et sesaens 5
1.2 LT o T (o) 111 SRR 5
1.3 Embedding in the AUTOSAR €NVIFONMENT...cccuiiiiiiiiieieieriteteieetetesie ettt ettt sbe et sbe s nee 5
1.4 SUPPOIEEA NATAWAIEeeieieieeeeteeeteteete ettt ettt et e s et st e b e st et e sse et esbesseensessesssensesnsensessesnsens 6
1.5 DeVelopMENT ENVIFONMENTc.iiiiiiiietetertet ettt ettt ettt e sbe st ete st e b e besat et e s bt et e besat e besse et enbesaaenes 6
1.6 Character set and ENCOAINGcoueruirierieiririeeer ettt et ettt ettt be b e et e e et sessesseeseee 6
2 USING the WDG driVer...cccieeiireicrrecrasinesisescrsesssestasssssssssssssescassssssssssssasssassssssssssssasssasssssssssessasssans 7
2.1 INStallation aNd PrEr@QUISITES....c.viiiiiieciececceece ettt ete e rte e be e s e e sate s te e be e beeesaessaesnsesnseensesnses 7
2.2 CoNfigUrNG the WD G AFIVET ..cueiiieieieieeeieriesesiestete ettt st ste st st e et s b s b e sbe st et et e e e e esessesbenes 7
2.3 Adapting YOUr @PPLICAtION .o..ieiieecieececeeee ettt ettt e e s e re st e e e e e e aesre e s e seeneenes 7
2.4 StArting the DUILA PrOCESSccviriiiieeeeete ettt ettt st e b s ae et e be s e estesaeensens 8
25 Measuring StaCk CONSUMPLIONciiuiriieieiertetet ettt ettt ettt s et s bt et e b e st et esbe e e e sbesaeenee 9
2.6 MEMOIY MAPPINE ceveivierrerieriterireesteestestesitesssessessseesseesssesssessesssesssesssessseesssesssesssesssessssessaesssesssesssesssas 9
2.6.1 MeMOry AllOCAtioN KEYWOI ...c.viiiiiieiieectecie ettt sre s ste e sve e s e e sraestessbessbaessaessaesssesnsesnsean 9
2.6.2 ASSEMDBIET COUR ...ttt ettt st b et ettt s be s b s b e be b eae e enteseesesaens 10
3 Structure and dePENUENCIES...ccccuuieeiieicerinieeceentestecssctsscscssssssssscsssssssssssssssssssssssssssssssssssssassanes 11
3.1 K] =Y Lol 1 T TP 11
3.2 CONFIGUIALION FIlES .ttt sttt et sb e st st et et et e e e e esessessesan 11
33 GENEIATEA fIlES vttt b sttt ettt b s bbbt et ne e s b naenes 11
3.4 DEPENUENCIES ..eeeeieeiieierteeteste et ete et e e st e st et e s te s te st e e st e sesseestessesssansasseensenseensessesssansessesnsensesssensesseenses 12
3.4.1 AUTOSAR OS...eieieieieteteteete st s ettt e e s e eats b st s b et et e st et s bt s b e st e b et et e st e st e st ebesbesbessentensententesassessens 12
3.4.2 DET ettt ettt ettt ettt ettt ettt e b s bbbttt e h e bbb et et et et Rt e Rt e Rt b e b e b et et et e st eneeneeresaeten 12
343 WatChAOg INTEITACE ..ottt sttt et et e b e a e st e tesbeentans 12
3.4.4 DEM ettt ettt ettt ettt h s b e bbbttt a e e bbbt et e st et Rt e Rt e st b e b b et et et e st eneeneenenaeten 12
3.45 BSW SCREAULET ...ttt ettt ettt et st s s st e sa e s st et e sae et e sesneensennnensas 12
3.4.6 Error CAllOUT NandIerottt ettt ettt et s 12
4 EB tresos Studio configuration interfaceccccceviviiiniieiiniinninnincinniiiiniineiiieiiniiessccsesssscssssesses 13
4.1 GENEral CONFIGUIALION ..oieeeiiieeeeee ettt e e e et et e st e s e s se et e sesneessesseensensesneenes 13
4.2 WDG Settings CONFIGUIAtION ...c.ceiiiiiiiiierieeete ettt sttt 14
4.3 WDG timer CONfIGUIAtioN LiSt.....ccueveieiririirierieriecete ettt sttt 14
4.4 WDG settings fast cONfiguration liStc.eeeeeieeieciiiereeeeetee et sa e sreeneens 16
4.5 WDG settings SLow coNfigUration liSt........cocevuerieriinenieiereeeeet ettt ettt s 17
4.6 WDG settings off cONfiguration liStcceeeecieieiiieeeesee et neens 18
4.7 WDG DemEVeNtParameter refErENCEoviviirieiieeeeeree ettt sttt sae st saesnnens 19
4.8 WDG eXternal CONfIGUIAtION ..c.eiiiiieieerteresteet ettt ettt ettt sttt et sbe b ee 19
4.9 WAgPUbBLiShedINformMation........cocieieirirereeeeee ettt sttt sbe b ee 19
5 FUNCHiONAl deSCriPtion . ..cuieiiiiieeiiniieiiinniaiienceectsncacsssssssoncsssssscsscssssssssscssssssssssssssssssscssssssssssssssns 20
5.1 INCIUSION 1ttt ettt ettt e b e s bbbt e b et et s e b e s b e b e s b et et et entenesseeseesensens 20
5.2 INTEIALIZATION ..ttt ettt et b e st e bt et e s bt et e s bt e at et e sbe et e beeatebesateatn 20
5.3 Reconfiguration dUNG FUNTIMEcc.eiuiriririeeeetetr sttt ettt sttt et besbens 20
5.4 APL Parameter ChECKINGccuiviiiiieieee ettt ettt ettt s bttt e st et et e st e b e s st et esbesatentesbasnsans 20
54.1 WAE_66_TA_INTE() erverrirririerienieieieteteee sttt ettt sttt sttt et et sbesbesbe st esae st enaeneeneesessessens 20
5.4.2 WG _66_IA_SEEMOAE() ..uverreereiieieiinieterteeteie st stes e ereeressee st essesseessessesssessesssensanseessensesseessessesnsens 22
5.4.3 Wdg_66_IA_SetTriggerCoNdition().....ccccecerererierierieieiniesesesiertest et s st st se et sae e e resaens 22
User Guide 3 002-23353 Rev. *L

2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Table of contents

5.4.4 Wdg_66_IA_GEtVErSionNINTO()...eoveeeeeeririerierierierieteteesie ettt ettt sttt sttt e e s e sbesaens 23
5.5 RUNEIME CRECKS .ttt ettt ettt e st e st e e e et e be e st e s b e e st e st esseensansasnsensenseensn 24
55.1 WAE 66 _TA_INTE() eoverrirrerierienieieitetete ettt ettt sttt sb et b e st et s bt sbesbe st esaenteneeneeneesessesaens 24
5.6 [CTT o L1 =] o oy O PO POTPPURTRTPPO 24
5.7 DEDUZEING SUPPOI..cceiiieieeieieeiteteetet et et te sttt e st e st e te st e tesbe st e bes st e s essesssessesasensessesnsensesssensesseensen 24
6 HardwWare FESOUNCES ..cucceerreitacsestesrscsessossscsesssnsssssses 25
6.1 LN U PTS ettt ettt ettt e e e e e bt e e e e e s e e sb b et e e e e s e e s neb b e e e e e e e e s nrettaeeeeeeennnnat 25
7 APPENAIX A — APl Fef@reNCEe . .cucuuieiiuieieiietencententocecassessocassessssssssssssssssssssssssscssssssssasssssssascasssssssasse 26
7.1 D] = I R 0L SRR UPTRTPP 26
7.1.1 WG _66_IA_CONTIGTYPE cetiteeieieeeeeeeeterte et e et etes e et et e st e et e st e s e et e ssesssessesseessessesssassesseessessesneans 26
7.1.2 WAGIT_MOAETYPE .ottt sttt ettt st et ettt ettt be s s e sbesbesbebentenaenaenessassessens 26
7.2 (00T 0151 =] 0 1 £ T OO OO OO PPV POU PRSPPI 26
7.2.1 EFTOT COURS ittt ettt ee e et eeete e eetae e e beeeesbeeesbaeesasesaseesbeseesseeensesensseesnseeensssennreeen 26
7.2.2 VErsioN INFOrMALION ...ccovieiieiieieceece ettt b e be e ae e e b e e b e ebeebe e beesbeesbaeesbeenseenbeenseenssennns 27
7.2.3 MOAULE INFOIMALION .ottt ettt e s s s e et e sae s e e s e sse e s e seeseessasneensas 27
7.2.4 APLSEIVICE IDS .eeviieeeiiieeeecte ettt ee et e ettt e e e e cte e e e e tbaeeeeabeeeaesssaeeaessaseaasssasaaassaaaeaasstaesennseaasennsenes 27
7.3 U] Tt o] o 3ROSR 28
7.3.1 WG B6_TA_INIL oottt ettt e st et s b et e b e st et e sbe s st e basssensensesssensesssensessesnsans 28
7.3.2 WG 66 _IA_SEIMOAE ...ttt ettt ettt ettt et s bt et et s e et be et e be st e tesseentans 29
7.3.3 Wdg_66_IA_SetTriggerCoONAitiONcceevereeieciereeteeeeeteseeteseeeeesteste e e te s e esessesssessesseessesseeneans 30
7.3.4 WAg_66_IA_GELVEIrSIONINTO ..cuveuieiiiieiiriteieserteee ettt ettt st sttt s s besaens 30
7.4 Required Callback FUNCLIONS ..c..iceiiiieieeeeee ettt e e st e s e e e e besraeaesrnenean 31
7.4.1] 3 Nt 31
74.1.1 (D1 il 0= o To] o =1 (o U TP P PUPPR R RUPPPPPPTRRIRE 31
7.4.2 DEM ..ottt cte et ete et e bt et e et e e be e ba e b e et e esbaesbaeetbeerbe et e e be e bbeesbeea b e e b e e b e e baeabaeeaaeetbeenbeentaebeeseennes 32
74.2.1 DEM_REPOIEITOISTAtUS .oiiiiiieiiciteccette ettt ettt e s re e s s sbae e e s s bae e s ssraaesssssnaessnasenas 32
7.4.3 CallOUL fUNCHIONS 1ottt ettt esteesbeesteeeabeebeesbe e beesssesssessseerseensaessesaesssesssesssesnseens 32
7431 ErTOr CAlLOUT AP .ttt sttt ettt s e st e s bt e e et e sse e s b e s s e sbaessaesanesssasssesssesnsesnnes 32
8 Appendix B - Access register tableccccveireiiiniinniiiniiiaesiasinniirniiiasisesisesissssrsstassssessssssssessansens 34
8.1 SRSS (MCWDT) cereeeeeeeeeee e seseeeees e seeseesesesseeeeassaeseseaesessessesesseassesasesssseessesesssessassessassessassaees 34
8.2 SRSS (WDT) cutieteerienteeeeeeteereerteerseesteesseessbeesseesseeseenssesssessssesssesssessenssesssessseerseenseenseenssessseesseensseseesees 36
REVISION NISTOIY c..cuuieiieniiniienieniieiienieectentencancssstascsssssssescasssssssssssssssssscasssssssssssssssssssasssssssssassssssnssassanss 38
[0 113 ol - 1 15 =T Y 39
User Guide 4 002-23353 Rev. *L

2023-12-08

- .
Watchdog driver user guide In fl neon
TRAVEO™ T2G family

General overview
1 General overview
1.1 Introduction to the WDG driver

The WDG driver is a set of software routines for handling the WDG module. The driver provides services for
initializing, changing the operation mode, and setting the trigger condition (timeout). The driver is compliant
with the AUTOSAR standard and is implemented according to the Specification of watchdog driver [2].

The WDG driver is delivered with a plugin for the EB tresos Studio, which allows you to statically configure the
driver options. The driver provides an interface to define symbolic names and the functionality of all
configuration options. The WDG driver is designed and implemented for use with additional WDG drivers. All
API functions, DEM errors, DET errors, and data types are prefixed with vendor specific string “_66_IA_". IAis the
short form for InternalA.

1.2 User profile
This guide is intended for users with a basic knowledge of the following domains:

e Embedded systems

e Cprogramming language

e AUTOSAR standard

e Target hardware architecture

1.3 Embedding in the AUTOSAR environment

Application 1 Application 2 Application 3 Application n Application

Application
Runtime Environment Abstraction
Layer

System Memory Communication Service
Services Services Services Layer

Onboard Memory Communication ECU

Device Hardware Hardware he Hardvyare Abstraction
Abstraction

Abstraction Abstraction Abstraction Layer

Operation System

Microcontroller

uC Driver Memory Driver COM Driver 1/O Driver Abstraction
Layer

Microcontroller Type

Figure 1 Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. The WDG driver (Figure 2) is part of the MCAL, the
lowest layer of basic software in the AUTOSAR environment.

As an internal microcontroller driver, WDG driver provides a standardized and microcontroller-independent
interface to higher software layers for accessing WDG timer of the ECU hardware.

For an overview of the AUTOSAR layered software architecture, see the Layered software architecture [8].

User Guide 5 002-23353 Rev. *L
2023-12-08

- .
Watchdog driver user guide In fl neon
TRAVEO™ T2G family

General overview

Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers

MCU Driver
Core Test
Flash Test

RAM Test
LIN Driver
CAN Driver
FlexRay Driver
OCU Driver
ICU Driver
PWM Driver
ADC Driver
DIO Driver
PORT Driver

=
@
=

po—
o
=
o
()

Internal Flash Driver
SPI Handler Driver
Ethernet Driver

Watchdog Driver
Internal EEPROM Driver

Microcontroller

Figure 2 WDG driver in MCAL layer

14 Supported hardware

This version of the WDG driver supports the TRAVEO™ T2G microcontroller. The supported derivatives are listed
in the release notes.

Additional derivatives which contain only a subset of the capabilities of one derivative mentioned above can be
supported by providing a resource file with its properties.

1.5 Development environment
The development environment corresponds to AUTOSAR release 4.2.2. The modules BASE, DEM, MAKE, MCU,
and RESOURCE are needed for proper functionality of the WDG driver.

1.6 Character set and encoding

All source code files of the WDG driver are restricted to the ASCII character set. The files are encoded in UTF-8
format, with only the 7-bit subset (values 0x00 ... 0x7F) being used.

User Guide 6 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family '\ —
Using the WDG driver

2 Using the WDG driver

This chapter describes all necessary steps to incorporate the WDG driver into your application.

2.1 Installation and prerequisites

Note: Before continuing with this chapter, see the EB tresos Studio for ACG8 user’s guide [7]. You can find
the required basic information about the installation procedure of EB tresos ECU AUTOSAR
components and the usage of the EB tresos Studio and the EB tresos ECU AUTOSAR build
environment. You will also find information on how to setup and integrate your own application
within the EB tresos ECU AUTOSAR build environment.

The installation of the WDG driver complies with the general installation procedure for EB tresos ECU AUTOSAR
components given in the EB tresos Studio for ACG8 user’s guide [7]. If the driver has been successfully installed,
the driver will appear in the module list of the EB tresos Studio (see EB tresos Studio for ACG8 user’s guide [T]).

This guide assumes that the project is properly set up and is using the application template as described in the
EB tresos Studio for ACG8 user’s guide [T]. This template provides the necessary folder structure, project, and
makefiles needed to configure and compile an application within the build environment. You must be familiar
with the usage of the command line shell.

2.2 Configuring the WDG driver

This section provides an overview of the configuration structure, defined by AUTOSAR, on how to use the WDG
driver.

The following basic containers are used to specify the behavior of WDG driver:

e WdgGeneral: This container is mainly used to restrict or extend the APl of the WDG module and enable or
disable DET.

¢ lWdgDemEventParameterRefs: This container holds references to the DemEventParameter elements,
which will be invoked using the Dem_ReportErrorStatus APl in case the corresponding error occurs.

e WdgSettingsConfig: This container holds the watchdog settings for each mode, all post-build parameters
are handled via this container.

The configuration data stored by containers WdgExternalConfiguration and WdgPublishedInformation
are not processed.

For detailed information and description, see EB tresos Studio configuration interface.

2.3 Adapting your application

To use the WDG driver in your application, include the MCU and WDG driver header files by adding the following
lines of code in your source file:

#include “Mcu.h” /* MCU Driver */
#include “Wdg 66 IA.h” /* WDG Driver */

This publishes all needed functions, prototypes, and symbolic names of the configuration to the application.
Also, you need to implement the error callout function for ASIL safety extension.

Declare the error callout function in file specified by the WdgIncludeFile parameter and implement the error
callout function in your application (see Required callback functions, Error callout API).

The error callout function name can be configured by the WdgErrorCalloutFunction parameter.

User Guide 7 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Using the WDG driver

In the next step, the MCU and WDG need to be initialized and configured. The steps to configure the WDG driver
in the EB tresos Studio are explained in EB tresos Studio configuration interface. The WDG module will be
automatically enabled if an appropriate parameter configuration of the WDG module is available in the
application.

The MCU and WDG initialization can be done with the following function call and parameter.

Mcu Init (&Mcu Config[0]);
Wdg 66 IA Init(&Wdg 66 IA Config[l]);

To trigger watchdog timer (WDT/MCWDT) with the timeout parameter or trigger an immediate watchdog reset
(WDR), thewdg 66 IA SetTriggerCondition () function must be called. In case of RAM mode, the trigger
routine should be called by the application directly instead of thewdg 66 IA SetTriggerCondition ()
function after flash area is erased.

Wdg 66 IA SetTriggerCondition (1000);

Your application must provide the notification functions and its declarations that you configured. The file
containing the declarations must be included using the WdgGeneral /WdgIncludeFile parameter. The
notification functions take no parameters and have void return type:

void MyNotificationFunction (void)

{

/* Insert your code here */

}

Note: Notification function is controlled by wdgEnableWarningIrgwhich uses a warning interrupt to
notify the application before WDR happens. If this interrupt is enabled, an interruption is triggered
when the watchdog counter reaches the warning limit value. Notification function does not work
correctly if this interrupt is disabled. Set up the interrupt levels appropriately according to system
environment.

2.4 Starting the build process
Do the following to build your application:

Note: For a clean build, you should use the build command with target ciean a1l before (make
clean all).

1. Type the following in the command shell to generate the necessary configuration dependent files.
> make generate

The details of the generated files are described in Generated files.

2. Type the following command to resolve all required file dependencies:
> make depend

3. Type the following command to compile and link the application:
> make (optional target: all)

The application is now built. All files are compiled and linked to a binary file, which can be downloaded to the
target hardware.

User Guide 8 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Using the WDG driver

2.5 Measuring stack consumption
Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with the dedicated compiler option. The
executable file built in this step must be used only to measure stack consumption.

1. Add the following compiler option to the Makefile to enable stack consumption measurement:

-DSTACK ANALYSIS ENABLE

2. Type the following command to clean library files:

> make clean lib
3. Follow the build process described in Starting the build process.
4. Follow theinstructions in the release notes and measure the stack consumption.
2.6 Memory mapping

The Wdg_66_IA_MemMap.h file in the S(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0IOR0/include directory is
a sample. This file is replaced by the file generated by MEMMAP module. Input to MEMMAP module is generated
as Wdg_Bswmd.arxmlin the S(PROJECT_ROOT)/ output/generated/swcd directory of your project folder.

2.6.1 Memory allocation keyword

WDG 66 IA START SEC CODE/ WDG 66 IA STOP SEC CODE

The memory section type is CODE. All executable code is allocated in this section.

e WDG 66 IA START SEC CONST UNSPECIFIED/WDG 66 IA STOP SEC_CONST UNSPECIFIED
The memory section type is CONST. The following constants are allocated in this section:

- All configuration data except reset
- Hardware register base address data
e WDG 66 IA START SEC CONST BOOLEAN/WDG 66 IA STOP SEC CONST BOOLEAN

The memory section type is CONST. The following constant is allocated in this section:

- Configuration data regarding Dem
e WDG 66 IA START SEC VAR INIT UNSPECIFIED/ WDG 66 IA STOP SEC VAR INIT UNSPECIFIED

Memory section type is VAR. The following variables are allocated in this section:

- Pointer to the configuration data
- Current mode
e WDG 66 IA START SEC CONST 32/ WDG 66 IA STOP SEC CONST 32

The memory section type is CONST. The following constant is allocated in this section:

- Trigger function size
e WDG 66 IA START SEC VAR INIT 16/WDG 66 IA STOP SEC VAR INIT 16

The memory section type is VAR. The following variable is allocated in this section:

- Current timeout value

User Guide 9 002-23353 Rev. *L
2023-12-08

o~ _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Using the WDG driver

e WDG 66 IA START SEC VAR INIT 8/WDG 66 IA STOP SEC VAR INIT 8
The memory section type is VAR. The following variables are allocated in this section:
- Driver status
- SRSSversion. See Hardware documentation for details.

2.6.2 Assembler code

Assembler code for the WDG driver uses the fixed memory section names in Table 1.

Table 1 Fixed section names

Section name Allocate area
WDG_6 6_IA_TRIGGER ROM area
User Guide 10 002-23353 Rev. *L

2023-12-08

o _.
Watchdog driver user guide |nf|n90n
TRAVEO™ T2G family

Structure and dependencies

3 Structure and dependencies

The WDG driver consists of static, configuration, and generated files.

3.1 Static files

o S(PLUGIN_PATH)=S(TRESOS_BASE)/plugins/WDG_TS_* is the path to the WDG module plugin.

e S(PLUGIN_PATH)/lib_src contains all static source files of the WDG driver. These files represent the
functionality of the driver. These files are independent of any configuration sets. The files are packed
together into a static library.

e S(PLUGIN_PATH)/src contains configuration dependent source files or device specific files. Each file will be
rebuilt when the configuration set is changed.

All necessary source files will be automatically compiled and linked during the build process and all include
paths will be set if the WDG driver is enabled.

e S(PLUGIN_PATH)/include is the basic public include directory needed by the user to include Wdg_66_IA.h.

e S(PLUGIN_PATH)/autosar directory contains the AUTOSAR ECU parameter definition with vendor,
architecture, and device specific adaptations to create a correct matching parameter configuration for the
WDG module.

3.2 Configuration files

The configuration of the WDG driver is done with the EB tresos Studio. When saving a project, the configuration
description is written to the Wdg.xdm file, which is in S(PROJECT_ROOT)/config of your project folder. This file
serves as input for the generation of the configuration dependent source and header files during the build
process.

3.3 Generated files

During the build process the following files are generated based on the current configuration description.
These files are in the folder output/generated of your project folder.

include/Wdg_66_IA_Cfg.h, include/Wdg_66_IA_IncludeFiles.h, include/Wdg_66_IA_Cfg_Arch.h and
include/Wdg_66_IA_PBcfg.h define all symbolic names, macros, and configuration settings needed by the
module.

e src/Wdg_66_IA_PBcfg.c contains the constant structure for the WDG configuration.
e src/Wdg_66_IA_Irg.c contains the interrupt service routine for the warning interrupt.
e src/Wdg_66_IA_Trigger_Asm_GHS.s defines the trigger routine.

Note: Generated source files need not to be added to your application make file. These files will be
compiled and linked automatically during the build process.

e swcd/Wdg_Bswmd.arxml contains Bsw module description.

Note: Additional steps are required for the generation of BSW module description. In EB tresos Studio,
follow the menu path Project > Build Project and click generate_swcd.

User Guide 11 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|ne0n
TRAVEO™ T2G family

Structure and dependencies

3.4 Dependencies

3.4.1 AUTOSAR OS

The AUTOSAR operating system handles the interrupts used by the WDG driver. See Interrupts for more
information.

3.4.2 DET

If the default error detection is enabled in the WDG module configuration, the DET needs to be installed,
configured and integrated into the application as well.

The WDG driver reports DET error codes as instance 0.

3.4.3 Watchdog interface

The WDG driver uses types of the WDG interface. Therefore, the WDG interface (respectively the Wdglf_Types.h)
needs to be available to build the WDG driver.

3.44 DEM

The DEM needs to be always installed, configured, and integrated with the application as well.

You should use this driver via the Wdg_66_IA.h interface and be responsible to assign the standard
WDG_E_DISABLE REJECTED,WDG E_MODE FAILED,WDG E_HW TIMEOUT,and WDG_E WDG STOPPED via
macros.

3.4.5 BSW scheduler

The WDG driver uses the following services of the BSW scheduler to enter and leave critical sections.

e SchM Enter Wdg 66 IA WDG EXCLUSIVE AREA 0 (void)
e SchM Exit Wdg 66 IA WDG_EXCLUSIVE AREA 0 (void)

You must ensure that the BSW scheduler is properly configured and initialized before using the WDG services.

Note: These services are valid in case that only WDT is configured as watchdog timer.
In other words, if MCWDT is configured, these services would not be effective.

3.4.6 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection
is enabled or disabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It
is configured via configuration WdgErrorCalloutFunction parameter.

User Guide 12 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see the EB tresos Studio for ACG8 user’s guide [T].

4.1 General configuration

The module comes with the following preconfigured with default settings, which must be adapted when
necessary:

e WdgDevErrorDetect enables or disables the development error notification for the WDG module.

Setting this parameter to FALSE will disable the notification of development errors via DET. However, in
contrast to AUTOSAR specification, detection of development errors is still enabled as safety mechanisms
(fault detection).

e WdgDisableAllowed enables or disables the option to disable the WDG driver during runtime.

e WdgIndex represents the WDG driver’s ID that can be referenced by the WDG interface. This value will be
assigned to the following symbolic name:

»

- The symbolic name derived of the WdgGeneral container short name prefixed with “WdgConf
(deConf_deGeneral_deGeneral).

e TWdgInitialTimeout representsthe trigger condition to beinitialized during Init function. This condition
should not be higher than WdgMaxTimeout. The range is 0-65.535 seconds.

Note: More than one mode is supported as default mode (fast or slow), so WwdgInitialTimeout is not
used any more. Instead, WdgFastTimeoutValue / WdgSlowTimeoutValue are used forinitial
timeout value of each mode.

e TdgMaxTimeout represents maximum timeout to which the WDG trigger condition can be initialized. The
input parameter of idg_ 66 IA SetTriggerCondition () should not be higher than wdgMaxTimeout.
The range is 0-65.535 seconds. The parameter of idg 66 IA SetTriggerCondition () isa millisecond
unit value; therefore, the WDG module converts WdgMaxTimeout to a millisecond value and stores this
value as an inside parameter.

Note: When MCWDT is configured, the maximum timeout would be limited to a value lower than 65.535
according to wdgTimerClockRef (see WDG timer configuration list).
This is because the watchdog timer counter of MCWDT is 16 bits, although WDT has 32-bit
watchdog timer counter.
For example, when the WwdgTimerClockRef is 32768Hz, duration of 1 count of the timer counter is
1/32768 seconds.
The maximum value of 16-bit counter is OXFFFF (65535).
Then the maximum timeout of MCWDT is 1.999 (65535 / 32768) seconds.

e TdgRunArea indicates whether the WDG trigger execution area is either from ROM (Flash) or RAM.
e ldgTriggerLocation isthe location (memory address) of the WDG trigger routine.

Note: wdgTriggerLocationshows the trigger function name. The function name is specific (i.e.
wdg 66 IA ActivateTrigger), and cannot be edited.

e WdgTriggerAddress is location (memory address) of the WDG trigger routine (Actual address). The range is
between the base address to the end address of SRAM (SRAMO, SRAM1 or SRAM2, it depends on hardware
specification) area.

User Guide 13 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
EB tresos Studio configuration interface

Note: wdgTriggerAddress should be multiples of four and within an allowed range; otherwise errors
would occur in configuration phase. This value is editable only when WdgRunArea is set to RAM.
Bit0 of the address should be set to ON (1) when calling the WDG trigger function by jumping
directly from Arm®instructions, because the code is assembled by thumb instructions.

For example, if the address in RAM is configured to 0x8000000, then the calling of WDG trigger function
should use (0x8000000 | 0x0000001).

e WdgVersionInfoApi enables or disables the version information API.

e WdgDemEventModeFailed enables or disables the DEM ModeFailed Event checks and report.

e WdgDemEventDisableRejected enables or disables the DEM DisableRejected Event checks and report.
e ldgDemEventHwTimeout enables or disables the DEM HardwareTimeout Event checks and report.

e ldgDhemEventWdgStopped enables or disables the DEM wdgStopped Event checks and report.

e WdgErrorCalloutFunction isused to specify the error callout function name. The function is called on
every error. The ASIL level of this function limits the ASIL level of the WDG driver.

Note: WdgErrorCalloutFunctionmustbe valid a C function name, otherwise an error would occur in
configuration phase.

e WdgIncludeFileis a list of the filenames that should be included within the driver. Any application-
specific symbol that is used by the WDG configuration (e.g. error callout function) should be included by
configuring this parameter.

Note: wdgIncludeFile mustbe a unique filename with extension.h; otherwise some errors would
occur in configuration phase.

4.2 WDG settings configuration

e WdgDefaultMode is the default mode for WDG driver initialization.
- WDGIF FAST MODE
- WDGIF SLOW MODE
- WDGIF OFF MODE

Note: WDGIF OFF MODE is only supported when WdgDisableAllowed is TRUE.

4.3 WDG timer configuration list

WdgTimerConfigList isthe array of the watchdog timer configuration which is used by WDG driver:

Note: WDG driver can configure one or two watchdog timers. Supported combinations of the watchdog
timers are following three patterns: Only MCWDT, only WDT, MCWDT, and WDT.

In case MCWDT and WDT are configured, MCWDT must be set as the first one in the list array.

If MCWDT and WDT are configured and an MCWDT reset occurs, the WDT keeps running and causes
an undesired reset according to the WDT settings when the WDT counter expires.

The WDT reset cannot be avoided.

User Guide 14 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
EB tresos Studio configuration interface

e WdgCPUSelect is CPU core number where the watchdog timer is assigned to. The range is 0-3.
Note: The number of CPU core is defined by the hardware specification.

e lidgTimerSelection isthe watchdog timer which is configured to be used:
- WDG_TIMER WDT: Basic watchdog timer
- WDG_TIMER MCWDT [n]: Multi-Counter watchdog timer.

[n]: the number of specific MCWDT channel, the maximum number of [n] is defined by the hardware
specification.

e WdgStopwWDT specifies whether WDG driver stops WDT during initialization to avoid WDT would be running
by default setting and cause WDR.

e WdgEnableWarningIrgenables or disables a warning notification for the specific watchdog timer. This
function is used for notifying the application before the watchdog timer expires. The notification function’s
name can be configured with wdgWarningNotification. IfidgEnableWarningIrqgis enabled, then the
notification function must be provided by the application. Also, the warning interrupt must be configured
properly; see Interrupts.

Note: If this interrupt is enabled, the following sequence takes place when the watchdog counter
reaches to warn limit value:
1. Watchdog counter reaches to warn limit value.
2. Warning interrupt is triggered
3. Trigger the action which is configured by WDG driver when watchdog counter reaches trigger
timeout value
Step 2 will not occur, if the warning interrupt is disabled.

e lidgWarningNotification specifiesafunction name to be called in case of a warning interrupt. This
parameter isignored if WdgEnableWarningIrqgis disabled.

Note: WdgWarningNotificationshould be a C function name. Notifications must be declared and
defined outside WDG module. The file containing the declarations must be included using the
parameter WdgGeneral/WdgIncludeFile.

e lidgDebugModeConfig is used to freeze or run the watchdog during the debugging mode:
- WDG DEBUGMODE FREEZE: The watchdog is configured to freeze during debugging mode.
- WDG DEBUGMODE RUN: The watchdog is configured to run during debugging mode.

Note: This parameter would be invalid for WDT if MCWDT and WDT are configured.

e TlidgDeepsleepConfig isused to freeze or run the watchdog mode services in Deep Sleep mode:
- WDG DEEPSLEEP FREEZE: The watchdog is configured to freeze during Deep Sleep mode.
- WDG DEEPSLEEP RUN: The watchdog is configured to run during Deep Sleep mode.

Note: This parameter would be invalid for WDT if MCWDT and WDT are configured.

e TlidgHibernateConfig isused to freeze or run the watchdog mode services in Hibernate mode:
- WDG HIBERNATE FREEZE:The watchdogis configured to freeze during Hibernate mode.
- WDG HIBERNATE RUN: The watchdog is configured to run during Hibernate mode.

User Guide 15 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
EB tresos Studio configuration interface

Note: This parameter is invalid for MCWDT.

e TlidgLowerActionConfig isthe action when the watchdog timer is serviced before lower limit is reached:
- WDG_ACTION RESET: The lower action is configured to cause a reset. This can be set only for WDT.
- WDG_ACTION FAULT: The lower action is configured to generate a fault. This can be set only for MCWDT.

- WDG_ACTION FAULT RESET: The lower action is configured to generate a fault and then cause a reset.
This can be set only for MCWDT.

e WdgUpperActionConfig isthe action when the watchdog timer is reached upper limit:
- WDG ACTION RESET: The upper action is configured to cause a reset. This can be set only for WDT.
- WDG ACTION FAULT: The upperaction is configured to generate a fault. This can be set only for MCWDT.

- WDG_ACTION FAULT RESET: Theupper action is configured to generate a fault and then cause a reset.
This can be set only for MCWDT.

e TdgTimerClockRef is the reference to the MCU clock configuration.
This parameter is used to calculate maximum timeout that can be set to the hardware.

Note: MCU clock reference will only support McuClock thatincludes MCU CLOCK LF*and MCU CLOCK
ILOO*in McuClockReferencePoint.

- McuClock: Clock reference point.
- McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If watchdog timer is configured as MCWDT and there is no McuClock that includesMCU CLOCK LE* in
McuClockReferencePoint, an error will occur in configuration phase.

If watchdog timer is configured as WDT and there is no McuClock that includes MCU CLOCK_ILOO* in
McuClockReferencePoint, an error will occur in configuration phase.

See the MCU user guide for more information.

4.4 WDG settings fast configuration list
WdgSettingsFastList is the array of the following hardware depending settings of WDG driver’s “fast” mode:

e WdgFastTimerConfigRef isthe reference to the timer configuration for the watchdog driver's “fast”
mode.

Note: Currently the number of the timer configuration is limited up to two and WDG driver refers to them
by fixed index of the array.
Therefore, this parameter is not used.

e WdgFastTimeoutValue represents trigger timeout value in “fast” mode. The range is 1-65535 ms.

Note: This value must be less than or equal to WdgMaxTimeout . Otherwise, an error would occur in
configuration phase.
In case MCWDT is configured, wdgMaxTimeout is usually limited to a value lower than 65535 (see
General configuration).

e lidgFastWarnLimitPercent specifies the percentage of warning limit compared to trigger timeout value
in “fast” mode. The range is 1-99%.

User Guide 16 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
EB tresos Studio configuration interface

e ldgFastLowerLimitPercent specifies the percentage of the lower limit compared to trigger timeout
value in “fast” mode. The range is 0-98%.

e WdgFastMaxWaitTime represents the waiting watchdog timer status change in “fast” mode.

In case WDT is configured, watchdog timer must be disabled before setting of hardware register. It takes up
to three cycles of ILO (about 91.5 us). After setting of hardware register, watchdog timer must be enabled. It
also takes up to three cycles of ILO.

In case MCWDT is configured, watchdog timer must be disabled before setting of hardware register in
initialization phase. It takes up to two cycles of LF (the duration is decided by the source clock of LF). After
setting of hardware register, watchdog timer must be enabled. It also takes up to two cycles of LF.

WDG driver must wait those durations. This parameter is used for error detection when hardware changing
does not become possible or does not take effect within designated time. So, it is recommended to set a
higher value for this parameter, around 250 ps. Range is 1-65535 ps.

e lidgFastMcuClockRef isthe reference to the MCU clock configuration, which is used to calculate the loop
count of 1 ps.

Note: MCU clock reference will only support McuClock thatincludes MCU CLOCK ROOT*in
McuClockReferencePoint.

- McuClock: Clock reference point.
- McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there is no McuClock thatincludes MCU CLOCK ROOT* in McuClockReferencePoint, an error will occur
in configuration phase.

See the MCU user guide for more information.

4.5 WDG settings slow configuration list

WdgSettingsSlowlList is the array of the following hardware depending settings of WDG driver’s “slow”
mode:

e TWdgSlowTimerConfigRef isreference to the timer configuration for the watchdog driver's “slow” mode.

Note: Currently the number of the timer configuration is limited up to two and WDG driver refers to them
by fixed index of the array.
Therefore, this parameter is not used.

e TWdgSlowTimeoutValue represents trigger timeout value in “slow” mode. The range is 1-65535 ms.

Note: This value must be less than or equal to WdgMaxTimeout . Otherwise, an error would occur in
configuration phase.
In case MCWDT is configured, wdgMaxTimeout is usually limited to a value lower than 65535 (see
General configuration).

e TdgSlowWarnLimitPercent isused to specify the percentage of warning limit compared to trigger
timeout value in “slow” mode. The range is 1-99%.

e WdgSlowLowerLimitPercent is used to specify the percentage of lower limit compared to the trigger
timeout value in “slow” mode. The range is 0-98%.

e WdgSlowMaxWaitTime represents the waiting watchdog timer status change in “slow” mode.

User Guide 17 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
EB tresos Studio configuration interface

In case WDT is configured, watchdog timer must be disabled before setting of hardware register. It takes up
to three cycles of ILO (about 91.5 us). After setting of hardware register, watchdog timer must be enabled. It
also takes up to three cycles of ILO.

In case MCWDT is configured, watchdog timer must be disabled before setting of hardware register in
initialization phase. It takes up to two cycles of LF (the duration is decided by the source clock of LF). After
setting of hardware register, watchdog timer must be enabled. It also takes up to two cycles of LF.

WDG driver must wait those durations. This parameter is used for error detection when hardware changing
does not become possible or does not take effect within designated time. So, it is recommended to set a
higher value for this parameter, around 250 ps. Range is 1-65535 ps.

e WdgSlowMcuClockRef is reference to the MCU clock configuration, which is used to calculate loop count of
1 us.

Note: MCU clock reference will only support McuClock thatincludes MCU CLOCK ROOT*in
McuClockReferencePoint.

- McuClock: Clock reference point.
- McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there is no McuClock thatincludes MCU CLOCK_ROOT* in McuClockReferencePoint, an error will occur
in configuration phase.

See the MCU user guide for further information.

4.6 WDG settings off configuration list

WdgSettingsOffList isthe array of the following hardware depending settings of WDG driver’s “off” mode:

e WdgOffTimerConfigRef isreference to the timer configuration for the watchdog driver’s “off” mode.
Note: Currently the number of the timer configuration is limited up to two and WDG driver refers to them

by fixed index of the array.
Therefore, this parameter is not used.

e WdgOffTimeoutValue is not used.

e WdgOffWarnLimitPercent is not used.

e WdgOffLowerLimitPercent is notused.

e WdgOffMaxWaitTime represents the waiting watchdog timer status change in OFF mode. Watchdog timer
is disabled.
In case WDT is configured, it takes up to three cycles of ILO (about 91.5 ps).

In case MCWDT is configured, it takes up to two cycles of LF (the duration is decided by the source clock of
LF).

So, it is recommended to set a higher value for this parameter, around 125 ps. Range is 1-65535 ps.
e WdgOffMcuClockRef is reference to the MCU clock configuration, which is used to calculate loop count of 1

us.

Note: MCU clock reference will only support McuClock thatincludes MCU CLOCK ROOT*in
McuClockReferencePoint.

User Guide 18 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
EB tresos Studio configuration interface

- McuClock: Clock reference point.
- McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there is no McuClock thatincludes MCU CLOCK_ROOT* in McuClockReferencePoint, an error will occur
in configuration phase.

See the MCU user guide for further information.

4.7 WDG DemEventParameter reference

e WDG E DISABLE REJECTED refers to the configured DEM event that reports “Initialization or mode switch
failed because it would disable the WDG while disabling is not allowed”.

Note: This parameter is effective when wdgDemEventDisableRejectedis TRUE.
WDG E_DISABLE REJECTEDshould have valid reference; otherwise an error would occur in
configuration phase.

e WDG_E MODE FAILED refers to the configured DEM event that reports “Setting a WDG mode failed (during
initialization or mode switch)”.

Note: This parameter is effective when wdgDemEventModeFailedis TRUE.
wDG _E_MODE FAILEDshould have valid reference; otherwise an error would occur in
configuration phase.

e WDG_E HW TIMEOUT refers to the configured DEM event that reports “Hardware timeout (during
initialization or mode switch or setting trigger condition)”.

“Hardware timeout” means that the hardware status was not changed in the period specified by
WdgFastMaxWaitTime, WdgSlowMaxWaitTime, Or WdgOffMaxWaitTime.

Note: This parameter is effective only when wdgbDemEventHwTimeout is TRUE.
wDG _E HW TIMEOUT should have valid reference; otherwise an error would occur in configuration
phase.

e WDG E WDG STOPPED refersto the configured DEM event that reports “WDG stopped (during setting trigger
condition in off mode)”.

Note: This parameter is effective when wdgDemEventiwdgStopped is TRUE.
wDG_E_WwDG_STOPPED should have valid reference; otherwise an error would occur in
configuration phase.

4.8 WDG external configuration

This container is intended for using external watchdog timer. But this property is not used.

4.9 WdgPublishedinformation

WdgTriggerMode represents watchdog trigger mode (WDG TOGGLE, WDG WINDOW, or WDG BOTH). The value is
fixed to wDG_BOTH.

User Guide 19 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|ne0n
TRAVEO™ T2G family

Functional description

5 Functional description

5.1 Inclusion

The Wdg_66_IA.h file includes all necessary external identifiers. Therefore, the application only needs to include
Wdg_66_IA.h to make all API functions and data types available.

5.2 Initialization

Wdg 66 IA Init function initializes the WDG driver and sets the default WDG mode. Since it is possible to set
more than one configuration, this function can be called with different configuration sets.

Wdg 66 IA Init(&Wdg 66 IA Config[l]);
Note: Make sure that initialization has been performed before any other WDG API function is called.

Arepeated call of thewdg 66 IA SetTriggerCondition (1000) APIfunctionisrequired to preventthe WDG
from triggering a reset.

Note: The value of timeout (milliseconds) should not be higher than the value of wdgMaxTimeout.

5.3 Reconfiguration during runtime

Reconfiguration of the WDG driver is not possible at runtime. But, you can reinitialize with a different
configuration set.

5.4 APl parameter checking
The driver’s services perform regular error checks.

When an error occurs, the error hook routine (configured via wdgErrorCalloutFunction)is called and the
error code, service ID, module ID, and instance ID are passed as parameters.

If default error detection is enabled, all development errors are also reported to the DET, a central error hook
function within the AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

The following development error checks are performed by the services of the WDG driver:

5.4.1 Wdg_66_IA_Init()

e Wdg 66 IA Init () checks ifthe configuration iswithin valid range; otherwise calls DET with
WDG_66 IA E INIT FAILED.

e Wdg 66 IA Init () checks ifthe default mode is within valid range; otherwise calls DET with
WDG_ 66 IA E PARAM CONFIG.

e Wdg 66 IA Init () verifiesthatthe supported modesare wpG SLOW MODE,WDG OFF MODE, and
WDG_FAST MODE. If the mode is not allowed, the DEM message WwDG E MODE FAILED will be reported.

If the default mode is WDGIF_OFF_MODE and disabling is not allowed, the DEM message
WDG_E_DISABLE_REJECTED will be reported.

Note: WDG disables and enables watchdog timer to initialize registers according to configuration
parameters:

User Guide 20 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Functional description

e Disabling wait time and applied modes: Before change register settings, it is necessary to write ENABLE bit
of CTL register to disable watchdog timer and check the status until ENABLED bit of CTL register is disabled.

Applied to off, slow, and fast modes.

e Enabling wait time and applied modes: It is also necessary to write ENABLE bit of CTL register to enable
watchdog timer and check the status until ENABLED bit of CTL register is enabled.

Applied to slow and fast modes
e Time to take effect
Each of the above wait time is different between WDT and MCWDT.
- WDT
Takes up to three cycles of ILO (about 91.5 ps).
When the default mode is off, total wait time will be up to about 91.5 ps.
When the default mode is slow or fast, total wait time will be up to about 183.0 ps.
- MCWDT
Takes up to two cycles of LF (source clock of LF is configurable).
When the default mode is off, total wait time will be up to two cycles of LF.

When the default mode is slow or fast, total wait time will be up to four cycles of LF.

Note: When WDT is configured and watchdog timer is disabled, watchdog timer continues counting until
ENABLED bit of CTL register to be disabled.
When MCWDT is configured and watchdog timer is serviced, watchdog timer continues counting
until CTRO_SERVICE bit of SERVICE register to be effective.
For example, even though an application calls wdg 66 IA SetTriggerCondition () before
the watchdog timer expires, watchdog reset might occur because of the time lag of watchdog
hardware.
WDT: The time lag is three cycles of ILO, which is the source clock of the watchdog timer. Duration
of exclusive area: The registers are set within the exclusive area which is possibly up to about 183.0
us. Exclusive area is valid when only WDT is configured. Calculation of timeout value: The timeout
value is exchanged to a watchdog count (round down to the nearest decimal). For example, when
timeout value is 1 ms (0.001 s), the count will be 32 which means 0.9766 ms).
MCWDT: The time lag is three cycles of LF, which is the source clock of the watchdog timer.
Exclusive area is not used. Calculation of timeout value: The timeout value is exchanged to a
watchdog count (round down to the nearest decimal). For example, when timeout value is 1 ms
(0.001 s), the count will be 32 which means 0.9766 ms).

User Guide 21 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Functional description

5.4.2 Wdg_66_IA_SetMode()

If the new mode is WDGIF OFF MODE and disabling is not allowed, the DET error wbDG 66 IA E PARAM MODE
will be reported and the DEM messages WDG_E_DISABLE REJECTED and WDG_E MODE FAILED will be
reported.

If the new mode is not within the valid range, the DET error WDG_66 IA E PARAM MODE will be reported.

If the new mode is not listed in the supported modes defined in the WDG driver, the DET error
WDG 66 IA E PARAM MODE will be reported and the DEM message wpDG E MODE FAILED will be reported.

Note: WDG_66_IA_FAST_MODE, WDG_66_IA_SLOW_MODE and WDG_66_IA_OFF_MODE are in the list.
If the new mode is same as current mode, Wdg 66 IA SetMode () returns E_OK without any operations.

Note: If the parameter “mode” is not changed from the current value, this API returns quickly without
any operations.
The behavior when the parameter “mode” is changed is different between WDT and MCWDT.
o WDT
WDG must disable watchdog timer to set registers and enable it to restart according to the parameter.
o MCWDT
WDG writes the SERVICE register and sets other registers without disabling and enabling MCWDT.

When the SRSS version is two and the lower limit after the change is smaller than the current watchdog
timer counter, the WDG must wait for SERVICE register’s status before changing other registers to avoid a
reset. After that, the watchdog timer counter will restart from zero.

It takes up to three cycles of LF (the duration is decided by the source clock of LF). For details of the SRSS
version, see Hardware documentation.

Same timing restrictions are applied as described forwdg 66 IA Init ().See Wdg_66_IA_Init().

5.4.3 Wdg_66_IA_SetTriggerCondition()

Thewdg 66 IA SetTriggerCondition () function checks whether the timeout that passed is equal to or
less than the maximum allowed timeout; if not, the function calls DET with wbG 66 IA E PARAM TIMEOUT.

Note: If the parameter “timeout” is not changed from the current value, this APl will retrigger the
watchdog timer through the SERVICE register.

The SERVICE register of the WDT takes up to three cycles of the ILO (about 91.5 ps) to take effect.

(For example, if this APl is called and the SERVICE bit of the SERVICE register is written when the remaining
count before expiry is less than three ILO cycles at that time, the watchdog timer will continue to count three
more cycles of the ILO; this will cause a reset in this case).

When the SERVICE register is written again before it takes effect, writing will be ignored.

For example, when the mode is WDG_66_IA_FAST_MODE and WdgFastLowerLimitPercent is configured, or
when the mode is WDG_66_IA_SLOW_MODE and wdgSlowLowerLimitPercent is configured, if this APl is
called consecutively and the SERVICE bit of the SERVICE register is written, the second and later writings will be

User Guide 22 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|ne0n
TRAVEO™ T2G family

Functional description

ignored. After the SERVICE register takes effect, if this APl is called again before the lower limit is reached, the
lower limit violation will be triggered.

About the SERVICE register of the WDT, an HW erratum is reported.

If this API writes the SERVICE bit of the SERVICE register and the system goes to DeepSleep or Hibernate mode
within four cycles of the ILO, the next writing of the SERVICE bit of the SERVICE register after waking up within
two cycles of ILO may be ignored. As a result of this behavior, the WDT will continue to count and cause an
undesired interrupt or reset.

This erratum has effect only on CYT2Bx series. To determine if your device is affected, see Hardware
documentation.

SERVICE register of MCWDT takes up to three cycles of LF (the duration is decided by the source clock of LF) to
take effect.

(For example, if this APl is called and write CTRO_SERVICE bit of SERVICE register when the remaining count
before expiry is less than three at that time, watchdog timer will continue to count three cycles of LF more, so
that it will cause a reset in this case).

When the SERVICE register is written again before it takes effect, writing will be ignored.

For example, when the mode is WDG_66_IA_FAST_MODE and WdgFastLowerLimitPercent is configured, or
when the mode is WDG_66_IA_SLOW_MODE and WdgSlowLowerLimitPercent is configured, if this APl is
called consecutively and the CTRO_SERVICE bit of the SERVICE register is written, the second and later writings
will be ignored. After the SERVICE register takes effect, if this APl is called again before the lower limit is
reached, the lower limit violation will be triggered.

If the “timeout” parameter is changed, the behavior is different between WDT and MCWDT.
o WDT

WDG must disable the watchdog timer to set the registers and enable it to restart according to the
parameter.

o MCWDT
WDG writes to the SERVICE register and sets other registers without disabling and enabling MCWDT.

Restrictions as same as that of the SERVICE register are applied as described in wdg 66 IA SetMode ().
See Wdg_66_IA_SetMode().

Same timing restrictions are applied as described forwdg 66 IA Init ().See Wdg_66_IA_Init().

5.4.4 Wdg_66_IA_GetVersioninfo()

Wdg 66 IA GetVersionInfo () reportsthe DETWDG 66 IA E PARAM POINTER, if the parameter
versioninfo parameteris a NULL pointer.

User Guide 23 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|ne0n
TRAVEO™ T2G family

Functional description

5.5 Runtime checks

Thewdg 66 IA SetMode () andWdg 66 IA SetTriggerCondition () APIscheck whetherthe WDG’s state
iswDG_IDLE and the driver is already initialized properly. Otherwise the error callout handler and DET will be
called withthe wDG 66 IA E DRIVER STATE parameter.

Wdg 66 IA SetTriggerCondition () checks if current modeiswDG OFF MODE, thenthe DEM message
WDG_E WDG STOPPED will be reported.

5.5.1 Wdg_66_IA_Init()

Wdg 66 IA Init () doesnotcheck whetherthe driver has already been initialized. Do not call
Wdg 66 IA Init () again afterinitialization except when you want to change the configuration or reset
occurs.

5.6 Reentrancy

All functions except wdg 66 IA GetVersionInfo are notreentrant.

5.7 Debugging support

The WDG driver does not support debugging.

User Guide 24 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Hardware resources

6 Hardware resources

6.1 Interrupts

If the warning interrupt is enabled (see parameter WdgEnableWarningIrg), one of the following interrupt
handlers must be configured in OS to be called on the corresponding interrupt. The ISR must be declared in the
AUTOSAR OS as Category 1 Interrupt or Category 2 Interrupt.

ISR(Wdg 66 IA WarnIntWDT Cat2)
ISR NATIVE (Wdg 66 IA WarnIntWDT Catl)

ISR(Wdg 66 IA WarnIntMCWDT[n] Cat2)
ISR NATIVE (Wdg 66 IA WarnIntMCWDT[n] Catl)

Note: The interrupt service routines’ name suffixes must match the configured ISR category.
[n]: the number of specific MCWDT channel.

Note: On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing
conditions in the integrated system with TRAVEQO™ T2G MCAL. For more details, see the following
errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:
“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at
the end of the interrupt function to avoid the priority inversion.

TRAVEQ™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.
Thus, if necessary, the DSB instruction should be added just before the end of the handler by the
integrator.

User Guide 25 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Appendix A - APl reference

7 Appendix A - API reference
7.1 Data types

7.1.1 Wdg_66_IA_ConfigType

Type

typedef struct
{

const Wdg 66 IA SettingCommonType * SettingCommonPtr;
const Wdg 66 IA SettingType * SettingWdgPtr;

} Wdg 66 IA ConfigType;

Description

Wdg 66 IA ConfigType definesa structure which holds the WDG driver’s configuration set.

7.1.2 Wdglf ModeType

Type
typedef enum

Description

This type is derived from the WDG interface. It represents the mode types used for switching the WDG’s mode.
7.2 Constants

7.2.1 Error codes

The service might return the f error codes, listed in Table 2, if default error detection is enabled:

Table 2 Error codes

Name Value | Description

WDG_66_TIA E_DRIVER STATE 0x10 | WDG is already busy when triggering or mode
switching will be performed.

WDG_66_IA_E_PARAM MODE 0x11 | Mode is not a valid parameter.

WDG_66_TIA E_PARAM CONFIG 0x12 | Configuration set is not OK.

WDG_66_IA E_PARAM TIMEOUT 0x13 | Function setTriggerCondition is called with
an invalid timeout (bigger than maximum
allowed).

WDG_66_TIA E_PARAM_ POINTER 0x14 | Function GetVersionInfo is called with NULL
pointer.

WDG_66_IA E_INIT FAILED 0x15 | configPtr isnota valid pointer to configuration
set when WDG initializing.

WDG_66_IA_E_EXTENDED MODE_FAILED 0x20 | Mode switching failed due to some reasons (e.g.
hardware limitation). This error id is used to call
error callout handler.

User Guide 26 002-23353 Rev. *L

2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Appendix A - APl reference

Name Value | Description

WDG_66_IA E_EXTENDED DISABLE_REJECTED | (0x21 | The WDG is trying to disable the watchdog
although it is not allowed. This errorid is used to
call error callout handler.

WDG_66_IA E_EXTENDED HW_TIMEOUT 0x22 | The WDG hardware status change wait timeout.
This errorid is used to call error callout handler.
WDG_66_IA E EXTENDED WDG_STOPPED 0x23 | The WDG is trying to set trigger condition during

the watchdog is stopped. This errorid is used to
call error callout handler.

The following DEM messages can be enabled individually:

WDG_E_MODE_FAILED defined by DEM | Mode switching failed due to lack of hardware support
for this mode (DEM error).

WDG_E_DISABLE_REJECTED defined by DEM | WDG is not allowed to be disabled (DEM error).

WDG_E_HW_TIMEOUT defined by DEM | Timeout period expired while changing hardware
status (DEM error).

WDG_E_WDG_STOPPED defined by DEM | Trigger condition is not allowed to be set during the
watchdog is stopped (DEM error).

7.2.2 Version information

The version information, listed in Table 3, is published in the driver’s header file.

Table 3 Version information
Name Value Description
WDG_SW_MAJOR_VERSION See release notes Major version number
WDG_SW_MINOR_VERSION See release notes Minor version number
WDG_SW_PATCH_VERSION See release notes Patch version number

7.2.3 Module information

Table 4 Module information
Name Value Description
WDG_MODULE_ID 102 Module ID
WDG_VENDOR_ID 66 Vendor |D

7.2.4 API service IDs

The APl service IDs, listed in Table 5, are published in the driver’s header file:

Table 5 API service IDs
Name Value Description
WDG_66_IA_API_INIT 0x00 Service ID of wdg 66 TA TInit
WDG_66_IA API SETMODE 0x01 Service ID of wdg 66 IA SetMode
WDG 66 IA API SET TRIGGER CONDITION |(Qx03 Service ID of
Wdg 66 IA SetTriggerCondition
User Guide 27 002-23353 Rev. *L

2023-12-08

o~ _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Appendix A - APl reference

Name Value Description
WDG_66_IA API GET VERSION_INFO 0x04 Service ID of Wdg_66 IA GetVersionInfo
WDG_6 6_IA_API_WARNINT OxFF Service ID Of

Wdg 66 IA WarningInterrupt Arch

7.3 Functions

7.3.1 Wdg_66_IA_Init

Syntax

void Wdg 66 IA Init(
const Wdg 66 IA ConfigType* ConfigPtr
)

Service ID

0x00

Parameters (in)

e ConfigPtr - Pointer to WDG driver configuration set.
Parameters (out)

None

Return value

None

DET errors

e WDG 66 IA E INIT FAILED- The pointerto the configuration set for initialization is invalid.
e WDG 66 IA E PARAM CONFIG - Thedefault modeisinvalid or the WDG failed to initialize.

DEM errors

e WDG E DISABLE REJECTED-WDG cannot be turned OFF when DisableAllowed is FALSE.
e WDG_E MODE FAILED - The DefaultMode is not supported by hardware.
e WDG_E HW TIMEOUT - WDG initialization failed due to timeout of changing hardware status.

Description

This function initializes the WDG driver.

User Guide 28 002-23353 Rev. *L
2023-12-08

Watchdog driver user guide
TRAVEO™ T2G family

infineon

Appendix A - APl reference

7.3.2 Wdg_66_IA_SetMode

Syntax

Std ReturnType Wdg 66 IA SetMode (
WdgIf ModeType Mode
)

Service ID
0x01

Parameters (in)

e Mode - Mode the WDG should be switched to.

Parameters (out)
None

Return value

E OKOrE NOT OK

DET errors

e WDG 66 IA E DRIVER STATE-WDG is notinitialized yet or currently notin idle state.

e WDG 66 IA E PARAM MODE - The parameter mode is not supported.

DEM errors

e WDG E MODE FAILED - Switching of mode failed due to lack of hardware support for this mode.

e WDG E DISABLE REJECTED - Switching to off mode is not allowed or WDG is currently not in idle state.

e WDG_E HW TIMEOUT - Switching of mode failed due to timeout of changing hardware status.

Description

This function switches the mode of the WDG between the following three modes:

e WDGIF_OFF MODE
e WDGIF_SLOW_MODE
e WDGIF_FAST MODE

User Guide

29 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Appendix A - APl reference

7.3.3 Wdg_66_IA_SetTriggerCondition

Syntax

void Wdg 66 IA SetTriggerCondition(
uintl6 timeout

)

Service ID

0x03

Parameters (in)

e timeout - The new trigger condition validity period in milliseconds.
Parameters (out)

None

Return value

None

DET errors

e WDG 66 IA E DRIVER STATE-WDG is notinitialized yet or currently not in idle state.
e WDG 66 IA E PARAM TIMEOUT - Inputtimeoutis greater than the maximum allowed timeout.

DEM errors

e WDG E HW TIMEOUT - Switching of mode failed due to timeout of changing hardware status.
e WDG E WDG STOPPED - Setting of trigger condition during the watchdog is stopped.

Description

This function triggers watchdog timer with parameter timeout. If the value is 0, it triggers a watchdog reset,
immediately.

7.3.4 Wdg_66_IA_GetVersioninfo

Syntax

void Wdg 66 IA GetVersionInfo(
Std VersionInfoType* versioninfo

)

Service ID

0x04

Parameters (in)

None

Parameters (out)

e versioninfo - Version information of the WDG driver is stored at the previously given address.
Return value

None

User Guide 30 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Appendix A - APl reference

DET errors

e WDG 66 IA E PARAM POINTER -Inputversioninformation pointeris NULL.
DEM errors

None

Description

Returns the version information of the module.
7.4 Required callback functions

7.4.1 DET

If default error detection is enabled, the WDG driver uses the following callback function provided by DET. If you
do not use DET, you must implement this function within your application.

7.4.1.1 Det_ReportError

Syntax

Std ReturnType Det ReportError
(

uintl6 ModulelId,
uint8 Instanceld,
uint8 Apild,
uint8 ErrorId

)

Reentrancy

Reentrant

Parameters (in)

e ModuleId-Module ID of calling module.

e Instanceld-Instance ID of calling module.

e ApiId-ID ofthe APIservice that calls this function.
e ErrorId-ID ofthe detected development error.

Return value
Returns always E_OK (is required for services).
Description

Service for reporting development errors.

User Guide 31 002-23353 Rev. *L
2023-12-08

o _.
Watchdog driver user guide |nf|neon
TRAVEO™ T2G family
Appendix A - APl reference

7.4.2 DEM

If DEM notifications are enabled, the WDG driver uses the following callback function that is provided by DEM. If
you do not use DEM, you must implement this function within your application.

7.4.2.1 Dem_ReportErrorStatus

Syntax

void Dem ReportErrorStatus

(
Dem EventIdType EventId,
Dem EventStatusType EventStatus

)

Reentrancy
Reentrant
Parameters (in)

e EventId- ldentification of an event by assigned event ID.
e EventStatus - Monitor test result of given event.

Return value
None
Description

Service for reporting diagnostic events.

7.4.3 Callout functions

7.4.3.1 Error callout API

The AUTOSAR WDG module requires an error callout handler. Each error is reported to this handler; error
checking cannot be switched OFF. The name of the function to be called can be configured by parameter
WdgErrorCalloutFunction.

Syntax

void Error Handler Name
(
uintl6 ModulelId,
uint8 Instanceld,
uint8 ApiId,
uint8 ErrorId

)

Reentrancy
Reentrant
Parameters (in)

e ModuleId-Module ID of calling module.
e Instanceld-Instance ID of calling module.
e ApiId-ID ofthe APl service that calls this function.

User Guide 32 002-23353 Rev. *L
2023-12-08

Watchdog driver user guide
TRAVEO™ T2G family

Appendix A - APl reference

e ErrorId-ID ofthe detected error.

Return value
None
Description

Service for reporting errors.

User Guide

33

(infineon

002-23353 Rev. *L
2023-12-08

80-¢T-€¢0C

apINg Jasn

¥e

T« "AOY €GEET-C00

8 Appendix B - Access register table
8.1 SRSS (MCWDT)
Table 6 SRSS access register table of MCWDT
Register Bit |Access |Value Description Timing Monitoring Monitoring value
No. |size mask
CTL 31:0 | Word Dependson | MCWDT control Wdg_66_IA_ Init 0x80000001 0x80000001
p
(32 bits) | configuration | register of subcounter | "99_66_IA SetMode (After MCWDT is set to
Wdg 66 IA SetTrigger £ .
value or API 0 Condition slow/fast mode by calling
Wdg 66 IA Init/
Wdg 66 IA SetMode)
0x00000000
(After MCWDT is set to off
mode by calling
Wdg 66 IA Init/
Wdg 66 IA SetMode)
LOWER_LIMIT |15:0 |Word Dependson | MCWDT lower limit Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register of subcounter Wdg_66_IA_ SetMode (monitoringis | (monitoringis not needed.)
Wdg 66 IA SetTrigger
value or API 0 Condition not needed.)
UPPER_LIMIT |15:0 |Word Dependson | MCWDT upper limit Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register of subcounter | #d9_66_IA_SetMode (monitoringis | (monitoring is not needed.)
& & Wdg 66 IA SetTrigger & &
value or API 0 Condition not needed.)
WARN_LIMIT 15:0 | Word Dependson | MCWDT Warn limit Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register of subcounter Wdg_66_IA SetlMode (monitoring is | (monitoring is not needed.)
Wdg 66 IA SetTrigger
valueorAPI. |0 Condition not needed.)
CONFIG 31:0 |Word Dependson | MCWDT configuration |Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register of subcounter (monitoringis | (monitoring is not needed.)
valueorAPI. |0 not needed.)
CNT 15:0 | Word - MCWDT count register | Do not use. 0x00000000 0x00000000
(32 bits) of subcounter 0 (monitoringis | (monitoring is not needed.)
not needed.)

9)qe) 49351891 ss930Y - g Xipuaddy

Awey ozl ,,,03INVYEL

3pIng 13sn JdALIP Sopydiem

uoaulju

B

80-¢T-€¢0C

apINg Jasn

S€

T« "AOY €GEET-C00

Register Bit Access | Value Description Timing Monitoring Monitoring value
No. |size mask
CPU_SELECT 31:0 |Word Dependson | MCWDT CPU selection |Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register (monitoringis | (monitoring is not needed.)
value or API. not needed.)
LOCK 31:0 | Word 0x00000003 | MCWDT lock register | Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) Wdg_66_IA SetMode (monitoring is | (monitoring is not needed.)
Wdg 66 IA SetTrigger
Condition not needed.)
SERVICE 31:0 | Word 0x00000000 MCWDT service Wdg_66_IA SetMode 0x00000000 0x00000000
(32 bits) | 0x00000001 | register Wdg_66_IA SetTrigger | (monitoringis | (monitoringis not needed.)
Condition not needed.)
INTR 31:0 | Word 0x00000000 MCWDT interrupt Wdg_66_IA WarnIntMCW | 0x00000000 0x00000000
. . DT[n] Catl o Y
(32 bits) | 0x00000001 register Wdg 66 TA WarnTntMCH (monitoringis | (monitoring is not needed.)
DT[n] CatZ not needed.)
([n]: the number of
specific MCWDT channel)
INTR_SET 31:0 |Word - MCWDT interrupt set | Do not use. 0x00000000 0x00000000
(32 bits) register (monitoringis | (monitoring is not needed.)
not needed.)
INTR MASK 31:0 | Word Dependson | MCWDT interrupt Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | mask register Wdg_66_TA_SetMode (monitoringis | (monitoring is not needed.)
Wdg 66 IA SetTrigger
value or API. Condition not needed.)
INTR_MASKED | 31:0 | Word - MCWDT interrupt Do not use. 0x00000000 0x00000000
(32 bits) masked register (monitoringis | (monitoring is not needed.)

not needed.)

9)qe) 49351891 ss930Y - g Xipuaddy

Awey ozl ,,,03INVYEL

3pIng 13sn JdALIP Sopydiem

uoaulju

B

80-¢T-€¢0C

apINg Jasn

9¢

T« "AOY €GEET-C00

8.2 SRSS (WDT)
Table7 SRSS access register table of WDT
Register Bit |Access |Value Description Timing Monitoring Monitoring value
No. |size mask
CTL 31:0 | Word Dependson | WDT control register | Wdg_66_TA Init 0x80000001 0x80000001
(32 bits) | configuration ggg—gg—ii—:i?\;ife o (After WDT is set to
value or API COgaitIon_ 99 slow/fast mode by calling
Wdg 66 IA Init/
Wdg 66 IA SetMode Or
after
Wdg 66 IA SetTriggerC
onditioniscalledin
slow/fast mode)
0x00000000
(After WDT is set to off mode
by callingwdg 66 IA Init
/Wdg 66 IA SetMode)
LOWER_LIMIT |31:0 |Word Dependson | WDT lower limit Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register gig—gg—i—gigiﬁe o (monitoringis | (monitoring is not needed.)
value or API Cogaitzon— 99 not needed.)
UPPER_LIMIT |31:0 |Word Dependson | WDT upper limit Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register Qig—gg—ﬁ—zil\;iie o (monitoring is | (monitoring is not needed.)
value or API Cogaitzon— 99 not needed.)
WARN_LIMIT 31:0 |Word Dependson | WDT Warn limit Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register gig—gg—ﬁ—gggiﬁe - (monitoringis | (monitoring is not needed.)
value or API. Cogaitfon_ 99 not needed.)
CONFIG 31:0 |Word Dependson | WDT configuration Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register (monitoringis | (monitoring is not needed.)
value or API. not needed.)
CNT 31:0 | Word - WDT count register Do not use. 0x00000000 0x00000000
(32 bits) (monitoring is | (monitoring is not needed.)
not needed.)

9)qe) 49351891 ss930Y - g Xipuaddy

Awey ozl ,,,03INVYEL

3pIng 13sn JdALIP Sopydiem

uoaulju

B

80-¢T-€¢0C

apINg Jasn

L€

T« "AOY €GEET-C00

Register Bit Access | Value Description Timing Monitoring Monitoring value
No. |size mask
LOCK 31:0 | Word 0x00000003 WDT lock register Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) Wdg_66_IA_ SetMode (monitoringis | (monitoring is not needed.)
Wdg 66 IA SetTrigger
Condition not needed.)
SERVICE 31:0 |Word 0x00000000 | WDT service register | Wdg_66_IA_SetTrigger | 0x00000000 0x00000000
(32 bits) | 0x00000001 Condition (monitoringis | (monitoring is not needed.)
not needed.)
INTR 31:0 | Word 0x00000000 WDT interrupt Wdg_66_IA WarnIntWDT | 0x00000000 0x00000000
H H Catl
(32 bits) | 0x00000001 register fidg 66 TA WarnTntwDT (monitoringis | (monitoring is not needed.)
Cat2 not needed.)
INTR_SET 31:0 |Word - WDT interrupt set Do not use. 0x00000000 0x00000000
(32 bits) register (monitoringis | (monitoring is not needed.)
not needed.)
INTR_MASK 31:0 |Word Dependson | WDT interrupt mask Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | register Wdg_66_IA_ SetMode (monitoringis | (monitoring is not needed.)
Wdg 66 IA SetTrigger
value or API. Condition not needed.)
INTR_MASKED |31:0 | Word - WDT interrupt Do not use. 0x00000000 0x00000000
(32 bits) masked register (monitoringis | (monitoring is not needed.)

not needed.)

9)qe) 49351891 ss930Y - g Xipuaddy

Awey ozl ,,,03INVYEL

3pIng 13sn JdALIP Sopydiem

uoaulju

B

Watchdog driver user guide
TRAVEO™ T2G family
Revision history

(infineon

Revision history

Revision Issue date Description

** 2018-05-29 Initial release

*A 2018-12-20 Updated hardware documentation information.
Added configuration parameters in chapter 2.2 and chapter 4.
Added description of MCWDT in chapter 4 and chapter 5.
Added API Service ID WDG_66_IA_API_WARNINT in chapter A.1.2.
Added MCWDT interruptin chapter 6.1.
Added registers of MCWDT in chapter B.1.1.

*B 2019-06-11 Added description regarding WDT reset in chapter 4.3.
Updated hardware documentation information.

*C 2019-08-07 Added “SRSS” in Glossary.
Added new variable in chapter 2.6.
Added and modified description regarding SERVICE register in chapter
5.4.

*D 2020-07-06 Modified the range of WdgCPUSelect in chapter 4.3.

*E 2020-09-03 Changed a memmap file include folder in section "Memory Mapping".
Deleted a description regarding trigger function address pointer from
section “Memory Allocation Keyword”.

*F 2020-11-20 Changed description in section “Memory Allocation Keyword”.
MOVED TO INFINEON TEMPLATE.

*G 2021-02-08 Modified description regarding WDG_66_IA_E_PARAM_MODE in
chapter 5.4.2.

*H 2021-08-19 Added a note in 6.1 Interrupts

*| 2021-12-22 Updated to the latest branding guidelines.

*J 2022-07-12 Added caution regarding WDT in chapter 5.4.3.

*K 2023-03-23 Added caution regarding SERVICE register in chapter 5.4.3.

Added chapter 2.6.2.
Updated the description in chapter 4.1.

*L 2023-12-08 Web release. No content updates.

User Guide 38 002-23353 Rev. *L

2023-12-08

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-12-08
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email:

erratum@infineon.com

Document reference
002-23353 Rev. *L

Warnings

Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the WDG driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding

	2 Using the WDG driver
	2.1 Installation and prerequisites
	2.2 Configuring the WDG driver
	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword
	2.6.2 Assembler code

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 AUTOSAR OS
	3.4.2 DET
	3.4.3 Watchdog interface
	3.4.4 DEM
	3.4.5 BSW scheduler
	3.4.6 Error callout handler

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 WDG settings configuration
	4.3 WDG timer configuration list
	4.4 WDG settings fast configuration list
	4.5 WDG settings slow configuration list
	4.6 WDG settings off configuration list
	4.7 WDG DemEventParameter reference
	4.8 WDG external configuration
	4.9 WdgPublishedInformation

	5 Functional description
	5.1 Inclusion
	5.2 Initialization
	5.3 Reconfiguration during runtime
	5.4 API parameter checking
	5.4.1 Wdg_66_IA_Init()
	5.4.2 Wdg_66_IA_SetMode()
	5.4.3 Wdg_66_IA_SetTriggerCondition()
	5.4.4 Wdg_66_IA_GetVersionInfo()

	5.5 Runtime checks
	5.5.1 Wdg_66_IA_Init()

	5.6 Reentrancy
	5.7 Debugging support

	6 Hardware resources
	6.1 Interrupts

	7 Appendix A – API reference
	7.1 Data types
	7.1.1 Wdg_66_IA_ConfigType
	7.1.2 WdgIf_ModeType

	7.2 Constants
	7.2.1 Error codes
	7.2.2 Version information
	7.2.3 Module information
	7.2.4 API service IDs

	7.3 Functions
	7.3.1 Wdg_66_IA_Init
	7.3.2 Wdg_66_IA_SetMode
	7.3.3 Wdg_66_IA_SetTriggerCondition
	7.3.4 Wdg_66_IA_GetVersionInfo

	7.4 Required callback functions
	7.4.1 DET
	7.4.1.1 Det_ReportError

	7.4.2 DEM
	7.4.2.1 Dem_ReportErrorStatus

	7.4.3 Callout functions
	7.4.3.1 Error callout API

	8 Appendix B – Access register table
	8.1 SRSS (MCWDT)
	8.2 SRSS (WDT)

	Revision history
	Disclaimer

